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Abstract A chop for a source statement s and a target statement t reveals the pro-

gram parts involved in conveying effects from s to t. While precise chopping algorithms

for sequential programs are known, no chopping algorithm for concurrent programs

has been reported at all. This work introduces six chopping algorithms for concur-

rent programs, which offer different degrees of precision, ranging from imprecise over

context-sensitive to time-sensitive. Our evaluation on concurrent Java programs shows

that context-sensitive and time-sensitive chopping reduces chop sizes significantly. We

further present an extensive evaluation of chopping algorithms for sequential programs

and describe a new, easy to implement chopping technique for sequential programs

that computes fast and almost context-sensitive chops.

Keywords Chopping · Slicing · Program analysis · Concurrency · Threads

1 Introduction

A chop chop(s, t) for a source statement s and a target statement t in a program

p contains all statements conveying effects from s to t. Chopping is used in a wide

range of applications as a preprocessing step identifying the relevant program parts

for the main analysis, e.g. for vulnerability signatures (Brumley et al. 2006), path con-

ditions (Snelting et al. 2006), input validation (Liu and Kuan Tan 2008), reducing

programs for model checking (Shacham et al. 2007) and for witnesses for illicit infor-

mation flow (Hammer and Snelting 2009). Such applications can benefit from chopping

algorithms that are as precise as possible (i.e. the chops are as small as possible): Fore-

most, a more precise chop can lead to a more precise analysis result. The more precise

chop may also reduce the costs of the main analysis, which may outweigh the increased

? This is an extended version of previous work (Giffhorn 2009)
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1 void main()
2 int m = foo();
3 int n = foo();

4 int foo()
5 return 1;

1 int x,y;

2 thread_1()
3 int p = x;
4 y = p;

5 thread_2()
6 int a = y;
7 x = a;

Fig. 1 Examples for imprecise chopping

costs of the more precise chopping algorithm. For example, a path condition (Snelting

et al. 2006) between two statements, s and t, is a necessary condition on the program

state that a program run has to satisfy in order to reach t, when coming from s. The

path condition is composed of all predicates influenced by s and influencing t, which

in turn are determined by the chop from s to t. Thus, the more precise the chop, the

smaller and more precise is the resulting path condition, and may also be evaluated

faster.

A simple way to compute chop(s, t) for s and t is collecting all statements influ-

enced by s and all statements influencing t, and then intersecting those sets. However,

such a computed chop may be context-insensitive, because different invocations of the

same procedure are not distinguished. Consider the program on the left side in Fig. 1:

Statement 3 is not influenced by statement 2, hence chop(2, 3) should be empty. But

statement 2 influences the statements {2, 4, 5}, because it calls foo, and statement 3 is

influenced by the statements {3, 4, 5}, because it assigns the result of the procedure call

to n, thus the intersection results in chop {4, 5}. Reps and Rosay (Reps and Rosay 1995)

developed the first context-sensitive chopping algorithm for sequential interprocedural

programs, which distinguishes different invocations of the same procedure. Their algo-

rithm is the state of the art for chopping sequential programs. We abbreviate it with

RRC throughout the paper.

The RRC is, however, rather complicated to implement, and its asymptotic running

time is not linear to the size of the target program. We present a new chopping technique

for sequential programs that is not entirely context-sensitive, but is easy to implement

and very fast in practice, offering a genuine alternative for quick deployment. We

evaluated the precision and runtime costs of this new technique together with several

variants of the RRC on a set of 20 Java programs, providing one of the few published

evaluations of sequential chopping algorithms.

Many complementary languages, like Java or C], have built-in support for concur-

rent execution. Applications that leverage chopping to analyze such languages need

chopping algorithms suitable for concurrent programs. Unfortunately, the RRC cannot

be applied here: Concurrent programs give rise to new kinds of dependences between

program statements, which are not covered by that algorithm. We show how to ex-

tend Reps and Rosay’s algorithm to compute context-sensitive chops in concurrent

programs.

Concurrent programs bear a new kind of imprecision, so-called time travels (Krinke

2003 (ESEC/FSE)). Consider the program on the right side in Fig. 1, consisting of

two concurrent threads that communicate via two shared variables, x and y. Clearly,

chop(7, 6) should be empty, because statement 7 is executed after statement 6 and

therefore cannot influence it. But if the chop is computed using intersection, the result

is chop(7, 6) = {3, 4}, because statement 7 influences the statements {3,4,7} and state-
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Summary-merged Chopper
of Krinke,
Fig. 5 

Same-level Chopper of
Reps and Rosay,
Fig. 6

Same-level Chopping,
section 3.1

Unbound Chopping,
sections 3.2 and 4

Reps-Rosay Chopper,
Fig. 8

Fixed-point Chopper,
Fig. 10

Context-sensit ive Chopping
of Concurrent Programs,
section 7 

Iterated Two-phase Slicer
of Nanda and Ramesh,
Fig. 14

Iterated 
Two-phase 
Chopper

Context-sensitive Chopper,
Fig. 16

Fixed-point Chopper

Time-sensitive Chopping
of Concurrent Programs,
section 9

Time-sensitive Slicing (idea),
Fig. 17

Nanda and Ramesh’s
Time-sensitive Slicer,
Figs. 24, 25 and 21, 23

Time-sensitive Chopper,
Figs. 28, 29

Almost Time-sensitive 
Chopper

sequential programs

concurrent programs

Context-sensitive Slicing
of Concurrent Programs,
section 6

Time-sensitive Slicing
of Concurrent Programs,
section 8

Imprecise  
Chopper

Fig. 2 Relationship between the algorithms presented in this article. The algorithm at the
start of an arrow is a prerequisite for the algorithm at the end

ment 6 is influenced by statements {3,4,6}. We show how to avoid such time travels in

a chop, resulting in time-sensitive chops.

Since time travel detection is expensive and difficult to implement, we present six

chopping algorithms for concurrent programs. These algorithms offer different degrees

of precision, from imprecise (but fast) over context-sensitive to context- and time-

sensitive. We implemented these algorithms and evaluated their precision and runtime

costs on a set of concurrent Java programs. Context-sensitive chopping reduced the

chop sizes up to 25%, while moderately increasing execution times. Time-sensitive

chopping strongly reduced the chop sizes – up to 73%, but at the expense of consider-

ably increased execution times.

1.1 The roadmap

This article consists roughly of two parts: Sections 2 – 5 are concerned with chopping

of sequential programs, sections 6 – 14 investigate chopping of concurrent programs.

Since this article presents many existing and new algorithms, we want to depict their

relationship in Fig. 2. It shows the most important presented algorithms for sequential

programs and all presented algorithms for concurrent programs. In case the article

contains pseudo code for an algorithm, the corresponding Figure is mentioned. Section
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2 introduces system dependence graphs and slicing, another program analysis technique

on which chopping is based. Section 3 introduces chopping of sequential programs and

explains the Reps-Rosay chopper. It starts with introducing same-level chopping, where

the statements of the chopping criterion have to be located in the same procedure.

The Reps-Rosay chopper extends same-level chopping to unbound chopping, which

permits arbitrary chopping criteria. In total, section 3 presents Krinke’s summary-

merged chopper (Krinke 2002), the same-level chopper of Reps and Rosay (Reps and

Rosay 1995), and the unbound Reps-Rosay chopper. Section 4 presents our new, almost

context-sensitive chopping algorithm for sequential programs, the fixed-point chopper.

Section 5 concludes the part about chopping sequential programs by presenting one of

the few published evaluations of sequential chopping algorithms.

Section 6 extends system dependence graphs and slicing to concurrent programs.

For that purpose, it introduces the iterated two-phase slicer (I2P) of Nanda and

Ramesh (Nanda and Ramesh 2006), a context-sensitive slicer for concurrent programs.

Section 7 presents two simple chopping algorithms for concurrent programs, the im-

precise chopper (IC) and the iterated two-phase chopper (I2PC), which are both exten-

sions of the I2P slicer, and extends the fixed-point chopper of section 4 to concurrent

programs. These three algorithms are not context-sensitive, but fast and easy to im-

plement. The section proceeds with introducing our context-sensitive chopper, CSC,

which employs the Reps-Rosay chopper and the I2PC to compute context-sensitive

chops in concurrent programs. Section 8 introduces time travels as a source of im-

precision in concurrent programs and explains the idea of time-sensitive slicing. Since

time-sensitive chopping is based thereon, section 9 gives an in-depth description of

Nanda and Ramesh’s time-sensitive slicer (Nanda and Ramesh 2006), which currently

seems to be the most practical. Eventually, section 10 explains our time-sensitive chop-

ping algorithm, which is evaluated in section 11. Section 12 discusses several issues and

future work, section 13 presents related work, and section 14 concludes.

2 Slicing Sequential Programs

Slicing is a program analysis technique that reveals all program parts that influence a

given statement c, the slicing criterion. The result is the so-called backward slice. The

dual, the forward slice, contains all program parts that are influenced by c. A simple

but imprecise chop from s to t can be computed by intersecting the backward slice for

t with the forward slice for s (Jackson and Rollins 1994).

Slices are often computed based on system dependence graphs (SDG) (Horwitz et

al. 1990). A SDG G = (N ,E) for program p is a directed graph, where the nodes in

N represent p’s statements and predicates, and the edges in E represent dependences

between them. The SDG is partitioned into procedure dependence graphs (PDG) that

model the single procedures. In a PDG, a node n is control dependent on node m, if m’s

evaluation controls the execution of n (e.g. m guards a conditional structure). n is data

dependent on m, if n may use a value computed at m. The PDGs are connected at call

sites, consisting of a call node c that is connected with the entry node e of the called

procedure through a call edge c →call e. Parameter passing and result returning, as

well as side effects of the called procedure, are modeled via synthetic parameter nodes

and edges. For every passed parameter there exists an actual-in node ai and a formal-

in node fi that are connected via a parameter-in edge ai →pi fi. For every modified

parameter and returned value there exists an actual-out node ao and a formal-out node
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control dependence

data dependence

call  or parameter edge

x  >  0

x = x  *  x
x  = -x

int  j  = -1 call foo

print j

entry main

entry foo

call foo int  i  = 1

print i

summary edge

void main ()  {
    int i  = 1;
    int j  = -1;
    i = foo (i);
    j = foo (j);
    print i;
    print j;
}

int  foo ( int  x)  {
    i f  (x > 0) {
        x = x * x;
    }  e lse {
        x = -x;
    }
    return x;
}

i i j j 

x x 

return x

Fig. 3 A system dependence graph. The highlighted nodes are the context-sensitive slice for
print j. The light gray nodes are visited in phase 1, the dark gray nodes in phase 2

fo that are connected via a parameter-out edge fo →po ao. Formal-in and formal-out

nodes are control dependent on entry node e, actual-in and actual-out nodes are control

dependent on call node c. So-called summary edges between actual-in and actual-out

nodes of one call site represent transitive flow from a parameter to a return value in the

called procedure. For the purpose of chopping, this standard construction of summary

edges is slightly extended: There also exists a summary edge from a call node to each

actual-out node of that call site (Reps and Rosay 1995). Figure 3 shows an example

SDG, parameter nodes are depicted by rectangles.

2.1 Context-sensitive slicing

A central issue of slicing is context-sensitivity. A path in a SDG is context-sensitive if

it preserves the calling contexts of procedure calls, i.e. it returns from a procedure to

that call site which called the procedure. As context-insensitive paths are infeasible,

slicing algorithms – and traversal of SDGs in general – should only consider context-

sensitive paths. Figure 3 shows that SDGs contain context-insensitive paths, in that

example all paths entering procedure foo at call site i = foo(i) and leaving it later on

towards call site j = foo(j). Computing slices via simple graph reachability in SDGs

thus results in context-insensitive slices. For example, the suchlike computed slice for

statement print j would contain all statements besides print i, even though the first

call of foo does not influence print j. Summary edges enable an efficient computation

of context-sensitive backward slices in two phases (Horwitz et al. 1990): Phase 1 slices

from the slicing criterion only ascending to calling procedures, where summary edges

are used to bypass call sites. Phase 2 slices from all visited nodes only descending into

called procedures. A two-phase slicer for forward slices works accordingly. This two-

phase approach is the most established slicing technique for sequential programs. In

Fig. 3, the context-sensitive backward slice for statement print j is highlighted gray.
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The light gray shaded nodes in Fig. 3 are visited in phase 1, the darker gray shaded

nodes are visited in phase 2.

In order to reason about context-sensitive chopping, we need a formal definition of

context-sensitive paths in SDGs. Reps and Rosay introduced a definition based on a

language of matching parentheses:

Definition 1 (Context-sensitive paths in SDGs (Reps and Rosay 1995)) For each call

site c, label the outgoing call and parameter-in edges with a symbol (e
c, where e is the

entry of the called procedure, and the incoming parameter-out edges with a symbol )e
c.

Label all other edges with l.

A path from node m to node n in the SDG of a sequential program is context-

sensitive, abbreviated with m →∗cs n, iff the sequence of symbols labeling edges in

the path is a word generated from nonterminal realizable by the following context-free

grammar H:

matched → matched matched | (e
c matched )e

c | l | ε
unbalanced right → unbalanced right )e

c matched | matched

unbalanced left → unbalanced left (e
c matched | matched

realizable → unbalanced right unbalanced left

Nonterminal matched describes ‘matched’ paths: paths that start and end in the

same procedure and contain only accomplished procedure calls. ‘Unbalanced-right’

paths are sequences of matched paths interrupted by unmatched procedure returns, i.e.

they start in a procedure p and end in a procedure in which p was called1. ‘Unbalanced-

left’ paths are sequences of matched paths interrupted by unmatched procedure calls.

They start in a procedure p and end in a procedure that is called by p. A ‘realizable’

path is a concatenation of an unbalanced-right and an unbalanced-left path. It starts

in a procedure p, leaves it towards a procedure q in which p was called, and ends in a

procedure r called by q.

A slice for node s is context-sensitive if it contains only nodes lying on context-

sensitive paths from or to s:

Definition 2 (Context-sensitive slice)

A context-sensitive backward slice for slicing criterion s in a SDG G consists of the set

of nodes

{n | ∃ n→∗cs s in G}

A context-sensitive forward slice for s in G consists of the set of nodes

{n | ∃ s→∗cs n in G}

3 Chopping Sequential Programs

This section introduces existing chopping techniques for sequential programs. Con-

cerning sequential programs, there exist two different kinds of chopping techniques,

same-level and unbound chopping. Same-level chopping requires from the chopping

criterion (s, t) that s and t stem from the same procedure and considers only matched

paths from s to t, i.e. it never leaves the procedure towards one of its callers. Unbound

1 Which in case of recursion may again be p.
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control dependence

data dependence

call  or parameter edge

x = x  *  x

int a call foo int b

entry main

entry foo

call foo 

summary edge

void main ()  {
    int a = foo(1);
    int b = foo(a);
}

int  foo ( int  x)  {
    x = x * x;
    return x;
}

1 a a b

x x
return x

Fig. 4 Same-level vs unbound chopping: The unbound chop for (return x, x=x*x) consists of
the gray shaded nodes, the same-level chop is empty

chopping permits arbitrary chopping criteria and takes all realizable paths from s to

t into account. Figure 4 illustrates that difference: The unbound chop from return x

to x=x*x consists of the gray shaded nodes, because the return value of the first call

of foo is fed to the second. The same-level chop from return x to x=x*x is empty,

because inside one invocation of foo, return x does not influence x=x*x.

In this work, we focus on unbound chopping. However, same-level chopping is

employed to compute unbound chops, hence we will briefly explain its state of the

art.

3.1 Same-level chopping

Jackson and Rollins suggested computing same-level chops through an iterated ap-

proach (Jackson and Rollins 1994). Exploiting summary edges, the approach first com-

putes an intra-procedural chop2 from s to t. Then, for every traversed summary edge

ai →su ao, it computes another intra-procedural chop for criterion (fi , fo), where fi is

the formal-in or entry node connected with the actual-in or call node ai , and fo is the

formal-out node connected with the actual-out node ao. This step is repeated until no

new summary edge is visited. The same-level chop consists of all nodes visited in the

process.

Jackson and Rollins’ approach computes a new chop for every pair of formal-in and

-out nodes that have a summary edge between the corresponding actual-in and -out

nodes included in the chop. Therefore, it may traverse the same edges multiple times –

since two of such chops may overlap – and has an asymptotic running time bounded by

O(|E| ∗MaxFormalIns2), where MaxFormalIns is the maximum number of formal-in

nodes in any procedure’s PDG. Krinke developed an improved algorithm which relieves

that redundancy and is significantly faster in practice (Krinke 2002): If two summary

edges of one call site are included in the chop, one does not need to compute the two

chops for the corresponding pairs of {formal-in, entry}/formal-out nodes separately.

Instead, a single chop between the set of corresponding {formal-in, entry} nodes and

the set of corresponding formal-out nodes exhibits the same precision and traverses a

2 Intra-procedural chops are commonly computed through intersection of intra-procedural
forward and backward slices.
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Input: A chopping criterion (s, t).
Output: The same-level chop from s to t.

