
ALADIN: A Scanner Generator for IncrementalProgramming Environments �Bernd FischerTechnical University of Braunschweig,Institute for Programming Languages and Information Systems,Gau�stra�e 11, D-3300 Braunschweig, GermanyCarsten HammerSiemens AG, Corporate Research and Development, Dept. ZFE IS SOF 22,Otto-Hahn-Ring 6, D-8000 Munich 83, GermanyWerner StruckmannTechnical University of Braunschweig,Institute for Programming Languages and Information Systems,Gau�stra�e 11, D-3300 Braunschweig, GermanyMach 19, 1991AbstractSummary: A large number of scanner generators have been developed. Sincethey are restricted to the longest match rule they are unsuitable for an incre-mental environment. We present the ALADIN-system, which is able to delivermore than a single token if required. Thus, an ambiguity may be passed to thecalling instance. Beyond this 'incremental feature', ALADIN is a well-structuredand easy-to-understand language. In contrast to existing systems, the desiredbehavior of the generated scanners is completely speci�ed explicitly. Thus, thespeci�cations are more abstracted than in other systems. A prototype imple-mentation has shown that ALADIN-generated scanners have about the sameperformance as those generated by Lex.Key words: lexical analysis, scanner generator, incremental compiler�Accpeted for publication in Software { Practice & Experience1

INTRODUCTIONSince the introduction of scanner generators as a general tool for compiler construction[1] in the mid-60's, a vast number of systems have been designed and implemented, forexample Lex [2], Flex [3], Rex [4], GRAMOL [5], LEXXO [6] or Alex [7]. This paperdescribes another system called ALADIN (Advanced Lexical Analyzers DescriptIoNmethod) which is especially designed for applications in incremental systems.We will �rst discuss requirements, which result from the incremental environmentand the structure of programming languages, followed by a brief analysis of sometypical existing generators. Then, we will describe the basic ideas of the ALADINsystem and outline an implementation. Performance data for some languages will begiven. A complete speci�cation of the lexical part of Modula-2 [8] will be given atthe end of this article.Unlike other systems which aim at high speed [4] or ease of use [6], ALADINis designed to be used with a wide range of programming languages. Its originalapplication was the PSG (programming system generator) [10], [11] which is a toolfor generating language speci�c programming environments.�These programming environments include an incremental compiler and a hybrid-editor which supports a text-oriented and a syntax-directed mode simultaneously.Other components of PSG like library tools or pretty printers may be added. PSGconsists of a set of generators (generator system), one for each component, and a set oflanguage-independent table drivers (nucleus), also one for each component. Nucleusand generated tables together form the programming environment which interactswith the programmer.The table drivers for each component must be completely language-independent toallow switching between di�erent languages during a session. Therefore, the generatormust generate pure table data. This prohibits a language de�nition language (LDL)with interspersed program fragments as used by Lex or Rex.PROBLEMS IN CURRENT SYSTEMSRequirements due to an incremental compilerAs already stated, ALADIN has been designed to work in an incremental environ-ment. All components which need to support incremental compilation must meetsome additional requirements compared with standard components. For example�PSG is a joint project of the Technical University of Darmstadt and Siemens, ALADIN is a jointwork of Siemens and the Technical University of Braunschweig.2

they must cope with problems arising from missing context. For a scanner generatorthese requirements can be stated as follows.� A set of possible solutions must be returned, because the context which mightbe used to solve lexical con
icts might not be known yet. The data type of theresult must thus be SET OF token instead of token.� A lookahead-operator which includes arbitrary context makes no sense for thesame reason and therefore must be discarded entirely. Nevertheless, the nextinput character could be considered (if available).� The LDL has to deal with the complete character set including all controlcharacters. The control characters may be legal letters or symbols in somelanguages (e.g. line wrap in C strings) or may be used to separate incompleteprogram parts (fragments) from each other.This will be illustrated by an example. Consider the following Modula-2 fragment<12.>The characters < and > denote the beginning and end of the fragment respectively.A scanner which works according to the usual longest match rule will consider thecharacters 12. as a real literal. In an incremental system this behavior (i.e. longestmatch) will lead to trouble. Subsequent edit-actions may result in a context whichcon�rms the original decomposition (e.g. <12.0>) or disproves it. If the fragmentis expanded to<12..15>tokenizing will have to yield <int, 12>, <dot dot, ..>, <int, 15>. The scanner hasto re-read the characters 12, causing a loss of e�ciency. Still worse, errors mayappear. After an expansion to<TYPE twelvetofifteen = [12.>returning the token <real, 12.> will cause an error although there obviously existsa valid continuation.Requirements due to the structure of programming languagesProgramming languages exhibit wide variety in their lexical structure. This remainstrue even if only 'modern' format-free languages are considered. Comments, for ex-ample, are delimited in as many variations as there are languages. Ada [13] uses the3

