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Abstract

A chop for a source statement s and a target statement t
reveals the program parts involved in conveying effects from
s to t. While precise chopping algorithms for sequential
programs are known, no chopping algorithm for concurrent
programs has been reported at all. This work introduces
five chopping algorithms for concurrent programs, which
offer different degrees of precision, ranging from imprecise
over context-sensitive to time-sensitive. Our evaluation on
concurrent Java programs shows that context-sensitive and
time-sensitive chopping can reduce chop sizes significantly.

1 Introduction

A chop chop(s, t) for a source statement s and a target
statement t in a program p contains all statements that are
used to convey effects from s to t. Chopping is used in a
wide range of applications as a preprocessing step identi-
fying the relevant program parts for the main analysis, e.g.
for vulnerability signatures [1], path conditions [19], input
validation [13], reducing programs for model checking [18]
and for witnesses for illicit information flow [5]. Such ap-
plications can benefit from chopping algorithms that are as
precise as possible (i.e. the chops are as small as possible):
Foremost, a more precise chop can lead to a more precise
analysis result. Further, the costs for the main analysis are
reduced, which can outweigh the increased costs for a more
precise chopping algorithm. For example, a path condi-
tion [19] between two statements, s and t, is a necessary
condition on the program state that a program run has to
satisfy in order to reach t, when coming from s. The path
condition is composed of all predicates influenced by s and
influencing t, which in turn are determined by the chop from
s to t. Thus, the more precise the chop, the smaller and
more precise is the resulting path condition, and may also
be evaluated faster.

A simple way to compute chop(s, t) for s and t is col-

1 void main()
2 int m = foo();
3 int n = foo();

4 int foo()
5 return 1;

1 int x,y;

2 thread_1()
3 int p = x;
4 y = p;

5 thread_2()
6 int a = y;
7 x = a;

Figure 1. Examples for imprecise chopping

lecting all statements influenced by s and all statements in-
fluencing t, and then intersecting those sets. However, such
a computed chop may be context-insensitive, because differ-
ent invocations of the same procedure are not distinguished.
Consider the program on the left side in Fig. 1: State-
ment 3 is not influenced by statement 2, hence chop(2, 3)
should be empty. But statement 2 influences the statements
{2, 4, 5}, because it calls foo, and statement 3 is influenced
by the statements {3, 4, 5}, because it assigns the result of
the procedure call to n, thus the intersection results in chop
{4, 5}. Reps and Rosay [17] developed the first context-
sensitive chopping algorithm for sequential interprocedural
programs, which distinguishes different invocations of the
same procedure. Their algorithm is the state of the art for
chopping sequential programs. We abbreviate it with RRC
throughout the paper.

Many complementary languages, like Java or C], have
built-in support for concurrent execution. Applications that
leverage chopping to analyze such languages need chop-
ping algorithms suitable for concurrent programs. Unfor-
tunately, the RRC cannot be applied here: Concurrent pro-
grams give rise to new kinds of dependences between pro-
gram statements, which are not covered by that algorithm.
We show how to extend Reps and Rosay’s algorithm to
compute context-sensitive chops in concurrent programs.

Concurrent programs also bear a new kind of impreci-
sion, so-called time travels [11]. Consider the program
on the right side in Fig. 1, consisting of two concurrent
threads that communicate via two shared variables, x and

c©2009 IEEE. Published in the Ninth IEEE International Working Conference on Source Code Analysis and Manipulation 2009 at Fairmont Hotel, Edmon-
ton, Canada, pp. 13-22. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.



   call foo

control dependence

data dependence

call  or parameter edge

1

4

5 6 3

9 interference edge

main

a   = pin
a    = f

 thread_1

p = x-2

q =  a

y = q *  3

a  =  y + 1

 b = a-4

x = b/a

  int x, y;

  main () 
     int p = x - 2;
     int q = foo(p);
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     int  a = y + 1;
     int b = a * 4;
     x = b / a;

Figure 2. A concurrent system dependence graph

y. Clearly, the chop chop(7, 6) should be empty, because
statement 7 is executed after statement 6 and therefore can-
not influence it. But if the chop is computed using intersec-
tion, the result is chop(7, 6) = {3, 4}, because statement 7
influences the statements {3,4,7} and statement 6 is influ-
enced by statements {3,4,6}. We show how to avoid such
time travels in a chop, resulting in time-sensitive chops.

Overall, we present five chopping algorithms for concur-
rent programs. These algorithms offer different degrees of
precision, from imprecise (but fast) over context-sensitive
to context- and time-sensitive. We implemented these al-
gorithms and evaluated their precision and runtime costs on
a set of concurrent Java programs. Context-sensitive chop-
ping reduced the chop sizes up to 25%, while moderately in-
creasing execution times. Time-sensitive chopping strongly
reduced the chop sizes – up to 78% –, but at the expense of
considerably increased execution times.

The paper is structured as follows: Chopping algorithms
are based on slicing [20], another program analysis tech-
nique. Section 2 introduces slicing and chopping of sequen-
tial programs. Section 3 describes our chopping algorithms
for concurrent programs, section 4 presents our evaluation.
Section 5 discusses related work and section 6 concludes.
Due to space reasons, correctness proofs for our algorithms
are located in an extended version.

2 Slicing and Chopping

Slicing reveals all program parts that influence a given
statement c, the slicing criterion. The result is the so-called
backward slice. The dual, the forward slice, contains all
program parts that are influenced by c. Intuitively, a chop
from s to t can be computed by intersecting the backward
slice of t with the forward slice of s [8].

Slices are often computed based on system dependence
graphs (SDG) [7]. A SDG G = (Nodes,Edges) for pro-
gram p is a directed graph, where the nodes in Nodes repre-

sent p’s statements and predicates, and the edges in Edges
represent dependences between them. The SDG is parti-
tioned into procedure dependence graphs (PDG) that model
the single procedures. In a PDG, a node n is control depen-
dent on node m, if m’s evaluation controls the execution
of n (e.g. m guards a conditional structure). n is data de-
pendent on m, if n may use a value computed at m. The
PDGs are connected at call sites, consisting of a call node c
that is connected with the entry node e of the called proce-
dure via a call edge c →c e. Parameter passing and result
returning is realized using synthetic parameter nodes and
edges. Summary edges represent transitive flow between
parameter-passing parameter nodes and result-receiving pa-
rameter nodes of one call site. Figure 2 shows an example
SDG for a program with procedure calls (ignore thread 1
and interference edges for now).

Summary edges enable an efficient computing of
context-sensitive backward slices in two phases [7]. Phase
1 slices from the slicing criterion only ascending to calling
procedures, where summary edges are used to bypass call
sites. Phase 2 slices from all visited nodes only descending
into called procedures. This two-phase slicer is the standard
slicing algorithm for sequential programs1.