W = ∅ // a worklist
M = ∅ // marks processed summary edges

let C be the intra-procedural chop for (s, t)
foreach call site c in C

// collect all summary edges at c that lie in the chop
// put them as one element into W
W = W ∪ {{(ai , ao) | ai , ao ∈ C,∃ summary edge ai →su ao at c}}

repeat
W = W \ L // remove one element from the worklist

// build the chopping criterion (S, T) for L
S = ∅
T = ∅
foreach (ai , ao) ∈ L

let fi be the formal-in or call node corresponding to ai
let fo be the formal-out node corresponding to ao
if (fi , fo) /∈M // tuple has not been marked yet

M = M ∪ {(fi , fo)} // mark tuple as visited
S = S ∪ {fi}
T = T ∪ {fo}

// compute the chop for (S, T) and update the worklist
let C′ be the intra-procedural chop for (S, T )
C = C ∪ C′

foreach call site c in C′

W = W ∪ {{(ai , ao) | ai , ao ∈ C′, ∃ summary edge ai →su ao at c}}

until W = ∅

return C

Fig. 5 SMC: Krinke’s summary-merged chopper

smaller number of edges. Krinke’s improved algorithm, called summary-merged chopper

and depicted in Fig. 5, exploits that observation as follows: After computing the initial

intra-procedural chop for s and t, all traversed summary edges of visited call sites are

collected. Then, for every visited call site, a new chop is computed between the set of

corresponding {formal-in, entry} nodes and the set of corresponding formal-out nodes.

This procedure is repeated with the new resulting summary edges until there are no

more new summary edges left. The resulting chop consists of all nodes visited in the

process.

Though significantly faster in practice, the summary-merged chopper has still

the same runtime complexity. A technique which is asymptotically faster (O(|E| ∗
MaxFormalIns)) has been proposed by Reps and Rosay (Reps and Rosay 1995). We

explain that technique on its pseudo code in Figure 6. Starting from the initial intra-

procedural chop for (s, t), it computes for every summary edge ai →su ao being part of

the chop, the corresponding {formal-in, entry}/formal-out pair (fi , fo). Then it stores

the forward slice for fi in map F (= forward) and the backward slice for fo in map B

(= backward). It further stores for fo the set of actual-out nodes lying in the intra-
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Input: A chopping criterion (s, t).
Output: The same-level chop from s to t.

M = ∅
B = ∅
F = ∅
ActOut = ∅
W = ∅ // a worklist

let C be the intra-procedural chop for (s, t)
// collect all summary edges that lie in the chop
W = W ∪ {(m,n) | m,n ∈ C,∃ a summary edge m→su n}

repeat
W = W \ (m,n) // take next element
let fi be the formal-in or entry node that corresponds to m
let fo be the formal-out node that corresponds to n

if (fi, fo) /∈M
M = M ∪ {(fi, fo)}

if B(fo) = ∅
B(fo) = backward slice(fo)
ActOut(fo) = {n ∈ backward slice(fo) | n is an actual-out node}

if F (fi) = ∅
F (fi) = forward slice(fi)

foreach x ∈ B(fo)
if x ∈ F (fi)

C = C ∪ x
B(fo) = B(fo) \ {x}
if x is an actual-out or call node

foreach summary edge x→su y with y ∈ ActOut(fo)
W = W ∪ {(x, y)}

until W = ∅

return C

Fig. 6 Reps and Rosay’s same-level chopper

procedural backward slice for fo. Then, every node x which lies in both the intra-

procedural backward slice for fo and the intra-procedural forward slice for fi stored in

the maps B and F is added to the chop, and is removed from the stored backward

slice for fo. The removal guarantees that each node is touched at most once. If x is a

formal-in or entry node and there is a summary edge x →su y to an actual-out node

y lying in the intra-procedural backward slice for fo, then this edge is added to the

worklist. This way, the algorithm iteratively processes the procedures called within the

chop.

3.2 Unbound chopping – the algorithm of Reps and Rosay

An unbound chop chop(s, t) for criterion (s, t) takes all realizable paths from s to t into

account. Intuitively, chop(s, t) can be computed by intersecting the backward slice of
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Fig. 7 Schematic overview of the Reps-Rosay chopper for chopping criterion (s, t). The upper
part shows step 1, the lower part shows steps 2 and 3

t with the forward slice of s (Jackson and Rollins 1994). However, such a chop may

be context-insensitive, even if the underlying slicers are context-sensitive. Consider

the program on the left side in Fig. 1 as an example. Statement 3 is not influenced

by statement 2, hence the chop for (2, 3) should be empty. But the context-sensitive

forward slice for statement 2 and the context-sensitive backward slice for statement 3

both contain statements 4 and 5, and their intersection results in chop {4, 5}.
Reps and Rosay (Reps and Rosay 1995) developed a sophisticated algorithm that

chops programs context-sensitively. It exploits a well-formedness property of SDGs:

all interprocedural effects are propagated via call sites. Figure 7 gives a schematic

overview: The ovals symbolize procedures, ascending edges are procedure calls and

descending edges are returns. The two graphs show how the Reps-Rosay algorithm

proceeds in computing chop(s, t). First, it determines the common callers of s and

t, i.e. the procedures which (indirectly) call both the procedures of s and t. This is

achieved by computing a forward slice for s and a backward slice for t which only

ascend to calling procedures. Intersecting them reveals the common callers and the set

of nodes A in these procedures that belong to the chop. This is shown in the upper

graph. In the next step, the RRC collects the nodes in the procedures leading from

A to s or t that belong to the chop. For the procedures leading to s, this is done by

intersecting the forward slice of s and the backward slice of A, where the forward slice

only ascends to calling procedures and the backward slice only descends into called
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Input: A chopping criterion (s,t).
Output: The unbound chop from s to t.

let slc be a function that computes a same-level chop for a set of chopping criteria.
let f1 be a forward two-phase slicer that only commits phase 1
let b1 be a backward two-phase slicer that only commits phase 1
let f2 be a forward two-phase slicer that only commits phase 2
let b2 be a backward two-phase slicer that only commits phase 2

/* Step 1: collect the nodes in the common callers of s and t */
A = f1({s}) ∩ b1({t})

/* Step 2: collect the nodes in the procedures leading from A to s and t */
C1 = f1({s}) ∩ b2(A)
C2 = f2(A) ∩ b1({t}
Chop = C1 ∪ C2

/* Step 3: collect the nodes in procedures called underway */
// Collect all traversed summary edges: distinguishing the branches C1 and C2

// ensures that the edge has actually been traversed, otherwise ai could have
// been visited in C1 and ao in C2, such that the edge has not been traversed.
S = {(ai , ao) | ∃ ai →su ao ∧ (ai , ao ∈ C1 ∨ ai , ao ∈ C2)}

// build the chopping criteria for the same-level chopper
W = {(fi , fo) | ∃(ai , ao) ∈ S : (fi , fo) is {formal-in, entry}/formal-out pair of (ai , ao)}
Chop = Chop ∪ slc(W )

return Chop

Fig. 8 RRC: The Reps-Rosay chopper

procedures. For the procedures leading to t this works analogously. The result is shown

in the lower graph as light gray highlighted areas. This step ignores the procedures

called underway by the visited nodes – in our example procedures 5 and 7. In a third

step, these omitted procedures are analyzed via same-level chopping, starting from the

summary edges traversed in step 2. The resulting chop consists of the nodes visited in

steps 2 and 3. By using A, s and t as a barrier in the second step and employing same-

level chopping in the third step, the algorithm maintains context-sensitivity. According

to Reps and Rosay, RRC’s asymptotic running time is in O(|E | ∗MaxFormalIns), if

their same-level chopper of Fig. 6 is used for step 3. The authors show that without

that optimization its runtime complexity is in O(|E | ∗MaxFormalIns2), because then

it basically employs Jackson and Rollins’ iterative same-level chopper for step 3. The

same holds if Krinke’s SMC is used instead, as SMC has the same runtime complexity.

Figure 8 shows RRC’s pseudo code; function slc, which computes the same-level chops,

is realized by extending the algorithm in Fig. 6 to handle a set of chopping criteria.

3.2.1 The Reps-Rosay Chopper for Sets of Nodes

Though not explicitly stated by Reps and Rosay (Reps and Rosay 1995), the RRC is

also able to compute context-sensitive chops for chopping criteria consisting of sets of

nodes S and T , the result being the union of the chops for every pair (s, t) ∈ S×T . For

that purpose, the underlying slicers in the RRC are extended to compute slices for sets



12

of nodes. We need that extension for computing context-sensitive chops in concurrent

programs, and thus prove its correctness in this subsection.

Following grammar H in definition 1, let m→∗unbr n denote a SDG path which is

unbalanced-right. Similarly, let m →∗unbl n denote an unbalanced-left path. Reps and

Rosay define the following operations to compute context-sensitive chops in SDGs (Reps

and Rosay 1995):

– funbr(S) = {n | ∃s ∈ S : s→∗unbr n} (conforms to f1 in Fig. 8)

– funbl(S) = {n | ∃s ∈ S : s→∗unbl n} (conforms to f2 in Fig. 8)

– bunbl(T ) = {n | ∃t ∈ T : n→∗unbl t} (conforms to b1 in Fig. 8)

– bunbr(T ) = {n | ∃t ∈ T : n→∗unbr t} (conforms to b2 in Fig. 8)

In other words, funbr is the set of nodes lying on unbalanced-right paths starting at

a node s ∈ S, funbl is the set of nodes lying on unbalanced-left paths starting at a node

s ∈ S, bunbr is the set of nodes lying on unbalanced-right paths leading to a node t ∈ T
and bunbl is the set of nodes lying on unbalanced-left paths leading to a node t ∈ T . The

operations funbr and bunbl can be implemented by forward and backward two-phase

slicers committing only phase 1, i.e. only ascending to calling procedures, funbl and

bunbr can be implemented by forward and backward two-phase slicers committing only

phase 2, i.e. only descending into called procedures (Reps and Rosay 1995).

The RRC further needs a function SLC(e), which takes a summary edge e =

ai →su ao and computes a same-level chop for the corresponding {formal-in, entry}/for-

mal-out pair. However, its concrete functionality is irrelevant for this proof. As ex-

plained in greater detail further above, the RRC performs the following 3 steps to

compute the chop RRC(s, t) (Reps and Rosay 1995):

1. A = funbr({s}) ∩ bunbl({t}),
2. Chop = (funbr({s}) ∩ bunbr(A)) ∪ (funbl(A) ∩ bunbl({t})),
3. For every summary edge e on unbalanced-right paths from s to A or unbalanced-left

paths from A to t: Chop = Chop ∪ SLC(e).

We claim that the algorithm RRC(S, T ) for sets of nodes S and T , consisting of

the steps

1. A = funbr(S) ∩ bunbl(T ),

2. Chop = (funbr(S) ∩ bunbr(A)) ∪ (funbl(A) ∩ bunbl(T ))),

3. For every summary edge e on unbalanced-right paths from S to A or unbalanced-

left paths from A to T : Chop = Chop ∪ SLC(e),

computes the same result as the union of the chops RRC(s, t) for all possible pairs of

s ∈ S, t ∈ T .

Lemma 1 RRC(S, T ) =
S

s∈S
t∈T

RRC(s, t)
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Proof

‘⊇’ Every node n ∈ RRC(s, t) for s ∈ S, t ∈ T is also in RRC(S, T ). This follows

directly from the definitions of funbr, funbl, bunbr and bunbl.

‘⊆’ We have to show that for every node n ∈ RRC(S, T ) there exist s ∈ S, t ∈ T such

that n ∈ RRC(s, t). We distinguish two cases: n is added to the chop either in step

2 or in step 3.

– n is added in step 2:

There must exist s ∈ S, t ∈ T,w ∈ A such that either s →∗unbr n →∗unbr

w →∗unbl t or s→∗unbr w →
∗
unbl n→

∗
unbl t holds. Thus n ∈ RRC(s, t).

– n is added in step 3:

This means that n is added to the chop due to the same level chop SLC(e) for

a summary edge e = es →su et. Thus, there must exist s ∈ S, t ∈ T,w ∈ A,

such that either s →∗unbr es →su et →∗unbr w →
∗
unbl t or s →∗unbr w →

∗
unbl

es →su et →∗unbl t holds. Therefore, e is also visited by the chop RRC(s, t) in

step 2, which means that SLC(e) is added to that chop. Hence n ∈ RRC(s, t).

�

Note that this extended algorithm retains the same asymptotic running time, be-

cause all employed operations remain the same.

4 An Alternative Chopping Technique for Sequential Programs

In this section, we present a new chopping technique for sequential programs, which is

not entirely context-sensitive, but almost as precise in practice, very fast and easy to

implement.

Although the RRC is known for 15 years, intersection-based chopping is often

considered a convenient alternative for a quick deployment. A well-known optimization

computes a forward slice for s and then a backward slice for t restricted to the sub-

graph traversed by the forward slicer. The resulting backward slice is already the

chop, eliminating the intersection. Its runtime complexity is in O(|E |), like that of the

underlying two-phase slicer. Moreover, it already removes some spare nodes from the

chop. For example, it detects that chop(2, 3) in the program on the left side in Fig. 1

is empty, as statement 3 is not in the forward slice for statement 2.

During our work we made the following observation: Computing another forward

slice on the result of the above algorithm may result in an even more precise chop,

for which Fig. 9 provides an example. The context-sensitive chop for node pair (2, 8)

(statements int s = 0 and int t = x in procedure main) consists of the dark gray

nodes: Variable s is passed as a parameter to foo and flows via the return state-

ment into variable t. However, if we employ the algorithm above, the resulting chop

also contains nodes 16 and 17: The forward slice for node 2 consists of the nodes

{2,4,15,18,19,6,7,8,11,16,17,12,13}, the backward slice for node 8, restricted to these

nodes, is the set {8,7,6,19,18,17,16,15,4,2}. Nodes 17 and 16 were visited by the forward

slicer in the context of the second invocation of foo, which does not influence node

8. But that information is not available anymore in the set representing the forward

slice, thus the backward slicer traverses from node 18 to the nodes 17 and 16. If we

compute a second forward slice for 2 restricted to that backward slice, we are able

to remove these spurious nodes. The forward slice visits the nodes {2,4,15,18,6,7,8},
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control dependence

data dependence

call  or parameter edge b = b * 2

int x call foo int y

entry main

entry foo

call foo 

summary edge

void main ()  {
    int s = 0;
    int x = foo(s, 1);
    int t  = x;
    int y = foo(1, t);
}

int foo ( int a, int b) {
    b = b * 2;
    return a + b;
}

1 x t y

b a + b

return a+b

s 

a

int  s = 0 in t  t  =  x

1

1

2 3

4 5 6

7 8
9

10 11
12

13

14

15 16

17 18

19

Fig. 9 Chops for chopping criterion (2, 8). The highlighted nodes denote the chop determined
by computing the backward slice for 8 on the forward slice for 2. The dark gray nodes denote
the context-sensitive chop

Input: A chopping criterion (s, t).
Output: The chop from s to t.

let f(c,M) be a two-phase forward slicer which only visits the nodes in set M
let b(c,M) be a two-phase backward slicer which only visits the nodes in set M

/* Compute the initial chop. */
F = f(s,N), // N be the set of all nodes in the SDG
Chop = b(t, F )
changed = true

/* Iterate until reaching a fixed-point. */
repeat

Tmp = f(s,Chop)
Tmp = b(t,Tmp)

// if we have reached a fixed-point, set changed to false
if (Tmp == Chop)

changed = false

Chop = Tmp

until !changed

return Chop

Fig. 10 Fixed-point chopping: Computing almost context-sensitive chops

which is in this example the context-sensitive result. This will not always be the case,

but repeating that optimization may gradually remove more spurious nodes, resulting

in a fixed-point style algorithm shown in Fig. 10. However, fixed-point chopping is

not generally context-sensitive. Consider the example in Fig. 11: The context-sensitive

chop for (int s = b, int t = a) consists of the dark gray nodes, but fixed-point chop-

ping additionally includes statement int b = t. Although this new algorithm has an
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control dependence

data dependence

call  or parameter edge

int x call foo int y

entry main

entry foo

call foo 

summary edge

void main ()  {
    int x = foo(1);
    int y = foo(x);
}

int  foo ( int  a) {
    int t  = a;
    int b = t;
    int s = b;
    return s;
}

1 x y

a s

return s

x

int  t  = a in t  b  = t int  s = b

Fig. 11 Fixed-point chopping is not context-sensitive in general

asymptotic runtime complexity of O(|E| ∗ |N |), our evaluation presented in the next

section indicates that the fixed-point is reached very fast, usually after the second

iteration of the loop.

5 Evaluation of Sequential Chopping Algorithms

We have implemented the presented algorithms for unbound chopping in Java and

evaluated them on a set of 20 Java programs shown in Table 1. The programs in the

upper part are small to medium-sized programs taken from the Bandera3 benchmark,

and solve a certain task in a concurrent manner (e.g. LaplaceGrid solves Laplace’s

equation over a rectangular grid). The other programs are real JavaME4 applications

taken from the SourceForge repository5. All these programs contain threads and were

also used to evaluate our chopping algorithms for concurrent programs. The sequential

chopping algorithms simply treat thread invocations as procedure calls and ignore the

other concurrency-related dependences. The implemented algorithms work on SDGs

computed by Graf’s and Hammer’s data flow analysis for Java programs (Graf 2009;

Hammer and Snelting 2004). For the evaluation we used a 2.2Ghz Dual-Core AMD

workstation with 32GB of memory running Ubuntu 8.04 (Linux version 2.6.24) and

Java 1.6.0.