'endline-comment' which extends from a starting symbol ('--') to the end of the line.Most other languages use 'parentheses-comments' which may sometimes be nestedas in Modula-2. The parentheses may consist of several characters and sometimesdi�erent parenthesis styles may be used (e.g. Pascal [14]). Other lexical units, forinstance notations for non-decimal integer values, exhibit similar variability. So, twoconclusions have to be drawn.� There is no general rule which applies to all languages, not even longest match.� There is no small and self-contained set of alternatives which �ts 'almost all'modern languages. Hence, searching for such a set is pointless.Nevertheless, the lexical structure of languages share some basic concepts. Theseconcepts include equivalent characters and patterns, irrelevant characters and pat-terns, non-regular patterns, con
ict solution strategies and di�erent kinds of contextdependencies (e.g. �xed or arbitrary lookahead, column notation).How not to do scanner generators and why notAs mentioned above, a number of scanner generators exist up to now. They will beranked into three classes according to the degree of freedom which is given to the user(i.e. the language de�ner).� Paradigm-based systems use an existing or imaginary language as a patternwhich depicts and �xes the overall-structure of the languages representable inthe system. Only some �ne-adjustments can be done by the language de�ner.Those systems such as LEXXO do not use regular expressions at all.� Mid-size systems usually use several description modes at the same time, one foreach token class (e.g. reserved words, literals, comments). The description modeuniquely determines the membership to a particular token class and thereforethe interpretation of each token. Regular expressions, for instance, may only beused to describe literals. Additional control information such as case sensitivitycan be speci�ed by setting
ags. Most of the scanner generators, including Alexand GRAMOL, work this way.� General purpose pattern recognition systems like Lex or Rex use regular expres-sions for the description of all tokens, regardless of the token's class. Arbitrarycomplex program fragments for each token serve as semantic actions.A detailed discussion of the di�erent systems is not within the scope of this paper.We will concentrate on the de�ciencies which make these systems inappropriate forour purposes. 4

The major de�ciency is their inability to handle lexical ambiguities. Worse, thereis no simple way to extend these systems to allow ambiguity, since all these systemsuse longest match as their 'golden rule'. They will deliver the token that belongsto the longest possible lexeme. If a lexical con
ict occurs because a lexeme matchestwo di�erent patterns, the token to be delivered is chosen in a �xed manner. Lex,for example, uses the pattern's declaration order. Mid-size systems use the semanticsof the token. A reserved word always takes priority over an identi�er. Resolvinglexical con
icts, however, remains a problem even if more lookahead characters areexamined. Furthermore, the returned value cannot be a set of tokens, but must beuniquely determined.Another de�ciency arises from the speci�cation languages. 'Non-standard' itemslike nested comments which constitute simple non-regular patterns cannot be speci�edin a consistent way. The same is true for tokens that depend on a certain position ina source line such as in FORTRAN.Besides this systematic
aw there are some more characteristic de�ciencies in eachclass.� Paradigm-based systems are restricted to a small range of programming lan-guages and therefore obviously not suitable for our purposes.� To be able to scan all programming languages, mid-size systems must be capableof describing every possible token class and every kind of control information.Otherwise, each new language to be generated potentially needs a new generatorversion. This completeness is di�cult to ensure.� Lex uses arbitrary program fragments extensively. It is more a preprocessortool than a real generator. Moreover, the Lex speci�cation language is di�cultto use, even for an experienced user. Consider for example the rule\/*\/*([^\/*]\/*|*+)**\/ ;which is appropriate for C's comments and also describes the correspondingaction (i.e. ignoring comments).SOLUTIONS IN ALADINMost of the problems in existing systems arise from too careless language design. Thede�nition languages consist merely of a collection of add-on-features which might beuseful in special situations but they do not have a uniform style. Adding a new5

