
Register Allocation for Compressed ISAs in LLVM
Andreas Fried

Karlsruhe Institute of Technology

Karlsruhe, Germany

andreas.fried@kit.edu

Maximilian Stemmer-Grabow

Karlsruhe Institute of Technology

Karlsruhe, Germany

Julian Wachter

Karlsruhe Institute of Technology

Karlsruhe, Germany

Abstract
We present an adaptation to the LLVM greedy register allo-

cator to improve code density for compressed RISC ISAs.

Many RISC architectures have extensions defining smaller

encodings for common instructions, typically 16 rather than

32 bits wide. However, these instructions typically cannot

access all the processor’s registers, and might only have

room to specify two registers even for binary operations.

When a register allocator is aware of these restrictions,

it can analyze the compressibility of instructions and assign

registers in such a way that as many instructions as possible

can use the smaller encoding.

We adapted four aspects of the LLVM greedy register allo-

cator in order to enable more compressed instructions: 1. Pri-

oritize virtual registers with many potentially compressible

instructions for earlier assignment. 2. Select registers so that

the number of compressed instructions is maximized. 3. Take

compressibility into account when deciding which virtual

registers to spill. 4. Weigh more register copies against more

opportunity for compression.

We evaluate our techniques using LLVM’s RISC-V back-

end. In the SPEC2000 and SPEC2006 benchmarks, our regis-

ter allocator produces between 0.42 % and 6.52 % smaller bina-

ries. In the geometric mean, binaries become 1.93 % smaller.

We see especially large improvements on some floating-

point-heavy benchmarks.

Binaries compiled for better compression show changes

in their execution time of at most ±1.5 %. We analyze these

against LLVM’s spilling metrics, and conclude that the effect

is probably not systemic but a random fluctuation in the

register allocation heuristic.

CCS Concepts: • Software and its engineering→ Com-
pilers; • Computer systems organization→ Reduced
instruction set computing.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CC ’23, February 25–26, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0088-0/23/02. . . $15.00

https://doi.org/10.1145/3578360.3580261

Keywords: register allocation, compressed instruction sets,

RISC-V, LLVM

ACM Reference Format:
Andreas Fried, Maximilian Stemmer-Grabow, and Julian Wachter.

2023. Register Allocation for Compressed ISAs in LLVM. In Pro-
ceedings of the 32nd ACM SIGPLAN International Conference on
Compiler Construction (CC ’23), February 25–26, 2023, Montréal, QC,
Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3578360.3580261

1 Introduction
One of the goals of RISC architectures is to have a simple

instruction encoding scheme [7]. They usually have few

possible instruction formats, and all instructions have the

same size. In many RISC architectures, instructions are 32

bits wide.

However, this leads to poor code density, i.e., a given piece

of high-level code yields a larger binary in RISC architectures

than in CISC architectures [31].

For example, consider reading from an array of 4-byte

values (x = a[i]). In x86, this can be expressed using the

address mode feature of the mov operation (a in %rax, i in

%rbx, x in %ecx):

movl (%rax , %rbx , 4), %ecx

The same functionality needs three instructions in RISC-V

(a in a0, i in a1, x in a2):

slli a1, a1, 2 shift i left by 2 bits
add a1, a1, a0 add base pointer
lw a2, 0(a1) load

Where the x86 instruction takes 3 bytes to encode, each of

the RISC-V instructions takes 4 bytes, i. e. 12 bytes in total. Of

course, the difference is not as pronounced in a full program,

but Weaver and McKee show that RISC programs are indeed

significantly larger than their CISC counterparts [31].

Lower code density, in turn, leads to more pressure on the

memory system, especially instruction cache misses [26].

To improve their code density, some RISC architectures

have introduced compressed instruction sets such as ARM

Thumb [12], MIPS16e [28], and RISC-V’s C extension (RVC)

[1]. These offer smaller encodings of the most common in-

structions. Usually, these smaller encodings are only 16 bits

wide.

Indeed, in the example above, all instructions are com-

pressible in RVC, so the example only takes up 6 bytes with

compressed instructions.

https://orcid.org/0000-0003-0021-5549
https://orcid.org/0000-0002-9961-1295
https://orcid.org/0000-0001-8289-931X
https://doi.org/10.1145/3578360.3580261
https://doi.org/10.1145/3578360.3580261
https://doi.org/10.1145/3578360.3580261

CC ’23, February 25–26, 2023, Montréal, QC, Canada Andreas Fried, Maximilian Stemmer-Grabow, and Julian Wachter

Since compressed instruction sets have less encoding space

available to them, they are necessarily more restrictive than

their uncompressed counterparts. These restrictions usually

are:

• not all kinds of instructions are available in compressed

form, e. g., no multiplication or division

• Smaller immediate fields, e. g., for load/store offsets

• Only a subset of registers is accessible, called the com-
pressible registers
• Compressed arithmetic instructions are in two-address
form, i.e., they only have two operands, and encode an

operation of the form 𝑥 ← 𝑥 ⊛𝑦 rather than 𝑧 ← 𝑥 ⊛𝑦.

The first two of these points are of little interest to the

compiler: If the instruction called for by the program is not

compressible, there is nothing gained by using several com-

pressed instructions in place of one uncompressed one. Like-

wise, there is no way to use a smaller constant than given in

the program outside of some specific circumstances. Never-

theless, Revill and Blackmore were able to exploit some of

those circumstances [19].

The latter two points listed above are of a different nature:

They show that the attainable compression relies on the

decisions of the register allocator. If the register allocator

is aware of the properties of the compressed instruction

set, it can produce smaller binaries while using the same

instructions.

Register allocation is one of the most important compiler

optimizations [11], and consequently has been well studied.

Modern register allocators stem from either the Chaitin-

Briggs graph-coloring register allocator [4–6], or the linear-
scan allocator by Poletto and Sarkar [18].

Both of these allocators have been extended to support

register restrictions for instructions that cannot access all
registers, and two-address instructions. For graph-coloring

allocators, both Smith and Holloway [23], and Runeson and

Nyström [20] presented such extensions. Mössenböck and

Pfeiffer extended linear-scan allocators in the same way [16].

Our goal, however, is different: Tomaximize the number of

compressed instructions we can emit, the register allocator

should be able to handle register preferences, not restrictions.
There is no point in forcing an instruction to use a com-

pressible register if that means adding extra instructions

elsewhere.

Existing techniques for compression-aware register allo-

cation are either rather simple, or impracticable for larger

programs (see sections 2.4 and 2.5). Our goal is therefore

to build a more comprehensive compression-aware register

allocator, while keeping the register allocation and perfor-

mance overhead low.

This paper is organized as follows: In the next section,

we present the necessary basics, including the RISC-V com-

pressed ISA, and the LLVM greedy register allocator. In sec-

tion 3, we first introduce the general principles of our work,

followed by a discussion of our adaptations to the register

allocator in section 4. We then evaluate our work in section 5,

both for code size and for execution time.