In our evaluation, we measured the average chop sizes and runtime performance

of our new proposed algorithm FC, the simple intersection-based chopper IC, and the

RRC. For a more in-depth investigation, we further employed two variants of FC, the

algorithms Opt-0, which omits the while-loop of FC, and Opt-1, which iterates the

while-loop only once. Additionally, we combined the RRC with the three same-level

chopping algorithms introduced in section 3.1 and examined their runtime differences.

In summary, we evaluated the following algorithms:

3 http://www.cis.ksu.edu/santos
4 The Java Mobile Edition for mobile devices.
5 http://sourceforge.net/

http://www.cis.ksu.edu/santos
http://sourceforge.net/
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Table 1 Statistics of our benchmark programs

Name Nodes Edges Procedures
Example 1687 6148 41
ProdCons 2217 8775 39
DiningPhils 2973 11331 43
AlarmClock 4085 13842 74
LaplaceGrid 10022 100730 95
SharedQueue 17998 139480 122
Daisy 45603 458502 555
DayTime 62594 644400 734
KnockKnock 34667 288736 493
DiskSched 4378 44546 131
EnvDriver 19129 184149 169
Logger 9576 50800 225
Maza 10590 60221 261
Barcode 11025 67849 229
Guitar 13459 87724 307
J2MESafe 17851 125221 309
Podcast 25366 162102 504
CellSafe 40709 845931 524
GoldenSMS 26445 212832 414
HyperM 17847 93068 277

– IC, intersects the forward slice for s with the backward slice for t.

– FC, the fixed-point chopper of Fig. 10.

– Opt-0, computes a backward slice for t on the forward slice for s.

– Opt-1, executes the while-loop of FC only once.

– RRC, the Reps-Rosay Chopper.

– RRC-Unopt, uses Jackson and Rollins’ iterative approach to compute the same-

level chops in the last step of RRC.

– RRC-SMC, uses Krinke’s Summary-Merged Chopper to compute the same-level

chops.

For each benchmark program, we randomly determined 10,000 chopping criteria

consisting of one source and one target node. The evaluation results are presented in

the following subsections.

5.1 Precision

Table 2 shows the average chop size for each chopping algorithm and benchmark pro-

gram. Since all evaluated RRC variants compute the same chops, they are subsumed

by column ‘RRC’. The measured values demonstrate that context-sensitive chopping is

able to reduce chop sizes significantly: The intersection-based chops (IC) are on average

14.6% bigger than the RRC chops, in the worst case even about 48% (for KnockKnock).

The simple, well-known optimization applied in Opt-0 turns out to be very effective:

The Opt-0 chops are on average only 3.2% bigger than the RRC chops. For most

programs, the difference lies between 0% and 5%, the only outlier being Maza for

which the Opt-0 chop is 32% bigger.

Fixed-point chopping reduces imprecision even more: The FC chops are on average

only 0.7% bigger than the RRC chops. For 9 out of 20 programs, the difference is even
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Table 2 Average size per chop (number of nodes). Column ‘RRC’ subsumes our three RRC
variants, which always computed the same chops

Name IC Opt-0 Opt-1 FC RRC
Example 54.88 45.36 44.86 44.86 44.82
ProdCons 7.70 7.47 7.40 7.40 7.40
DiningPhils 13.13 12.59 12.49 12.49 12.48
AlarmClock 39.19 38.44 38.10 38.10 38.09
LaplaceGrid 34.95 31.56 31.40 31.40 31.31
SharedQueue 1788.93 1729.17 1721.70 1721.70 1715.52
Daisy 12775.11 11473.73 11445.54 11445.54 11445.53
DayTime 17851.99 16194.70 16041.97 16041.95 16035.79
KnockKnock 1657.52 1184.87 1150.33 1150.33 1129.01
DiskSched 295.77 256.82 254.80 254.80 254.23
EnvDriver 2801.88 2725.90 2725.29 2725.29 2725.26
Logger 150.74 147.40 147.12 147.12 147.12
Maza 371.08 360.98 290.51 290.51 272.90
Barcode 279.78 219.04 213.25 213.25 210.33
Guitar 797.59 749.62 742.93 742.93 741.72
J2MESafe 2362.61 2190.82 2154.21 2154.21 2145.40
Podcast 2518.34 2073.05 2014.39 2014.39 2009.20
CellSafe 13889.89 13442.40 13259.84 13259.84 13150.46
GoldenSMS 1593.33 1381.36 1343.87 1343.87 1333.18
HyperM 495.44 448.93 442.21 442.21 441.96

below 0.1%. Notably, several of our larger programs are amongst these 9 programs

(e.g. Daisy and DayTime), so FC’s effectiveness is not restricted to small and simple

programs. Again, the outlier is Maza, for which the FC chop is 6.5% bigger than the

RRC chop.

The differences between Opt-1 and FC are marginally small – in Table 2 they are

only visible for DayTime. In fact, only for 17 out of our 200,000 chopping criteria (16

in DayTime and 1 in J2MESafe) Opt-1 and FC computed different results. For these

17 chops, FC needed three loop iterations, two iterations removing spurious nodes and

a last one to detect the fixed-point. For the other chops it iterated the loop twice, thus

basically performing Opt-1 plus an additional loop iteration detecting the fixed-point.

5.2 Runtime

Table 3 shows the average time in milliseconds needed for one chop. Looking at the

measured values for our three RRC variants reveals that the 3rd step of RRC – the

computation of the same-level chops – is the critical part concerning runtime perfor-

mance. The näıve iterative approach taken in RRC-Unopt did not scale well for our

larger programs – for Daytime and EnvDriver it was more than 100 times slower than

RRC-SMC. Surprisingly, RRC-SMC was the most performant variant, even though the

original RRC is asymptotically faster. For 13 out of 20 programs, particularly for the

larger programs, it was significantly faster - in the best case (for EnvDriver) even about

8 times.

Given its imprecision, algorithm IC performed rather poorly. Especially for the

JavaME programs in our benchmark its runtime performance was often slower than

that of RRC-SMC. Opt-0 was by far the fastest algorithm, Opt-1 was always faster

than the fastest RRC version at any one time and often even faster than IC. FC was
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Table 3 Average time per chop (in milliseconds)

Name IC Opt-0 Opt-1 FC RRC
Unopt. SMC Orig.

Example .7 .3 .3 .4 1.1 .9 1.0
ProdCons .4 .1 .1 .1 .4 .4 .3
DiningPhils .6 .2 .2 .2 .5 .4 .4
AlarmClock 1.2 .4 .4 .4 .8 .7 .6
LaplaceGrid 2.7 1.0 1.0 1.0 2.6 2.4 2.4
SharedQueue 41.0 28.7 44.1 49.2 26683.4 283.6 1059.0
Daisy 222.2 165.7 282.2 349.2 66013.4 1680.5 2230.6
DayTime 267.1 206.0 359.5 515.4 92964.8 926.3 3913.1
KnockKnock 50.8 29.6 38.9 45.7 251.8 77.3 58.9
DiskSched 8.0 5.8 7.1 9.1 24.2 18.4 10.6
EnvDriver 56.3 42.8 69.7 80.2 12049.4 108.4 846.1
Logger 6.0 3.1 3.8 3.8 10.0 4.4 5.3
Maza 10.5 6.2 7.9 9.6 32.7 9.0 11.4
Barcode 9.8 5.2 6.3 6.8 17.5 5.7 7.6
Guitar 21.7 12.8 17.4 18.8 114.3 18.4 26.4
J2MESafe 41.0 27.1 42.4 56.8 1557.1 89.1 156.1
Podcast 49.2 30.3 44.7 54.9 912.8 46.8 103.3
CellSafe 325.4 270.5 498.7 727.7 50741.9 1093.1 2625.3
GoldenSMS 47.9 27.5 38.9 49.7 1195.6 68.7 136.9
HyperM 17.9 9.6 12.1 14.1 96.7 11.8 18.4

in most cases the slowest amongst the imprecise algorithms, but still competitive to

the context-sensitive algorithms. For the JavaME programs, its runtime behavior was

similar to that of RRC-SMC, for the other programs it was always considerably faster.

5.3 Study summary

In our opinion, näıve intersection-based chopping as done in algorithm IC turns out to

be impractical: In view of its imprecision it exhibits a poor runtime performance. It

also has no advantage in being easy to implement, because Opt-0, Opt-1 and FC have

a similar implementation effort – one basically needs context-sensitive backward and

forward slicers. Algorithms FC and Opt-1 emerge as a genuine alternative to RRC:

FC’s is in many cases almost as precise as RRC, its runtime is often faster and it is

much easier to implement. A very interesting algorithm is Opt-1: Its computed chops

were in almost all cases identical to the FC chops and it is noticeably faster than FC.

Concerning context-sensitive chopping, our evaluation shows that the unoptimized

version of RRC is not practical; an application should always employ one of the opti-

mized versions. Surprisingly, RRC-SMC was often significantly faster than the original

RRC and thus seems to be the most practical variant for middle-sized programs. How-

ever, the original RRC is asymptotically faster than RRC-SMC (cf. section 3.2), thus

it might be that it is faster for larger programs.

All these results, in particular the comparison between RRC and RRC-SMC, should

be verified on a benchmark of larger programs. As our employed SDG generator cur-

rently only scales for programs with about 50,000 LOC, this remains future work.
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6 Slicing Concurrent Programs

The remaining paper concerns with chopping techniques for concurrent programs. We

focus on Java’s concurrency model based on threads and shared-memory communica-

tion. For differing concurrency mechanisms, the algorithms may have to be adjusted

accordingly. This section introduces the kinds of dependences arising from concurrently

executing threads, and explains how SDGs can be extended to include these depen-

dences. It also explains context-sensitive slicing of concurrent programs, which is the

foundation of our chopping algorithms.

In Java threads are special objects of the Thread class, whose behavior is described

by the statements in their run() procedure. In order to create a thread, a user has

to instantiate such a Thread object and to call a special procedure start(). start()

spawns a new thread, which executes the run() procedure of this thread object. A call of

its join() procedure terminates the thread. However, joining threads is not mandatory,

hence threads may in principle run infinitely. All threads share a single heap for storage

of objects and their only interactions consist of (monitor-style) synchronization and

communication via shared variables. Threads in Java are totally dynamic. A thread

object can be created like any other object, and a subsequent invocation of its start()

method will create a new thread of execution in the operating system executing its

run() method. All this may happen in loops or recursion, so there is no static bound

on the number of threads. Static detection of the number of threads running in a

program execution is generally undecidable.

Due to shared-memory communication, concurrent programs exhibit a special kind

of data dependence called interference dependence (Krinke 1998): A statement n is

interference dependent on statement m, represented in the SDG by an interference

edge m →id n, if n may use a value computed at m, and m and n may execute

concurrently. Other than standard data dependence, interference dependence ignores

the issue of killing definitions, i.e. it does not require that there must exist a thread

interleaving such that the value computed at m in fact reaches n. Müller-Olm and

Seidl have shown that the computation of these killing definitions is undecidable for

concurrent programs with procedures (Müller-Olm and Seidl 2001). Thread invocation

is modeled similar to procedure calls via fork sites, where shared variables are passed

as parameters. Fork and fork-in edges are defined in analogy to call and parameter-

in edges. An equivalence to parameter-out edges is not needed, because changes in

parameters (the shared variables) are propagated immediately via interference edges.

We currently do not model join points of threads, because in many languages like

Java or C] this would require must-aliasing between the target objects of fork and

join: Threads are conservatively assumed to run until the last thread terminates. We

call such extended SDGs concurrent system dependence graphs (cSDG) (Giffhorn and

Hammer 2009). Figure 12 shows an example cSDG. Concurrency also causes several

kinds of synchronization-related dependences (Chen et al. 2000; Hatcliff et al. 1999),

which are currently excluded by our cSDG generator. Once inserted, synchronization-

related dependences can be treated by slicing and chopping algorithms like interference

dependences. We will often subsume all concurrency-related edges in cSDGs under the

term concurrency edge.

The cSDG structure has to consider that threads in Java and likewise languages are

created dynamically, such that their concrete number is generally not decidable by a

static analysis. Even an upper bound for the number of threads is often not estimable,

because threads may be created inside loops or recursion. Thus it is not possible to
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   x = 0;
   y = 1;
   fork (thread_1);
   int p = x - 2;
   int  q = p + 1;
   y = q * 3;
}

thread_1 ()  {
   int  a = y + 1;
   int b = a * 4;
   x = b / 2;
}

x y

x y

Fig. 12 An example cSDG. The context-sensitive slice for node 14 is highlighted gray

model each potential thread as a separate sub-graph in the cSDG. Instead, threads are

modeled similar to procedures: The cSDG contains one sub-graph for each thread class

of the program, which is connected with each fork site that invokes that thread. How-

ever, a sound interference dependence computation needs a conservative estimation of

the number of invocations of each thread class, because there might be interferences

between threads of the same thread class. For that purpose, we employ a modification

of Ruf’s thread allocation analysis for Java (Ruf 2000). Our computation of interfer-

ence dependences and cSDGs is described in detail in Hammer’s PhD thesis (Hammer

2009). Several authors provide SDG extensions for concurrent programs similar to the

cSDG (Hatcliff et al. 1999; Krinke 2003 (PhD thesis); Nanda and Ramesh 2006; Zhao

1999).

In practice, cSDGs can be constructed in two steps: First, a standard SDG for

each thread class in isolation is computed. Note that this can be done with a suitable

SDG generator for sequential programs, because data and control dependences remain

thread-local and do not have to incorporate inter-thread effects that may arise through

thread interleaving. These inter-thread effects are captured by the interference depen-

dences computed in the second step. The second step determines the fork sites and

interference edges and uses them to connect the SDGs to a cSDG. For that purpose it

employs the thread allocation analysis mentioned above and a model of concurrency.
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Fig. 13 Thread regions of a threaded program

6.1 Model of Concurrency

Analyses of concurrent programs require a model of concurrency, which identifies the

program parts that execute concurrently. A suitable program representation for it are

control flow graphs.

A control flow graph (CFG) C = (N,E, s, e) for a procedure p is a labeled directed

graph, where the nodes in N represent p’s statements and predicates. E is a set of edges

that represent control flow: Two nodes are connected by an edge if they can be executed

back-to-back. s is the entry node which has no incoming edge and all nodes in N are

reachable from s, e is the exit node, which has no outgoing edge and is reachable from

every node in N . Control flow graphs for procedural programs, so-called interprocedural

control flow graphs (ICFG), consist of the CFGs of the single procedures, which are

connected via call and return edges. If a node cp calls procedure p, then there exists a

call edge from cp to p’s entry node. There exists a return edge from p’s exit to the direct

intra-procedural successor of c′p, which is termed a return node. The tuple (cp, c
′
p) is

a call site of p. An ICFG has a distinguished procedure main, such that every node

is reachable from main’s entry node, and every node reaches main’s exit node. For

concurrent programs, ICFGs are extended to threaded control flow graphs (TCFG), by

connecting the ICFGs of the single threads via fork and join edges. The graph in Fig.

13 shows an example TCFG.

Concerning slicing and chopping, it is sound to assume too much concurrency, as

this may only result in spurious interference edges – assuming too few concurrency in
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turn may omit valid interference edges and cause incorrect slices and chops. Therefore, a

simple model of concurrency could be to treat all threads as running entirely in parallel.

We employ the more elaborate model of Nanda and Ramesh (Nanda and Ramesh

2006), which determines concurrency on the level of fork and join points of threads

and is suitable for Java. It splits threads at fork and join points into thread regions and

determines concurrency on the level of these regions. In summary, a thread region starts

after a fork, at a join or at a node where two distinct thread regions meet. A thread

region ends where another one begins or at the end of a thread. Concurrent execution

of thread regions is determined through the following rule: Two thread regions q and

r execute in parallel, if

– q and r belong to different threads,

– there exists a fork node f that reaches the start node of q through a path φq and

the start node of r through a path φr, such that both paths leave f via different

edges and at least one of these paths starts with a fork edge,

– and neither q’s or r’s start node is dominated by the join node of the other region’s

thread.

Figure 13 shows the thread regions for an example program whose main thread forks

and joins another thread. It can be determined that only regions 2 and 3 as well as 2

and 4 may execute concurrently. This approach could be extended to a full-fledged may-

happen-in-parallel (MHP) analysis (Naumovich et al. 1999) including synchronization;

however, to date no scalable implementation for full Java has been reported.

We described the impact of concurrency models on slicing in previous work (Giffhorn

and Hammer 2009); after introducing slicing of concurrent programs, we will summa-

rize that impact in section 8.2. A more elaborate comparison of concurrency models

including cobegin-coend parallelism as in Ada and rendezvous-style synchronization

has been published by Chen et al. (Chen et al. 2000).

6.2 Context-sensitive slicing of concurrent programs

The two-phase slicing algorithm for sequential programs cannot be used for slicing

cSDGs, because summary edges do not capture interprocedural effects of interference

dependences (Nanda and Ramesh 2006). Since these dependences may cross procedure

borders arbitrarily and thus violate the well-formedness property of SDGs of propagat-

ing all inter-procedural effects through call sites, their effects cannot be summarized by

conventional summary edges. Fortunately, a simple extension of the two-phase slicer

enables slicing of cSDGs: The two-phase slicer is surrounded by an outer loop, which

iterates over a set S of nodes and calls the two-phase slicer for every s ∈ S. Initially,

S contains only the slicing criterion. If the two-phase slicer encounters an interference,

fork or fork-in edge, it does not traverse the edge but inserts the adjacent node into

S. The resulting slice consists of the nodes visited in all iterations of the two-phase

slicer. This iterated two-phase slicer (I2P slicer) was first described by Nanda and

Ramesh (Nanda and Ramesh 2006), and can be implemented to yield context-sensitive

slices in O(|E |): A node that has already been visited in phase 1 during a previous

two-phase slice has not to be visited again, because its own slice has already been

covered by that two-phase slice. This is not the case for a node that has only been

visited in phase 2 yet, because phase 2 omits parameter-in and call edges. It has to

be visited again if reached in phase 1 of another two-phase slice or via a concurrency
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Input: The cSDG G, a slicing criterion s.
Output: The slice S for s.