2.1 Slicing Concurrent Programs

Concurrent programs exhibit a special kind of data de-
pendence called interference dependence [12]: A statement
n is interference dependent on statement m, represented in
the SDG by an interference edge m →id n, if n may use
a value computed at m, and m and n may execute concur-
rently. We call such extended SDGs concurrent system de-
pendence graphs (cSDG) [3]. Figure 2 shows an example
cSDG. Concurrency causes several other new kinds of de-
pendences, e.g. fork- and join edges to model thread invo-
cation and -termination, or synchronization dependences to

1A two-phase slicer for forward slices works accordingly.
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model synchronization [2, 3, 6]. For brevity, we will not dis-
cuss these kinds of dependences and their effects on precise
slicing [2, 3, 14] and chopping in this paper. We conserva-
tively assume that all threads execute entirely in parallel.

The two-phase slicing algorithm for sequential programs
cannot be used to slice cSDGs, because summary edges do
not capture interprocedural effects of interference depen-
dences [14]. But a simple modification enables slicing of
cSDGs: The two-phase slicer is surrounded by an outer
loop, which iterates over a set S of nodes and calls the two-
phase slicer for every s ∈ S. Initially, S contains only the
slicing criterion. If the two-phase slicer visits an interfer-
ence edge, it does not traverse the edge but inserts the adja-
cent node into S. The resulting slice consists of the nodes
visited in all iterations of the two-phase slicer. This iterated
two-phase slicer (I2P slicer) was first described by Nanda
and Ramesh [14] and can be implemented to yield context-
sensitive slices in O(|Edges|) (our complexity specifica-
tions exclude the dependence graph generation, i.e. they
only describe the complexity of the graph traversal).

cSDGs give rise to a new kind of imprecision, so-called
time travels [12]. Dependences in sequential programs re-
quire valid control flow, i.e. if b depends on a, b must be
reachable from a via control flow. Interference dependence
cannot require such a condition, because thread interleaving
cannot be forecast in general. As a result, interference de-
pendence is not transitive; treating it as being transitive in a
slicing algorithm can result in infeasible execution orders.
Consider the example in Fig. 2. Assume we are interested in
the backward slice for node 13. The I2P slicer visits every
node of the graph, but according to the program’s control
flow, it is impossible for node 14 to influence node 13.

To avoid interference edge traversals that correspond to
time travels, Krinke [11] as well as Nanda and Ramesh [14]
present slicing algorithms based on symbolic execution of
the program which takes all possible interleaving orders into
account. They detect and avoid time travels by memoriz-
ing the thread execution states: When an interference edge
is traversed, they check whether the reached statement in
thread t can be executed before the memorized thread state
of t. If not, the traversal would create a time travel and
is rejected. According to our recent evaluation [3], these
slicers are able to reduce the size of slices significantly (up
to 30% in that evaluation). However, due to a worst-case
runtime complexity exponential in the number of threads of
the target program, these algorithms may run into scalabil-
ity problems.

2.2 Chopping sequential programs

As stated before, chop(s, t) can be computed by inter-
secting the backward slice of t with the forward slice of
s [8]. However, such a chop may be context-insensitive,

even if the underlying slicers are context-sensitive. Con-
sider the program on the left side in Fig. 1 as an exam-
ple. Statement 3 is not influenced by statement 2, hence the
chop for (2, 3) should be empty. But the context-sensitive
forward slice for statement 2 is {2, 4, 5} and the context-
sensitive backward slice for statement 3 is {3, 4, 5}, thus
the intersection results in chop {4, 5}.

Reps and Rosay [17] developed a sophisticated algo-
rithm that chops programs context-sensitively. It exploits
a well-formedness property of SDGs: all inter-procedural
effects are propagated via call sites. First, the RRC deter-
mines the common callers of s and t, i.e. the procedures
which (transitively) call both the procedures of s and t. This
is achieved by computing a forward slice for s and a back-
ward slice for t that only ascend procedure calls. Intersect-
ing them reveals the common callers and the set of nodes
W in these procedures that belong to the chop. In a second
step, the RRC collects the nodes in the procedures leading
from the common callers to s or t and belong to the chop.
For the procedures leading to s, this is done by intersecting
the forward slice of s and the backward slice of W , where
the forward slice only ascends to calling procedures and the
backward slice only descends into called procedures. For
the procedures leading to t this works analogously. This
step ignores the procedures that are called by the visited
nodes, but do not (transitively) call the procedures of s or
t. In a third step, these omitted procedures are analyzed by
same-level choppers [9, 17]. The resulting chop consists
of the nodes visited in steps 2 and 3. By using W , s and
t as a barrier in the second step and employing same-level
chopping in the third step, the algorithm maintains context-
sensitivity. According to Reps and Rosay, RRC’s asymp-
totic running time is inO(|Edges|∗MaxFormalIns), where
MaxFormalIns is the maximum number of formal-in nodes
in any procedure’s PDG.

Though not explicitly stated by Reps and Rosay [17],
the RRC can also be used to compute context-sensitive
chops for chopping criteria consisting of sets of nodes S
and T , the result being the union of the chops for every pair
(s, t) ∈ S × T . For that purpose, the underlying slicers in
the RRC are extended to compute slices for sets of nodes.
The such extended algorithm retains the same asymptotic
running time.

3 Chopping Concurrent Programs

Unfortunately, the RRC cannot be applied to concur-
rent programs, due to interference dependence. Interference
edges cannot be treated as the other kinds of edges, because
they cross procedure borders arbitrarily, breaking the well-
formedness of SDGs for sequential programs. We will show
how to extend the RRC to handle interference dependence.
Another source of imprecision in cSDGs are time travels, as
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described in section 2.1. We will eliminate time travels by
employing the time-sensitive slicing techniques developed
by Krinke [11], and Nanda and Ramesh [14]. Since time
travel detection is expensive and difficult to implement, we
present five different algorithms. These algorithms range
from context- and time-insensitive over context-sensitive to
context- and time-sensitive and thus offer different degrees
of precision, runtime costs and implementation effort.

Our first algorithm, abbreviated with IC (intersection
chopper), is neither context-sensitive nor time-sensitive. It
intersects the backward slice for t and the forward slice for
s computed with the I2P slicer. This algorithm is the easiest
chopping algorithm for concurrent programs.

Our second algorithm, the iterated two-phase chopper
(I2PC) employs a well-known optimization. It computes
a backward slice for t with the I2P slicer and then a for-
ward slice for s, which only visits the nodes already visited
during the backward slice. The resulting forward slice is
already the chop, eliminating the intersection done in the
IC. Its runtime complexity is inO(|Edges|), like that of the
underlying I2P slicer. Moreover, it already removes some
spare nodes from the chop. For example, it detects that
chop(2, 3) in the program on the left side in Fig. 1 is empty,
as statement 2 is not in the backward slice of statement 3.