2 Basics
In this section, we will introduce the foundations required

for our work. We first introduce compressed instruction set

architectures (ISAs), and then present the RISC-V ISA with

its C extension for compressed instructions. We also briefly

examine other compressed ISAs in order to demonstrate that

our work is also applicable to other instruction sets. Next,

we discuss the state of the art in the LLVM register allocator,

and finally we take a look at previous work related to code

compression.

Terminology. Throughout this text, we will frequently
make reference to both individual instances of instructions,

as well as to general types of instructions. For clarity, we

will refer to instances of instructions (e. g. add x1, x2, x3)
as instructions, and to types of instructions (e. g. add, sub,
ld) as operations.
Almost all ISAs we cover have 32-bit and 16-bit wide en-

codings. We will also call the 32-bit encodings uncompressed
encodings and the 16-bit wide ones compressed encodings.
When an operation has one or more compressed encodings,

we call it a compressible operation. When an instruction can

actually use a compressed encoding given its operands, we

call that a compressible instruction.

2.1 Compressed Instruction Sets
First of all, we need to distinguish two kinds of compressed

ISAs: In older compressed-only ISAs such as ARM Thumb-1

[12] and MIPS16e [28], all operations only have compressed

encodings. Therefore, most operations can only access com-

pressible registers. Only moves (for MIPS16e) or moves and

additions (for Thumb-1) can access all registers.

On the other hand, hybrid ISAs offer additional non-com-

pressed encodings for compressible operations, or compressed

encodings can be interleaved with those from the standard

ISA. Most modern general-purpose compressed ISAs are of

this kind.

Compression in hybrid ISAs is transparent to the compiler.

It does not need to explicitly select compressed encodings.

Instead, the assembler checks whether instructions are com-

pressible and uses compressed encodings where possible. In

order to achieve good compression, the compiler just has to

make sure that as many instructions as possible fulfill the

requirements to use their compressed encodings.

2.2 The RISC-V ISA
In this section, we present an overview of the aspects of the

RISC-V architecture relevant to our work. For a full descrip-

tion, see the RISC-V specification [1].

Register Allocation for Compressed ISAs in LLVM CC ’23, February 25–26, 2023, Montréal, QC, Canada

The RISC-V base ISA defines a set of 32 general-purpose

registers, either 32 or 64 bits wide. These are named x0
through x31.

The instructions are in one of four formats, all 32 bits wide

[1, fig. 2.2]. These formats form instructions in a typical RISC

style with the following properties:

• Register fields are 5 bits wide, and thus can address all

registers.

• Binary arithmetic instructions (format R) are in three-

address form.

• Immediates for arithmetic instructions (formats I and

S) are 12 bits wide.

• Immediates for jumps (format U) are 20 bits wide.

In contrast, the C extension of the RISC-V ISA (RVC) de-

fines nine 16-bit wide instruction formats [1, tab. 16.1]. Com-

paring the compressed formats to the uncompressed ones,

we can see the following restrictions:

• Register fields in formats CIW, CL, CS, CA, and CB are

3 bits wide, and can therefore address 8 registers.

• Arithmetic instructions (formats CA, CI, CR) are in

two-address form.

• Immediates for arithmetic instructions (formats CI or

CB) are 6 bits wide.

• Load/Store offsets (formats CL, CS) are 5 bits wide.

• Immediates for jumps (format CJ) are 11 bits wide.

Since we are interested in the register restrictions in par-

ticular, we will now discuss them in more detail. The eight

registers addressable in compressed instructions are regis-

ters x8 through x15. The standard RISC-V ABI assigns these

roles to them:

x8 s0 callee-save/frame pointer

x9 s1 callee-save

x10–x15 a0–a5 argument/return values, temporary

These registers are frequently used in many programs any-

way. Thus, programs can already profit from compression

even if the register allocator is not aware of the conditions

for compression.

On systems with floating-point support, the C extension

additionally defines compressible load and store operations

for floating-point registers f8 through f15. However, floating-
point arithmetic operations are not compressible.

2.3 Other Compressed Instruction Sets
Having discussed RVC in some detail, we next briefly intro-

duce other relevant compressed ISAs. We will give a quick

overview of them in order to motivate our technique, and

to show that its principles are widely applicable. In all ISAs,

register-to-register moves are given special treatment, and

can access all registers. In addition, many ISAs have special

encodings for the most important operations to allow them

to access more registers.

Table 1 summarizes the features found in the different

ISAs.

2.3.1 ARM Thumb-2. Compressed instructions can ac-

cess 8 out of 16 registers. Binary arithmetic instructions are

in two-address rather than three-address form. They also

cannot use the “flexible second operand” to shift or rotate

the second argument. Addition and subtraction use a spe-

cial encoding, so that they can use three-address form. In

addition, there is an encoding for addition in two-address

form that can address all registers. Immediate addition can ei-

ther use two-address form or one-address form with a larger

immediate. [2]

2.3.2 microMIPS. Compressed instructions can access 8

out of 32 registers, with some instructions implicitly access-

ing the stack pointer (sp), global pointer (gp), or return ad-

dress (ra) registers. Again, addition is given special treat-

ment by using three-address form, while other arithmetic

uses two-address form. In addition, loads and stores access-

ing the stack or the global variable area can use all registers.

[29]

2.3.3 nanoMIPS. Most compressed instructions can ac-

cess 8 out of 32 registers, again with binary arithmetic in

two-address form. However, some compressed encodings

feature 4-bit register fields, which can access 16 out of 32 reg-

isters. These are the two-address form of addition, loads and

stores with small immediates, andmultiplication (which does

not even have an encoding with 3-bit register fields). Loads

and stores accessing the stack again can use all registers. [30]

2.3.4 PowerPC VLE. This compressed ISA is less restric-

tive than the others, with all compressed encodings able to

access 16 out of 32 registers in two-address form. On the

other hand, it does not afford any special treatment to oper-

ations other than moves. [9]

From this overview, we can draw some conclusions con-

cerning the features our technique needs to support:

• All ISAs except nanoMIPS have one size for compressed

register fields, and therefore one subset of compress-

ible registers. In the following, we will discount this

specialty of nanoMIPS since it complicates the register

allocator for the sake of just one architecture.

• It is equally important for the register allocator to

fulfill the two-address requirement, as well as to assign

compressible registers to all operands.

• Given that most compressed ISAs are somewhat non-

orthogonal, we need precise information about which

operations are compressible under which circumstan-

ces. These circumstances might be outside the register

allocator’s control, such as the size of immediates.

2.4 The LLVM Greedy Register Allocator
The greedy register allocator was introduced with LLVM

version 3.0, replacing an earlier linear scan allocator. Being a

production-quality register allocator, it is quite complex, and

CC ’23, February 25–26, 2023, Montréal, QC, Canada Andreas Fried, Maximilian Stemmer-Grabow, and Julian Wachter

Table 1. Register fields in 32-bit and 16-bit encodings of

hybrid compressed ISAs. “𝑛/𝑏” refers to 𝑛 register fields, each

𝑏 bits wide, e. g. 3/5 denotes three 5-bit register fields. See

sections 2.2 and 2.3.1 to 2.3.4 for details of the exceptions.