W = {s} // a worklist
M = {s 7→ true} // a map for marking the contents of W

// (true represents phase 1, false phase 2)

repeat
W = W \ {n} // remove next node n from W

foreach m→e n // handle all incoming edges of n
// If m wasn’t visited yet or it was visited in phase 2 and we are in phase 1 or
// intend to traverse a concurrency edge
if m 6∈ dom M ∨ (¬M(m) ∧ (M(n) ∨ e ∈ {id, fork , fork in}))

// if we are in phase 1 or if e is not a call or param-in edge, add m to W
if M(n) ∨ e /∈ {pi, c}

W = W ∪ {m}

/* Now determine how to mark m: */

// If we are in phase 1 and e is a param-out edge, mark m with phase 2
if M(n) ∧ e = po

M = M ∪ {m 7→ false}
// If we are in phase 2 and e is a concurrency edge, mark m with phase 1
elseif ¬M(n) ∧ e ∈ {id, fork , fork in}

M = M ∪ {m 7→ true}
// Else mark m with the same phase as n
else

M = M ∪ {m 7→M(n)}

until W = ∅

return dom M

Fig. 14 I2P: The iterated two-phase slicer

edge. This means that each edge has to be traversed at most twice, once in phase 2 and

later again in phase 1. As an example, assume that we want to compute the slice for

node 14 in the cSDG in Fig. 12. The algorithm first computes a thread-local slice for

node 14 using the two-phase slicer and thereby visits the nodes {14, 13, 12, 10}. Nodes

9, 6 and 4 are not visited, but added to set S. The slicer now subsequently computes

thread-local slices for these nodes and updates S as needed. The two-phase slice for

node 9 visits the nodes {9, 8, 7, 2, 1} and inserts node 15 into S. The two-phase slice

for node 6 visits nodes {6, 4, 3} (node 1 has already been visited in phase 1), the one

for node 4 can be omitted, because node 4 has already been visited in phase 1. The

last two-phase slice for node 15 visits node 15. The resulting slice consists of all visited

nodes, which are highlighted gray in Fig. 12.

Figure 14 shows pseudo code for a more compact implementation based on a single

map, which maps the visited nodes to the phase in which they have been visited. The

condition of the first ‘if’ inside the foreach-loop checks if the adjacent node m has

to be visited. This is the case if m has not been visited yet, or if it has been visited

only in phase 2 and we are currently in phase 1 or intend to traverse a concurrency

edge. The next conditional realizes the two-phase slicing technique: If the intended

traversal happens in phase 2, parameter-in and call edges have to be omitted. The
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last conditionals decide how to mark m in the map, according to two-phase slicing. At

concurrency edge traversals, the reached node is always treated as visited in phase 1.

6.3 Context-sensitive paths in cSDGs

We have to extend our definition of context-sensitive paths in SDGs to include con-

currency edges. Intuitively, if a path traverses a concurrency edge m → n towards n,

the calling context of m is lost: The thread that has been left is allowed to execute

further in parallel, so if the path reenters that thread later, one cannot demand that

it reenters the thread at the original calling context. Furthermore, the traversal may

reach n in any possible calling context of n, because m interferes with every possible

instance of n. Thus a path p in a cSDG is context-sensitive, if it consists of a sequence

p1, .., pn of sequential, context-sensitive paths, where each pair (pi, pi+1), 0 < i < n,

is connected via a concurrency edge. Based on this observation we extend Reps and

Rosay’s definition of context-sensitive paths in SDGs as follows:

Definition 3 (Context-sensitive paths in cSDGs) In addition to definition 1, label

interference, fork and fork-in edges with conc. A path in the cSDG of a concurrent

program is context-sensitive, iff the sequence of symbols labeling edges in the path

is a word generated from nonterminal conc realizable by grammar H ′, which extends

grammar H of definition 1 as follows:

matched → matched matched | (e
c matched )e

c | l | ε
unbalanced right → unbalanced right )e

c matched | matched

unbalanced left → unbalanced left (e
c matched | matched

realizable → unbalanced right unbalanced left

conc realizable → (realizable conc)∗ realizable

The new rule permits concatenation of sequential, context-sensitive paths via con-

currency edges. Extending the definition of context-sensitive slices for SDGs to cSDGs

is straightforward.

We will also have to reason about context-sensitive paths in TCFGs later on. Their

definition is very similar to definition 3, one basically substitutes parameter-out edges

by return edges.

Definition 4 (Context-sensitive paths in TCFGs) For each call site c, label the out-

going call edges with a symbol (e
c, where e is the entry of the called procedure, and the

incoming return edges with a symbol )e
c. Label fork and join edges with conc. Label

all other edges with l.

A path from node m to node n in a TCFG is context-sensitive, iff the sequence of

symbols labeling edges in the path is a word generated from nonterminal conc realizable

by grammar H ′ of definition 3.

7 Context-sensitive Chopping of Concurrent Programs

Intersection-based chopping in combination with the iterated two-phase slicer enables

fast and simple chopping of concurrent programs. Our first algorithm, abbreviated with

IC (intersection chopper), intersects the backward slice for t and the forward slice for

s computed with the I2P slicer. This algorithm is the easiest chopping algorithm for
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12 void thread_2()
13     z = x;
14     z = z + y;
15     print(z);

16 void thread_3()
17     int p = z;
18     w = p * p;

    int v,w,x,y,z;  // shared variables

 1 void main()
 2     int i  = 0;
 3     int j  = w;
 4     v = i;
 5     j  = j  + 1;

 6 void thread_1()
 7     int k = v;
 8     int l  = v;
 9     x = k + 1;
10     l  = l  + 1;
11     y = l  * w;

Fig. 15 The context-sensitive chop for chopping criterion (2, 5)

concurrent programs. Our second algorithm, the iterated two-phase chopper (I2PC)

computes a backward slice for t and then a forward slice for s, which only visits the

nodes already visited during the backward slice. Its runtime complexity is in O(|E|),
like that of the underlying I2P slicer. Our third algorithm extends the fixed-point

chopper from section 4 by substituting the two-phase slicers with iterated two-phase

slicers. This extension has the same runtime complexity as the original fixed-point

chopper, O(|E| ∗ |N |).
As in the case of sequential programs, intersection-based chopping of concurrent

programs is not context-sensitive. Unfortunately, the RRC cannot be applied to con-

current programs, due to interference dependence. Interference edges cannot be treated

as the other kinds of edges, because they cross procedure borders arbitrarily, break-

ing the well-formedness of SDGs for sequential programs. Our context-sensitive algo-

rithm, the context-sensitive chopper (CSC), is an extension of the RRC that is able

to handle interference dependence and has the same runtime complexity. The CSC is

based on the following observation: A chop in a concurrent program can be divided

into a set of sequential chops. Figure 15 presents an example: It shows four threads

that communicate via shared variables (for simplicity of presentation, all threads are

assumed to run entirely in parallel). The chop from statement 2 to statement 5 in

main is highlighted gray. It can be partitioned into the thread-local sets {2, 3, 4, 5},
{7, 9, 11}, {13, 14} and {17, 18}. As one looks closer, these sets correspond to the se-

quential chops RRC({2, 3}, {4, 5}) = {2, 3, 4, 5}, RRC({7, 11}, {9, 11}) = {7, 9, 11},
RRC({13, 14}, {13, 14}) = {13, 14}, and RRC({17}, {18}) = {17, 18}. These chopping

criteria have the following property: The source criterion consists of every node where

the whole chop enters the according thread via concurrency edges, and of the original

source criterion, if it lies in that thread, e.g. {2, 3} in main. The target criterion consists

of every node where the whole chop leaves the thread via concurrency edges and of the

original target criterion, if it lies in the thread, e.g. {4, 5} in main. So if we know the

concurrency edges that belong to the whole chop, we are able to compute the single
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Input: A chopping criterion (s,t).
Output: The chop from s to t.

// collect the concurrency edges I traversed by the I2PC chopper
I = I2PC(s, t)
S = {s} // a set for the source criterion
T = {t} // a set for the target criterion

// build the chopping criterion
foreach m→id n ∈ I

S = S ∪ {n} // add sink node n to the source criterion
T = T ∪ {m} // add source node m to the target criterion

// compute the chop with the RRC
C = RRC(S, T )
return C

Fig. 16 CSC: Context-sensitive chopping of concurrent programs.

sequential chops context-sensitively using the RRC. The CSC employs the I2PC to

determine these edges, using a modified I2PC that collects the concurrency edges I

that lie in its chop. Then, for every thread T , it picks the concurrency edges E ⊆ I

that enter T and the concurrency edges L ⊆ I that leave T . Let NE be the sink nodes

of the edges E, i.e. the nodes where T is entered, and let NL be the source nodes of the

edges L, i.e. the nodes where T is left. The chop RRC(NE , NL) is the context-sensitive

sequential chop from NE to NL. The chop for the whole program consists of the union

of these chops for all threads. This algorithm has the same asymptotic runtime behav-

ior as the original RRC: The worst-case runtime complexity of the I2PC is in O(|E|).
As the sub-graphs for the single threads in a cSDG are disjoint, the computation of the

sequential chops using the RRC is in O(|E| ∗MaxFormalIns). Thus CSC’s worst-case

runtime complexity is in O(|E| ∗MaxFormalIns).

Figure 16 shows pseudo code for the CSC. The second step can be computed by a

single call of RRC, because the subgraphs of the threads in a cSDG are disjoint, and

RRC ignores concurrency edges: The source criterion is formed by the sink nodes TI

of all concurrency edges in I plus the original source criterion, and the target criterion

is formed by the source nodes SI of all concurrency edges in I plus the original target

criterion. In our example, the concurrency edges are I = {4→id 7, 9→id 13, 13→id

17, 18 →id 3}. The source criterion is S = {2, 3, 7, 13, 17}, the target criterion is T =

{4, 5, 9, 13, 18}, and the chop CSC(2, 5) is computed by RRC(S, T ).

At first glance, it is not clear that CSC is context-sensitive, because set I is com-

puted by a context-insensitive technique. However, one can show that each concurrency

edge in I belongs to the context-sensitive chop. If we traverse a concurrency edge to-

wards node n in thread θ, then we do not know in which calling context we reach n,

since interleaving cannot be forecast in general. We have to assume conservatively that

we reach n in every possible context of n. Hence, if a concurrency edge m → n is in

I, then every possible instance of n is in the context-sensitive forward slice for s, and

there must exist at least one instance of n in the context-sensitive backward slice for

t. Thus, according to definition 3, there exists a context-sensitive path from s to t via

edge m→ n.

Theorem 1 Let G be a cSDG, and CSC(s, t) be the chop from s to t in G computed

by the algorithm in Fig. 16. For every node n in G the following holds:

n ∈ CSC(s, t)⇔ ∃ a context-sensitive path s→∗ n→∗ t
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Proof

‘⇒’ For every node v ∈ CSC(s, t) there exist nodes s′ ∈ S and t′ ∈ T such that v ∈
RRC(s′, t′), thus there exists a context-sensitive sequential path p : s′ →∗ v →∗ t′,
which can be generated from nonterminal realizable by grammar H ′. We are left to

show that we can extend p to a context-sensitive path q : s→∗ s′ →∗ v →∗ t′ →∗ t.
We distinguish four cases:

1. s = s′ ∧ t = t′

In this case, q = p and is therefore context-sensitive.

2. s = s′ ∧ t 6= t′

According to the creation of set T of the chopping criterion in Fig. 16, there

exists a context-sensitive path t′ → t′′ →∗ t, such that t′ → t′′ is a concurrency

edge (because t′ has to be visited by the backward slicer after traversing a con-

currency edge). Thus t′ → t′′ →∗ t has the form conc (realizable conc)∗ realizable.

Hence, the concatenation of s′ →∗ v →∗ t′ and t′ → t′′ →∗ t can be generated

from nonterminal conc realizable.

3. s 6= s′ ∧ t = t′

According to the creation of set S of the chopping criterion in Fig. 16, there

exists a context-sensitive path s →∗ s′′ → s′, where s′′ → s′ is a concurrency

edge (because s′ has to be visited by the forward slicer after traversing a concur-

rency edge). Thus it has the form (realizable conc)+. Hence, the concatenation

of s →∗ s′′ → s′ with s′ →∗ v →∗ t′ can be generated from nonterminal

conc realizable.

4. s 6= s′ ∧ t 6= t′

This is simply the combination of the two previous cases.

‘⇐’ We can rewrite that path as s→∗ s′ →∗ v →∗ t′ →∗ t, such that s′ →∗ v →∗ t′ is

a context-sensitive sequential path, s′ is either s or is preceded by a concurrency

edge, and t′ is either t or succeeded by a concurrency edge. We have to show that

s′ ∈ S and t′ ∈ T . In that case, the algorithm is guaranteed to compute the chop

RRC(s′, t′), and then v ∈ CRC(s, t) holds. For s = s′ or t = t′, this is trivial.

For t′ 6= t, we have that t′ →+ t is a context-sensitive path, and thus in the

backward slice of t, and that s →∗ t′ is a context-sensitive path, too, and thus in

the forward slice of s (both paths can be generated from nonterminal conc realizable

by grammar H ′). Thus t′ ∈ T holds. We can show similarly that s′ ∈ S.

�

8 Time travels

cSDGs give rise to a new kind of imprecision, so-called time travels (Krinke 1998). An

execution order between two sequentially executing statements is a time travel if it

contravenes the execution order specified by the program’s control flow6. Dependences

in sequential programs require valid control flow, i.e. if b depends on a, b must be

reachable from a in the control flow graph. Interference dependence cannot require

such a condition, because thread interleaving cannot be forecast in general. As a result,

interference dependence is not transitive. Treating it as being transitive can result in

infeasible execution orders containing time travels. Consider the example in Fig. 12.

6 As usual, conditional branching is treated here as non-deterministic branching.
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Assume that we are interested in the backward slice for node 14. The I2P slicer visits

the highlighted nodes, but according to the program’s control flow, it is impossible for

node 15 to influence node 14, because int b = a * 4 is always executed before x =

b / 2. Time travels are not limited to slicing, but affect cSDG traversal in general.

There exist time-sensitive slicing algorithms that eliminate time travels (Krinke 2003

(ESEC/FSE); Nanda and Ramesh 2006), and we will employ these techniques for

removing time travels in chops. To this end, this section explains the foundations of

time travel detection. The next section introduces Nanda and Ramesh’s time-sensitive

slicing algorithm, which currently seems to be the most practical one, and serves as

the basis of our time-sensitive chopping algorithm.

To avoid interference edge traversals that correspond to time travels, Krinke (Krinke

2003 (ESEC/FSE)) as well as Nanda and Ramesh (Nanda and Ramesh 2006) present

slicing algorithms based on symbolic program execution which takes all possible inter-

leaving orders into account. They detect and avoid time travels by keeping track of

thread execution states: When an interference edge is traversed, they check whether

the reached statement in thread t can be executed before the current execution state

of t. If not, the traversal would be a time travel and is rejected. To keep track of the

thread execution states, their algorithms annotate every visited node with a state tuple

Γ containing the last visited node for each thread with respect to the path taken from

the slicing criterion to the currently visited node: Initially, the state tuple of the slicing

criterion s contains s itself as the state of the thread of s, and all other threads are

mapped to an initial (i.e. nonrestrictive) state ⊥, as they have not been visited yet.

Following each backward traversal of an edge m → n, m is annotated with a copy of

n’s state tuple, where the entry for m’s thread is replaced by m. These annotations

allow detection of invalid interference edge traversals: If the slicing algorithm is about

to traverse an interference edge q →id m towards q in thread t, and qold is the state

of t in m’s state tuple, then it is compulsory that q may reach qold in the TCFG, or

else the traversal forms an invalid execution and is rejected. In our example in Fig-

ure 12, this situation arises when the algorithm traverses from node 7 to node 15. But

thread 1 had previously been left via interference dependence from node 13. Hence

the algorithm needs to check whether it is possible that node 13 is reachable from node

15 in the TCFG, which is not the case. Thus this traversal would result in an invalid

execution order and is rejected. This approach is still imprecise, because the state tu-

ples consist only of nodes and ignore the calling contexts of these nodes. Both Nanda’s

and Krinke’s algorithms improve precision by additionally annotating the nodes with

calling contexts. In the remainder, we use the term context for a node and its calling

context.

