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Zusammenfassung

Unveränderlichkeit ist eine Haupteigenschaft von Haskell, aber veränderbare
Datenstrukturen können manchmal schneller modifiziert werden als unveränder-
bare. Transiente Datenstrukturen versuchen, die Vorteile von unveränderbaren und
veränderbaren Datenstrukturen zu verbinden. Wir stellen eine Haskell-Bibliothek
für transiente Dictionaries mit ganzzahligen Schlüsseln bereit. Unser transientes
Dictionary verwenden wir in GHC, um zu zeigen, dass transiente Datenstrukturen in
einer großen Haskell Codebasis die Leistung verbessern können.

Immutability is a main feature of Haskell, but updating mutable data structures
can be sometimes faster than updating immutable ones. Transient data structures
try to combine the benefits of immutable and mutable data structures. We provide a
library for a transient dictionary with integer keys in Haskell. We use our transient
dictionary in GHC to show that using transient data structures in large Haskell
codebases can improve performance.
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1 Introduction
Programmers not only expect their compilers to use lots of optimizations in order to
generate fast code, they also expect compilers to generate that code quickly. The
Glasgow Haskell Compiler [1] (GHC) is a Haskell compiler that is also in large parts
written in Haskell.

As immutability is a main feature of Haskell, GHC also uses many immutable data
structures. One of those immutable data structures used in GHC is a dictionary.
Dictionaries map keys to values and a typical operation is the insertion of a key/value
pair into the dictionary. As the dictionary is an immutable structure, the insert
operation does not modify the dictionary it is given. Instead, the insert operation
returns a new dictionary that contains the inserted key/value pair, leaving the original
one unchanged. These dictionaries are internally trees. If this insert operation would
have to copy the whole tree every time, this would be very inefficient. However, parts
of the tree that the insertion does not change can be shared between the original
and the new dictionary. Therefore, if one dictionary is passed to multiple functions,
those functions can modify the dictionary independently from each other while parts
of it are shared. That can be more efficient than cloning the whole dictionary in
order to allow those functions independent modifications. Although sharing parts
of an immutable structure is great when it is necessary, when it is not necessary,
mutating a data structure in place still requires less copying and can therefore be
more efficient.

Thus, both immutable and mutable data structures have their advantages and
transient data structures try to combine those advantages. Transient data structures
consist of a persistent variant and an ephemeral variant and fast conversions between
them [2]. When an ephemeral data structure is modified, only the new version of the
structure can be used and therefore ephemeral data structures can be mutable [3]. In
contrast, persistent data structures allow accessing all versions, similar to immutable
data structures [3]. With transient data structures, parts of the code that require
persistence can use the persistent variant while performance critical parts that do
not require persistence can use the ephemeral variant.

Our contributions are:

• We provide a Haskell library for transient dictionaries with integer keys.

• We explain how using transient data structures can be made safe with linear
types.

• In order to show that using transient data structures in a language like Haskell
improves performance, we replace an immutable data structure in GHC with
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our transient one and evaluate the improvements.

• We discuss challenges that arise from the efficient use of transient data struc-
tures.
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2 Transient Data Structures

2.1 Dictionaries with integer keys
One of our contributions is the implementation of a transient dictionary with integer
keys. For this implementation we need a data structure that implements such a
dictionary and is also a tree. The nodes of a transient dictionary sometimes have
to be copied. Therefore, in order for the dictionary to be fast, the nodes should be
fairly small.

A dictionary with integer keys can be implemented by storing the integer keys
in a trie. However, the requirement of fairly small nodes is not fulfilled by a naive
trie implementation because it potentially wastes a lot of space. Such a naive
implementation splits the integer keys into chunks of log2(n) bits and treats these
chunks as members of an alphabet of size n. Internal nodes of such a trie store a
potentially very sparse array of child nodes of size n.

2.1.1 Array Mapped Tries
A more space efficient trie implementation is the Array Mapped Trie (AMT), which
was popularised by Phil Bagwell’s Hash Array Mapped Tries [4]. The following
explanation is based on [4]. AMTs consist of internal nodes and leaves. The leaves
contain the key/value pairs. An internal node maps the elements of an alphabet of
fixed size n to the corresponding sub-tries. The internal nodes consist of an array
of child nodes and a bitmap of size n. For 0 ≤ i < n bit i in the bitmap indicates
whether a corresponding child node exists. The number of set bits in the bitmap
up to bit i is the position in the array of child nodes. In contrast to the naive
implementation, which stores a pointer for elements of the alphabet that do not have
a corresponding child node, AMTs only use one bit for such elements.

