
Register Allocation for Compressed ISAs in LLVM

Andreas Fried, Maximilian Stemmer-Grabow, Julian Wachter | 25 February 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


op reg reg op reg op

Uncompressed arithmetic instruction

op r o r o

Compressed arithmetic instruction

Shorter encodings (16 bit) for most important/frequent instructions

Only 8 registers (s0 – s1, a0 – a5), only two-address-form

Can be mixed with uncompressed instructions

Improved code density (“functionality per byte”)

Important for embedded applications

Also offered by ARM32 (Thumb), MIPS (microMIPS), PowerPC (VLE extension), ARCompact, . . .

2/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Compressed RISC Instruction Sets
RISC-V extension C (RVC)



sub a0, a0, a1

mul a0, a0, a1

ld a2, 8(a3)

sub a0, a1, a2

40b50533 sub a0,a0,a1

02b50533 mul a0,a0,a1

0086b603 ld a2,8(a3)

40c58533 sub a0,a1,a2

8d0d sub a0,a0,a1

02b50533 mul a0,a0,a1

6690 ld a2,8(a3)

40c58533 sub a0,a1,a2

as -march=rv64ima as -march=rv64imac

Assembler handles compression transparently

Compiler: Ensure many instructions fulfill requirements ⇒ Register allocator should be aware

3/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Compilation Flow



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Priority
Queue

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color Evict

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color Evict

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color Evict

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color Evict

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color Evict Split

@

@

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



Live-intervals

Symbolic values

not quite SSA
(defs on different paths)

no re-assignments

Priority

Inter-block by size
(instructions spanned)

Intra-block top→bottom

Assume 3 registers:

Priority
Queue

Color Evict Split

@

@

Spill

4/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

LLVM “Greedy” Register Allocator



More than one available register, which to choose?

All registers are equal but . . .

Callee-saves need to be spilled ⇒ Extra cost on first use

Some registers are to be avoided ⇒ Extra cost on every use

(e.g. non-compressible)

Already a mechanism to prefer compressible registers but . . .

is there even a compressible encoding? (mul, div, FP arithmetic)

two-address-form? (sub a0, a1, a5)

compressible registers for other arguments? (sub a0, a0, a6)

Need to be aware of specific circumstances

5/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Cost-Per-Use



More than one available register, which to choose?

All registers are equal but . . .

Callee-saves need to be spilled ⇒ Extra cost on first use

Some registers are to be avoided ⇒ Extra cost on every use (e.g. non-compressible)

Already a mechanism to prefer compressible registers but . . .

is there even a compressible encoding? (mul, div, FP arithmetic)

two-address-form? (sub a0, a1, a5)

compressible registers for other arguments? (sub a0, a0, a6)

Need to be aware of specific circumstances

5/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Cost-Per-Use



More than one available register, which to choose?

All registers are equal but . . .

Callee-saves need to be spilled ⇒ Extra cost on first use

Some registers are to be avoided ⇒ Extra cost on every use (e.g. non-compressible)

Already a mechanism to prefer compressible registers but . . .

is there even a compressible encoding? (mul, div, FP arithmetic)

two-address-form? (sub a0, a1, a5)

compressible registers for other arguments? (sub a0, a0, a6)

Need to be aware of specific circumstances

5/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Cost-Per-Use



Look at potentially compressible instructions
or a0, ?, ? ld a3, ?(fp) st ?, ?(?)

and ?, ?, a6 sub a0, a1, ? mul ?, ?, ?

Define live-interval’s compressibility C(L): number of potentially compressible instructions using or defining L
context-sensitive measure where to use compressible registers
better approximation as other live-intervals are assigned

double a = q->a;

double b = q->b;

q->c = (a + b) * (a - b);

fld %a, a_offset(%q)

fld %b, b_offset(%q)

fadd.d %t1, %a, %b

fsub.d %t2, %a, %b

fmul.d %c, % t1, %t2

fsd %c, c_offset(%q)

C(%q) = 3

C(%a) = 1

C(%b) = 1

C(%c) = 1

C(%t1) = 0

C(%t2) = 0

Focus on these

6/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

When (Not) To Compress



Look at potentially compressible instructions
or a0, ?, ? ld a3, ?(fp) st ?, ?(?)

and ?, ?, a6 sub a0, a1, ? mul ?, ?, ?