In order to give a first insight into how time-sensitive slicing works, Fig. 17 shows

the basic structure of both algorithms, which can be viewed as extensions of the iterated

two-phase slicer: They iterate a sequential slicing algorithm while determining which

encountered concurrency edges are valid for traversal (traversing fork and fork-in edges

may lead to time travels, too). A precise concurrent slice is achieved due to keeping track

of thread execution states. To this end, their algorithms apply slicing based on contexts

instead of nodes. The sequential slicers are called with a context c and its state tuple

Γ as slicing criterion and return its sequential slice S(c) and the set I of visited pairs

of contexts and state tuples with incoming concurrency edges. Similar to the iterated

two-phase-slicer, these slicers are called iteratively for every pair of context and state

tuple that is reached via a valid concurrency traversal. Besides this basic structure, the

algorithms of Krinke and of Nanda and Ramesh differ significantly, particularly in the
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Input: The cSDG G, a slicing criterion s.
Output: The slice S for s.

let C(n) return all possible contexts for node n
let θ(c) return the thread of context c
let Γ [c/t] return a new state tuple Γ ′ by mapping thread t in state tuple Γ to context c

let SeqSlice(c, Γ ) return the sequential slice S for context c and state tuple Γ
and the set I of visited pairs of contexts and state tuples with incoming concurrency edges

/* Initialize the worklist W with an initial state tuple and mark its contents */
Γ0 = (⊥, ...,⊥) // every thread is in an initial state
W = {(c, Γ ) | t = θ(s) ∧ c ∈ C(s) ∧ Γ = Γ0[c/t]}
M = {s} // marks the visited worklist elements

repeat
W = W \ {(c, Γ )} // remove next element (c, Γ ) from W

/* Compute a sequential slice S for (c, Γ ) and the set I of visited
pairs of contexts and state tuples with incoming concurrency edges */

(S, I) = SeqSlice(c, Γ )

S = S ∪ S

/* Compute valid concurrency edges */
foreach (i, Γi) ∈ I

foreach m→e n : n is node of context i, e ∈ {id, fork , fork in}

/* Compute the valid contexts of m */
Cm = {cm|cm ∈ C(m) ∧ cm reaches the state of θ(cm) in Γi}

/* Update worklist W */
foreach w ∈ {(cm, Γm)|cm ∈ Cm ∧ Γm = Γi[cm/θ(cm)]}

if w /∈M
W = W ∪ {w}
M = M ∪ {w}

until W = ∅
return S

Fig. 17 Slicing concurrent programs precisely

treatment and representation of contexts and in the iterated sequential slicer. Previous

work of the author (Giffhorn and Hammer 2009) provides an in-depth comparison of

both algorithms.

The depicted algorithm works as follows: Initially, it determines all possible contexts

C of the given slicing criterion, node s. Then it annotates each context c ∈ C with an

initial state tuple Γ , where the execution state of c’s thread is set to c and the states

of the other threads are set to an initial state ⊥: Every concurrency edge traversal

towards a thread in this initial state is valid by definition. The annotated contexts

are inserted into a worklist W . The algorithm iterates over every element (c, Γ ) of W

and computes its sequential slice S and the set I of visited pairs (i, Γi) of contexts

i and state tuples Γi with incoming concurrency edges. Then it computes the valid

concurrency edge traversals: For each pair (i, Γi) ∈ I and each incoming concurrency

edge m → n, where n is the node of context i, the set of valid contexts Cm of m are

determined. Context cm of m is considered valid if cm may reach in the TCFG the

context that is saved as the state of cm’s thread in Γi. If cm is valid, it is annotated
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with an updated state tuple Γm, where cm’s thread tm is mapped to cm and the other

threads are mapped to the same contexts as in Γi, and is inserted into worklist W .

The resulting slice is the union of all slices S.

According to our recent evaluation (Giffhorn and Hammer 2009), these slicers are

able to reduce the size of slices significantly: up to 30% in that evaluation. However,

due to a worst-case runtime complexity exponential in the number of threads of the

target program, these algorithms may run into scalability problems.

8.1 Dynamic thread generation

For the described algorithm to remain sound, the state tuples have to model every

thread that may exist at runtime, which requires a way to cope with thread invo-

cation inside loops and recursive procedures. A simple solution is to give an upper

bound for the number of invocations. A user of our system can do that by annotating

thread classes with the number of instances that exist at runtime. But often such an

upper bound is not known. In that case we use the following conservative approxima-

tion (Giffhorn and Hammer 2009): As shown in Fig. 17, the slicing algorithm initially

gives threads an initial execution state. A thread with an initial execution state is by

definition always reachable via a concurrency edge. We assume conservatively that a

thread invocation inside a loop or recursion is executed infinitely often, such that there

are infinite threads of that thread class. Hence every traversal of a concurrency edge

towards such a thread class is able to find an instance that is in the initial execution

state: The slicer simply omits the reachability analysis. Furthermore, all threads of

that thread class can be represented by a single entry in the state tuples.

Note that the iterated two-phase slicer uses this conservative approximation im-

plicitly for all threads, because it treats every concurrency edge as valid, and is thus

able to handle dynamic thread invocation as well.

8.2 The impact of the model of concurrency

For simplicity, the algorithm sketched in Fig. 17 assumes that all threads execute

entirely in parallel: The thread execution states in the state tuples are updated inde-

pendently of each other when the slicer switches to another thread. A different model

of concurrency is adopted by modifying the treatment of state tuples. In our case,

concurrency is determined via thread regions, thus the state tuples work on the level

of thread regions and contain one element per thread region. If the entry of a thread

region r is to be updated to context c, then all entries of thread regions that are guar-

anteed to execute sequentially to r are assigned the same value c. Note that this may

result in a thread region r′ being mapped to a context of a different thread, if r′ and r

belong to different threads but execute sequentially to each other. In that case state c

abbreviates that the thread to which r′ belongs either has not been started yet, or it

already has finished execution (because concurrency is computed on the level of fork

and join points). We show at the example in Figure 18 that this information allows

detection of more time travel situations. The set of shaded nodes marks the slice for

node 14 if all threads are deemed to execute entirely in parallel, the dark gray nodes

mark the slice if the thread region model is employed. In the latter case, the interfer-

ence edge traversal 20 →id 9 towards 20 can be identified as invalid: To influence the
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int x, y;

main ( )  {
   x = 0;
   y = 1;
   fork (thread_1);
   int p = x - 2;
   int  q = p + 1;
   y = q * z;
}

thread_1 ()  {
   int  a = y + 1;
   fork (thread_2);
   int b = a * 4;
   x = b / 2;
}

thread_2 ()  {
   y = 0;
}

x y

x y

y

y

Fig. 18 Thread regions enable a more precise analysis of time travels

slicing criterion node 14, node 20 must be executed before nodes 9 and 13. Since thread

2 is started after node 13, this would require time travel. If all threads are assumed

to execute entirely in parallel, one cannot detect that time travel. Note, however, that

the interference edge 20→id 9 cannot be removed from the cSDG! For slicing criteria

other than node 14 its traversal might be valid.

8.3 Time-sensitive paths in cSDGs

Intuitively, a slice for criterion s is time-sensitive, if it only contains the nodes of

all cSDG paths leading to s that are free of time travels. Since we aim to develop

a time-sensitive chopping algorithm, we need a formal definition as well. We define

time-sensitive paths following the work of Krinke (Krinke 2003 (ESEC/FSE)).

Definition 5 (Contexts) A context c consists of a node n, annotated with a call string,

which represents the call stack of a certain invocation of n’s procedure. The call string

encodes the call stack in ascending order: The first symbol represents the bottom of

the call stack, the last symbol represents the topmost element. Node(c) returns the

node represented by c.

Contexts can be used to traverse cSDGs in a context-sensitive manner, by increasing

or decreasing the call stack when entering or leaving a procedure. A path c →∗ c′ of

contexts, traversed by that technique, is context-sensitive (Krinke 2002). Nanda and
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Ramesh (Nanda and Ramesh 2006) as well as Krinke (Krinke 2003 (ESEC/FSE))

employ that technique to determine and propagate contexts during the slice.

Definition 6 (Context paths) A context path c→∗ d denotes a context-sensitive path

from Node(c) to Node(d) in a cSDG or TCFG, such that the path preserves the call

stacks of c and d: If the path ascends from c’s procedure it decomposes c’s call stack,

and the procedure calls towards d’s procedure taken by the path follow d’s call stack. Of

course, the path may call other procedures and return from them underway. Or more

formally, let w be the word generated from grammar H ′ for c →∗ d. The sequence of

unmatched closing parentheses in w have to correspond to a suffix of c’s call string.

Similarly, the sequence of unmatched opening parentheses in w have to correspond to

a suffix of d’s call string.

It can be shown that the concatenation of two context paths c →∗ d, d →∗ c′
results in a new context path c→∗ c′ (Krinke 2003 (PhD thesis)).

A context c reaches another context c′, if c′ can be executed after c, according to

control flow.

Definition 7 (Context reaching) A context c reaches another context c′ ⇔ ∃ a context

path c→∗ c′ in the TCFG.

The ‘reaches’ relation identifies sequences of contexts that can be executed without

time travels:

Definition 8 (Threaded witness (Krinke 2003 (ESEC/FSE))) A sequence 〈c1, ..., ck〉
of contexts is a threaded witness, iff ∀1 ≤ j < i ≤ k, ci and cj can execute concurrently,

or ci reaches cj .

If a sequence of contexts is a threaded witness, then the contexts can be executed

in that order without creating a time travel. A path of contexts in a cSDG is time-

sensitive if it is context-sensitive (i.e. it is a context path) and there exists an adequate

threaded witness:

Definition 9 (Time-sensitive paths (Krinke 2003 (ESEC/FSE))) A path c1 →∗ ck of

contexts in a cSDG is time-sensitive, iff it is context-sensitive and the sequence of its

contexts form a threaded witness 〈c1, ..., ck〉.

In the remainder, we will often use indices to make clear to which node a context

belongs to, i.e. context cn is a context of node n. Time-sensitive slices are defined as

follows:

Definition 10 (Time-sensitive slice) A time-sensitive backward slice in a cSDG G for

a slicing criterion s consists of the set of nodes

{n | ∃ a time-sensitive path cn →∗ cs in G}

A time-sensitive forward slice in a cSDG G for a slicing criterion s consists of the

set of nodes

{n | ∃ a time-sensitive path cs →∗ cn in G}
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9 Nanda and Ramesh’s time-sensitive slicing algorithm

According to our recent evaluation (Giffhorn and Hammer 2009), the time-sensitive

slicer of Nanda and Ramesh currently seems to be the most practical one. Our time-

sensitive chopper is based on that algorithm, therefore we explain it in detail in this

section. Nanda and Ramesh describe two versions of their algorithm in (Nanda and

Ramesh 2006), a version for cobegin-coend parallelism and a version for fork-join paral-

lelism suitable for Java. Since our work focuses on Java, we only refer to the latter. We

further include several recently developed optimizations and improvements (Giffhorn

and Hammer 2009).

9.1 Context representation and reachability analysis

Since time-sensitive slicing utilizes contexts in the thread execution states, an efficient

technique for working with contexts is mandatory. An intuitive representation of con-

texts are call strings, which can be propagated and modified during the slice (Krinke

2002). Nanda and Ramesh argue that this technique is impractical, because call strings

grow with the size of the target program and thus lead to poor runtime performance and

high memory consumption. Their slicer represents contexts by single integers instead.

For that purpose, a preprocessing step collects and enumerates all possible contexts.

This preprocessing step in turn employs call strings, but has to be executed only once.

The preprocessing step starts with a special folding method for cycles in interpro-

cedural control flow graphs and creates an interprocedural strongly connected regions

(ISCR) graph, which permits a topological enumeration of the remaining contexts in

reverse postorder. This enumeration enables a very efficient reachability analysis, as

we will see later. The challenge in folding ICFGs is to do so in a context-sensitive man-

ner, such that no precision is lost. Therefore, a simple analysis of strongly connected

components is not sufficient. Figure 19 shows an example. In the depicted ICFG, node

6 reaches node 3, but only via context-insensitive paths. A context-sensitive analysis

is able to detect and reject these paths. This is not possible anymore in the resulting

folded graph.

Nanda and Ramesh describe their folding algorithm in (Nanda and Ramesh 2006).

We present an alternative, less complex algorithm. It consists roughly of three steps:

1. Folding context-sensitive cycles.

2. Inlining procedures.

3. Enumerate contexts in reverse postorder.

Folding context-sensitive cycles This step scans the ICFG for cycles that are context-

sensitive. For that purpose, cycles containing both call and return edges are ignored.

Krinke describes a suitable algorithm working in two phases (Krinke 2003 (PhD the-

sis)):

– Phase 1 removes all return edges and folds the remaining strongly connected com-

ponents. After this, the return edges are put back.

– Working on the graph resulting from phase 1, phase 2 removes all call edges and

folds the remaining strongly connected components. Afterwards, the call edges are

put back.
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Fig. 20 ISCR graph creation: Folding of context-sensitive cycles (step 1) and procedure in-
lining (step 2)

The graph in the middle of Fig. 20 shows the result of this phase for our example.

The while-loop is only folded intra-procedurally, the recursive call- and return-cycles

are folded separately.
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Procedure inlining The next step inlines the remaining procedures. All nodes of pro-

cedures that are called by a fold node are added to the fold node and the call and

return edges between the fold node and these procedures are deleted. Furthermore, the

control flow edges from procedure calls to their direct intra-procedural successors are

replaced by no flow edges, which are needed for the context enumeration described in

the next paragraph. The result for our example is shown in Fig. 20.

Context enumeration In order to enumerate the contexts, a context graph is generated

from the ISCR graph. In a context graph, each node represents a single context, hence

paths in that graph are always context-sensitive. The existing contexts are collected by

a call string driven traversal of the ISCR graph, edges are added accordingly. Figure

21 shows pseudo code for such a traversal. It employs call strings to remain context-

sensitive, by checking at return edges whether that edge returns to the call site stored

at the top of the current call string.

Finally, the contexts in the context graph are enumerated in reverse postorder. The

finished context graph for our example is shown in Fig. 22. A reverse postorder enumer-

ation has the property that a node n has a smaller number than a node m, if it reaches

m. Moreover, in context graphs it enables a quick check whether a procedure can be

bypassed by a reachability analysis. Assume that we want to know if in the context

graph in Fig. 22 node I reaches node VI. If the reachability analysis is committed by

a backward traversal and arrives node V, it decides whether to traverse the incoming

return edge by looking at the associated call node II. As II ≮ I, node I cannot lie in

that procedure7 and the traversal jumps directly to node II.

In general, employment of context graphs should be considered carefully, because

their sizes, compared with the original ICFGs, do not scale well. However, we found

that for programs that are within reach of time-sensitive slicers8, context graphs are

actually manageable, if effective cycle folding techniques are applied. Table 4 shows

the size of the ICFGs and of the context graphs of our benchmark programs. The

last column shows the runtime needed for the context graph generation. In the worst

cases, the context graphs had about 8 times more nodes and edges than the ICFGs

(for DayTime and CellSafe).

Reaching analysis in concurrent programs The mindful reader may have noticed that

this subsection did not mention any treatment of concurrency-related edges. This is

so because fork and join edges may cause cycles, whose treatment is not clear. As

a consequence of this, the ICFG of each thread is processed by the above technique

separately, resulting in a set of disjoint context graphs. A reachability analysis for

contexts in different threads thus needs special treatment. A context s may reach a

context t in another thread via two different ways: (1) s reaches in its context graph a

context f that forks a thread in which t is executed directly or indirectly in subsequently

invoked threads, or (2) in t’s context graph, t is reached by a context of a join point that

directly or indirectly joins s’ thread. In summary, we get the reachability algorithm

depicted in Fig. 23. If the given contexts s and t belong to different threads, the

algorithm checks the two options described above. Otherwise, it commits a backward

traversal starting at t and returns true if it visits s in that process.

7 It cannot lie in the procedure, because all nodes in a procedure are reachable by a call of
that procedure.

8 Time-sensitive slicing currently seems to be practical for programs with about 10.000
LOC (Giffhorn and Hammer 2009).
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Input: An ISCR graph G.
Output: The context graph for G.

let push(σ, n) add a node n to call string σ
let pop(σ) remove the most recently added node from σ
let top(σ) return the most recently added node

/* Initialize worklist W with the root node and an empty call string*/
W = {(r, ””)} // r is G’s root, ”” is the empty call string
M = {(r, ””)} // the visited contexts
E = {} // a set of edges

repeat
W = W \ {(n, σ)} // remove next element from W

/* Traverse to all directly reachable contexts */
foreach n→e m

if e ∈ {cf, nf} // a control flow or no flow edge
// propagate the call string
if (m,σ) /∈M

W = W ∪ {(m,σ)}
M = M ∪ {(m,σ)}
E = E ∪ {(n, σ) →e (m,σ)}

else if e ∈ {c} // a call edge
// extend the call string with call node n
σ′ = push(σ, n)
if (m,σ′) /∈M

W = W ∪ {(m,σ′)}
M = M ∪ {(m,σ′)}
E = E ∪ {(n, σ) →c (m,σ′)}

else if e ∈ {r} // a return edge
// only traverse to m if the top of the call string matches the reached call site
let c be the call node connected with m through a no flow edge
if top(σ) = c

σ′ = pop(σ)
if (m,σ′) /∈M

W = W ∪ {(m,σ′)}
M = M ∪ {(m,σ′)}

E = E ∪ {(n, σ) →r (m,σ′)}

until W = ∅

return (M,E)

Fig. 21 Context graph creation

9.2 The slicing algorithm

Nanda’s time-sensitive slicing algorithm is a modified iterated two-phase slicer based

on contexts instead of nodes. It queries the context graphs to retrieve the context of

a node, which basically works as follows: After traversing a dependence edge m → n

towards m, where cn is the current context of n, all contexts Cm of m are retrieved

from the context graph. Then a reachability analysis on the context graph determines

every context cm ∈ Cm that reaches cn. The slicer proceeds with these contexts. This

reachability analysis is applied upon each edge traversal, which can be a bottleneck in
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Fig. 22 The enumerated context graph

Table 4 Size of ICFGs and context graphs of our benchmark programs

Name ICFGs context graphs computation
nodes edges nodes edges time (in sec.)