'incremental feature' makes it even less uniform. Hence, a new approach which usesonly a few necessary components was taken.One of the design objectives of ALADIN was a strict separation of pattern de-scription and control
ow elements so that they could be treated independently, withno dependencies on each other. Systems that do not have this separation exhibit theproblem that a particular description style strongly in
uences the pattern's interpre-tation.The second objective is that the pattern description style should be uniformthroughout the entire speci�cation. The only description element in ALADIN isthe regular de�nition which is used regardless of whether a character set, a keywordor a literal is de�ned. A regular de�nition consists of a de�ned name and a de�ningregular expression which is associated with the name. If a name is used in a de�ningexpression it will be replaced by its own associated expression.Even non-regular patterns such as nested comments may be speci�ed in the sameway. The de�ned name itself can be used in its own de�ning expression like incom -> "{" (letter | com)* "}";Hence, we get a consistent improvement of regular expressions and do not need any'NESTED'-commands as in GRAMOL or explicit counters as in Lex. All necessaryactions are done internally, by the generator itself. However, some restrictions mustbe imposed for e�ciency. These will be described later.The �nal design objective is that there is no implicit control
ow procedure.ALADIN allows the language de�ner to manipulate the behavior of the generatedscanners in her/his own way. Only two mechanisms are required for this: groupingand attributing.Grouping means that tokens which share the same lexical characteristics (e.g.priority levels) are 'pooled' together. All characteristics of a group must be givenexplicitly in the form of recognition constraints. Arbitrary combinations of constraintsare possible as long as there are no contradictions. This grouping mechanism seemsto be similar to standard token classi�cation (literals, delimiters, etc.) used by mostexisting systems but it is quite di�erent for two reasons. First, an arbitrary numberof groups with arbitrary constraints can be speci�ed, thus allowing the user to modelcomplex structures. Second, the constraints do not result from any kind of implicitinterpretation like the order of the groups. This increases not only the
exibility butalso the clearness and reliability of the speci�cations.Attributing is a mechanism for specifying a particular policy, either for a singletoken or for a group. Token level attributes are activated when a pattern matches.The attributes pass information to the generator system (e.g. 'deliver another token ifthis pattern matches') or cause some action within the driver (e.g. 'ignore this token6

if it is matched'). Attributing on the group level is a suitable way for the speci�cationof recognition constraints for a group.We call the way ALADIN tokenizes the input multiple match. Every recognizedtoken is included in the set of returned tokens unless one of the following two situationsappears.� A particular policy has been explicitly speci�ed.� Tokens de�ned in the same group share the same lexical characteristics and maybe seen as di�erent lexemes of a 'supertoken'. Thus, within a group the longestmatch applies and a single token per group is returned.Tokenizing continues until the next input character does not �t any of the patterns.Due to the multiple match mechanism and the ability to specify an arbitrarynumber of groups, no special 'incremental feature' is required. Tokens which mightcause problems because of missing context need only be speci�ed in di�erent groups.Thus, the lexical con
icts are passed to the calling instance which is able to resolvethe con
icts.The following section brie
y explains the ALADIN syntax. For the completesyntax see reference [12].STRUCTURE OF THE LANGUAGELexical elements of ALADINThe lexical structure of ALADIN is very compact, nevertheless it remains clear. It is aformat free language whose tokens are separated by at least one white space character.The white spaces have no other meaning, particularly they are not delimiters for thepatterns as in Lex. Any white space may be replaced by an Ada-like comment. Theidenti�er pattern follows the usual standard | a letter followed by arbitrarily manyletters, digits and underscores. Only lower case letters may be used for identi�erswhereas ALADIN keywords are composed of upper case letters.ALADIN uses two kinds of literals, strings and cardinals. A string is an arbi-trary sequence of characters enclosed in double quotes. There is no character literal.Instead, strings of length one are used.Some special characters are used as operators, either as single character operatorsor as compound operators such as +, *, ->, etc.7