3.1 Context-sensitive chopping

In order to develop a context-sensitive algorithm, we first
have to define context-sensitivity in the presence of interfer-
ence dependence. Reps and Rosay define context-sensitive
paths in sequential programs via a language of matching
parentheses:

Definition 1. (Context-sensitive paths in SDGs [17]) For
each call site c, label the outgoing call- and parameter
edges with a symbol (e

c, where e is the entry of the called
procedure, and the incoming parameter edges with a sym-
bol )e

c. Label all other edges with l.
A path in the SDG of a sequential program is context-

sensitive, iff the sequence of symbols labeling edges in the
path is a word generated from nonterminal realizable by the
following context-free grammar H:

matched → matched matched | (e
c matched )e

c | l | ε
unbal right → unbal right )e

c matched | matched
unbal left → unbal left (e

c matched | matched
realizable → unbal right unbal left

We extend that definition to cSDGs and interference
edges. Intuitively, if a path traverses an interference edge
m → n towards n, the calling context of m is lost: The
thread that has been left is allowed to execute further in par-
allel, so if the path reenters that thread later, one cannot de-
mand that it reenters the thread at the original calling con-
text. Further, the traversal may reach n in any possible call-
ing context of n, because m interferes with every possible

instance of n. Thus, a path p in a cSDG is context-sensitive,
if it consists of a sequence p1, .., pn of sequential, context-
sensitive paths, where each pair (pi, pi+1), 0 < i < n, is
connected via an interference edge.

Definition 2. (Context-sensitive paths in cSDGs) In addi-
tion to definition 1, label interference edges with id . A path
in the cSDG of a concurrent program is context-sensitive,
iff the sequence of symbols labeling edges in the path is a
word generated from nonterminal conc realizable by gram-
mar H ′, which extends grammar H of definition 1 with the
following rule:

conc realizable → (realizable id)∗ realizable

The new rule allows concatenating sequential, context-
sensitive paths via interference edges.

Definition 3. (Context-sensitive chop) A context-sensitive
chop for a chopping criterion (s, t) in a cSDGG consists of
the set of nodes
{n | ∃ a context-sensitive path s→∗ n→∗ t in G}
Our context-sensitive algorithm, the context-sensitive

chopper (CSC), is an extension of the RRC that is able
to handle interference dependence and has the same
runtime complexity. The CSC is based on the following
observation: A chop for a concurrent program can be
divided into a set of sequential chops. Figure 3 presents
an example: It shows four threads that communicate via
shared variables. The chop from statement 2 to statement
5 in main is highlighted in gray. It can be partitioned
into the thread-local sets {2, 3, 4, 5}, {7, 9, 11}, {13, 14}
and {17, 18}. As one looks closer, these sets corre-
spond to the sequential chops RRC({2, 3}, {4, 5}) =
{2, 3, 4, 5}, RRC({7, 11}, {9, 11}) = {7, 9, 11},
RRC({13, 14}, {13}) = {13, 14}, and
RRC({17}, {18}) = {17, 18}. These chopping cri-
teria have the following property: The source criterion
consists of every node where the whole chop enters the
according thread via interference edges, and of the original
source criterion, if it lies in that thread, e.g. {2, 3} in
main. The target criterion consists of every node where
the whole chop leaves the thread via interference edges
and of the original target criterion, if it lies in the thread,
e.g. {4, 5} in main. So if we know the interference edges
that belong to the whole chop, we are able to compute the
single sequential chops context-sensitively using the RRC.
The CSC employs the I2PC to determine these interference
edges, using a modified I2PC that collects the interference
edges I that lie in its chop. Then, for every thread T , it
picks the interference edges E ⊆ I that enter T and the
interference edges L ⊆ I that leave T . Let NE be the sink
nodes of the edges E, i.e. the nodes where T is entered, and
let NL be the source nodes of the edges L, i.e. the nodes
where T is left. The chop RRC(NE , NL) is the context-
sensitive sequential chop from NE to NL. The chop for
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    int v,w,x,y,z;  // shared variables

 1 void main()
 2     int i  = 0;
 3     int j  = w;
 4     v = i;
 5     j  = j  + 1;

 6 void thread_1()
 7     int k = v;
 8     int l  = v;
 9     x = k + 1;
10     l  = l  + 1;
11     y = l  * w;

12 void thread_2()
13     z = x;
14     int  n = z + y;
15     print(n);

16 void thread_3()
17     int p = z;
18     w = p * p;

Figure 3. A chop in a cSDG for criterion (2, 5).

Input: A chopping criterion (s,t).
Output: The chop from s to t.

// collect the interference edges I traversed by the I2PC chopper
I = I2PC(s, t)
S = {s} // a set for the source criterion
T = {t} // a set for the target criterion

// build the chopping criterion
foreach m→id n ∈ I

S = S ∪ {n} // add sink node n to the source criterion
T = T ∪ {m} // add source node m to the target criterion

// compute the chop with the RRC
C = RRC(S, T )
return C

Figure 4. CSC: Context-sensitive chopper

the whole program consists of the union of these chops
for all threads. This algorithm has the same asymptotic
runtime behaviour as the original RRC: The worst-case
runtime complexity of the I2PC is in O(|Edges|). As the
sub-graphs for the single threads in a cSDG are disjoint,
the computation of the sequential chops using the RRC is
in O(|Edges| ∗ MaxFormalIns). Thus CSC’s worst-case
runtime complexity is in O(|Edges| ∗MaxFormalIns).

Figure 4 shows pseudo code for the CSC. The second
step can be computed by a single call of RRC, because the
subgraphs of the threads in a cSDG are disjoint, and RRC
ignores interference edges: The source criterion is formed
by the sink nodes TI of all interference edges in I plus the
original source criterion, and the target criterion is formed
by the source nodes SI of all interference edges in I plus
the original target criterion. In our example, the interference
edges are I = {4 →id 7, 9 →id 13, 13 →id 17, 18 →id

3}. The source criterion is S = {2, 3, 7, 13, 17}, the target
criterion is T = {4, 5, 9, 13, 18}, and the chop CSC(2, 5)
is computed by RRC(S, T ).

At first glance, it is not clear that CSC is context-
sensitive, because set I is computed by a context-insensitive
technique. However, one can show that each interference

edge in I belongs to the context-sensitive chop. Intuitively,
an interference edge traversal towards node n reaches every
possible instance of n. If an interference edge m →id n
is in I , then every possible instance of n is in the context-
sensitive forward slice for s, and there must exist at least
one instance of n in the context-sensitive backward slice
for t. Thus, according to definition 2, there exists a context-
sensitive path from s to t via interference edge m→id n.