Example 1,688 1,918 571 635 .5
ProdCons 2,218 2,472 311 350 .2
DiningPhils 2,974 3,305 314 357 .2
AlarmClock 4,433 5,114 4,860 5,461 .4
LaplaceGrid 10,023 11,252 3,424 3,644 1.0
SharedQueue 17,999 19,063 2,498 2,739 2.7
Daisy 45,603 54,448 225,351 284,234 91.8
DayTime 62,594 75,562 510,583 653,461 73.5
KnockKnock 34,667 42,315 145,048 182,254 15.2
DiskSched 4,387 5,860 18,065 24,438 .6
EnvDriver 19,129 26,734 72,074 99,083 9.4
Logger 9,577 10,782 14,061 16,181 1.2
Maza 10,591 11,790 59,760 69,359 2.1
Barcode 11,026 14,405 21,605 28,540 2.2
Guitar 13,460 17,414 24,382 31,203 2.1
J2MESafe 17,851 22,434 65,284 85,700 5.4
Podcast 25,366 31,467 94,254 119,429 8.5
CellSafe 40,709 50,686 250,367 318,425 38.7
GoldenSMS 26,445 32,429 156,639 203,924 12.9
HyperM 17,847 21,827 51,103 65,918 4.1

programs where statements have many different contexts (Giffhorn and Hammer 2009).

We developed several optimizations relieving that bottleneck and describe our version

of the algorithm, whose pseudo code is shown in Figures 24 and 25. Some of these

optimizations have already been described in previous work (Giffhorn and Hammer

2009).
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Input: Two contexts s, t.
Output: true, if s reaches t, else false.

let θ(c) denote the thread of context c

if θ(s) 6= θ(t) // different threads
// check if s reaches a context where t’s thread is forked directly or indirectly
let F be the set of contexts in θ(s) which directly or indirectly fork thread θ(t)
foreach f ∈ F

if reaches(s, f) return true

// check if s’ thread is joined such that the join point reaches t
let B be the set of contexts in θ(t) which directly or indirectly join thread θ(s)
foreach b ∈ B

if reaches(b, t) return true

return false // s does not reach t

else // θ(s) = θ(t)
// traverse the context graph of θ(t) backwards, starting from t
W = {t} // a worklist
M = {t} // mark the visited contexts

repeat
W = W \ {c} // remove the next element c

if c = s return true // s reaches t
if c < s continue // c cannot be reached by s⇒ skip it

foreach d→e c // traverse backwards all incoming edges
if e ∈ {r} // a return edge

let d′ be the context connected with c through a no flow edge
if d′ ≮ s

// s cannot be in the procedure called by d′ ⇒ skip procedure
if d′ /∈M

W = W ∪ {d′}
M = M ∪ {d′}

else
// enter procedure
if d /∈M

W = W ∪ {d}
M = M ∪ {d}

else if e ∈ {cf , c} // a call or control flow edge
if d /∈M

W = W ∪ {d}
M = M ∪ {d}

until W = ∅

return false

Fig. 23 reaches: Reaching analysis in context graphs

In order to speed up traversal of intra-procedural dependence edges, we annotate

contexts with procedure IDs, which are determined through a traversal of the context

graphs in the preprocessing phase. If the slicer traverses an intra-procedural dependence

edge m → n towards m, where c is the current context of n, only those contexts C′m



39

of m are considered that have the same procedure ID as c9. The slicer proceeds with

all contexts cm ∈ C′m that reach cn. For interprocedural edges, the slicer simply takes

the adjacent context from the context graph10.

We proceed by describing the algorithm depicted in Fig. 24. It consists of a main

loop which iterates a two-phase slicer working with contexts. The two-phase slicer

employs the worklists W1 and W2, the main loop uses worklist W . Furthermore, the

algorithm employs two sets for marking visited contexts. The worklist for the main

loop is initialized by all contexts of slicing criterion s, annotated with state tuples. The

state tuples are computed by calling procedure up with the current context and an

initial state tuple, where each entry is set to a nonrestrictive state ⊥. Procedure up,

shown in Fig. 25, works as follows: It copies the given state tuple and sets the states

of all thread regions that execute sequentially to the thread region of context c to c.

The two-phase slicer inside the main loop treats intra- and interprocedural edges

as described further above. If the two-phase slicer encounters a concurrency edge, it

determines all contexts of the adjacent node m whose visiting would not cause a time

travel. To this end, a context cm of m has to reach the context stored as the state of

cm’s thread region in the current state tuple. Via procedure insert, the valid contexts

are annotated with updated state tuples and inserted into worklist W .

It remains to explain the auxiliary procedures insert, insert2 and restrictive

in Fig. 25, which are responsible for updating the state tuples and the worklists. Nanda

and Ramesh identify combinatorial explosion of state tuples to be a major performance

problem and define restrictive state tuples as a remedy.

Definition 11 (Restrictive state tuples (Nanda and Ramesh 2006)) Let e = [c1, .., ck]

and e′ = [c′1, ..., c
′
k] be two state tuples. e is restrictive to e′, iff ∀1 ≤ i ≤ k : ci reaches

c′i.

If c is a context, t and t′ are state tuples and t′ is restrictive compared to t, then

a slice for the slicing criterion (c, t′) is a subset of the slice for slicing criterion (c, t),

because t′ imposes more restrictions on the set of valid interference edges than t does.

This property allows identification of redundant context pairs and state tuples: When

a dependence edge e is traversed towards context c, the associated state tuple t′ is

computed. Then t′ is compared with all state tuples T of earlier visits of c. If t′ is

restrictive compared to a tuple t ∈ T , the traversal of e towards c is discarded. This

optimization is realized by procedures insert and restrictive. We have shown in

previous work that this optimization must not be applied to elements that are to be

inserted into the worklist for phase 2, otherwise it may cause incorrect slices (Giffhorn

and Hammer 2009). In these cases procedure insert2 is used instead, which simply

checks whether the new element in question has been visited before.

9.3 Runtime complexity

The runtime complexity of time-sensitive slicing is dominated by a possible combinato-

rial explosion in the thread execution states, because a node can be visited repeatedly

9 Due to graph folding and procedure inlining, C′
m may indeed contain more than one

context.
10 For that purpose, the SDG specific parameter-passing nodes are mapped to the associated

call sites. Actual-in nodes are mapped to the call node, actual-out nodes to the return node,
formal-in nodes to the entry node, and formal-out nodes to the exit node.
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Input: A cSDG G, a slicing criterion node s.
Output: The slice S for s.

let C(n) return a sorted set of all contexts of node n
let θ(c) denote the thread of context c
let r(c) denote the thread region of context c

Γ0 = [⊥, ...,⊥] // an initial context
W = {(s, cs, Γ ) | cs ∈ C(s) ∧ Γ = up(Γ0, cs)} // initial worklist
W1 = ∅,W2 = ∅ // two empty worklists
M1 = ∅,M2 = ∅ // sets for marking visited contexts

// iterate over a modified 2-phase-slicer until W is empty
repeat

// initialize the next iteration
W = W \ {(n, cn, Γn)} // remove next element
W1 = W1 ∪ {(n, cn, Γn)} // add it to W1

while W1 6= ∅ // phase 1, only ascend to calling procedures
W1 = W1 \ {(n, cn, Γn)} // remove next element
S = S ∪ {n} // add node n to the slice
foreach m→e n

if e ∈ {id , fork , fork in} // edge leaves the thread
foreach cm ∈ C(m) : θ(cm) 6= θ(cn) // only contexts of m in other threads

if reaches(cm, Γ [r(cm)]) // time travel detection
insert(Γn, cm,W,M1)

else if e ∈ {pi , call}
let cm be the direct predecessor of cn in cn’s context graph
insert(Γn, cm,W1,M1)

else if e ∈ {po}
let cm be the direct predecessor of cn in cn’s context graph
insert2(Γn, cm,W2,M2)

else // e is an intra-procedural edge
foreach cm ∈ C(m) : cm.proc = cn.proc // contexts in the same procedure

insert(Γn, cm,W1,M1)

while W2 6= ∅ // phase 2, only descend to called procedures
W2 = W2 \ {(n, cn, Γn)}
S = S ∪ {n}
foreach m→e n

if e ∈ {id , fork , fork in}
foreach cm ∈ C(m) : θ(cm) 6= θ(cn)

if reaches(cm, Γ [r(cm)])
insert(Γn, cm,W,M1)

else if e ∈ {po}
let cm be the direct predecessor of cn in cn’s context graph
insert2(Γn, cm,W2,M2)

else if e /∈ {pi , call}
foreach cm ∈ C(m) : cm.proc = cn.proc

insert2(Γn, cm,W2,M2)
until W = ∅

return S

Fig. 24 Our version of Nanda and Ramesh’s time-sensitive backward slicer
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procedure insert(Γold,m, cm,W,M)
Γm = up(Γold, cm) // create the new state tuple
// run the restrictive state tuple optimization
if ∃ (m, cm, Γ ′) ∈M : restrictive(Γm, Γ ′)

return // the new element is redundant
else

W = W ∪ {(m, cm, Γm)}
M = M ∪ {(m, cm, Γm)}

end insert

procedure insert2(Γold,m, cm,W,M)
Γm = up(Γold, cm) // create the new state tuple
if (m, cm, Γm) /∈M // insert the new element if it wasn’t visited before

W = W ∪ {(m, cm, Γm)}
M = M ∪ {(m, cm, Γm)}

end insert2

procedure restrictive(Γ, Γ ′)
foreach thread region r

if !reaches(Γ [r], Γ ′[r])
return false

return true
end restrictive

procedure up(c, Γ )
Γ ′ = [c/r(c)]Γ // create a copy of Γ and set r(c)’s state to c
for all thread regions r that do not execute in parallel to r(c)

Γ ′ = [c/r]Γ ′ // set r’s state to c
return Γ ′

end up

Fig. 25 Auxiliary procedures for the slicer in Fig. 24

with different thread execution states. Nanda and Ramesh thus determined a worst-

case complexity of O(|N |pt), where p is the calling depth of the call graph, |N |p is an

upper bound for the contexts, and t is the number of thread instances modeled in the

state tuples (Nanda and Ramesh 2006).

10 Time-sensitive chopping

In this section, we transfer the time travel detection techniques employed in time-

sensitive slicing to chopping. Intuitively, a chop chop(s, t) is time-sensitive, if it only

contains the nodes of all cSDG paths s →∗ t that are free of time travels. Or more

formally:

Definition 12 (Time-sensitive chop) A time-sensitive chop in a cSDG G for a chop-

ping criterion (s, t) consists of the set of nodes

{n | ∃ a time-sensitive path cs →∗ cn →∗ ct in G}

Since context-sensitive chopping treats interference dependence as being transitive,

its computed chops may contain time travels. Consider the example in Fig. 26. The

gray shaded nodes are the context-sensitive chop CSC(8, 13). That chop contains two

time travels: Node 14 cannot influence node 13, because it cannot be executed before
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     int  a = y + 1;
     int b = a * 4;
     x = b / a;

  p   q

  f   f+1

Fig. 26 Chops for chopping criterion (8, 13). The gray shaded nodes mark the context-
sensitive chop, the dark gray shaded nodes mark the time-sensitive chop

node 13. Similarly, node 8 cannot influence nodes 2, 4 and 7, so all these nodes should

be removed from the chop. The first intuitive idea is to employ time-sensitive slicing

algorithms to remove these time travels. One first computes the context-sensitive chop

CSC(s, t), and then removes every node which is not in both the time-sensitive back-

ward slice for t and the time-sensitive forward slice for s. In Fig. 26, this technique

would determine the dark gray shaded nodes as the chop for (8, 13), which is context-

and time-sensitive. However, this technique does not always compute time-sensitive

chops, for which Fig. 27 provides an example. The depicted graph shows the chop from

node 2 to node 3, if computed as described above (for simplicity, all three threads

execute entirely in parallel). The time-sensitive backward slice for 3 consists of the

nodes {1, 2, 3, 4, 5, 6, 7, 8, 9}. The time-sensitive forward slice for 2, computed on

these nodes11, visits the nodes {2, 3, 5, 6, 7, 9}, which also form the resulting chop.

Unfortunately, node 2 cannot influence node 3 via node 9: All paths from node 2 to

node 3 via node 9 contain the sequence 7→ 9→ 5, which is a time travel, as it leaves

thread 1 at node 7 and reenters it later at node 5. We therefore call this algorithm the

almost time-sensitive chopper (ATSC). A straightforward solution is to inspect every

possible path in the chop for time travels. Fortunately, there is an easier and more

efficient solution.

Let us examine why ATSC is not time-sensitive. If a slicing algorithm for cSDGs

is context-sensitive, the paths it traverses in a cSDG can only become time-insensitive

due to leaving and reentering a thread via concurrency edges. For example, a back-

ward slicer creates a time travel if it reenters a thread such that the reentering context

c cannot reach the context c′, where the thread was left. As explained in section 8,

propagating thread execution states during the slice by annotating nodes with state

tuples enables time travel detection. Let us take a look at the state tuples computed

11 The well-known optimization, to omit the intersection.
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control dependence

data dependence

3

5

interference dependence

    int b,c,n,y;

 1 main () 
 2    y = 0;
 3     in t  z=y+b+c;

 4 thread_1 () 
 5    b = n+y;
 6    int a = b;
 7    c = y+a;

 8 thread_2() 
 9   n = 1 / c;
10  int  m = n;

2

4

6

7

8

9

main thread_1 thread_2

y  =  0

z = y + b + c

b = n + y

a = b

c  =  y+a

n = 1/c

m =  n

1

10

Fig. 27 Intersecting time-sensitive slices does not yield time-sensitive chops. The suchlike
computed chop for chopping criterion (2, 3) contains time travels

Table 5 The state tuples for chop(2,3) in Fig. 27

Node Backward slice state tuples Forward slice state tuples
2 [2,⊥,⊥], [2, 7,⊥], [2, 5,⊥] [2,>,>]
3 [3,⊥,⊥] [3,>,>], [3, 5,>], [3, 7,>]
5 [3, 5,⊥] [2, 5,>]
6 [3, 6,⊥] [2, 6,>]
7 [3, 7,⊥] [2, 7,>]
9 [3, 5, 9] [2, 7, 9]

by the chop ATSC(2, 3) in Fig. 27. Every node has only one context, so we represent

it simply by the node itself. The initial state tuple for the backward slice for node 5 is

[⊥,⊥,⊥], where the first entry denotes main’s state, the second thread 1’s state and

the third thread 2’s state. The slicer visits the gray highlighted nodes12 with state

tuples {(3, [3,⊥,⊥]), (2, [2,⊥,⊥]), (7, [3, 7,⊥]), (6, [3, 6,⊥]), (5, [3, 5,⊥]), (2, [2, 7,⊥]),

(2, [2, 5,⊥]), (9, [3, 5, 9])}. The traversal from (9, [3, 5, 9]) to node 7 is rejected, because

node 5 is not reachable from node 7. The initial state tuples for the forward slice for node

2 is [>,>,>] (dual to ‘⊥’, ‘>’ represents a state which reaches every context). The slicer

visits the gray shaded nodes with state tuples {(2, [2,>,>]), (3, [3,>,>]), (5, [2, 5,>]),

(6, [2, 6,>]), (7, [2, 7,>]), (3, [3, 5,>]), (3, [3, 7,>]), (9, [2, 7, 9])}. The traversal from

(9, [2, 7, 9]) to node 5 is rejected, because node 5 is not reachable from node 7. Ta-

ble 5 summarizes these state tuples.

We observe the following property of state tuples: A state tuple for a context c,

computed by the time-sensitive backward slicer for a slicing criterion t, represents a

sequence of interference dependences over which c may influence t. For example, state

tuple [3, 5, 9] of node 9 describes the sequence 9 →id 5 →id 3, through which node 9

may influence node 3. State tuple [2, 7,⊥] of node 2 describes the sequence 2 →id 7,

through which node 2 may influence node 3, provided that node 3 is executed after

node 7. A program execution may only trigger such a sequence if its threads have not

executed further than the associated state tuple. Assume that a program execution

reaches node 9 in state [3, 6, 9], then it is impossible for node 9 to influence node 3 via

12 We ignore the visited nodes that lie outside the chop.
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9 →id 5 →id 3 in that program run, because node 5, which is needed to transfer the

effects of node 9 to node 3, has already been executed. The program execution must

not exceed the states in state tuple [3, 5, 9] before reaching node 9. Formally, the state

tuple describing its thread execution states has to be restrictive compared to [3, 5, 9].

This observation can be generalized as follows: Let Eback (c, t) be the set of state tuples

in which the time-sensitive backward slice for a node t visited a context c. If a program

execution reaches context c with state tuple e, then Eback (c, t) must contain at least

one state tuple eback , such that e is restrictive compared to eback . Otherwise, c cannot

influence t in this program execution.

The state tuples computed by a time-sensitive forward slicer have a similar property.