Pattern descriptionAs mentioned above, the only description element in ALADIN is the regular de�nition,for examplename -> regular? expression*;Regular de�nitions that are members of groups are treated like token de�nitions.Other de�nitions are auxiliary and only facilitate the speci�cation. The syntax of theregular expressions roughly follows the Lex model, i.e. post�x operators are used.Some things have been changed to improve legibility.A regular expression extends from the arrow ('->') to a semicolon. Arbitraryspaces, tabs and newlines may be used to 'style up' complex patterns. All terminalsymbols must be strings. Thus, 'de�nition expansion' as it is called in Lex needsno longer to be tagged. Each name used in a pattern description is replaced by itsde�nition. Forward references are allowed. ALADIN also uses prede�ned identi�ers,similar to true and false in Pascal.Character sets are used for modeling equivalence of characters. Members of acharacter set are either single characters or identi�ers which are also de�ned as sin-gle characters or character sets themselves. Thus, no explicit set union operator isnecessary. Only the 'n'-operator for set di�erence is required. In connection withthe prede�ned set 'all' which contains all representable characters it is used for setcomplementation, similar to the mechanism used in Alex.-- character set examplesoct_digit -> {"0", "1", "2", "3", "4", "5", "6", "7"};digit -> {oct_digit, "8", "9"};non_digit -> all \ digit;If a name is used in its own pattern description the standard expansion methoddoes not work and another mechanism has to be de�ned. Two di�erent situations arepossible. If the pattern describes a regular language, it must be a left or right recursiveexpression. This is internally transformed into an equivalent regular expression withpost�x operators. Thus, the left recursive de�nition for C's octal integersoct_int -> oct_int oct_digit| zero;will internally be transformed into its equivalentoct_int -> zero oct_digit*; 8

Yet another situation arises if such transformations are impossible because the'regular expression' describes a formal language which is in fact not regular. Fore�ciency only restricted patterns can be speci�ed. On the lexical level only nestedexpressions should be evaluated. All other work is done on the parser level. Legalpatterns must not lead to any con
icts between normal and recursive processing mode.This is guaranteed if the following two constraints are met. First, each alternativeof such a pattern may contain at most one recursively de�ned identi�er. Second, foreach such identi�er a non-recursive alternative must be given. The �rst-set of thisalternative and those of the expressions preceding and following the use-occurrenceof the identi�er have to be mutually disjoint. For example,wrong -> "{" wrong* "}"| "{";meets only the �rst constraint but not the second one and is thus not a legal patternwhereas nested comments as in Modula-2 (see appendix) are legal patterns.Control
owControl
ow elements in ALADIN specify how the de�ned patterns shall be treatedand thus control the behavior of the generated scanners. As mentioned above, onlytwo basic control
ow concepts are required. They are independent from each otherand independent from the pattern description.A group of tokens is formed by 'GROUP' and 'ENDGROUP', which surround and namean arbitrary number of regular de�nitions, e.g.GROUP res_words;and -> "AND";...with -> "WITH";ENDGROUP;Recognition constraints for the group must be speci�ed following the group'sname, separated by commas. ALADIN uses three types of constraints: the priority,the pre�x and the context constraint.The priority constraint is used to solve lexical con
icts. Every token has a prioritylevel which results from the language de�nition. It determines which token is returnedif a lexical con
ict occurs. If reserved words for example have a higher priority levelthan identi�ers, the group de�nitionGROUP identifiers, 9