Figure 2.1 shows an example AMT with n = 8. It illustrates the search for the leaf
corresponding to the bit string 010110. In order to search for that bit string, first
the three most significant bits, 010, are considered. 010 is the binary representation
of 2. The bitmap of the root node is 0001 0100 and therefore the bit at index 2 is
set. As the bit is set, a corresponding child node exists. The number of set bits up
to bit 2 is 0 because the bits at index 0 and index 1 are cleared. As this number is
the position of the corresponding child in the array of child nodes, the position is
also 0 and the search continues in the left child node. The bitmap of this node is
0011 0100 and the next three bits of the bit string are 110. As 110b = 5d, the bit
at index 5 is checked. Again, the bit is set. In the bitmap of the node the bits at
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2.1. DICTIONARIES WITH INTEGER KEYS

0001 0100

0011 0100 0000 0001

0010 1100

010b = 2d

110b = 5d

Figure 2.1: An example Array Mapped Trie.
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2.2. TRANSIENT DATA STRUCTURES

indices 2 and 4 are set whereas the bits at indices 0, 1 and 3 are cleared. Therefore,
the number of set bits up to bit 5 and the position in the child node array are 2.
The child node at index 2 is a leaf.

As searching for a key should be fast, a search should only need to traverse few
nodes. Because the internal nodes of an AMT can have only one child node, long
chains of such nodes can exist. Potentially all of those nodes in the chain have to
be traversed in a single search. An AMT with such a chain is shown in figure 2.2.
When searching for the bit string 000 000 000 000 111, five internal nodes need to be
traversed.

2.1.2 Compressed tries
Compressed tries, in contrast to AMTs, compress nodes with only one child into a
single one [5]. Therefore, the long chains, which can exist in an AMT, are compressed,
and a search in a compressed trie traverses significantly fewer nodes. Figure 2.3
shows a compressed version of the trie in figure 2.2. In the compressed version, the
search for the bit string 000 000 000 000 111, only traverses two internal nodes, in
contrast to the five internal nodes, which are traversed in case of the AMT.

The concept of compressed tries can also be applied to AMTs. An internal node of
such an AMT, in addition to the bitmap and the child node array, stores the offset
of the character that differentiates the child nodes and the prefix of the node. As an
example, we explain the traversal of an internal node with the key 010 011 000 in an
AMT with alphabet size 8. First, the key is shifted right by offset + log2(n) where
n is the alphabet size and the result is compared to the prefix. With offset 3 and
prefix 010, the key is shifted right by 6, the result is 010, which is equal to the prefix.
If the prefix was not equal to the result, the AMT would not contain the key and
the search could stop. As, in this case, they are equal, the chunk of bits at the offset,
in this case 011b = 3d is used as an index into the bitmap. The rest of the traversal
is the same as for the AMTs described in section 2.1.1.

2.2 Transient data structures
Transient data structures try to combine the benefits of immutable and mutable data
structures. Immutability is an important feature of many functional programming
languages. However, updating a mutable data structures can be faster than updating
an immutable one. That is because updating an immutable data structure usually
involves copying part of the structure, which is not necessary in the mutable case.
For instance, when updating the value corresponding to the key 011 000 000 in the
AMT shown in figure 2.4, the three nodes on the path to the leaf must be copied
if the AMT is immutable. On the other hand, if the AMT is mutable, no node is
copied and instead only the first element in the child array that contains the leaf is
changed.

Transient data structures consist of an ephemeral variant, a persistent variant and
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0001 0001

0000 0001

0000 0001

0000 0001

1000 0100

Figure 2.2: An AMT with a chain of internal nodes.
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000 000 000 000 100

011 111

Figure 2.3: A compressed trie.

0001 0100

0011 0100 0100 0001

0010 1001

Figure 2.4: An example Array Mapped Trie.
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2.2. TRANSIENT DATA STRUCTURES

fast conversions between them [2]. When an ephemeral data structure is modified,
only the new version of the structure can be used [3]. The old version can no longer
be accessed [3]. In contrast, a data structure is persistent if all versions of the
structure can be accessed [3].

Ephemeral data structures can be mutable and modifications are therefore usually
faster than modifications of persistent data structures. As a transient data structure
supports fast conversions between ephemeral and persistent variants, performance
critical code that modifies a transient data structure can convert a persistent variant
into an ephemeral variant, modify it and convert the result back into the persistent
variant.