Encodings

ISA 32-bit 16-bit 16-bit exceptions

RVC 3/5 2/3 add: 2/5
addi, sll: 1/5
sp-relative: 1/5

ARM Thumb-2 3/4 2/3 addi, 8-bit imm.: 1/3

add: 3/3 or 2/4
sub: 3/3

microMIPS 3/5 2/3 addu: 3/3
sp, gp-relative: 1/5

nanoMIPS 3/5 2/3 addu: 3/3 or 2/4
mul: 2/4
lw, sw, small offset: 2/4

sp-relative: 1/5

PowerPC VLE 3/5 2/4 —

we can only give an overview of the components required

for our work here. Braun provides a more comprehensive

tutorial [3].

The register allocator works on one function at a time, rep-

resented as a list of assembler instructions whose operands

are virtual registers known as live-intervals.
A live-interval represents the duration for which a value

must be kept in a register or in memory. Live-intervals are

not necessarily in SSA form, they may have multiple defi-

nitions on separate control flow paths. A live-interval does

not necessarily appear as a single interval on the list of

instructions but may be spread over several live-ranges in
non-contiguous basic blocks. A live-interval’s size is the sum
of the number of instructions its live-ranges span.

The greedy register allocator uses an iterative technique

centered around a priority queue of live-intervals.

The priority of a live-interval in the queue is defined by

a number of criteria. For our work, only three of these are

relevant:

1. Global live-intervals (those spanning multiple basic

blocks) have higher priority than local ones.

2. Global intervals are prioritized by size.

3. Local intervals are prioritized top-to-bottom in their

basic block.

Initially, all live-intervals of the function are enqueued.

Then, in each iteration, the register allocator takes the highest-

priority live-interval out of the queue and tries to assign it

to a register.

If a register is free for the duration of the live-interval,

the register allocator assigns the live-interval to that reg-

ister. Otherwise, it first tries to evict another live-interval
(i. e. unassign its register) it considers cheaper to spill. Next,

it tries to split the live-interval in order to reduce the con-

straints placed on it. Live-intervals that were evicted or split

re-enter the queue, and the register allocator re-assigns them

later.

If all else fails, the register allocator spills the live-interval,
replacing its definitions and uses with spills and reloads

respectively.

We will explain these steps in more detail in section 4 as

we present our modifications to the register allocator.

2.4.1 ExistingMechanisms for Compressed ISAs. Nor-
mally, the register allocator chooses the first free register for

a live-interval, with two exceptions: Firstly, the live-interval

might have a hint to use a certain register. This is the case

if one of the instruction operands represented by the in-

terval is restricted to a certain register, or if the interval is

copy-related1 to another live-interval, and that live-interval

is already assigned.

Secondly, the register allocator prefers registers with a

lower cost-per-use. Cost-per-use is a mechanism to mark

some registers as generally preferable over others. In practice,

cost-per-use is 0 for most registers, 1 for the first use of a

callee-save register (CSR), and 1 for every use of certain

registers defined by the architecture.

This cost-per-use mechanism is how the register alloca-

tor tries to avoid using non-compressible registers: Non-

compressible registers have a cost-per-use of 1, so that com-

pressible registers are preferred if they are still free.

In addition, Zhao and Stannard found that preferring com-

pressible CSRs over non-compressible caller-save registers

improved compression for ARM Thumb-2 [32]. This change

reduced code size by up to 1.48%, with 0.1% reduction on

average, and a 0.1 % increase in the worst case. However, the

performance impacts of this change were not evaluated.

The order in which the greedy register allocator processes

live-intervals also has an effect on compression. It allocates

large live-intervals first, when more registers are still free.

Therefore, large live-intervals are more likely to be assigned

to a compressible register. Since they also likely have more

uses, assigning a large live-interval to a compressible register

likely enables more instructions to be compressed.

Finally, LLVM contains a specialized optimization phase

for the RISC-V target aimed at reducing immediate offsets in

load/store instructions. Various LLVM contributors reported

savings between 0.10% and 0.76% using this optimization

[19].

1
Two live-intervals are copy-related if there is a copy instruction which

uses one live-interval and defines the other.

Register Allocation for Compressed ISAs in LLVM CC ’23, February 25–26, 2023, Montréal, QC, Canada

2.5 Related Work
Besides the mechanisms built into LLVM we have just seen,

there are several more comprehensive approaches to support

compressed instruction sets.

One approach is to translate the register allocation prob-

lem into a constraint system, and also encode compressibility

as part of the objective function. The general method was in-

troduced by Scholz and Eckstein [21]. They encoded register

allocation as a PBQP problem but only considered register

requirements, not preferences as required for compression.

Later, Lozano et al. applied the principle to compressed

ISAs within the Unison project [14, 22]. Their work models

register allocation and instruction scheduling as a single

optimization problem, which also includes the costs and

benefits of using compressed instructions. The requirements

for instructions to be compressed can directly be included

in the optimization problem that is built to describe a valid

register allocation, e.g. when using code size as the overall

cost function that is to be optimized for.

However, these constraint-based register allocators do not

scale to full programs. Lozano et al. report that their system

“scales to medium-sized functions of up to 1,000 instructions”.

Other work has taken a hardware/software co-design ap-

proach, and proposed extensions to the instruction set along

with new compiler techniques.

Edler von Koch et al. presented an approach for code gen-

eration on the ARCompact ISA, a hybrid compressed ISA fo-

cusing on embedded use cases [8]. They introduce a method

for “feedback-guided code generation”, which uses multiple

compiler passes to improve code compression. The first com-

piler pass is used to annotate the IR with information on

opportunities for compression, and the following pass uses

that information to avoid compressed instructions where

this would introduce additional move instructions or spills.

There is also earlier work dealing with compressed-only

ISAs. Krishnaswamy and Gupta presented an approach to

optimize generation of mixed ARM and Thumb-1 code [13].

Their approach is rather coarse however, generating only

Thumb-1 or only ARM instructions in any given function.

Selection of whether to use compressed instructions is based

on heuristic analysis of the code under consideration. In

addition, specific patterns in ARM functions are replaced

with Thumb-1 code surrounded by mode-switching jumps.

3 Goals of Compressed Register Allocation
The key idea behind our work is to focus on using compress-

ible registers where they provide the most benefit, rather

than generally preferring their use everywhere. We will illus-

trate this point with two examples using RVC. The question

is, which of the symbolic values/live-intervals (denoted %x,
%y, etc.) should be placed in compressible registers.

We assume for both examples that all values are dead at

the end of the snippets, and that the load/store offsets are

small enough for the compressed encoding (≤ 248 for 64-bit

values).