They indicate if in a certain program execution slicing criterion s may influence a

context c. In contrast to the state tuples computed by the backward slicer, these state

tuples mean that a program execution has to execute at least as far in order to trigger

the associated sequence of interference dependences. Consider the state tuple [2, 7, 9]

of node 9. Assume that a program execution reaches node 9 in state [1, 7, 9], then it

is impossible for node 2 to influence node 9 via 2 →id 7 →id 9 in that program run

– main must have reached node 2 to do so. Or more formally, state tuple [2, 7, 9] has

to be restrictive compared to the state tuple in which the program execution reaches

node 9.

We transfer this observation to chopping. Assume that the chopping algorithm

ATSC visits context c with state tuples Eback (c, t) during the backward slice and

state tuples Eforw (c, s) during the forward slice. There must exist state tuples eforw ∈
Eforw (c, t), eback ∈ Eback (c, s), such that eforw is restrictive to eback , else c cannot be

in the time-sensitive chop for s and t, because no program execution is able to satisfy

both conditions. In our example, Eforw (9, 2) for node 9 is {[2, 7, 9]}, and Eback (9, 3)

is {[3, 5, 9]}. There is no possible program execution where node 2 influences node 3

via node 9, because a state tuple e, such that [2, 7, 9] is restrictive to e, cannot be

restrictive to [3, 5, 9]. Our last algorithm, the time-sensitive chopper (TSC), exploits

that property to compute time-sensitive chops. Its pseudo code is shown in Fig. 28.

Called for a chopping criterion (s, t), it first calls the backward slicer of Fig. 17 for t and

retrieves the visited state tuples Eback. Then it performs a forward slice for s, which

is basically dual to the backward slice algorithm, except for the modified procedures

insertChop and insertChop2 in Fig. 29. These are extensions of insert and insert2

in Fig. 25 which additionally check whether the determined state tuple of context cm
is restrictive to any state tuple of Cm stored in Eback.

10.1 Optimizations

A very effective optimization for ATSC and TSC is to compute first a chop with the

I2PC algorithm to detect if the chop is empty. In that case, they do not not need to

execute the expensive time-sensitive slicers and simply return the empty set.

10.2 Correctness of TSC

We state that TSC computes time-sensitive chops and aim to prove that claim in this

section. The following auxiliary lemma aids us in proving that claim:
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Input: A cSDG G, a chopping criterion (s,t).
Output: The chop S for s.

// call the slicer in Fig. 24 and retrieve its collected state tuples
Eback = M1 ∪M2 // M1,M2 are the sets in Fig. 24 after computation of the slice for t
Γ0 = [>, ...,>] // an initial context
W = {(s, cs, Γ ) | cs ∈ C(s) ∧ Γ = up(Γ0, cs)} // initial worklist
W1 = ∅,W2 = ∅ // two empty worklists
M1 = ∅,M2 = ∅ // sets for marking visited contexts

repeat
// initialize the next iteration
W = W \ {(n, cn, Γn)} // remove next element
W1 = W1 ∪ {(n, cn, Γn)} // add it to W1

while W1 6= ∅ // phase 1, only ascend to calling procedures
W1 = W1 \ {(n, cn, Γn)} // remove next element
S = S ∪ {n} // add node n to the slice
foreach n→e m

if e ∈ {id , fork , fork in} // edge leaves the thread
foreach cm ∈ C(m) : θ(cm) 6= θ(cn) // only contexts of m in other threads

if reaches(Γ [r(cm)], cm) // time travel detection for forward slices
insertChop(Γn, cm,W,M1, Eback)

else if e ∈ {po}
let cm be the direct successor of cn in cn’s context graph
insertChop(Γn, cm,W1,M1, Eback)

else if e ∈ {pi , call}
let cm be the direct successor of cn in cn’s context graph
insertChop2(Γn, cm,W2,M2, Eback)

else // e is an intra-procedural edge
foreach cm ∈ C(m) : cm.proc = cn.proc // contexts in the same procedure

insertChop(Γn, cm,W1,M1, Eback)
while W2 6= ∅ // phase 2, only descend to called procedures

W2 = W2 \ {(n, cn, Γn)}
S = S ∪ {n}
foreach m→e n

if e ∈ {id , fork , fork in}
foreach cm ∈ C(m) : θ(cm) 6= θ(cn)

if reaches(Γ [r(cm)], cm)
insertChop(Γn, cm,W,M1, Eback)

else if e ∈ {pi , call}
let cm be the direct successor of cn in cn’s context graph
insertChop2(Γn, cm,W2,M2, Eback)

else if e /∈ {po}
foreach cm ∈ C(m) : cm.proc = cn.proc

insertChop2(Γn, cm,W2,M2, Eback)
until W = ∅
return S

Fig. 28 TSC: A time-sensitive chopper

Lemma 2 Let c be a context visited by a time-sensitive backward slice for node t and by

a time-sensitive forward slice for node s. If there exist state tuples e ∈ Eforw (c, s), e′ ∈
Eback (c, t), such that e is restrictive compared to e′, then there exists a time-sensitive

path cs →∗ c→∗ ct.

Proof According to the definition of time-sensitive paths, we have to show that there

exists a context-sensitive path cs →∗ c →∗ ct, whose sequence of contexts forms a

threaded witness.
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procedure insertChop(Γold,m, cm,W,M,Eback)
Γm = up(Γold, cm) // create the new state tuple
// run the restrictive state tuple optimization
if ∃ (m, cm, Γ ′) ∈M : restrictive(Γm, Γ ′)

return // the new element is redundant
else if ∃ (m, cm, Γ ′) ∈ Eback : restrictive(Γm, Γ ′)

// remove time travels from the chop
W = W ∪ {(m, cm, Γm)}
M = M ∪ {(m, cm, Γm)}

end insertChop

procedure insertChop2(Γold,m, cm,W,M,Eback)
Γm = up(Γold, cm) // create the new state tuple
if (m, cm, Γm) /∈M // insert the new element if it wasn’t visited before

if ∃ (m, cm, Γ ′) ∈ Eback : restrictive(Γm, Γ ′) // remove time travels from the chop
W = W ∪ {(m, cm, Γm)}
M = M ∪ {(m, cm, Γm)}

end insertChop2

Fig. 29 Auxiliary procedures for TSC

We know that there exists a time-sensitive path p1 = cs →∗ c, traversed by the

forward slicer, such that c is reached with state tuple e, and a time-sensitive path

p2 = c→∗ ct, traversed by the backward slicer, such that c is reached with state tuple

e′. It follows that the path p1.p2 = cs →∗ c→∗ ct is context-sensitive, because p1 and

p2 are context paths and thus can be concatenated to a new context path. It remains

to show that it is time-sensitive, i.e. that the sequence of contexts in that path also

forms a threaded witness. To this end, we show that the time-sensitive forward slicer

can traverse the path p1.p2 without confronting a time travel.

The proof goes by induction. We already know that the forward slicer can traverse

p1 without confronting a time travel, thus we go directly to context c and proceed with

the traversal of p2. We denote the current context of our traversal with cj . If we want

to traverse to the next element cj+1 of the path, we know that this traversal is context-

sensitive and that the already traversed path cs →∗ c→∗ cj forms a threaded witness.

A case analysis over the kind of edge from cj to cj+1 shows that cs →∗ c→∗ cj → cj+1

forms a threaded witness, too:

– cj → cj+1 is not a concurrency edge

Since c →∗ cj → cj+1 →∗ ct is a time-sensitive path traversed by the backward

slicer, it follows that cj can reach cj+1. Further, ∀ci in cs →∗ c →∗ cj we have

that either ci reaches cj and therefore cj+1 (because there must be two context

paths ci → cj and cj → Cj+1, which can be concatenated to a new context path

ci → cj+1), or ci executes in parallel to cj+1. Thus the sequence of contexts in

cs →∗ c→∗ cj → cj+1 forms a threaded witness.

– cj → cj+1 is a concurrency edge

We distinguish two cases:

1. There exists another context ck of the same thread as cj+1 in the already

traversed sub-path c→∗ cj .

In that case we know that ck reaches cj+1, because the contexts in path c→∗
cj → cj+1 →∗ ct, traversed by the backward slicer, form a threaded witness.

Thus, ∀ci in cs →∗ c→∗ cj we have that either ci reaches cj and thus cj+1, or ci
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executes in parallel to cj+1. The sequence of contexts in cs →∗ c→∗ cj → cj+1

forms a threaded witness.

2. Else, the thread θ of cj+1 was not visited yet during our traversal. This means

that the current execution state of θ is the same as the state of θ in thread

execution state e of c, which we call e[θ]. We are left to show that e[θ] reaches

cj+1. We know that e[θ] reaches θ’s state in e′, called e′[θ]. Again, we examine

the path c →∗ cj → cj+1 →∗ ct traversed by the time-sensitive backward

slice. Since the sub-path c → cj does not visit θ, the last visit of θ during

the backward slice was at context cj+1. According to the propagation rules of

thread state tuples, e′[θ] = cj+1. Thus, e[θ] reaches cj+1.

�

Now we are ready for our main theorem:

Theorem 2 Let G be a cSDG, and TSC(s, t) be a chop from s to t in G. For every

node n in G the following holds:

n ∈ TSC(s, t)⇔ ∃ time-sensitive path cs →∗ cn →∗ ct in G.

Proof

‘⇒’ n is only in the chop if there exists a context cn of n that was visited by the

chopper, and cn is only visited if there exist thread execution states eforw ∈
Eforw (c, s), eback ∈ Eback (c, t), such that eforw is restrictive to eback . Thus, ac-

cording to lemma 2, there exists a time-sensitive path cs →∗ cn →∗ ct in G.

‘⇐’ We have to show that both slicing algorithms visit context cn. This is clear for the

backward slicer, because the path is time-sensitive. The forward slicer only visits

cn, if it can visit every context c in the sub-path cs →∗ cn in a thread execution

state eforw that is restrictive to a thread execution state eback determined by the

backward slicer. We show that by induction over the sub-path cs →∗ cn.

– Induction start

We start at cs, which is initially annotated with a thread execution state eforw ,

where the state of cs’s thread is cs, and the other states are the entry nodes.

Thus, eforw is restrictive to any state eback in which the backward slicer visits

cs.

– Induction step

We traverse from the current context ci to the successor ci+1. Let eforw and

eback be thread execution states of ci, such that eforw is restrictive to eback .

According to the propagation rules for thread execution states, ci+1 is visited

by forward and backward slicer in the thread execution states e′forw and e′back ,

respectively, where the state of ci+1’s thread is ci+1, and the states of the other

threads are the same as in eforw and eback , respectively. Thus, e′forw reaches

e′back .

�

11 Evaluation

We have implemented the presented algorithms for chopping concurrent programs in

Java. The implemented algorithms work on SDGs computed by Graf’s and Hammer’s
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Table 6 The benchmark programs

Name Nodes Edges Procedures Thread Thread Chops
Classes Instances

Example 1687 6148 41 2 (1, 1) 100,000
ProdCons 2217 8775 39 2 (1, ∞) 100,000
DiningPhils 2973 11331 43 2 (1, ∞) 100,000
AlarmClock 4085 13842 74 3 (1, 2, 1) 100,000
LaplaceGrid 10022 100730 95 2 (1, ∞) 100,000
SharedQueue 17998 139480 122 2 (1, ∞) 10,000
Daisy 45603 458502 555 2 (1, 1) 10,000
DayTime 62594 644400 734 2 (1, 1) 10,000
KnockKnock 34667 288736 493 4 (1, 2, ∞, 1) 10,000
DiskSched 4378 44546 131 2 (1, ∞) 10,000
EnvDriver 19129 184149 169 2 (1, 1) 1,000
Logger 9576 50800 225 2 (1, 1) 100,000
Maza 10590 60221 261 2 (1, 1) 100,000
Barcode 11025 67849 229 2 (1, 1) 100,000
Guitar 13459 87724 307 2 (1, 1) 100,000
J2MESafe 17851 125221 309 2 (1, 1) 1,000
Podcast 25366 162102 504 3 (1, 1, 1) 1,000
HyperM 17847 93068 277 3 (1, 1, 7) 1,000
CellSafe 40709 845931 524 2 (1, 1) 100
GoldenSMS 26445 212832 414 3 (1, 2, 1) 100

data flow analysis for Java programs (Graf 2009; Hammer and Snelting 2004). For

the evaluation we used a 2.2Ghz Dual-Core AMD workstation with 32GB of memory

running Ubuntu 8.04 (Linux version 2.6.24) and Java 1.6.0. Our benchmark consists of

20 programs shown in Table 6. These are the same programs used by the evaluation in

section 5. The programs in the upper part are small to medium-sized programs which

solve a certain task in a concurrent manner (e.g. LaplaceGrid solves Laplace’s equation

over a rectangular grid). The other programs have graphical user interfaces running

as separate threads. Table 6 reports the number of nodes, edges and procedures in

their cSDGs. Column ‘Thread Classes’ indicates how many different thread classes a

program contains (subclasses of java.lang.Thread, plus the main thread). The entries

in column ‘Thread Instances’ denote the number of instances of each thread class

that may exist at runtime. Most of the programs have, besides the main thread, one

additional thread of which only one instance exists at runtime. Several programs may

create an arbitrary number of thread instances at runtime, which happens if threads

are spawned inside loops or recursion. For example, KnockKnock consists of its main

thread, which has one instance at runtime, a second thread with 2 instances, a third

thread, of which an arbitrary number of instances may exist, and a fourth thread with

1 instance. Column ‘Chops’ shows the number of chops we computed for each program.

We had to decrease the numbers from 100,000 chops for our smaller programs to 100

chops for the bigger ones, because time-sensitive chopping did not scale well.

In our evaluation, we measured the average chop size and runtime performance of

our chopping algorithms. Furthermore, we investigated whether the more precise algo-

rithms are able to detect more empty chops than the imprecise ones. This is valuable

information for many analyses that employ chopping as a preprocessing step, because

if a chop chop(s, t) is empty, it is guaranteed that s cannot influence t in any possible

program run. In that case, many applications, e.g. taint analyses, may omit the actual

main analysis.
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Table 7 Average size per chop (number of nodes)

Program IC I2PC FPC CSC ATSC TSC
Example 55.37 45.94 45.11 45.09 45.09 45.09
ProdCons 16.31 16.08 15.98 15.97 13.52 13.52
DiningPhils 31.06 30.85 30.71 30.68 27.59 27.59
AlarmClock 755.59 755.40 754.65 754.63 608.38 336.61
LaplaceGrid 693.88 693.80 693.79 693.78 326.54 273.00
SharedQueue 3957.87 3957.72 3957.66 3957.66 2841.06 2410.47
Daisy 25662.51 25662.37 25662.37 25662.37 – –
DayTime 37636.24 37635.25 37595.92 37595.90 – –
KnockKnock 13933.72 13931.04 13908.21 13908.18 – –
DiskSched 846.50 846.01 845.22 845.21 583.80 568.17
EnvDriver 3647.10 3587.03 3583.06 3583.06 – 3561.33
Logger 152.00 149.09 148.41 148.40 136.67 136.67
Maza 371.17 361.83 290.59 272.98 237.11 200.72
Barcode 284.05 223.86 216.90 213.97 197.15 196.62
Guitar 815.28 766.03 758.28 757.26 733.69 731.56
J2MESafe 2370.25 2205.25 2165.16 2158.03 2135.45 2131.46
Podcast 5811.47 5797.30 5796.85 5796.85 2234.66 2197.35
HyperM 5742.82 5739.57 5739.41 5739.41 2512.10 2224.51
CellSafe 12257.68 11729.95 11581.70 11535.53 – 11500.76
GoldenSMS 8900.32 8900.20 8899.66 8899.66 – 2369.31

In summary, we evaluated the following algorithms:

– IC, intersects the forward slice for s with the backward slice for t, which are com-

puted by the I2P slicer.

– I2PC, computes a backward slice for t on the forward slice for s, using the I2P

slicer.

– FPC, basically the fixed-point chopper shown in Fig. 10, but employing the I2P

slicer.

– CSC, our context-sensitive chopper shown in Fig. 16.

– ATSC, the almost time-sensitive chopper that intersects time-sensitive slices.

– TSC, our time-sensitive chopper shown in Fig. 28.

11.1 Precision

Table 7 shows the average chop size for each chopping algorithm and program. Many of

the randomly generated chopping criteria led to empty chops (cf. section 11.3). These

chops were not removed beforehand, since the different algorithms detect a different

number of empty chops, which prevents their removal13. Thus, the average chop sizes

include these empty chops. For Daisy, DayTime and KnockKnock, the time-sensitive

choppers were not able to compute the chops in reasonable time, thus their entries are

missing. ATSC has no entries for EnvDriver, CellSafe and GoldenSMS as well, because

it could not finish these chops in reasonable time.