PREFERRED BY res_words; -- priority constraintid -> letter {letter, digit}*;ENDGROUP;will model this behavior. Otherwise, due to the multiple match mechanism, not allcon
icts have to be resolved and the speci�cation of a total priority order is notnecessary. In the case of a con
ict all tokens are returned which are not preferred byany other token involved in this con
ict.Normally, multiple match implies that a token is also recognized if it occurs as apre�x of another token which is member of another group. Sometimes this behav-ior is desired (remember for instance the Modula-2 example earlier or the famousFORTRAN-DO5I-example [9]), but sometimes it is not. If pre�x recognition is notdesired, it can be suppressed by the pre�x constraint , e.g.GROUP res_words,FOLLOWING all \ {letter, digit}; -- prefix constraintand -> "AND";...with -> "WITH";ENDGROUP;The meaning of a pre�x constraint is that a token of such a constrained group willonly be recognized if the character next to the respective lexeme is a member of thespeci�ed character set. This is a kind of lookahead but due to the restriction of setsit is restricted to a single character. This character is either a normal source textcharacter or it signals the end of the fragment. Thus, it may be considered in eachcase.The context constraint handles complex context conditions. These are conditionsthat could not be checked by merely considering the next input character as forexample FORTRAN's column sensitivity. A special checking routine which is part ofthe driver is required for each complex context condition. A condition which yieldsfalse delimits the lexeme, regardless whether the next real input character matches ornot. The only complex context condition which is currently supported by ALADINis the column-dependent notation as it is used in FORTRAN, e.g.GROUP fortran_key_words,START #7, -- context constraintsSTOP #72;...ENDGROUP; 10

Token level attributesBesides the group level attributes, ALADIN knows about token attributes. Theyare appended to the respective de�ning expression, also with a comma. The mostimportant token level attributes are the result, ignore and perform attribute.Normally, the pattern name is also the name of the token. If several alternativepatterns �t the token, the alternative operator should be used. Sometimes the alter-natives require very di�erent policies. Remember the Modula-2 example of 'AND'and '&' which yield both the same token 'and'. Nevertheless, it is not possible tospecify a patternand -> "AND" | "&";because '<&a>' �rst yields <and, &> and subsequently <id, a>, whereas '<ANDa>'yields only <id, ANDa>. The result attribute changes the returned token name to thevalue given in the result attribute as in the following example.short_and -> "&", RESULT and;Another token attribute, the ignore attribute is required for such unpleasant lan-guage constructs (at least from the lexical point of view) as comments or white spaces.They are not really tokens because they should not be returned as a token by thescanner, but this depends on the language (consider for instance OCCAM's inden-tation token) or even on the environment in which the scanner has to work, e.g.comment management. Thus, the ignore attribute which discards the just recognizedtoken and restarts the scanner can be used to manage this problem, as the followingexample for ALADIN comments shows.comment -> "--" (all \ eol)* eol, IGNORE;Every scanner generator is faced with the problem of what to do with patternswhich cannot be described by the normal pattern description method, e.g. FOR-TRAN's Hollerith strings. A system which claims to be general cannot simply ignorethese exceptional patterns. The usual solution is to support special user-written rou-tines, but like Lex fragments this con
icts with the goal of a language-independentdriver. Moreover, the correctness of the routines depends on the user. We decidedto o�er a library of handler routines to the language de�ner which cover the mostcommon problems. These routines are a �xed part of the table driver. They can becalled by the perform attribute, e.g.comment -> "--", PERFORM read_end_of_line;11

which has the same e�ect as the example above. Using library routines also makesthe generated scanners more e�cient.In addition to tokenizing, attribute evaluation is another major task for a scan-ner. The scanner has to return not only the symbol or token code but also severalattributes. Almost all scanners return the lexeme (i.e. the matching source text) andso does ALADIN.Two other attributes that are common in hand-written scanners are not appro-priate for generators. The insertion of identi�ers in a symbol table requires a lot ofcontext information and must be done by the parser. The calculation of an internalbit-representation depends on the hardware and should not be done by the scanner.Only 'calculations' on a mere text-transformation-level are supported by ALADIN.This normalized lexeme form cannot only be used for pretty-printing purposes butalso for semantic analysis. The lexeme is transformed letter by letter, according touser-speci�ed substitution rules.Other attributes for special purposes may be added if they are needed, e.g. forthe management of a lexeme pool. In contrast to other language de�nition languages,this may be done without any changes to the basic language concept.IMPLEMENTATION ASPECTSA complete ALADIN system consists of a generator part and a driver or table inter-preter part. A prototype was written in Pascal-XT, a Pascal superset, and runs underSINIX, the Siemens version of UNIX. Both parts together consist of approximately8000 lines of code. The implementation took about four months.ALADIN's front end uses standard compiler techniques and could be replacedby any generated front end. The scanner of the front end of course is generated byALADIN itself.The back end of the ALADIN generator generates a non-deterministic �nite au-tomaton (NFA) which is subsequently made deterministic (DFA). It primarily usesthe algorithms described by Aho et al. [9] with some changes for e�ciency.The generation follows the Thompson algorithm but we use a slightly di�erentrepresentation of the transitions. The original algorithm asserts that each state hasexactly one terminal character transition or at most two epsilon transitions, thusallowing a memory-saving implementation of the 'transition lists' in arrays. On theother hand this will cause character set transitions to fan out into di�erent statesand thereby drastically increase the number of generated states. Thus we decidedto implement 'real' transition lists. A second di�erence is due to the extension tonon-regular patterns. A straightforward implementation would count the number of12