First, consider the following C snippet, where x, y, p->x,
and p->z are 64-bit integers, and y has been defined previ-

ously.

x = p->x;

p->z = x | ((x - y) & 0xff);

This might be compiled as follows:

ld %x, x_offset (%p)

sub %t1, %x, %y

andi %t2, %t1, 0xff

or %z, %x, %t2

sd %z, z_offset (%p)

Assume that external restrictions have forced %y into a

non-compressible register. This means that the sub instruc-

tion (l. 2) is no longer compressible, regardless of the register

assigned to %t1 and %x. The immediate of the andi instruc-
tion (l. 3) does not fit in the compressed encoding, so that

will be uncompressed, too.

On the other hand, all other instructions are compressible

given a suitable register assignment. In particular, %x dies at

the or instruction (l. 4), so %z can be assigned to the same

register to fulfill the two-address requirement.

For the register allocation, this means that %t1 should not
be assigned to a compressible register, while all other values

should be assigned to compressible registers, with %x and %z
being assigned to the same register.

The second example illustrates a particular issue with

floating-point code. Consider this C snippet, with a, b, and
all fields of q having type double:

a = q->a; b = q->b;

q->c = (a + b) * (a - b);

This might be compiled as follows:

fld %a, a_offset (%q)

fld %b, b_offset (%q)

fadd.d %t1, %a, %b

fsub.d %t2, %a, %b

fmul.d %c, %t1, %t2

fsd %c, c_offset (%q)

The important point here is that only floating-point loads

and stores (fld/fsd) are compressible, but arithmetic is not.

Our goal is therefore to assign the “inputs” and “outputs”

of the computation (values %a, %b, and %c) to compressible

registers. The intermediate values %t1 and %t2 can never

profit from compression, so compressible registers would be

wasted on them.

Of coursewemust also assign %q to a compressible register,

or all three load/store instructions cannot be compressed. If

we cannot find a compressible register for %q, there is again
no point in assigning %a, %b, or %c to compressible registers.

CC ’23, February 25–26, 2023, Montréal, QC, Canada Andreas Fried, Maximilian Stemmer-Grabow, and Julian Wachter

3.1 Basic Concepts
Keeping in mind the examples above, we can now define

more concretely what we should care about in a compression-

aware register allocator.

Potentially Compressible Instructions. We say that an

instruction is potentially compressible if the following condi-

tions hold:

1. the operation is compressible,

2. the immediates fit in the compressed encoding or are

unknown,

3. all operands requiring compressible registers are either

assigned to compressible registers or unassigned,

4. the two-address requirement (if applicable) is fulfilled

or one of the relevant operands is unassigned.

Thus, if an instruction is potentially compressible, its unas-

signed operands can still be assigned in such a way that the

instruction is compressible.

We found that these optimistic assumptions (that immedi-

ates are small enough, and suitable registers will be found),

are frequently justified and lead to better compression. Un-

known immediates often refer to stack slots, whose offsets

usually fit in the compressed encoding.

Using potentially compressible instructions, we can keep

track of which instructions are still worth optimizing. We

write 𝑃𝐶 (𝑖) for the predicate that instruction 𝑖 is potentially
compressible.

Compressibility of Live-Intervals. In the same way that

we evaluate the compressibility of instructions, we also want

to define a measure of compressibility for live-intervals. For

this, we first define 𝑈𝐷 (𝐿) as the set of instructions that

have the live-interval 𝐿 as one of their operands, both as use

and as definition.

We can then define 𝐿’s compressibility𝐶 as the number of

potentially compressible uses and definitions of the interval:

𝐶 (𝐿) = |{𝑖 | 𝑖 ∈ 𝑈𝐷 (𝐿) ∧ 𝑃𝐶 (𝑖)}|

In order to evaluate register choices, we are also interested in

a live-interval’s compressibility under the assumption that

it is assigned to a certain register 𝑟 .

𝐶 (𝐿, 𝑟) = |{𝑖 | 𝑖 ∈ 𝑈𝐷 (𝐿) ∧ 𝑃𝐶 (𝑖 [𝐿 ↦→ 𝑟])}|

In order to compare the compressibility of live-intervals

independent of their size, we also define the relative com-
pressibility (𝐶𝑟𝑒𝑙) as the share of potentially compressible

instructions in a live-interval.

𝐶𝑟𝑒𝑙 (𝐿) =
𝐶 (𝐿)
|𝑈𝐷 (𝐿) |

Note that the compressibility of a live-interval can de-

crease as other live-intervals are assigned to registers, and

instructions are no longer potentially compressible.

4 Adaptations to the Register Allocator
Our goal is to achieve better code compression while not

sacrificing run-time performance. Therefore, we do not in-

terfere with the register allocator’s basic function. We only

adjust its heuristics in four key aspects, which we will now

examine in turn.

4.1 Live-Interval Priority
We have already pointed out that prioritizing large live-

intervals is likely to improve compression. However, this

does not take into account the varying relative compressibil-

ity of live-intervals.

We therefore want to decrease the priority of less com-

pressible global live-intervals. We choose a simple linear

relationship for this: If the live-interval 𝐿 has no potentially

compressible instructions (𝐶𝑟𝑒𝑙 (𝐿) = 0), its priority 𝑃 (𝐿)
should be decreased by a factor of 𝛼 . If all of 𝐿’s instructions

are potentially compressible (𝐶𝑟𝑒𝑙 (𝐿) = 1), its priority should

be its size 𝑆 (𝐿), as before. This yields the following formula:

𝑃 (𝐿) = 𝑆 (𝐿) · ((1 − 𝛼) + 𝛼𝐶𝑟𝑒𝑙 (𝐿))

We call 𝛼 the priority influence. By varying 𝛼 between 0

and 1, we can choose the importance of larger versus more

compressible live-intervals.

However, we do not modify the priority of local live-

intervals. This is because local intervals have a single defini-

tion, i. e., they are in SSA form. For live-intervals in SSA form,

top-to-bottom allocation is known to produce an optimal

register allocation [10], which we do not want to interfere

with.

4.2 Register Selection
The original register allocator does not usually choose a spe-

cific register since they are all equal in terms of performance.

If there are no hints associated with the live-interval, the

register allocator simply chooses the first free register with

zero cost-per-use.

In contrast, the specific choice of register is important

to code compression. On one hand, some of the instruc-

tions in the live-interval may need compressible registers

as operands to be themselves compressible (this concerns

the majority of compressible operations). On the other hand,

we have many more preferences for single registers in or-

der to fulfill the two-address requirements of compressible

operations.

To allocate a register for a live-interval 𝐿, we therefore

check each available register and compute 𝐿’s compressibil-

ity if it were assigned to it. We also take into account that we

want to avoid using a CSR for the first time. If there are still

free registers that are not unused CSRs, we choose among

those. Whether or not we need to use a CSR, we then select

the register giving the highest compressibility. Algorithm 1

summarizes our register selection technique.