In the following we will also refer to the ephemeral variant as the transient variant.

2.2.1 Transient data structures in Clojure
Transient data structures are popular in Clojure [6]. The following explanation is
based on [6]. We explain the implementation of transient data structures in Clojure
by looking at hash maps. The implementation is based on Hash Array Mapped Tries.

In order to turn such a hash map into a transient data structure, every ephemeral
hash map gets a unique identifier and the nodes additionally contain the identifier of
the ephemeral hash map in which they were created. A persistent hash map is turned
into an ephemeral one by making a new unique identifier and creating an ephemeral
hash map with this identifier and a reference to the root node of the persistent hash
map. The nodes that have a different identifier than the ephemeral hash map are
considered immutable. They are copied before they are modified. When a node is
copied or created in the context of an ephemeral hash map it gets the identifier of
the ephemeral hash map. Nodes that have the same identifier as the ephemeral hash
map can be mutated in place. An ephemeral hash map is turned into a persistent one
by throwing away the identifier. This ensures that shared nodes are never mutated
and conversions happen in O(1). Figure 2.5 shows two new nodes being inserted
into a tree that only contains immutable nodes. The first insertion needs to copy all
the nodes on the path from the root node and modify them. These nodes are now
mutable. Therefore, the second insertion does not need to copy the root node and
its child again.

2.2.2 Transient data structures in Haskell
In Haskell most data structures are immutable. Transient data structures could
be useful for replacing such existing immutable data structures in a library or an
application in order to improve performance. In such a case, performance critical
code could be adjusted to use the ephemeral variant and benefit from its mutability.
However, changing code to use the ephemeral variant requires some effort because it
must be made sure that only the most recent version of the data structure is accessed.
Additionally, in Haskell, destructive updates are usually only allowed in monads like
ST. Parts of the code that are not performance critical or require immutability of the
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2.2. TRANSIENT DATA STRUCTURES

a A tree that only contains
immutable nodes.

b After the first insert, the
nodes on the path to the
new node are mutable.

c The second insertion can
modify mutable nodes in
place.

Figure 2.5: The insertion of two nodes into a transient tree.
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2.2. TRANSIENT DATA STRUCTURES

data structure could use the persistent variant. In contrast to the ephemeral variant,
using the persistent variant would likely only require minimal code changes if the
persistent variant can implement the same interface as the original immutable data
structure.

2.2.3 Transient WordMaps

Edward Kmett started implementing a transient dictionary with integer keys, which
he calls a WordMap, in Haskell [7]. However, as he never finished the project, we
implement our own transient WordMap that is based on his work and available at
https://github.com/PascEll/haskell-transients.

Kmetts transient WordMap

In the following we explain Kmetts implementation of the transient WordMap [7].
Kmetts implementation does not require an identifier per node like the Clojure

implementation. Instead, each node only requires a bit indicating whether it may
be mutated in place. The children of a node are stored in a SmallArray. As
these SmallArrays already contain the information whether they are mutable, this
information is also used to determine whether a node is mutable. In a persistent
WordMap all nodes are immutable while a transient TWordMap can contain both
mutable and immutable nodes.

Turning a persistent WordMap into a transient one is therefore simply a coercion.
Turning a transient TWordMap into a persistent one relies on the invariant that all
nodes that are reachable from an immutable node are also immutable. Thus, to
persist a transient TWordMap, not every node in the tree must be traversed. Instead,
first the root node is checked for mutability. If a node that is checked for mutability
is mutable, then it is persisted and all of its child nodes are checked for mutability.
However, if the checked node is immutable, all nodes reachable from it are guaranteed
to also be immutable and therefore its children are not checked.

Saving space for the identifier per node comes at the cost that persisting a transient
node happens only in amortized O(1).

Differences between Kmetts and our WordMap

Both Kmetts WordMap and ours use compressed AMTs with n = 16 as described in
section 2.1.2. However, Kmetts WordMap keeps a finger to the previous mutation,
which our WordMap does not. In Kmetts implementation, when a node is inserted
into an array of child nodes, a new array with the increased size is always created.
In our implementation, we resize the arrays with a factor of 1.5 so that if the node is
mutable and there is unused space in the array, the node can be inserted into the
existing array.
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2.2. TRANSIENT DATA STRUCTURES

The WordMap interface

The public interface of the WordMap module includes the persistent WordMap type
as well as the transient TWordMap type. The typical operations on dictionaries like
lookup, insert and delete operate on persistent WordMaps. Additionally, there
are variants of these operations, lookupT, insertT and deleteT, that operate on
transient TWordMaps. The persistent and transient functions convert TWordMaps
into WordMaps and vice versa. WordMaps and TWordMaps can be constructed from
lists with the fromList and fromListT functions. The fromList function uses
fromListT internally, so it can benefit from the mutability of the TWordMap nodes.