Theorem 1. Let G be a cSDG, and CSC(s, t) be the chop
from s to t in G computed by the algorithm in Fig. 4. For
every node n in G the following holds:
n ∈ CSC(s, t)⇔ ∃ a context-sensitive path s→∗ n→∗ t

3.2 Time-sensitive chopping

Intuitively, a chop chop(s, t) is time-sensitive, if it only
contains the nodes of all cSDG paths s →∗ t that are free
of time travels. Consider the example in Fig. 2. The grey
shaded nodes are the context-sensitive chop CSC(9, 13).
That chop contains two time travels: As stated in sec-
tion 2.1, node 14 cannot influence node 13. Similarly, node
9 cannot influence nodes 2, 5 and 8, so all these nodes
should be removed from the chop. The first intuitive idea
is to employ time-sensitive slicing algorithms to remove
these time travels. One first computes the context-sensitive
chop CSC(s, t), and then removes every node which is
not in both the time-sensitive backward slice for t and the
time-sensitive forward slice for s. In Fig. 2, this technique
would determine the dark grey shaded nodes as the chop for
(9, 13), which is context- and time-sensitive. However, this
technique does not always compute time-sensitive chops,
for which Fig. 5 provides an example. The depicted graph
shows the chop from node 2 to node 3, if computed as de-
scribed above (for better readability, some control depen-
dences irrelevant to the chop are not shown). The time-
sensitive backward slice for 3 consists of the nodes {1, 2,
3, 4, 5, 6, 7, 8, 9}. The time-sensitive forward slice for 2,
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Figure 5. Intersection is time-insensitive

computed on these nodes2, visits the nodes {2, 3, 5, 6, 7, 9},
which also form the resulting chop. Unfortunately, node 2
cannot influence node 3 via node 9: All paths from node 2 to
node 3 via node 9 contain the sequence 7 → 9 → 5, which
is a time travel, as it leaves thread 1 at node 7 and reen-
ters it later at node 5. We therefore call this algorithm the
almost time-sensitive chopper (ATSC). A straight-forward
solution is to inspect every possible path in the chop for time
travels. Fortunately, there is an easier and more efficient so-
lution. For that purpose, we have to explain how time travel
detection works. We start by defining time-sensitive paths,
following the work of Krinke [11].

A context c consists of a node n, annotated with a call
string of n. The call string represents the call stack for a
certain invocation of n’s procedure. A context c reaches
another context c′, if c′ can be executed after c, according
to control flow3. The ‘reaches’ relation identifies sequences
of contexts that can be executed without time travels.

Definition 4. (Threaded witness [11]) A sequence
〈c1, ..., ck〉 of contexts is a threaded witness, iff ∀1 ≤ j <
i ≤ k, ci and cj can execute concurrently, or ci reaches cj .

If a sequence of contexts is a threaded witness, then the
contexts can be executed in that order without creating a
time travel. Contexts can further be used to traverse SDGs
in a context-sensitive manner, by increasing or decreasing
the call stack when entering or leaving a procedure. A
path c1 →∗ ck of contexts, traversed by that technique, is
context-sensitive [9]. Nanda and Ramesh [14] as well as
Krinke [11] employ that technique to determine and propa-
gate contexts during the slice. A path of contexts in a cSDG
is time-sensitive if it is context-sensitive and there exists an
adequate threaded witness:

2The same optimization as used in I2PC, to omit the intersection.
3In the control flow graph, conditional branching is treated as nonde-

terministic branching to make static analysis of the ‘reaches’ relation de-
cidable. Algorithms for computing ‘reaches’ are described in [3, 14].

Definition 5. (Time-sensitive paths [11]) A path c1 →∗ ck
of contexts in a cSDG is time-sensitive, iff it is context-
sensitive and the sequence of its contexts form a threaded
witness 〈c1, ..., ck〉.

We define a time-sensitive chop as follows:

Definition 6. (Time-sensitive chop) A time-sensitive chop
in a cSDG G for a chopping criterion (s, t) consists of the
set of nodes{
n

∣∣∣∣∣∃ a time-sensitive path cs →∗ cn →∗ ct in G :
cn is context of n, cs is context of s, ct is context of t

}

Let us go back to the almost time-sensitive chopper and
examine why it is not time-sensitive. If a slicing algorithm
for cSDGs is context-sensitive, the paths it traverses in a
cSDG can only become time-insensitive due to leaving and
reentering a thread via interference edges. For example, a
backward slice creates a time travel if it reenters a thread
such that the reentering context cj cannot reach the context
ci, where the thread was left. This happens in Fig. 2 during
the backward slice for node 13, at the traversal from node 2
to node 14: Thread 1 has been left towards main at node
12, but node 14 cannot execute before 12, thus it cannot
influence node 12 and node 13. To detect these time trav-
els, Krinke’s as well as Nanda and Ramesh’s slicing algo-
rithms memorize and propagate thread execution states dur-
ing the slice. A thread execution state maps each thread to
a context, which represents the point where that thread was
visited last. Fig. 6 shows pseudo code for a time-sensitive
backward slicer, which performs the following steps: In an
initial thread execution state e0, all threads are mapped to an
initial state ⊥, which is reachable from all contexts by def-
inition. Then, all possible contexts Cs of s are determined.
For every cs ∈ Cs, s is annotated with cs and a thread ex-
ecution state, where the state of s’s thread is mapped to cs.
These annotated nodes are inserted into a worklist W , and
the slicing algorithm iterates over that worklist, until it is
empty. If the slicing algorithm traverses an edge, which is
not an interference edge, towards a node m, it computes the
thread execution state ofm by copying n’s thread execution
state and mappingm’s thread to the according context ofm.
The annotated node is inserted into W . If the slicing algo-
rithm is about to traverse an interference edge m →id n, it
checks every possible context of m if it can reach the con-
text for m’s thread in the thread execution state of n. If so,
m is annotated with that context and the according thread
execution state and inserted into W . Else, that traversal
would result in a time travel and is omitted. Note that a node
can be visited multiple times, as long as the annotations dif-
fer. Time-sensitive forward slicing works accordingly.

Let us take a look at the thread execution states com-
puted by the chop ATSC(2, 3) in Fig. 5. Every node
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Input: A slicing criterion s.
Output: The slice for s.

let θ(n) return the thread of node n
let NewState(e, c) return a thread execution state e′ by mapping the
thread of context c in state e to c

e0 = [⊥, ...,⊥] // every thread is in a nonrestrictive state
W = {(s, c, e) | c is a context of s ∧ e = NewState(e0, c)}
M = {w | w ∈W} // a list for marking the contents of W

while W 6= ∅
W = W \ {(n, c, e)} // remove next element (n, c, e) from W
// backward traversal
foreach m→f n

if f ∈ {id} // interference edge
// Let Cm contain all possible contexts of m
foreach cm ∈ Cm

if cm reaches e[θ(m)] // detect time travels
w = (m, cm, NewState(e, cm))
if w /∈M

W = W ∪ {w}
M = M ∪ {w}

else
// Let cm be the reached context of m
w = (m, cm, NewState(e, cm))
if w /∈M

W = W ∪ {w}
M = M ∪ {w}

return {n′ | ∃(n′, c′, e′) ∈M}

Figure 6. A time-sensitive backward slicer

has only one context, so we represent it simply by
the node itself. The initial thread execution state for
the backward slice for node 5 is [⊥,⊥,⊥], where the
first entry denotes main’s state, the second thread 1’s
state and the third thread 2’s state. The slicer visits
the grey highlighted nodes4 with thread execution states
{(3, [3,⊥,⊥]), (2, [2,⊥,⊥]), (7, [3, 7,⊥]), (6, [3, 6,⊥]),
(5, [3, 5,⊥]), (2, [2, 7,⊥]), (2, [2, 5,⊥]), (9, [3, 5, 9])}. The
traversal from (9, [3, 5, 9]) to node 7 is rejected, be-
cause node 5 is not reachable from node 7. The
initial thread execution state for the forward slice for
node 2 is [>,>,>] (dual to ‘⊥’, ‘>’ represents a
state which reaches every context). The slicer vis-
its the grey shaded nodes with thread execution states
{(2, [2,>,>]), (3, [3,>,>]), (5, [2, 5,>]), (6, [2, 5,>]),
(7, [2, 7,>]), (3, [3, 5,>]), (3, [3, 7,>]), (9, [2, 7, 9])}. The
traversal from (9, [2, 7, 9]) to node 5 is rejected, because
node 5 is not reachable from node 7.