Register Allocation for Compressed ISAs in LLVM CC ’23, February 25–26, 2023, Montréal, QC, Canada

Algorithm 1 Register selection

function Select(𝐿: LiveInterval)→ Register

𝑐𝑎𝑛𝑑 ← []
for each register 𝑟 do

if 𝑟 is free during 𝐿 then
𝑐 ← C(𝐿, 𝑟)
𝑢 ← 𝑟 is an unused CSR

𝑐𝑎𝑛𝑑.Append((𝑟, 𝑐,𝑢))
if any (_, _, false) ∈ 𝑐𝑎𝑛𝑑 exists then
(𝑟 ∗, _, _) ← (𝑟, 𝑐, false) ∈ 𝑐𝑎𝑛𝑑 with max. 𝑐

else if 𝑐𝑎𝑛𝑑 ≠ [] then
(𝑟 ∗, _, _) ← (𝑟, 𝑐, true) ∈ 𝑐𝑎𝑛𝑑 with max. 𝑐

else
𝑟 ∗ ← none

return 𝑟 ∗

4.3 Live-Interval Eviction
When the register allocator cannot assign a live-interval 𝐿 to

any register, it can choose to evict all live intervals interfering
with 𝐿 assigned to a register 𝑟 . Then, 𝑟 is free, and 𝐿 can be

assigned to it. The evicted live-intervals re-enter the priority

queue.

However, this is only worthwhile if the evicted live-inter-

vals are cheaper to spill than 𝐿. The cost of spilling a live-

interval is given by its spill weight𝑊 (𝐿). The spill weight
is based on the number of spills and reloads needed for a

live-interval, and their estimated execution frequency.

The baseline register allocator finds a suitable 𝑟 by iterat-

ing over all registers and choosing the one which minimizes

the maximum spill weight of the live-intervals to be evicted.

We extend this heuristic in algorithm 2 by also taking into

account the difference in compressibility between the newly

assigned and the evicted live-intervals.

Let 𝐸 (𝐿, 𝑟) be the set of live-intervals which need to be

evicted to assign 𝐿 to 𝑟 . If the register allocator decides to

evict, it unassigns the live-intervals in 𝐸 (𝐿, 𝑟) and assigns

𝐿 to 𝑟 . This means that the compression enabled by live-

intervals in 𝐸 (𝐿, 𝑟) is lost, while 𝐿’s new assignment may

enable new compression.

Since a lower score means a better choice for eviction, the

lost compression should count positively towards the score,

and 𝐿’s compression should count negatively. We therefore

define the eviction score by

𝑠𝑐𝑜𝑟𝑒 (𝐿, 𝑟) = (1 − 𝛽) · max

𝐿′∈𝐸 (𝐿,𝑟)
𝑊 (𝐿′)

+ 𝛽 ·
((∑

𝐿′∈𝐸 (𝐿,𝑟) 𝐶 (𝐿′)
)
−𝐶 (𝐿, 𝑟)

)
Again, we have a parameter, the eviction influence 𝛽 , which

allows us to find a balance between cheap spills and good

compression.

Algorithm 2 Live-interval eviction

function SelectEvict(𝐿: LiveInterval)→ Register

𝑐𝑎𝑛𝑑 ← []
for each register 𝑟 do

𝑚 ← 0

𝑐 ← −𝐶 (𝐿, 𝑟)
for each 𝐿′ ∈ 𝐸 (𝐿, 𝑟) do

if𝑊 (𝐿′) >𝑊 (𝐿) then
try next 𝑟

𝑚 ← max(𝑚,𝑊 (𝐿′))
𝑐 ← 𝑐 +𝐶 (𝐿′)

𝑠𝑐𝑜𝑟𝑒 ← (1 − 𝛽) ·𝑚 + 𝛽 · 𝑐
𝑐𝑎𝑛𝑑.Append((𝑟, 𝑠𝑐𝑜𝑟𝑒))

if 𝑐𝑎𝑛𝑑 ≠ [] then
(𝑟 ∗, _) ← (𝑟, 𝑠𝑐𝑜𝑟𝑒) ∈ 𝑐𝑎𝑛𝑑 with min. 𝑠𝑐𝑜𝑟𝑒

else
𝑟 ∗ ← none

return 𝑟 ∗

4.4 Register Hints
When a live-interval has a hint, it is usually copy-related to

another live-interval. This means that not fulfilling the hint

incurs an extra register copy instruction.

However, register copies are usually very cheap in modern

processors. It is therefore sensible to accept an additional

copy in exchange for more code compression.

We therefore break hints if doing so yields a large enough

additional compression: If 𝑟 ∗ is the register selected for a

live-interval 𝐿 by algorithm 1, and 𝑟ℎ is the hinted register,

we prefer 𝑟 ∗ if𝐶 (𝐿, 𝑟 ∗) is greater than𝐶 (𝐿, 𝑟ℎ) by at least the
hint breaking limit.

The hint breaking limit should be at least 2: Then, we get

at least 2 additional compressed instructions (saving at least

4 bytes) for one additional copy (costing 2 bytes since copies

are always compressed).

5 Evaluation
We integrated our register allocator into a development ver-

sion of LLVM 16 (commit 4e9dd210).

We evaluate our work using the C and C++ benchmarks

from the SPEC CPU2000 and CPU2006 benchmark sets [24,

25]. However, we have to exclude the CPU2000 benchmark

“252.eon”, as it cannot be compiled with modern LLVM with-

out changing the source code.

We choose the following configuration for the bench-

marks: Besides flags needed for compatibility, we compile

with the standard -O3 optimization level. In our register al-

locator, we set the priority influence (section 4.1) to 0.5, the

eviction influence (section 4.3) to 0.6, and the hint breaking

limit (section 4.4) to 2.

These values put a relatively high emphasis on compres-

sion. We have chosen to do so because any effect the register

CC ’23, February 25–26, 2023, Montréal, QC, Canada Andreas Fried, Maximilian Stemmer-Grabow, and Julian Wachter

allocator may have on run-time performance should be ap-

parent at these settings.

In our evaluation, we will first focus on the text size of

the resulting binaries (section 5.1). Afterwards, we will also

consider the performance of the compiler (section 5.2), and

the performance of the generated code (section 5.3).

5.1 Compression
Figure 1 shows the overall results of our optimization. For

each benchmark, we plot the relative change in the binary’s

text segment size. The geometric mean of the change over

all benchmarks (shown in green) is −1.93 %.
We can see that our compression-aware register allocator

can reduce the size of most benchmarks (30 of 33) by at

least 1 %. Moreover, 10 of 33 benchmarks become at least 2 %

smaller.

The floating-point benchmarks (plotted in orange) show

better compression than the integer benchmarks. 5 out of 11

are compressed by at least 3 %, and better than any integer

benchmark except “401.bzip2”. The floating-point benchmark

“183.equake” improved most of all, becoming 6.52 % smaller.

5.1.1 Compression by Operation Groups. Next, we an-
alyze how successfully we can compress different kinds of

operations. To this end, we have split the operations into

the following groups: floating-point load/store, integer load/

store, arithmetic, jumps, constant generation, and branches.

Each group only includes compressible operations.

Figure 2 shows the results summed over all benchmarks.