Context-sensitive chopping The context-sensitive chops computed by CSC were on

average 5% smaller than the imprecise ones computed by IC, and about 25% smaller in

13 One could exclude the empty chops determined by the most imprecise algorithm, but this
would result in handpicked chopping criteria, reducing the expressiveness of our evaluation.
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Table 8 Average runtime per chop (in seconds)

Program IC I2PC FPC CSC ATSC TSC
Example .001 .001 .001 .001 .006 .006
ProdCons .001 .001 .001 .001 .001 .001
DiningPhils .001 .001 .001 .001 .003 .003
AlarmClock .009 .006 .014 .021 .173 .160
LaplaceGrid .017 .010 .014 .030 .443 .239
SharedQueue .088 .067 .118 .930 16.136 12.899
Daisy .525 .495 .934 6.031 – –
DayTime .631 .582 1.645 7.994 – –
KnockKnock .222 .188 .497 2.087 – –
DiskSched .015 .011 .023 .044 8.651 7.798
EnvDriver .082 .063 .136 1.292 – 671.548
Logger .007 .004 .004 .007 .062 .062
Maza .012 .007 .011 .015 10.227 13.143
Barcode .011 .006 .007 .010 .292 .249
Guitar .022 .013 .019 .028 2.318 2.168
J2MESafe .049 .031 .065 .126 195.997 231.883
Podcast .085 .062 .110 .225 213.355 128.618
HyperM .076 .060 .109 .412 356.021 291.548
CellSafe .452 .344 .959 1.478 – 8299.311
GoldenSMS .139 .101 .281 .796 – 8942.593

the best case (for Barcode and Maza). Similar to their pendants for chopping sequential

programs, the intersection-based algorithms I2PC and FPC were almost as precise

as the context-sensitive CSC. The only considerable differences appeared in program

Maza, where the CSC chops were 24% smaller than the I2PC chops and 6% smaller

than the FPC chops. On average, the CSC chops were only 2% smaller than the I2PC

chops and less than 1% smaller than the FPC chops.

It is interesting that context-sensitivity has not the same impact on chopping con-

current programs as it has on chopping sequential programs. The same programs were

used in the evaluation in section 5, where the context-sensitive chops were considerably

smaller than the näıve intersection-based ones. The cause of that effect seems to be

that context-sensitive traversal of a cSDG drops the current context when it switches

threads via concurrency edges.

Time-sensitive chopping For several programs, time-sensitive chopping reduced the

chop sizes significantly – about 73% for GoldenSMS and about 60% for Podcast, Hy-

perM and LaplaceGrid. On average, the ATSC chops were 28% smaller than the IC

chops and 22% smaller than the CSC chops. The TSC chops were even 32% smaller

than the IC chops and 27% smaller than the CSC chops. The evaluation shows that

ATSC can miss a considerable number of time travels: For LaplaceGrid, the TSC chops

were 45% smaller than the ATSC chops. On average, the TSC chops were 8% smaller

than the ATSC chops.

11.2 Runtime

Table 8 shows the average runtime in seconds needed for one chop.
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Table 9 Percentage rate of empty chops within our chopping criteria

Program IC FPC CSC TSC
Example 78.2 83.1 83.1 83.1
ProdCons 89.1 89.6 89.6 90.1
DiningPhils 88.4 88.9 88.9 89.2
AlarmClock 60.5 60.9 60.9 62.0
LaplaceGrid 72.0 72.2 72.2 77.4
SharedQueue 51.2 53.3 53.3 55.4
Daisy 24.6 25.6 25.6 –
DayTime 20.0 22.8 22.8 –
KnockKnock 29.8 36.6 36.6 –
DiskSched 50.7 55.1 55.1 62.0
EnvDriver 43.8 54.6 54.6 54.6
Logger 83.7 86.7 86.7 87.2
Maza 76.3 81.5 81.5 82.8
Barcode 56.9 83.4 83.4 83.9
Guitar 54.4 74.3 74.3 74.4
J2MESafe 45.1 63.9 63.9 64.3
Podcast 42.1 53.4 53.4 67.2
HyperM 36.3 44.1 44.1 56.0
CellSafe 31.0 49.0 49.0 49.0
GoldenSMS 43.0 44.0 44.0 63.0
Total 53.9 61.1 61.1 70.7

Context-sensitive chopping Since context-sensitive chopping of concurrent programs

gains less precision compared to intersection-based chopping than in the sequential

case, it is also somewhat slower than intersection-based chopping. Here, algorithms IC

and even FPC are always clearly faster than the context-sensitive CSC. In the best

case, for EnvDriver, IC was about 16 times faster than CSC, FPC was 9 times faster.

By far the most performant chopper in our evaluation was I2PC.

Time-sensitive chopping The runtime evaluation shows that the high precision of time-

sensitive chopping is at the expense of runtime costs. Only for the smaller programs

ATSC and TSC could keep up with the other algorithms. For the other programs, per-

formance declined as expected, due to their worst-case exponential runtime behavior.

In the worst case, for GoldenSMS, a TSC chop needed almost 2.5 hours on average to

compute a chop. Noticeably, due to its increased precision, TSC is able to outperform

ATSC on most benchmark programs.

11.3 Empty Chops Detection

Table 8 shows how many empty chops our algorithms determined for our chopping

criteria. The Table shows that the ratio of empty chops varied strongly from program

to program. For DayTime, roughly every 5th chop was empty, for ProdCons 9 out

of 10 chops were empty. Even though context-sensitive chopping increased precision

only about 5% on average, it was more effective in finding additional empty chops. On

average, it determined 61.1% of the chops to be empty, compared to 53.9% empty chops

found by algorithm IC. Interestingly, FPC and CSC found exactly the same number

of empty chops. The time-sensitive TSC found even more empty chops. On average

70.7% of its computed chops were empty.
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11.4 Study Summary

Finally, we want to summarize the results of our evaluation.

Context-sensitive chopping Compared to näıve intersection-based chopping, context-

sensitive chopping reduced chop sizes about 5% on average, and about 25% in the best

cases. Since this gain of precision is smaller than in the case of sequential programs,

CSC’s runtime performance is not as competitive as that of its pendant for sequential

programs, the RRC. Nevertheless, CSC seems to be practical for practical programs.

As in the sequential case, there are no arguments in favor of algorithm IC. Algorithms

I2PC and FPC have a similar implementation effort, are faster and more precise. Since

both are also almost as precise as CSC, with respect to both chop sizes and finding

empty chops, they are genuine alternatives to CSC.

Time-sensitive chopping Time-sensitive chopping increases precision drastically – up

to 73% in the best case and about 32% on average. It also detects a significant number

of empty chops, which are considered non-empty by the intersection-based and context-

sensitive choppers. However, one has to pay a price for that precision. The employed

time travel detection techniques do not scale well, because they have a worst-case ex-

ponential runtime behavior. For several of our benchmark programs, the time-sensitive

choppers were not able to finish computation in reasonable time. Overall, TSC gains

smaller chops than ATSC and is able to outperform ATSC due to its increased preci-

sion, thus we suggest employing TSC for time-sensitive chopping.

Threats to validity Since evaluations depend on the quality of the benchmark, we want

to discuss possible flaws of our program selection.

Our benchmark consists only of 20 programs. Table 8 shows that the execution

times of time-sensitive chopping may vary greatly between programs of similar size

(e.g. SharedQueue and EnvDriver). In order to make a robust statement about the

practicability of time-sensitive chopping, an extended runtime evaluation on a much

bigger and more differentiated benchmark is needed.

Since our chopping criteria were created randomly without any filtering technique

eliminating ‘nonsensical’ chopping criteria, our results should be verified for concrete

applications of chopping, whose settings may a priori exclude some kinds of chopping

criteria.

Further threats to validity are possible bugs in our implementations, because the

time-sensitive algorithms are extremely complicated.

12 Discussion

TSC basically computes one forward and one backward slice, therefore it bears the same

worst-case runtime complexity as time-sensitive slicing, being O(|N |pt) (see section

9.3). The present evaluation and our recent evaluation of time-sensitive slicing (Giffhorn

and Hammer 2009) indicate that time-sensitive slicing and chopping, using the opti-

mizations developed so far (Giffhorn and Hammer 2009; Krinke 2003 (ESEC/FSE);

Nanda and Ramesh 2006), can handle programs with about 10 kLOC in reasonable

time. New optimizations to further relieve the combinatorial explosion remain an im-

portant issue for future work. Binkley et al. (Binkley et al. 2007) conduct an empirical
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study on how to improve the performance of graph-based slicing for large sequential

programs via graph folding, and yield a maximum reduction of 71% in runtime for a

certain combination of folding techniques. It would be interesting for future work to

evaluate if these results carry over to slicing and chopping of concurrent programs.

An interesting property of time-sensitive chopping is its ability to detect empty chops,

which are deemed non-empty by more imprecise techniques. Future work could ex-

plore if it is possible to detect these empty chops without computing the complete

time-sensitive forward and backward slices. This could result in a more practical time-

sensitive scanner for empty chops.

It is difficult to discuss pros and cons of time-sensitive chopping in this work,

because we do not provide a concrete application. For applications that require fast

response times, like debugging, time-sensitive analyses are probably too slow; for appli-

cations that require high precision, like security analyses, non time-sensitive analyses

are maybe too imprecise. In the end this has to be determined by the developer of a

concrete application. For that purpose, this work provides various algorithms offering

different degrees of precision and speed and gives an insight into their performance

characteristics. Furthermore, we were able to show that näıve intersection-based chop-

ping is dispensable, because it is too imprecise and too slow and has no advantage in

being easy to implement.

13 Related Work

Chopping Chopping originates from Jackson and Rollins’ work on modularizing SDGs

for reverse engineering (Jackson and Rollins 1994). They define chops to be confined

to a single procedure. The source and the target of a chop must be within the same

procedure, and only that procedure’s code is analyzed. They suggest an iterative ap-

proach to extend such an intra-procedural chop to procedures called within that chop:

If the chop contains a call to another procedure, another intra-procedural chop is com-

puted, where the parameter variables of the called procedure form the source criterion,

and the return variables of the called procedure form the target criterion. This kind of

chopping is called same level chopping, because it does not take callers of the initial

procedure into account.

Reps and Rosay extend Jackson and Rollins’ same-level chopping to unbound chop-

ping, where source and target can be in different procedures (Reps and Rosay 1995).

Their chopping algorithm, the RRC described in section 3.2, is context-sensitive and

the state-of-the-art algorithm for sequential programs. The authors integrated their

algorithm in the Wisconsin Program-Slicing Tool for C, which was the foundation of

CodeSurfer (Anderson et al. 2003), a commercial program analysis tool for C.

Krinke developed a new same-level chopper called summary-merged chopper (Krinke

2002), which is context-sensitive, as the iterative approach of Jackson and Rollins, and

much faster in practice. In a subsequent work, Krinke introduces the concept of bar-

rier chopping and slicing (Krinke 2003 (SCAM)), where a user can specify a barrier

which must not be crossed by the chopping algorithm. This permits to exclude program

parts from the analysis one is not interested in, e.g. library calls. Krinke implemented

all these algorithms in the VALSOFT system (Krinke 2003 (PhD thesis)).

Slicing concurrent programs Probably the first author who addressed slicing of con-

current programs was Cheng (Cheng 1993, 1997). He uses a Program Dependence Net
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(PDN) to represent dependences in parallel or distributed programs without proce-

dures, where the concurrent tasks communicate via channels. Slicing on PDNs is per-

formed using simple graph reachability.

Krinke was the first to address the time travel problem for slicing of concurrent

programs (Krinke 1998, 2003 (ESEC/FSE)). Nanda and Ramesh developed an alterna-

tive algorithm containing several optimizations that strongly reduce the combinatorial

explosion of thread execution state tuples (Nanda and Ramesh 2000, 2006). These

techniques seem to be mandatory for an application of time-sensitive slicing. Previous

work of the author evaluated both algorithms and contains several new optimizations

and extensions (Giffhorn and Hammer 2009).

Chen presents a different approach to handle the intransitivity of interference de-

pendence (Chen and Xu 2001). He uses execution orders, MHP analysis and synchro-

nization information to detect time-travel situations during slicing. Since his approach

needs to inline methods that use synchronization, it cannot completely handle recur-

sion.

Qi and Xu (Qi and Xu 2005) present the task communication reachability graph

(TCRG) to eliminate time travels in Ada programs. The TCRG is basically a control

flow graph that unrolls the symbolic execution committed by Krinke’s and Nanda and

Ramesh’s algorithms and describes all possible execution orders of a program. For

that purpose, its nodes are pairs of contexts and state tuples and the edges model

control flow between these elements. By using an optimization similar to restrictive

state tuples, it is possible to subsume many state tuples by one representative, so it

is not necessary to include all possible state tuples in the graph. From the TCRG,

a data flow analysis creates as special dependence graph, in which all dependences

are transitive. Context- and time-sensitive slices are then computed via simple graph

reachability. The authors do not present an evaluation of their technique, hence it is

not clear whether their approach is practical.

Zhao (Zhao 1999) introduced the Multi-threaded Dependence Graph (MDG) for

Java which is similar to the cSDG and additionally contains synchronization depen-

dences arising from Java’s operations for synchronization. To slice MDGs, he adapts

the two-phase slicer such that it additionally traverses interference and synchroniza-

tion dependences in both phases. Nanda and Ramesh have shown that such a simple

inclusion of interference dependence results in incorrect slices (Nanda and Ramesh

2006).

Hatcliff et al. (Hatcliff et al. 1999) use slicing in their Bandera project, a tool set for

compiling Java programs into inputs of several existing model-checkers, to analyze and

omit program parts that are unrelated to a given specification. They use dependences

similar to that of the cSDG and define further dependences to represent synchro-

nization and infinite delays of execution. Their synchronization dependence captures

dependences between a statement and its innermost-enclosing acquisition and release

of a monitor. The divergence dependence represents the situation where an infinite loop

may infinitely delay the further execution, ready dependence similarly represents the

situation where a statement may block the further execution of a thread. They treat

interference dependence as being transitive.

Ramalingam has shown that synchronization-sensitive context-sensitive slicing of

concurrent programs is undecidable (Ramalingam 2000). The proof consists of reduc-

ing Post’s Correspondence Problem to the synchronization-sensitive context-sensitive

reachability problem.
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Müller-Olm and Seidl have shown that precise slicing of concurrent interprocedural

programs is undecidable (Müller-Olm and Seidl 2001). Basically, if two nodes n and m

are interference dependent n →id m due to some variable v, then it is not decidable

whether another statement s that redefines v may execute between n and m.

Concurrency analysis for Java Naumovich et al. (Naumovich et al. 1999) present a

may-happen-in-parallel (MHP) analysis for Java programs that computes for every

pair (s, s′) of statements whether s and s′ may execute concurrently. Their approach

considers fork and join points as well as synchronization and is more precise than the

technique we used. The analysis works on a parallel execution graph (PEG) which

is derived from the control flow graph of the input program. PEG creation imposes

several restrictions on the input program, most notably absence of recursion, because

procedures have to be inlined. The MHP analysis on the PEG has a runtime complexity

cubic to the number of PEG nodes and seems to be practical only for PEGs with < 2000

nodes (Li and Verbrugge 2008).

Li and Verbrugge (Li and Verbrugge 2008) implemented Naumovich et al’s MHP

analysis based on the Soot framework and developed several PEG simplification tech-

niques, which may reduce PEG sizes drastically. These techniques basically identify

areas in the PEG which can be merged to a single node. Their evaluation results sug-

gest that MHP analysis for Java can be made practical for programs of reasonable size.

However, restrictions like absence of recursion still persist.

Nanda and Ramesh (Nanda and Ramesh 2006) segment Java threads at fork and

join points into thread regions and determine concurrency in Java programs on the level

of these regions. Their analysis is not as precise as Naumovich et al’s MHP analysis,

because it ignores synchronization, but on the other hand, it can handle full Java

including recursion and dynamic thread generation. We used their technique in this

work, which turned out to be very performant in terms of execution times and memory

consumption.

Barik (Barik 2005) introduces the thread creation graph (TCG) for an efficient MHP

analysis for Java. The TCG consists of fork and join points of threads and models the

thread invocation structure of a program. The author uses the TCG to determine

which threads may execute concurrently. This works similar to Nanda and Ramesh’s

analysis, but is more coarse-grained, as Barik treats threads only as a whole: If a thread

t spawns another thread t′, they are deemed to execute sequentially, whereas Nanda

and Ramesh find that the part of t behind the fork point executes concurrently to t′.
He presents an alternative MHP model on the level of single statements which is also

computed on the TCG.

Ruf (Ruf 2000) investigated synchronization removal techniques for Java programs

and developed a thread allocation analysis for determining the number of instances

a thread class may have at runtime. Basically, the analysis collects the allocations

of thread objects in the program and determines conservatively how often such an

allocation may be executed. Such an analysis is mandatory for treatment of dynamic

thread generation.

14 Conclusion

This work examines precise chopping of concurrent programs, which has not been

investigated before. It shows how two dimensions of precision, context-sensitivity and
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time-sensitivity, affect chopping in concurrent programs, and how these degrees of

precision can be achieved. To this end, it presents six different chopping algorithms,

ranging from imprecise to context- and time-sensitive, whose gain of precision and

runtime performance has been evaluated on a benchmark of Java programs. Context-

sensitive chopping reduced the chop sizes up to 25%, while moderately raising execution

times. Thus its employment seems to be promising. Time-sensitive chopping emerged as

a powerful technique that reduced the chop sizes up to 73%. However, as the underlying

approach has a worst-case runtime complexity exponential in the number of threads of

the target program, these algorithms may run into scalability problems. It seems that

the high costs require a selective employment of time-sensitive chopping. A pragmatic

approach e.g. for taint analysis would employ a less precise algorithm first, and examine

cases of possibly illicit flow further, if that flow can be excluded with one of the precise

algorithms. Similar ideas are applicable for other areas of application. That way, one can

greatly reduce analysis overhead, and still benefit from the precision of time-sensitive

chopping.
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