We observe the following property of thread execution
states: Let Eback (c, t) be the set of thread execution states
in which the time-sensitive backward slice for a node t vis-
its a context c. These thread execution states indicate if in
a certain program execution c may influence t: If the pro-
gram execution reaches c with a thread execution state e,
thenEback (c, t) must contain a thread execution state eback ,

4We ignore the visited nodes that lie outside the chop.

Input: A chopping criterion (s, t).
Output: The chop for (s, t).

let θ(n), NewState(e, c) be defined as in Fig. 6
// call the slicer in Fig. 6 and retrieve its computed thread execution states
Eback = the set M in Fig. 6 after computation of slice(t)
e0 = [>, ...,>] // every thread is in a restrictive state
W = {(s, c, e) | c is a context of s ∧ e = NewState(e0, c)}
M = {w | w ∈W} // a list for marking the contents of W

while W 6= ∅
W = W \ {(n, c, e)} // remove next element (n, c, e) from W

// forward traversal
foreach n→f m
if f ∈ {id} // interference edge

// Let Cm contain all possible contexts of m
foreach cm ∈ Cm

if cm reaches e[θ(m)] // detect time travels
w = (m, cm, NewState(e, cm))
// check if the traversal results in a time-sensitive path
if w /∈M∧ restrictive(w,Eback )
W = W ∪ {w}
M = M ∪ {w}

else
// Let cm be the reached context of m
w = (m, cm, NewState(e, cm))
// check if that traversal results in a time-sensitive path
if w /∈M∧ restrictive(w,Eback )
W = W ∪ {w}
M = M ∪ {w}

return {n′ | ∃(n′, c′, e′) ∈M}

procedure restrictive((n, c, e), E) :
foreach (n, c, e′) ∈ E
if e is restrictive to e′

return true
return false

Figure 7. TSC: A time-sensitive chopper

such that no thread has executed further in e than in eback .
Otherwise, c cannot influence t in this state of execution.
Assume that progam execution reaches node 9 with thread
execution state [3, 6, 9], then it is impossible for node 9 to
influence node 3 in that program run. The program exe-
cution must not exceed the thread execution state [3, 5, 9]
before reaching node 9. Formally, we require that e is re-
strictive to at least one thread execution state in Eback (c, t).

Definition 7. (Restrictive thread execution states [14]) Let
e = [c1, .., ck] and e′ = [c′1, ..., c

′
k] be two thread execution

states. e is restrictive to e′, iff ∀1 ≤ i ≤ k : ci reaches c′i.

Similarly, let Eforw (c, s) be the set of thread execution
states in which the time-sensitive forward slice for a node
s visits a context c. These thread execution states indicate
if in a certain program execution s may influence c: If the
program execution reaches cwith a thread execution state e,
then Eforw (c, s) must contain an element eforw , such that
every thread in e has executed at least as far as in eforw .
Otherwise, c cannot be influenced by s in this state of exe-
cution. Assume again that progam execution reaches node 9

c©2009 IEEE. Published in the Ninth IEEE International Working Conference on Source Code Analysis and Manipulation 2009 at Fairmont Hotel, Edmon-
ton, Canada, pp. 13-22. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.



with thread execution state [3, 6, 9], then it is impossible for
node 2 to influence node 9 in that program run – thread 1
must have reached node 7 to create a possible influence.

We transfer this observation to chopping. Assume
that the chopping algorithm ATSC visits context c with
thread execution states Eback (c, t) during the backward
slice and thread execution states Eforw (c, s) during the for-
ward slice. There must exist thread execution states eforw ∈
Eforw (c, t), eback ∈ Eback (c, s), such that eforw is restric-
tive to eback , else c cannot be in the time-sensitive chop
for s and t, because no program execution is able to sat-
isfy both conditions. In our example, Eforw (9, 2) for node
9 is {[2, 7, 9]}, and Eback (9, 3) is {[3, 5, 9]}. There is no
possible program execution where node 2 influences node
3 via node 9, because a thread execution state e, such that
[2, 7, 9] is restrictive to e, cannot be restrictive to [3, 5, 9].
Our last algorithm, the time-sensitive chopper (TSC), ex-
ploits that property to compute time-sensitive chops. Its
pseudo code is shown in Fig. 7. Called for a chopping cri-
terion (s, t), it first calls the backward slicer of Fig. 6 for t
and retrieves the visited thread execution states. Then it per-
forms a forward slice for s, which is basically dual to the
backward slice algorithm, except for the two calls of pro-
cedure restrictive. That procedure checks if a given
thread execution state of a context is restrictive to at least
one thread execution state, in which the backward slicer vis-
ited that context. If that is not the case, it returns ‘false’ and
the forward slicer does not traverse towards that context.

Theorem 2. Let G be a cSDG, and TSC(s, t) be a chop
from s to t in G. For every node n in G the following holds:
n ∈ TSC(s, t) ⇔ ∃ time-sensitive path cs →∗ cn →∗ ct
in G, where cn is a context of n, cs is a context of s and ct
is a context of t.

4 Implementation and evaluation

We have implemented all five chopping algorithms in
Java. We realized the algorithms ATSC and TSC using
Nanda and Ramesh’s slicing algorithm [14], enriched with
several recently developed optimizations [3], which cur-
rently seems to be the fastest time-sensitive slicer for con-
current programs [3]. We further employ another optimiza-
tion for ATSC and TSC, which first computes a chop with
the I2PC algorithm to detect if the chop is empty. In that
case, they do not not need to execute the expensive time-
sensitive slicers and simply return the empty set. All imple-
mented algorithms work on cSDGs computed by Hammer’s
dataflow analysis for Java programs [4]. We used a 2.2Ghz
Dual-Core AMD workstation with 32GB of memory run-
ning Ubuntu 7.10 (Linux version 2.6.22) and Java 1.7.0.