Listing 2.1: The WordMap interface
1 lookup :: Key -> WordMap a -> Maybe a
2 insert :: Key -> a -> WordMap a -> WordMap a
3 delete :: Key -> WordMap a -> WordMap a
4

5 lookupT :: Key -> TWordMap s a -> ST s (Maybe a)
6 insertT :: Key -> a -> TWordMap s a -> ST s ( TWordMap s a)
7 deleteT :: Key -> TWordMap s a -> ST s ( TWordMap s a)
8

9 persistent :: TWordMap s a -> ST s ( WordMap a)
10 transient :: WordMap a -> TWordMap s a
11

12 fromList :: [(Key , a)] -> WordMap a
13 fromList xs = runST $ fromListT xs >>= persistent
14

15 fromListT :: [(Key , a)] -> ST s ( TWordMap s a)

The linear WordMap interface

Only the most recent version of a transient TWordMap may be accessed. In line 3 of
the following example, m1 is not the most recent version and therefore using it is not
allowed. However, this requirement of the API is not enforced.

1 m1 <- fromListT [(2, 20) , (3, 30) , (4, 40)]
2 m2 <- insertT 1 10 m1
3 x <- lookupT 2 m1

Instead, lookupT returns Nothing, which might be unexpected, as both the
TWordMap returned by fromListT and the one returned by insertT contain the key
2. This behaviour can be explained by looking at the internal representation of the
TWordMaps m1 and m2. Both maps contain a single internal node, which consists of a
prefix, an offset, a bitmap and a SmallMutableArray of leaf nodes. In the bitmap of
m1 the bits 2, 3 and 4 are set, whereas in the bitmap of m2 the bits 1, 2, 3 and 4 are
set. However, the SmallMutableArray is the same for both maps. In lookupT, the
given key, 2, is used as an index into the bitmap and because bit 2 is set, the search
continues in a child node. The position of this child node in the array of children is
calculated as the number of set bits up to bit 2 and is therefore 0. At position 0 of
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2.2. TRANSIENT DATA STRUCTURES

the child array is the leaf with key 1, which was inserted in the call to insertT. As
the key of the leaf and the key passed to lookupT are different, Nothing is returned.

In order to catch such errors at compile time, we provide an additional interface
that uses Haskells linear types. A function f is linear if: when its result is consumed
exactly once, its argument is consumed exactly once [1]. Writing f :: a %1 -> b
means that f is a linear function from a to b [1]. The linear interface is shown in
listing 2.2.

Listing 2.2: The linear interface.
1 newtype LWordMap a = LWordMap ( TWordMap RealWorld a)
2

3 lookupL :: Key -> LWordMap a %1 -> (Ur (Maybe a), LWordMap a)
4 insertL :: Key -> a -> LWordMap a %1 -> LWordMap a
5 deleteL :: Key -> LWordMap a %1 -> LWordMap a
6

7 persistentL :: LWordMap a %1 -> Ur ( WordMap a)
8 transientL :: WordMap a -> ( LWordMap a %1 -> Ur b) %1 -> Ur b
9

10 fromListL :: [(Key , a)] -> ( LWordMap a %1 -> Ur b) %1 -> Ur b

With this linear interface, the example from before could be written in the following
way, which would however be rejected by the compiler.

1 fromListL [(2, 20) , (3, 30) , (4, 40)] $ \m1 ->
2 insertL 1 10 m1 & \m2 ->
3 lookupL 2 m1 & \(x, m3) ->
4 consume m3 & \() ->
5 x

The linear-base1 library includes some type classes for doing non-linear things in
linear code. Most notably, the Dupable class allows a value to be duplicated via the
dup2 :: a %1 -> (a, a) method. Mutable containers such as Array or Vector
are instances of this class, but in dup2 they must be cloned. The LWordMap on the
other hand can also be an instance of this class, and it does not have to clone the
whole underlying TWordMap. Instead, the TWordMap is persisted and the resulting
persistent WordMap is converted back into two transient TWordMaps.