Define live-interval’s compressibility C(L): number of potentially compressible instructions using or defining L
context-sensitive measure where to use compressible registers
better approximation as other live-intervals are assigned

double a = q->a;

double b = q->b;

q->c = (a + b) * (a - b);

fld %a, a_offset(%q)

fld %b, b_offset(%q)

fadd.d %t1, %a, %b

fsub.d %t2, %a, %b

fmul.d %c, % t1, %t2

fsd %c, c_offset(%q)

C(%q) = 3

C(%a) = 1

C(%b) = 1

C(%c) = 1

C(%t1) = 0

C(%t2) = 0

Focus on these

6/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

When (Not) To Compress



Priority
Queue

Color Evict Split

@

@

Spill

7/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Register Allocator Adaptations



1 Priority adjustment
Boost priority of
live-ranges with high
compressibility

2 Register selection
Choose register with
highest potential
compressibility

3 Choice of Evictee
Consider difference in
compressibility

Priority
Queue

Color Evict Split

@

@

Spill

1

7/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Register Allocator Adaptations



1 Priority adjustment
Boost priority of
live-ranges with high
compressibility

2 Register selection
Choose register with
highest potential
compressibility

3 Choice of Evictee
Consider difference in
compressibility

Priority
Queue

Color Evict Split

@

@

Spill

1

2

7/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Register Allocator Adaptations



1 Priority adjustment
Boost priority of
live-ranges with high
compressibility

2 Register selection
Choose register with
highest potential
compressibility

3 Choice of Evictee
Consider difference in
compressibility

Priority
Queue

Color Evict Split

@

@

Spill

1

2 3

7/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Register Allocator Adaptations



Benchmarks

C/C++ benchmarks from SPEC CPU2000 and CPU2006

Binary size

Compare size of unlinked object files with old/new register allocation

Size reduction 1.93% in the mean, up to 6.5%

Performance impact

CPU2000 on “VisionFive” SBC (SiFive U74 core)

runtime changes up to −1.1%/+ 1.5%, geo. mean +0.3%

weak/no correlation with spill costs ⇒ probably random fluctuations

8/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Evaluation



integer floating-point —— geo. mean 1.93%

9/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Compression Results



Compression-aware register allocation reduces binary size while being performance-neutral
Especially where not many types of instructions are compressible
Future: Opportunity for less regular, more specialized compression schemes

1 Priority adjustment
Boost priority of
live-ranges with high
compressibility

2 Register selection
Choose register with
highest potential
compressibility

3 Choice of Evictee
Consider difference in
compressibility

Priority
Queue

Color Evict Split

@

@

Spill

1

2 3

7/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Register Allocator Adaptations

integer floating-point —— geo. mean 1.93%

9/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Compression Results

10/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Conclusion



END

11/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group



Phases →

12/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group



Boost intervals with higher compressibility Crel(L) relative to their size S(L)

Crel(L) =
# potentially compressible instructions in L

# uses and defs in L
0 ≤ Crel(L) ≤ 1

fully compressible ⇒ full priority
not compressible at all ⇒ reduce priority by factor α

P(L) = S(L) · ((1 − α) + αCrel(L))

Crel(L)

P(L)

0 1

(1 − α)S(L)

S(L)

13/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

1 Priority Adjustment



Status quo: Choose first register that is
free
has no cost-per-use

New: How much potential compression if L 7→ r chosen?
Still avoid first use of callee-saves, no other cost-per-use

r1 r2 r3 r4 r5 r6 r7 r8

free?
cost-per-use? — — —
C(L 7→ r) — 4 7 — 18 20 — 10


old choice new choice

14/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

2 Compression-Aware Register Selection



Assign L 7→ r and evict all interfering L′
1, L

′
2, . . . ∈ E(L, r)?

If so, which r?

Look at spill weight (cost to spill and reload) w(L) vs. w(L′
i )

If any w(L′
i ) > w(L), don’t evict

Status quo: Choose r to minimize maxw(L′
i )

New: Also consider difference in compression
∑

C(L′
i )︸ ︷︷ ︸

lost

−C(L 7→ r)︸ ︷︷ ︸
gained

cost(L, r) = (1 − β)maxweight + β∆compression

15/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

3 Choice Of Evictees



Groups →

16/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group



Floating Point

only load/store compressible

compiler did not know

better heuristic was required

Integer

existing heuristic OK (good structure of RVC)

improvements possible

missing compression mostly due to
three-address-form

Constants, Jumps & Branches

immediate range more important

life-intervals not worthwhile ⇒ de-prioritized

17/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Compression Advantages & Further Opportunities



Performance →

18/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group



Expectation: Not much change

Cache model: < 1% improvement

“Inconsequential” changes: ± 2% variance

Measurement

CPU2000 on “VisionFive” SBC (SiFive U74)

10 runs, relative standard deviation σr < 1.8%

Welch’s t-test at p = 0.05,
inconclusive results marked “∗”

Results

4 benchmarks faster, 4 slower, 6 inconclusive

Mean over all: 0.3% slowdown 16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mmp

−1%
−0.5%

0%
0.5%

1%
1.5%

∗

∗
∗

∗
∗

∗

19/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Performance Impact



Possible systemic changes

more/worse spilling with new eviction?

more copies?

Measuring

use LLVM spill cost analysis

correlate performance with spill cost

Result: correlation is weak

spills: r2 = 12.2%

reloads: r2 = 9.3%

copies: r2 = 6.0%

⇒ Performance changes are probably random spill costs reload costs copy costs

20/10 2021-02-25 Andreas Fried: Register Allocation for Compressed ISAs in LLVM Programming Paradigms Group

Performance Analysis
Systemic Effect Or Heuristic Fluctuation?


	Appendix