Our benchmark consists of 12 programs shown in Ta-
ble 1. The programs in the upper part are small to medium-
sized programs which solve a certain task in a concurrent

Name Nodes Edges Proc. Threads (Inst.)
Example 1687 6148 41 2 (1, 1)
ProdCons 2217 8775 39 2 (1,∞)
DiningPhils 2973 11331 43 2 (1,∞)
AlarmClock 4085 13842 74 3 (1, 2, 1)
LaplaceGrid 10022 100730 95 2 (1,∞)
SharedQueue 17998 139480 122 2 (1,∞)
Logger 9576 50800 225 2 (1, 1)
Maza 10590 60021 261 2 (1, 1)
Barcode 11025 67849 229 2 (1, 1)
Guitar 13459 89724 307 2 (1, 1)
J2MESafe 15666 127922 256 2 (1, 1)
Podcast 23399 191849 404 3 (1, 1, 1)

Table 1. The benchmark programs

manner (e.g. LaplaceGrid solves Laplace’s equation over a
rectangular grid). The other programs are real JavaME5 ap-
plications taken from the SourceForge repository6. These
programs have graphical user interfaces running as separate
threads. Table 1 reports the number of nodes, edges and pro-
cedures (Proc.) in the respective cSDGs. Column ‘Threads’
indicates how many different thread classes a program con-
tains (subclasses of java.lang.Thread, plus the main
thread). The values in brackets arranged behind denote the
number of instances of these threads that may exist at run-
time. Most of the programs have, besides the main thread,
one additional thread of which only one instance exists at
runtime. Several programs may create an arbitrary num-
ber of thread instances at runtime, which happens if threads
are spawned inside loops (how to handle such threads is
described in previous work [3]). For example, ProdCons
consists of its main thread, which has one instance, and a
second thread, of which an arbitrary number of instances
may exist at runtime.

In our evaluation, we measured the average chop sizes
and performance of our chopping algorithms, the results are
shown in Table 2. We determined the number of computed
chops as follows: For the first three programs in Table 2, we
generated every chopping criterion consisting of one source
node and one target node. Then, in a preprocessing step, we
removed every criterion for which IC determined an empty
chop. As the time-sensitive algorithms would process these
chops very fast due to the optimization employing the I2PC
chopper mentioned at the beginning of this section, includ-
ing these chopping criterions would skew the runtime mea-
surements in favor of the time-sensitive algorithms. We
only generated every 100th chopping criterion for the next
six programs in Table 2, because otherwise the number of
chopping criteria would get too big. As the performance
of the time-sensitive algorithms declined, we only gener-
ated every 100,000th chopping criterion for the last three

5The Java Mobile Edition for mobile devices.
6http://sourceforge.net/
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Name chops IC I2PC CSC ATSC TSC IC I2PC CSC ATSC TSC
Example 608496 255 212 208 140 138 2.5 .8 4.5 4.1 4.4
ProdCons 536341 148 146 145 123 120 2.7 .9 3.8 2.7 2.7
DiningPhils 1029379 270 268 267 239 230 3.7 1.5 6.3 4.5 4.8
AlarmClock 65448 1516 1516 1515 1047 950 12.1 8.0 35.8 3422.6 1376.4
Logger 148837 985 971 967 796 796 14.5 9.2 31.6 73.2 77.9
Maza 259804 1543 1500 1153 1021 798 25.9 15.1 53.6 2783.4 2568.0
LaplaceGrid 278942 2470 2469 2469 1783 967 42.9 21.0 104.4 249.6 221.7
Barcode 498849 711 565 541 474 469 14.8 7.1 16.6 100.9 88.2
Guitar 786728 1734 1624 1606 1485 1476 37.7 21.6 59.9 554.0 551.2
SharedQueue 1697 8462 8462 8462 8068 7969 59.2 45.4 1003.8 8846.5 9639.7
J2MESafe 1323 4027 3752 3611 – 2423 60.4 39.1 180.0 – 7637.8
Podcast 3677 10423 10402 10400 – 2310 56.1 44.5 283.7 – 9039.2

Table 2. Left side: avg. size per chop (number of nodes), right side: avg. time per chop (milliseconds)

programs. ATSC has no entry for J2MESafe and Podcast,
because it could not finish these test runs in reasonable time.

Context-sensitive chopping The context-sensitive
chops computed by the CSC were on average 10% smaller
than the imprecise ones computed by IC, and about 25%
smaller in the best case (for Barcode and Maza). The CSC
also performed well compared to IC and was usually 1 to 3
times slower than IC; only for SharedQueue it was about 17
times slower. The I2PC was surprisingly precise: Its com-
puted chops were almost as small as the context-sensitive
ones, the only considerable difference appeared in the
Maza program, where the CSC chops were 20% smaller.
As I2PC is additionally very fast – about twice as fast as IC
in our evaluation – and easy to implement, it seems to be a
good choice for a quick deployment.

Time-sensitive chopping For several programs, time-
sensitive chopping reduced the chop sizes significantly –
about 78% for Podcast and about 60% for LaplaceGrid. On
average, the ATSC chops were 24% smaller than the IC
chops, the TSC chops were even 35% smaller. The eval-
uation shows that ATSC can miss a considerable number of
time travels: For Maza, the TSC chops were 20% smaller
than the ATSC chops; for LaplaceGrid, they were even 45%
smaller. Both ATSC and TSC were very fast on our smaller
programs; often faster than CSC (e.g. for DiningPhils) and
almost as fast as IC. For the bigger programs, performance
declined as expected, due to their worst-case exponential
runtime behaviour. For several programs – AlarmClock,
Maza, SharedQueue, J2MESafe and Podcast – this worst-
case behaviour became noticeable. As TSC gains smaller
chops than ATSC and is able to outperform ATSC due to its
increased precision, we suggest employing TSC for time-
sensitive chopping.

On the practicability of TSC The runtime complexity
of time-sensitive slicing is dominated by a possible combi-
natorial explosion in the thread execution states, because a
node can be visited repeatedly with different thread execu-

tion states. Nanda and Ramesh thus determined a worst-
case complexity of O(|Nodes|pt) [14], where p is the call-
ing depth of the call graph, |Nodes|p is an upper bound for
the contexts, and t is the number of thread instances (threads
with possibly infinite instances can be approximated con-
servatively by one representative in the thread execution
states [3]). Since TSC basically computes one forward and
one backward slice, it bears the same worst-case runtime
complexity. The present evaluation and our recent evalua-
tion of time-sensitive slicing [3] indicate that time-sensitive
slicing and chopping, using the optimizations developed so
far [3, 11, 14], can handle programs with about 10 kLOC
in reasonable time. New optimizations to further relieve the
combinatorial explosion remain an important issue for fu-
ture work.

5 Related work

Chopping originates from Jackson and Rollins’ work on
modularizing SDGs for reverse engineering [8]. They de-
fine chops to be confined to a single procedure. The source
and the target of a chop must be within the same procedure,
and only that procedure’s code is analyzed. They suggest an
iterative approach to extend such an intra-procedural chop
to procedures called within that chop: If the chop contains
a call to another procedure, another intra-procedural chop is
computed, where the parameter variables of the called pro-
cedure form the source criterion, and the return variables of
the called procedure form the target criterion. This kind of
chopping is called same level chopping [17], because it does
not take callers of the initial procedure into account.

Reps and Rosay extend Jackson and Rollins’ same-level
chopping to unbounded chopping, where source and target
can be in different procedures [17]. Their chopping algo-
rithm, the RRC described in section 2.2, is context-sensitive
and the state-of-the-art algorithm for sequential programs.

Krinke developed a new same-level chopper called
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summary-merged chopper [9], which is context-sensitive,
as the iterative approach of Jackson and Rollins, but much
faster in practice. In a subsequent work, Krinke introduces
the concept of barrier chopping and slicing [10], where a
user can specify a barrier which must not be crossed by the
chopping algorithm. This permits to exclude program parts
from the analysis one is not interested in, e.g. library calls.