opening and closing parentheses. But it also has to determine which counter mustbe updated. Our automatic implementation uses a stack instead of several counters.We will describe it using the simpli�ed example of nested comments, speci�ed by thede�nitioncom -> "{" (letter | com)* "}";First an automaton without recursively de�ned identi�ers (in the above example"{" letter* "}") is built using the normal routines. The �nal states of each sub-automaton (z1� z3, see Fig. 1) which are uniquely determined due to the Thompsonconstruction will be required subsequently. The automaton for a recursively de�nedidenti�er will be constructed as follows.� If its opening parenthesis is detected in the input stream, the automaton forthis identi�er will be called like a subprogram. For this, the 'returning address'(i.e. the state from which to continue) must be pushed on a stack. Thus, anautomaton for the opening parenthesis (here "f") is built. Its �nal state (z4) ismarked with the action 'push the continuation state (z1) on the stack'.� The 'automaton call' is done by an �-transition from z4 to z1, because z1 is the�nal state of the opening parenthesis subautomaton of the recursively de�nedidenti�er.� Returning from the 'automaton call' means popping the continuation state o�the stack. Thus, the �nal state of the closing parenthesis of com, which is z2,is marked with the action 'try to pop the continuation state (z1)'. If it can bepopped, the automaton enters the continuation state (z1) via an �-transition.� If the stack is empty, no 'automaton call' has to be �nished and the pattern iscomplete. Thus, the token may be accepted.This scheme could easily be applied to any allowed case. It is optimal in a sense thatonly the minimum amount of administration must be done. Only states z2 and z4require additional actions. The largest part of the input is processed as usual.In a last step the resulting NFA is made deterministic by means of the subsetconstruction. Due to the structure of the generated NFA some modi�cations havebeen made in order to save execution time. The subset algorithm has two inner loops,an explicit loop which loops over all characters ch and an implicit loop which loopsover all transition lists and non-deterministic states in order to calculate move(state,ch), the latter loop being the innermost. The average length of the transition listsis for practical cases 5.5 entries. Hence, for most characters running through the13

Language ND-states (essential) D-states Time requiredALADIN 206 (136) 120 45 sec.Algol68 626 (358) 294 13 min.C 637 (329) 268 12 min.Fortran 5182 (1235) 623 20 min.Modula{2 469 (290) 254 11 min.Pascal 622 (247) 212 13 min.PL/I 1694 (1188) 891 121 min.Table 1: Generator performancelists is in vain. We switched the order of these loops so that every transition need beconsidered only once. The price for this time-saving is a higher memory demand. Thetransitions of a given deterministic state cannot be calculated until any transition ofthe respective non-deterministic states has been considered. Thus, all states whichresult from the calculation of move(state, ch) must be stored intermediately.Each state, even non-deterministic, may have some marks, e.g. accepting state andtoken code. A deterministic state generally inherits all marks of the non-deterministicstates it is composed of. Nevertheless, if several accepting states are merged together,the priority constraints must be regarded. Another di�culty are context constraints.If states with di�erent context constraints (e.g. overlapping columns) were groupedtogether, the evaluation of the context constraints might yield contradictory results.Thus, only groups with equivalent constraints may be considered at the same time.For most cases (i.e. format free languages) this will lead to a single, coherent DFA,but in some cases several distinct DFAs may appear which must be interpreted si-multaneously.No state minimization or table compression takes place. These steps may beadded in later versions of the ALADIN system.The subset construction has the well-known exponential time complexity but thisa�ects | also well known | only some abstruse patterns. In practical cases thisalgorithm is fast enough. Table 1 shows timings and automata sizes for some pro-gramming languages. More than 90% of the whole generation time is spent on thesubset construction. All times were measured on a Siemens-MX500 computer.The performance of the generated scanners which is commonly of more interestthan the generation time of the scanner was measured for two languages (ALADINand Pascal) and a series of di�erent source �les, ranging from small (5 KBytes)ALADIN speci�cations to extensive Pascal programs up to 700 KBytes. These per-14