For each group, we measure the share of instructions that

are able to use a compressed encoding, comparing baseline

LLVM (orange) and our register allocator (blue).

First of all, we can see that register allocation has almost

no effect on jumps and constant generation instructions.

For these, the immediate value in the instruction is more

important. Our register allocator even compresses fewer

branch instructions. This is probably because the associated

live-intervals are small (a value is generated and immediately

tested), and therefore low-priority.

For integer load/store and arithmetic instructions, we see

a clear but modest advantage. With a compression-aware

register allocator, 6 % more instructions can be compressed

in either group.

The majority of arithmetic instructions that cannot be

compressed are not in two-address-form (86%). Only 14%

are in two-address-form but use one or more non-compress-

ible registers.

However, for floating point load/store instructions, the

effect is much more pronounced: With our register allocator,

2.4 times as many of these instructions can be compressed.

5.1.2 Interpretation. The advantage for integer instruc-
tions is not as large because most of the operations are com-

pressible. In this case, LLVM’s old strategy of always prefer-

ring compressible registers already yields good results.

On the other hand, most floating-point operations are

not compressible (only loads and stores, see the example in

section 3). LLVM’s old strategy did not work well here, and

a more precise approach was clearly required.

More generally, we can conclude that it is worthwhile to

care about the idiosyncrasies of the compressed instruction

set, especially when only some operations are compressible.

In RISC-V, this pertains to floating-point code but may be

different for other architectures.

5.2 Compiler Performance
Although the performance of the compiler itself is not our

main concern, we still test whether our register allocator

is unduly slow. Our register allocator has to do more work

overall, especially in register selection (section 4.2), so we

expect it to take longer.

Indeed, our measurements show that the compression-

aware register allocator is 64 % slower than the baseline, but

this only makes overall compilation 1.3 % slower.

Keeping in mind that our implementation is still a proto-

type, we do not consider its performance problematic. There

are still several points where we can optimize our implemen-

tation, e. g. by memoizing compressibility values.

5.3 Run-Time Performance
Finally, we consider the impact of our register allocator on

the performance of the compiled programs. Given the re-

ductions in binary size we saw, we can probably not expect

performance advantages through better cache utilization.

Even for the 6.52 % compression we saw with “183.equake”,

Steenkiste’s model only predicts a speedup of 1 % [26].

On the other hand, even inconsequential changes to a pro-

gram can have a performance impact of a few percent [15]. In

our case, these fluctuations could arise from changing align-

ment of basic blocks as different instructions use compressed

encodings.

So all in all, we expect the performance of the benchmarks

compiled with our register allocator to be roughly equal to

baseline performance but with some variations.

We execute the CPU2000 benchmarks on a “VisionFive”

single-board computer running Ubuntu Linux 22.04. This

features a SiFive U74 RISC-V core running at 1.5GHz, and

8GiB of RAM.

We cannot use the original SPEC benchmarking tools since

they are not compatible with RISC-V. Instead, we have to

resort to recreating the benchmarking scripts using the same

problem sets. This was not possible for “253.perlbmk”, so we

are forced to skip this benchmark.

We run each benchmark 10 times using hyperfine [17].
This yields relative standard deviations of at most 1.8 %.

Our benchmarking results are shown in table 2. For each

benchmark, we list its average execution time and its stan-

dard deviation, for both the baseline register allocator, and

Register Allocation for Compressed ISAs in LLVM CC ’23, February 25–26, 2023, Montréal, QC, Canada

Figure 1. Change in text segment size between baseline LLVM and our compression-aware register allocator. Benchmarks

with blue bars are part of the integer-heavy CINT2000 or CINT2006 benchmark sets, those with orange bars are part of the

floating-point-heavy CFP2000 or CFP2006. The green line shows the geometric mean of all changes at −1.93 %.

Table 2. Results of the performance benchmarks. The times are given in seconds as “average ± standard deviation”. Column “t”

gives the result of Welch’s t-test between the Baseline and the Result measurements. Change is the relative difference between

the averages in percent. Changes marked with “∗” are insignificant according to the t-test with 𝑝 = 5 %.

Benchmark Baseline/s Result/s t Change/%

164.gzip 652.24 ± 1.81 650.67 ± 2.04 −1.81 −0.2 ∗
175.vpr 594.02 ± 2.84 601.77 ± 4.06 4.94 1.3

176.gcc 364.62 ± 1.00 361.21 ± 0.87 −8.12 −0.9
181.mcf 933.51 ± 3.32 929.35 ± 3.07 −2.91 −0.4
186.crafty 255.39 ± 1.78 255.64 ± 4.32 0.17 0.1 ∗
197.parser 826.74 ± 7.15 836.62 ± 10.77 2.42 1.2

254.gap 480.69 ± 3.46 475.36 ± 3.00 −3.68 −1.1
255.vortex 592.34 ± 5.22 599.51 ± 7.43 2.49 1.2

256.bzip2 597.69 ± 1.58 596.71 ± 1.84 −1.28 −0.2 ∗
300.twolf 750.69 ± 10.87 759.49 ± 10.60 1.83 1.2 ∗
177.mesa 459.33 ± 6.66 466.40 ± 8.38 2.09 1.5 ∗
179.art 974.59 ± 10.01 974.24 ± 7.35 −0.09 −0.0 ∗
183.equake 1086.88 ± 0.91 1086.11 ± 0.71 −2.11 −0.1
188.ammp 974.37 ± 0.84 977.91 ± 0.70 10.27 0.4

Geometric mean of changes: 0.3

our register allocator (“Result”). We also compare both mea-

surements usingWelch’s t-test with 𝑝 = 5 %. Changes judged

insignificant by the t-test are marked with “∗”.
We can see that the execution times of the benchmarks

fluctuate up to −1.1 %/+1.3 % (+1.5 % including insignificant

changes). Of the 14 benchmarks, 4 become faster with our

register allocator, 4 become slower, and 6 changes are in-

significant. The geometric mean over all changes (both sig-

nificant and insignificant) suggests a slight slowdown of

0.3 % across our benchmark set.

5.3.1 Spill/Reload Analysis. We now analyze in more

detail whether our register allocator systemically introduces

worse performance in some cases, or whether the fluctua-

tions we measured are random.

If our register allocator has worsened performance, that

will be because it has introduced additional spills, reloads,

or register copies.

To investigate these effects, we compare our performance

results with performance estimations provided by LLVM.

LLVM can estimate the cost of spills, reloads, and register

CC ’23, February 25–26, 2023, Montréal, QC, Canada Andreas Fried, Maximilian Stemmer-Grabow, and Julian Wachter

Figure 2. Compressed instructions by category. The bars

show the share of compressed instructions over all bench-

marks with the compression-aware register allocator (blue)

and the baseline (orange).

Figure 3. Comparison of changes in execution time (x-axis)

and spill/reload/copy costs (y-axis). There are three data

points for each benchmark, comparing the change in execu-

tion time to the change in spill costs (blue), reload costs (or-

ange), and register copy costs (green) as reported by LLVM.

moves in the program using an execution frequency analysis.