Krinke was the first to address the time travel problem for
slicing of concurrent programs [11, 12]. Nanda and Ramesh
developed an alternative algorithm containing several opti-
mizations that strongly reduce the combinatorial explosion
of thread execution states [14]. These techniques seem to
be mandatory for an application of time-sensitive slicing.
Previous work of the author evaluated both algorithms and
contains several new optimizations and extensions [3].

Whereas Krinke assumes that all threads execute entirely
in parallel, Nanda uses a more precise model of concurrency
on the level of fork and join points of threads. The effects
of concurrency models on slicing, in particular for identi-
fying spurious interference edges, are significant, as shown
by several authors [2, 3, 14, 16]. More precise models of
concurrency, incorporating a synchronization analysis [6] or
a full-fledged may-happen-in-parallel analysis [15], could
further increase precision.

6 Conclusion

This work examines precise chopping of concurrent pro-
grams, which has not been investigated before. It shows
how two dimensions of precision, context-sensitivity and
time-sensitivity, affect chopping in concurrent programs,
and how these degrees of precision can be achieved. To this
end, it presents five different chopping algorithms, ranging
from imprecise to context- and time-sensitive, whose gain
of precision and runtime performance has been evaluated
on a benchmark of Java programs. Context-sensitive chop-
ping reduced the chop sizes up to 25%, while moderately
raising execution times. Thus its employment seems to be
promising. Time-sensitive chopping emerged as a powerful
technique that reduced the chop sizes up to 78%. However,
as the underlying approach has a worst-case runtime com-
plexity exponential in the number of threads of the target
program, these algorithms may run into scalability prob-
lems. Thus, we recommend time-sensitive chopping mainly
as a pre-processing step for more expensive analyses.
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A APPENDIX

The appendix consists of two parts. The first part pro-
vides proofs for theorems 1 and 2. In the second part we
show that the RRC can be extended to compute context-
sensitive chops for chopping criteria consisting of sets of
nodes, by extending the underlying slicers to compute slices
for sets of nodes. This extension provides the same asymp-
totic running time as the original algorithm.

A.1 Context- and Time-sensitive Chopping

This part provides proofs for theorems 1 and 2. We as-
sume in these proofs that the RRC is context-sensitive for
sequential programs (see also appendix A.2), and that the
slicing algorithms employed in ATSC and TSC are time-
sensitive.

Theorem 1. Let G be a cSDG, and CSC(s, t) be the chop
from s to t in G computed by the algorithm in Fig. 4. For
every node n in G the following holds:
n ∈ CSC(s, t)⇔ ∃ a context-sensitive path s→∗ n→∗ t

Proof.

‘⇐’ We have for every node v ∈ CSC(s, t) that there exist
nodes s′ and t′ such that v ∈ RRC(s′, t′), thus there
exists a context-sensitive sequential path p : s′ →∗
v →∗ t′, which can be generated from nonterminal
realizable by grammar H ′. We are left to show that
there exists a context-sensitive path q : s →∗ s′ →∗
v →∗ t′ →∗ t with s′ →∗ v →∗ t′ = p. We distin-
guish four cases:

1. s = s′ ∧ t = t′

In this case, p = q and thus is trivially a context-
sensitive path.

2. s = s′ ∧ t 6= t′

According to the creation of set T of the chop-
ping criterion in Fig. 4, there exists a context-
sensitive path t′ → t′′ →∗ t, such that t′ → t′′

is an interference edge. Thus t′ → t′′ →∗ t has
the form id (realizable id)∗ realizable. Hence,
the concatenation of s′ →∗ v →∗ t′ and t′ →
t′′ →∗ t can be generated from nonterminal
conc realizable.

3. s 6= s′ ∧ t = t′

According to the creation of set S of the chop-
ping criterion in Fig. 4, there exists a context-
sensitive path s →∗ s′′ → s′, where s′′ → s′

is an interference edge. Thus it has the form
(realizable id)∗ id . Hence, the concatenation of
s →∗ s′′ → s′ with s′ →∗ v →∗ t′ can be gen-
erated from nonterminal conc realizable.

4. s 6= s′ ∧ t 6= t′

This is simply the combination of the two previ-
ous cases.

‘⇒’ We can rewrite that path as s →∗ s′ →∗ v →∗ t′ →∗
t, such that s′ →∗ v →∗ t′ is a context-sensitive se-
quential path, s′ is either s or is preceded by an inter-
ference edge, and t′ is either t or succeeded by an inter-
ference edge. We have to show that s′ ∈ S and t′ ∈ T .
In that case, the algorithm is guaranteeed to compute
the chopRRC(s′, t′), and then v ∈ CRC(s, t, ) holds.
For s = s′ or t = t′, this is trivial.

For t′ 6= t, we have that t′ →+ t is a context-sensitive
path, and thus in the backward slice of t, and that
s→∗ t′ is a context-sensitive path, too, and thus in the
forward slice of s (both paths can be generated from
nonterminal conc realizable by grammar H ′). Thus
t ∈ T holds. We can show that s′ ∈ S in the same
way.

In order to prove theorem 2, we use the following auxil-
iary lemma.

Lemma 1. Let c be a context visited by a time-sensitive
backward slice for node t and by a time-sensitive forward
slice for node s. If there exist thread execution states e ∈
Eforw (c, s), e′ ∈ Eback (c, t), such that e is restrictive to
e′, then there exists a time-sensitive path cs →∗ c →∗ ct,
where cs is a context of s and ct is a context of t.

Proof. We have that there exists a context- and time-
sensitive path cs →∗ c, traversed by the forward slicer, such
that c is reached with thread execution state e, and a context-
and time-sensitive path c→∗ ct, traversed by the backward
slicer, such that c is reached with thread execution state e′.
It follows that the path cs →∗ c →∗ ct is context-sensitive.
It remains to show that it is time-sensitive, i.e. that the se-
quence of contexts in that path also forms a threaded wit-
ness. To this end, we show that the time-sensitive forward
slicer can iterate over the path c→∗ ct without confronting
a time travel.

We start our traversal at c and denote the current con-
text of our traversal with cj . If we want to traverse to the
next element cj+1 of the path, we have that this traver-
sal is context-sensitive and that the already traversed path
cs →∗ c →∗ cj forms a threaded witness. A case anal-
ysis over the kind of edge from cj to cj+1 shows that
cs →∗ c→∗ cj → cj+1 forms a threaded witness, too:

• cj → cj+1 is an intra-thread edge
Since c →∗ cj → cj+1 →∗ ct is a time-sensitive
path traversed by the backward slicer, it follows that
cj can reach cj+1. Further, ∀ci in cs →∗ c →∗ cj
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we have that either ci reaches cj and thus cj+1, be-
cause ‘reaches’ is a transitive relation, or ci executes
in parallel to cj+1. Thus the sequence of contexts in
cs →∗ c→∗ cj → cj+1 forms a threaded witness.