formances were compared with those of two other scanners, a straightforward hand-coded scanner for the �rst version of ALADIN and a Pascal scanner, generated byLex. The former was implemented within a few hours without any optimization andprocesses about 1700 cps (characters per second), the latter 3500 { 4500 cps, de-pending on the source �le size. Di�erent versions of table drivers have been tested.The fastest version scans about 3300 cps Pascal sources, but for smaller sources thisdrops to 2600 cps. E�ectively, 70{80% of the respective Lex performance is achieved.ALADIN sources are processed faster, but due to their smaller size the highest speedwas 3000 cps. This di�erence is caused by the more careful lexical design of ALADINthus reducing the rate of characters processed multiple times from 35% in Pascal to15%. Other versions with di�erent additional features have been tried. Table com-pression was simulated by calculating the next state twice, but the performance losswas surprisingly low. The performance dropped only by about 5%. In most systems,such as Lex, there is no correspondence between tokens and source text positions.Maintaining this correspondence is optional in ALADIN and causes performance lossof about 15%.The generated scanners are not as fast as those generated by special high speedgenerators such as Rex. But the performance is high enough, especially in an incre-mental system where the sources to be tokenized are not very big. Further speeding-upcould be achieved. Results by Grosch [4] show that an implementation in C is morethan 60% faster than an equivalent Modula-2 implementation. Similar results seemto be possible in our case, too. CONCLUSIONSWe have demonstrated that a scanner that has to work within an incremental environ-ment has to ful�ll some additional requirements. These requirements, which includecontrolled behavior in the absence of necessary context in
uence the correspondingscanner generator. We presented the ALADIN-system which avoids this problem bythe multiple match rule. An ALADIN generated scanner is able to deliver more thana single token if required or if a unique determination is impossible due to the lackof context. This behavior can be controlled by the scanner speci�cation. Even aspeci�cation according to the traditional longest match rule is possible.Beyond this special purpose we believe that ALADIN as a lexical analyzer descrip-tion method has several advantages over existing systems. The language de�nitionlanguage itself is compact and self-contained and thus easy to understand. It is basedon only two basic principles, grouping and attributing which might be combined ar-bitrarily. The behavior of the generated scanner is explicitly speci�ed and does not15

result from any abstruse interpretation of the speci�cation, not even from the orderof the de�nitions. The pattern description is speci�ed uniformly using regular expres-sions with a consistent extension for some non-regular patterns. Finally, the scannerscan be generated fully and do not need any manually implemented semantic actions.Hence, ALADIN speci�cations are more abstract than speci�cations written in otherlanguages.AcknowledgmentsThe authors would like to thank the referees for their valuable comments on an earlierversion of this paper.References[1] W.L. Johnson et al., 'Automatic Generation of E�cient Lexical Processors UsingFinite State Techniques', Comm. of the ACM, 12, 805{813, (1968).[2] M. E. Lesk, Lex { A Lexical Analyzer Generator, Science Technical Report 39,AT&T Bell Laboratories, Murray Hill, N. J., 1975.[3] V. Paxson, Flex { Manual Pages, Public Domain Software, 1988.[4] J. Grosch, 'E�cient Generation of Lexical Analyzers', Software | Practice andExperience, 19, 1089{1103, (1989).[5] C. Genillard and A. Strohmeier, 'GRAMOL { A Grammar Description Languagefor Lexical and Syntactical Parsers', SIGPLAN Notices, 23, 103{122, (1988).[6] P. Schnoorf, 'Dynamic Instantiation and Con�guration of Functionally Extended,E�cient Lexical Analyzers', SIGPLAN Notices, 23, 93{102, (1988).[7] H. M�ossenb�ock, 'Alex { A Simple and E�cient Scanner Generator', SIGPLANNotices, 21, 139{148, (1986).[8] N. Wirth, Programming in Modula-2, 3rd, corrected edition, Springer, Berlin,1985.[9] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques andTools, Addison Wesley, Reading, MA., 1986.[10] R. Bahlke and G. Snelting, 'The PSG System: From Formal Language De�ni-tions to Interactive Programming Environments', ACM Trans. on ProgrammingLanguages and Systems, 4, 547{576, (1986).16