These are also the costs used by the baseline register allocator

to compute spill weights.

In fig. 3, we plot the change in execution time on the x-

axis against the change in reported costs on the y-axis. Spill

costs are shown in blue, reload costs in orange, and register

copy costs in green. If the change in execution time we saw

is caused by increased costs for spilling etc., we expect to

see an upward trend, with slower benchmarks also having

increased costs.

In fact, all of the cost metrics are relatively weakly corre-

lated to the execution time: The coefficient of determination

is 𝑟 2 = 12.2 % for spills, 𝑟 2 = 9.3 % for reloads, and 𝑟 2 = 6.0 %

for register copies.

5.3.2 Interpretation. The deviation in performance for

the benchmarks is within the range we expected, with an

equal number of faster and slower benchmarks. Although

the mean shows a slightly worse performance over all bench-

marks, the slowdowns we see are not correlated to increased

spill, reload, or copy costs. We can therefore conclude that

the changes in performance are probably not systemic.

6 Future Work
We have implemented and evaluated our compression-aware

register allocator for RVC. However, as we have shown in

section 2.3, all compressed ISAs follow similar principles.

Our approach, and much of our implementation, is therefore

equally applicable to other compressed ISAs. If the ISA does

not have different features to RVC, all that is required is

a TableGen specification of the compressibility conditions.

This is the case for Thumb-2, microMIPS, and PowerPC VLE.

Out of concern for compiler performance, we compute

compressibility in a relatively simple way. In particular, we

do not consider the context of the instruction in question at

all. With more analysis of the context, the register allocator

could deduce earlier that an instruction is non-compressible.

For example, if neither argument of a binary instruction dies,

the instruction cannot be put into two-address form.

Finally, efforts are currently underway to introduce a

machine-learning-based register allocator into LLVM [27].

Integrating compressibility information into its objective

function would be an all-new challenge, but the basic con-

cepts we introduced in section 3.1 remain applicable.

7 Conclusion
We have presented a compression-aware adaptation to the

LLVM greedy register allocator. Our register allocator is still

efficient enough to be able to handle real-world benchmarks.

By extending the register allocator in four key places, we

can achieve a reduction in binary size of up to 6.52%, with

1.93 % in the mean.

Detailed analysis shows that while our register alloca-

tor introduces some changes to performance, these can be

explained as random fluctuations in the heuristic.

The improvement in compression is especially pronounced

for floating-point-heavy benchmarks. This demonstrates that

the register allocator can indeed profit from detailed aware-

ness of the compressed ISA when not many operations are

compressible.

Acknowledgments
We thank Florian Schmaus, Sebastian Graf, Sebastian Ullrich,

Phillip Raffeck, as well as our reviewers for their illuminating

comments.

Thisworkwas partially funded by theDeutsche Forschungs-

gemeinschaft (DFG, German Research Foundation) — Pro-

jektnummer 146371743 — TRR 89 “Invasive Computing”.

Register Allocation for Compressed ISAs in LLVM CC ’23, February 25–26, 2023, Montréal, QC, Canada

References
[1] Andrew Waterman and Krste Asanovic (Eds.). 2019. The RISC-V In-

struction Set Manual; Volume I: Unprivileged ISA. https://riscv.org/
technical/specifications/ Version 20191213.

[2] ARM Limited. 2005. ARM Architecture Reference Manual: Thumb-
2 Supplement. https://developer.arm.com/documentation/ddi0308/
Issue D.

[3] Matthias Braun. 2018. Register Allocation: More than Color-

ing. https://llvmdev18.sched.com/event/H2UP/register-allocation-
more-than-coloring

[4] Preston Briggs. 1992. Register allocation via graph coloring. Ph. D.

Dissertation. Rice University.

[5] G. J. Chaitin. 1982. Register Allocation & Spilling via Graph Col-

oring. In Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction (Boston, Massachusetts, USA) (SIGPLAN ’82). Associa-
tion for Computing Machinery, New York, NY, USA, 98–105. https:
//doi.org/10.1145/800230.806984

[6] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,

Martin E. Hopkins, and Peter W. Markstein. 1981. Register Allocation

via Coloring. 6, 1 (1981), 47–57. https://doi.org/10.1016/0096-0551(81)
90048-5

[7] P. Chow and M. Horowitz. 1987. Architectural Tradeoffs in the Design

of MIPS-X. In Proceedings of the 14th Annual International Symposium
on Computer Architecture (Pittsburgh, Pennsylvania, USA) (ISCA ’87).
Association for Computing Machinery, New York, NY, USA, 300–308.

https://doi.org/10.1145/30350.30384
[8] Tobias J.K. Edler von Koch, Igor Böhm, and Björn Franke. 2010. In-

tegrated Instruction Selection and Register Allocation for Compact

Code Generation Exploiting Freeform Mixing of 16- and 32-Bit In-

structions. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (New York, NY, USA,

2010-04-24) (CGO ’10). Association for ComputingMachinery, 180–189.

https://doi.org/10.1145/1772954.1772980
[9] Freescale Semiconductor, Inc. 2007. Variable-Length Encoding (VLE)

Programming Environments Manual: A Supplement to the EREF. https:
//www.nxp.com/docs/en/reference-manual/VLEPEM.pdf Revision 0.

[10] Sebastian Hack. 2007. Register allocation for programs in SSA Form.

Universitätsverlag Karlsruhe. https://doi.org/10.5445/KSP/1000007166
[11] John L. Hennessy and David A. Patterson. 2017. Computer Architecture,

Sixth Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

[12] Dave Jaggar. 1996. ARM Architecture Reference Manual. Prentice Hall.
[13] Arvind Krishnaswamy and Rajiv Gupta. 2002. Profile Guided Selection

of ARM and Thumb Instructions. ACM SIGPLAN Notices 37, 7 (2002),
56–64. https://doi.org/10.1145/566225.513840

[14] Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell,

and Christian Schulte. 2019. Combinatorial Register Allocation and

Instruction Scheduling. ACM Transactions on Programming Languages
and Systems 41, 3 (2019), 17:1–17:53. https://doi.org/10.1145/3332373

[15] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.

Sweeney. 2009. Producing Wrong Data without Doing Anything

Obviously Wrong!. In Proceedings of the 14th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems (Washington, DC, USA) (ASPLOS XIV). Association
for Computing Machinery, New York, NY, USA, 265–276. https:
//doi.org/10.1145/1508244.1508275

[16] Hanspeter Mössenböck and Michael Pfeiffer. 2002. Linear Scan Regis-

ter Allocation in the Context of SSA Form and Register Constraints.

In Compiler Construction, Gerhard Goos, Juris Hartmanis, Jan van

Leeuwen, and R. Nigel Horspool (Eds.). Vol. 2304. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 229–246. https://doi.org/10.1007/3-540-
45937-5_17 Series Title: Lecture Notes in Computer Science.