• cj → cj+1 is an interference edge
We distinguish two cases:

1. There exists another context ck of the same
thread as cj+1 in the already traversed sub-path
c→∗ cj .
In that case we know that ck reaches cj+1, be-
cause the contexts in path c →∗ cj → cj+1 →∗
ct, traversed by the backward slicer, form a
threaded witness. Thus, ∀ci in cs →∗ c →∗ cj
we have that either ci reaches cj and thus cj+1,
because ‘reaches’ is a transitive relation, or ci ex-
ecutes in parallel to cj+1. The sequence of con-
texts in cs →∗ c→∗ cj → cj+1 forms a threaded
witness.

2. Else, the thread θ of cj+1 was not visited yet
during our traversal. This means that the cur-
rent execution state of θ is the same as the state
of θ in thread execution state e of c, which we
call e[θ]. We are left to show that e[θ] reaches
cj+1. We know that e[θ] reaches θ’s state in e′,
called e′[θ]. Again, we examine the path c →∗
cj → cj+1 →∗ ct traversed by the time-sensitive
backward slice. Since the sub-path c → cj does
not visit θ, the last visit of θ during the back-
ward slice was at context cj+1. According to
the propagation rules of thread execution states,
e′[θ] = cj+1. Thus, e[θ] reaches cj+1.

Theorem 2. Let G be a cSDG, and TSC(s, t) be a chop
from s to t in G. For every node n in G the following holds:
n ∈ TSC(s, t) ⇔ ∃ time-sensitive path cs →∗ cn →∗

ct in G, where cn is a context of n, cs is a context of s and
ct is a context of t.

Proof.

‘⇒’ n is only in the chop if there exists a context c of
n that was visited by the chopper, and c is only vis-
ited if there exist thread execution states eforw ∈
Eforw (c, s), eback ∈ Eback (c, t), such that eforw is re-
strictive to eback . Thus, according to lemma 1, there
exists a time-sensitive path cs →∗ cn →∗ ct in G,
where cn is a context of n, cs is a context of s and ct is
a context of t.

‘⇐’ We have to show that both slicing algorithms visit con-
text cn. This is clear for the backward slicer, because

the path is time-sensitive. The forward slicer only vis-
its cn, if it can visit every context c in the sub-path
Cs →∗ cn in a thread execution state eforw that is re-
strictive to a thread execution state eback determined
by the backward slicer. We show that by induction over
the sub-path cs →∗ cn.

– Induction start
We start at cs, which is initially annotated with
a thread execution state eforw , where the state of
cs’s thread is cs, and the other states are the entry
nodes. Thus, eforw is restrictive to any state eback
in which the backward slicer visits cs.

– Induction step
We traverse from the current context ci to the suc-
cessor ci+1. Let eforw and eback be thread exe-
cution states of ci, such that eforw is restrictive
to eback . According to the propagation rules for
thread execution states, ci+1 is visited by forward
and backward slicer in the thread execution states
e′forw and e′back , respectively, where the state of
ci+1’s thread is ci+1, and the states of the other
threads are the same as in eforw and eback , re-
spectively. Thus, e′forw reaches e′back .

A.2 The Reps-Rosay Chopper for Sets of Nodes

In this part we show that the RRC can be extended to
compute context-sensitive chops for chopping criteria con-
sisting of sets of nodes, by extending the underlying slicers
to compute slices for sets of nodes. This extension provides
the same asymptotic running time as the original algorithm.

Following grammar H in definition 1 (section 3.1), let
m→∗unbr n denote a SDG path which is unbalanced-right,
i.e. it can be generated from nonterminal unbal right. Sim-
ilarly, let m →∗unbl n denote an unbalanced-left path, i.e.
it can be generated from nonterminal unbal left. Reps and
Rosay define the following operations to compute context-
sensitive chops in SDGs [17]:

• funbr(S) = {n | ∃s ∈ S : s→∗unbr n}

• funbl(S) = {n | ∃s ∈ S : s→∗unbl n}

• bunbr(T ) = {n | ∃t ∈ T : n→∗unbr t}

• bunbl(T ) = {n | ∃t ∈ T : n→∗unbl t}

In other words, funbr is the set of nodes lying on
unbalanced-right paths starting at a node s ∈ S, funbl is the
set of nodes lying on unbalanced-left paths starting at a node
s ∈ S, bunbr is the set of nodes lying on unbalanced-right
paths leading to a node t ∈ T and bunbl is the set of nodes
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lying on unbalanced-left paths leading to a node t ∈ T . The
operations funbr and bunbl can be implemented by forward
and backward two-phase slicers committing only phase 1,
i.e. only ascending to calling procedures, funbl and bunbr can
be implemented by forward and backward two-phase slicers
committing only phase 2, i.e. only descending into called
procedures [17].

The RRC further needs a function SLC(es → et),
which receives an edge es → et and computes a same-level
chop [9, 17] from es to et. However, its concrete function-
ality is irrelevant for this proof. The RRC performs the fol-
lowing 3 steps to compute a chop RRC(s, t) [17]:

1. W = funbr({s}) ∩ bunbl({t}),

2. Chop = (funbr({s}) ∩ bunbr(W )) ∪ (funbl(W ) ∩
bunbl({t})),

3. for every summary edge e on unbalanced-right paths
from s to W or unbalanced-left paths from W to t:
Chop = Chop ∪ SLC(e).

We claim that the algorithm RRC(S, T ) for sets of
nodes S and T , consisting of the steps

1. W = funbr(S) ∩ bunbl(T ),

2. Chop = (funbr(S)∩bunbr(W ))∪(funbl(W )∩bunbl(T ))),

3. for every summary edge e on unbalanced-right paths
from S to W or unbalanced-left paths from W to T :
Chop = Chop ∪ SLC(e),

computes the same result as the union of the chops
RRC(s, t) for all possible pairs of s ∈ S, t ∈ T . As all
employed operations remain the same, this extension has
the same asymptotic running time as the original algorithm.

Lemma 2. RRC(S, T ) =
⋃

s∈S
t∈T

RRC(s, t)

Proof.

‘⇐’ Every node n ∈ RRC(s, t) for s ∈ S, t ∈ T is also in
RRC(S, T ). This follows directly from the definitions
of funbr, funbl, bunbr and bunbl.

‘⇒’ We have to show that for every node n ∈ RRC(S, T )
there exist s ∈ S, t ∈ T such that n ∈ RRC(s, t). We
distinguish two cases: n is inserted into the chop either
in step 2 or in step 3.

– n is inserted in step 2:
We have that there exist s ∈ S, t ∈ T,w ∈ W
such that either s →∗unbr n →∗unbr w →∗unbl t or
s →∗unbr w →∗unbl n →∗unbl t holds. Thus n ∈
RRC(s, t).

– n is inserted in step 3:
n is inserted into RRC(S, T ) due to the same
level chop SLC(e) for a summary edge e =
es → et. We have that there exist s ∈ S, t ∈
T,w ∈ W , such that either s →∗unbr es →
et →∗unbr w →∗unbl t or s →∗unbr w →∗unbl
es → et →∗unbl t holds. Thus e is also vis-
ited by the chop RRC(s, t) in step 2, which
means that SLC(e) is added to that chop. Hence
n ∈ RRC(s, t).
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