[11] Language De�ner's Guide to PSG , Report PI-R6/88, Technische HochschuleDarmstadt, Darmstadt, 1988.[12] B. Fischer, Design und Implementierung eines Scanner-Generators im Rah-men des PSGII-Projektes , Diplomarbeit, Technische Universit�at Braunschweig,Braunschweig, 1990.[13] G. Goos and J. Hartmanis ed., The Programming Language Ada ReferenceManual, ANSI/MIL-STD-1815A-1983, Lecture Notes in Computer Science, 155,Springer, Berlin, 1983.[14] K. Jensen and N. Wirth, Pascal User Manual and Report, 3rd edition, Springer,New York, 1985.APPENDIX A: ALADIN-SPECIFICATION OF MODULA-2LEXIS; -- Modula-2-- character set definitionsletter -> {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j","k", "l", "m", "n", "o", "p", "q", "r", "s", "t","u", "v", "w", "x", "y", "z","A", "B", "C", "D", "E", "F", "G", "H", "I", "J","K", "L", "M", "N", "O", "P", "Q", "R", "S", "T","U", "V", "W", "X", "Y", "Z"};oct_digit -> {"0", "1", "2", "3", "4", "5", "6", "7"};digit -> {oct_digit, "8", "9"};hex_digit -> {digit, "A", "B", "C", "D", "E", "F"};ws_char -> {bol, eol, tab, " "}; -- white spacesasterisk -> "*";s_quote -> "'";-- auxiliary definitionsinner_com -> all \ {asterisk, right_par} right_par* | asterisk+;signed_int -> {plus, minus}? digit+;GROUP white_spaces;comment -> "(*" right_par* (inner_com | comment)* "*)", IGNORE;ws -> ws_char+, IGNORE; 17

ENDGROUP; -- white_spaces;GROUP reserved_words,FOLLOWING all \ {letter, digit};and -> "AND";...with -> "WITH";ENDGROUP; -- reserved_wordsGROUP delimiters;equal -> "=";not_eq -> "#" | "<>";greater -> ">";greater_eq -> ">=";less -> "<";less_eq -> "<=";short_and -> "&", RESULT and;short_not -> "~", RESULT not;plus -> "+";minus -> "-";times -> "*";divide -> "/";assign_op -> ":=";deref_op -> "^";left_par -> "(";right_par -> ")";left_sqb -> "[";right_sqb -> "]";left_bra -> "{";right_bra -> "}";dot -> ".";comma -> ",";semicolon -> ";";colon -> ":";dot_dot -> "..";bar -> "|";ENDGROUP; -- delimitersGROUP identifier, 18

PREFERRED BY reserved_words;id -> letter {letter, digit}*;ENDGROUP; -- identifierGROUP integer_literals;integer -> digit+;oct_int -> oct_digit+ "B";oct_char -> oct_digit+ "C";hex_int -> digit hex_digit* "H";ENDGROUP; -- integer_literalsGROUP other_literals;real -> digit+ dot digit* ("E" signed_int)?;string -> quotes (all \ {quotes, eol})* quotes| s_quote (all \ {s_quote, eol})* s_quote;ENDGROUP; -- other_literalsENDLEXIS; -- Modula-2

19