[17] David Peter. 2022. hyperfine. https://github.com/sharkdp/hyperfine

[18] Massimiliano Poletto and Vivek Sarkar. 1999. Linear Scan Register

Allocation. ACM Trans. Program. Lang. Syst. 21, 5 (sep 1999), 895–913.

https://doi.org/10.1145/330249.330250
[19] Lewis Revill and Craig Blackmore. 2020. [RISCV] Add pre-emit pass

to make more instructions compressible. https://reviews.llvm.org/
D92105

[20] Johan Runeson and Sven-Olof Nyström. 2003. Retargetable Graph-

Coloring Register Allocation for Irregular Architectures. In Software
and Compilers for Embedded Systems (Berlin, Heidelberg, 2003) (Lecture
Notes in Computer Science), Andreas Krall (Ed.). Springer, 240–254.
https://doi.org/10.1007/978-3-540-39920-9_17

[21] Bernhard Scholz and Erik Eckstein. 2002. Register Allocation for

Irregular Architectures. In Proceedings of the Joint Conference on
Languages, Compilers and Tools for Embedded Systems: Software and
Compilers for Embedded Systems (New York, NY, USA, 2002-06-19)

(LCTES/SCOPES ’02). Association for Computing Machinery, 139–148.

https://doi.org/10.1145/513829.513854
[22] Christian Schulte and Roberto Castañeda Lozano. 2018. Unison: Opti-

mization Technology for Optimizing Compilers. In Ericsson’s Program
Analysis Workshop (2018-04).

[23] Michaela Smith and G. Holloway. 2000. Graph-

Coloring Register Allocation for Irregular Architectures.

(2000). https://www.semanticscholar.org/paper/Graph-
Coloring-Register-Allocation-for-Irregular-Smith-Holloway/
4e6196e36941ef40c01a1510752afbbb76d9506d

[24] Standard Performance Evaluation Corporation. 2006. SPEC CPU2000.
https://www.spec.org/cpu2000/ V1.3.1.

[25] Standard Performance Evaluation Corporation. 2011. SPEC CPU2006.
https://www.spec.org/cpu2006/ V1.2.

[26] Peter Steenkiste. 1989. The Impact of Code Density on Instruction

Cache Performance. In Proceedings of the 16th Annual International
Symposium on Computer Architecture (New York, NY, USA, 1989-04-01)

(ISCA ’89). Association for Computing Machinery, 252–259. https:
//doi.org/10.1145/74925.74954

[27] S. VenkataKeerthy, Siddharth Jain, Rohit Aggarwal, Albert Cohen, and

Ramakrishna Upadrasta. 2022. RL4ReAl: Reinforcement Learning for

Register Allocation. https://doi.org/10.48550/ARXIV.2204.02013
[28] Wave Computing, Inc. 2013. MIPS32 Architecture for Programmers Vol-

ume IV-a: The MIPS16e Application-Specific Extension to the MIPS32 Ar-
chitecture. https://www.mips.com/products/architectures/ase/ase16e/
Revision 2.63.

[29] Wave Computing, Inc. 2016. MIPS Architecture for Programmers Volume
II-B: microMIPS32 Instruction Set. https://www.mips.com/products/
architectures/mips32-2/ Revision 6.05.

[30] Wave Computing, Inc. 2018. MIPS Architecture Base: nanoMIPS32
Instruction Set Technical Reference Manual. https://www.mips.com/
products/architectures/nanomips/ Revision 01.01.

[31] Vincent M. Weaver and Sally A. McKee. 2009. Code Density Con-

cerns for New Architectures. In 2009 IEEE International Conference
on Computer Design (Lake Tahoe, CA, USA, 2009-10). IEEE, 459–464.

https://doi.org/10.1109/ICCD.2009.5413117
[32] Weiming Zhao and Oliver Stannard. 2017. [ARM] Thumb2: favor

R4-R7 over R12/LR in allocation order when opt for minsize. https:
//reviews.llvm.org/D30324

Received 2022-11-10; accepted 2022-12-19

https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://developer.arm.com/documentation/ddi0308/
https://llvmdev18.sched.com/event/H2UP/register-allocation-more-than-coloring
https://llvmdev18.sched.com/event/H2UP/register-allocation-more-than-coloring
https://doi.org/10.1145/800230.806984
https://doi.org/10.1145/800230.806984
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/30350.30384
https://doi.org/10.1145/1772954.1772980
https://www.nxp.com/docs/en/reference-manual/VLEPEM.pdf
https://www.nxp.com/docs/en/reference-manual/VLEPEM.pdf
https://doi.org/10.5445/KSP/1000007166
https://doi.org/10.1145/566225.513840
https://doi.org/10.1145/3332373
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1145/1508244.1508275
https://doi.org/10.1007/3-540-45937-5_17
https://doi.org/10.1007/3-540-45937-5_17
https://github.com/sharkdp/hyperfine
https://doi.org/10.1145/330249.330250
https://reviews.llvm.org/D92105
https://reviews.llvm.org/D92105
https://doi.org/10.1007/978-3-540-39920-9_17
https://doi.org/10.1145/513829.513854
https://www.semanticscholar.org/paper/Graph-Coloring-Register-Allocation-for-Irregular-Smith-Holloway/4e6196e36941ef40c01a1510752afbbb76d9506d
https://www.semanticscholar.org/paper/Graph-Coloring-Register-Allocation-for-Irregular-Smith-Holloway/4e6196e36941ef40c01a1510752afbbb76d9506d
https://www.semanticscholar.org/paper/Graph-Coloring-Register-Allocation-for-Irregular-Smith-Holloway/4e6196e36941ef40c01a1510752afbbb76d9506d
https://www.spec.org/cpu2000/
https://www.spec.org/cpu2006/
https://doi.org/10.1145/74925.74954
https://doi.org/10.1145/74925.74954
https://doi.org/10.48550/ARXIV.2204.02013
https://www.mips.com/products/architectures/ase/ase16e/
https://www.mips.com/products/architectures/mips32-2/
https://www.mips.com/products/architectures/mips32-2/
https://www.mips.com/products/architectures/nanomips/
https://www.mips.com/products/architectures/nanomips/
https://doi.org/10.1109/ICCD.2009.5413117
https://reviews.llvm.org/D30324
https://reviews.llvm.org/D30324

	Abstract
	1 Introduction
	2 Basics
	2.1 Compressed Instruction Sets
	2.2 The RISC-V ISA
	2.3 Other Compressed Instruction Sets
	2.4 The LLVM Greedy Register Allocator
	2.5 Related Work

	3 Goals of Compressed Register Allocation
	3.1 Basic Concepts

	4 Adaptations to the Register Allocator
	4.1 Live-Interval Priority
	4.2 Register Selection
	4.3 Live-Interval Eviction
	4.4 Register Hints

	5 Evaluation
	5.1 Compression
	5.2 Compiler Performance
	5.3 Run-Time Performance

	6 Future Work
	7 Conclusion
	Acknowledgments
	References