1 instance Dupable ( LWordMap a) where
2 dup2 lmap =
3 persistentL lmap & \(Ur pmap) ->
4 ( LWordMap ( transient pmap), LWordMap ( transient pmap))

1https://hackage.haskell.org/package/linear-base
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3 Case Study: Transient WordMaps
in GHC

We want to explore whether using transient data structures in Haskell can improve
performance. As an example for a large Haskell codebase we look at the Glasgow
Haskell Compiler [1] (GHC). In order to show the performance improvement achieved
by using a transient data structure, we replace a data structure in GHC with a
transient one using our implementation of a transient WordMap. Our modifications
to the compiler are available at https://github.com/PascEll/ghc.

GHC uses dictionaries with integer keys in the form of IntMaps. These IntMaps
are compressed binary tries. While it would be possible to implement the same
interface as IntMap for our persistent WordMap, replacing every IntMap in GHC
with a persistent WordMap would decrease performance. One of the reasons for this
performance decrease is that the WordMap nodes are much larger than the IntMap
nodes and copying them is therefore more expensive. Performance is only improved
when the nodes are copied much less frequently, which is possible by using the
transient TWordMap in significant parts of the code. However, as changing code to
use the transient TWordMap is a lot of manual effort, doing so for significant parts of
the whole GHC codebase is not feasible.

A data structure in GHC for which the required code changes are feasible while
the performance impact is still significant, is the InScopeSet. The InScopeSet type
wraps a VarSet, which eventually is backed by an IntMap. We use our transient
WordMap to replace the VarSet in the InScopeSet in GHC.

1 newtype InScopeSet = InScope VarSet

3.1 The persistent InScopeSet
The first step to using the transient WordMap in GHC is to replace the IntMap backed
VarSet in the InScopeSet with a persistent WordMap.

Instead of replacing the VarSet directly, we create a wrapper for the persistent
WordMap, FastVarSet, which has a similar interface to that of VarSet. Most functions
simply wrap operations on the WordMap.

However, the extendFastVarSetList function, which inserts a list of Vars into
the WordMap, is a first opportunity to use the transient TWordMap. Instead of inserting
the Vars into persistent WordMaps, which would, for each insertion, copy all nodes
that are modified, we insert them into transient TWordMaps. For such an insertion,
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3.1. THE PERSISTENT INSCOPESET

in the best case, all nodes that need to be modified are mutable, and no nodes
are copied. As the extendFastVarSetList function still operates on persistent
FastVarSets, first the WordMap in the FastVarSet is converted into a TWordMap.
Then the TWordMap is modified and, finally, the resulting transient TWordMap is
converted back into a persistent WordMap.

Listing 3.1: extendFastVarSetList
1 newtype FastVarSet = FastVarSet ( WordMap Var)
2

3 extendFastVarSetList :: FastVarSet -> [Var] -> FastVarSet
4 extendFastVarSetList ( FastVarSet set) vars
5 = FastVarSet $ runST $ do
6 tmap <- foldM
7 (\ map var -> insertT ( varToKey var) var map)
8 ( transient set)
9 vars

10 persistent tmap

In order to replace the VarSet in the InScopeSet with the FastVarSet, the
functions using the internal VarSet must be adjusted. In most cases this adjustment
is simply the replacement of the function operating on VarSets with the appropriate
function operating on FastVarSets. However, sometimes InScopeSets need to be
converted to and from VarSets. As we do not replace all VarSets in the whole GHC
codebase, in those cases, the FastVarSet needs to be converted into a VarSet and
vice versa.

The mkInScopeSet function constructs an InScopeSet from a VarSet. Before us-
ing the FastVarSet that was very simple, as listing 3.2 shows. With the FastVarSet,
the WordMap has to be constructed first, as shown in listing 3.3.

Listing 3.2: The original mkInScopeSet function.
1 mkInScopeSet :: VarSet -> InScopeSet
2 mkInScopeSet in_scope = InScope in_scope

Listing 3.3: The new mkInScopeSet function.
1 mkInScopeSet :: VarSet -> InScopeSet
2 mkInScopeSet in_scope =
3 InScope
4 ( FastVarSet
5 ( WordMap . fromAscList $
6 map intKeyToWordKey $
7 varSetToAscList in_scope
8 )
9 )

10 where
11 intKeyToWordKey (k, v) = ( fromIntegral k, v)

At this point all changes are local to the InScopeSet and the code works again.
Obviously, the new mkInScopeSet function is much more costly than the old one.

However, often the VarSet passed to mkInScopeSet is only constructed for that
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3.2. THE TRANSIENT TINSCOPESET

purpose from a list. In these cases we eliminate the construction of the intermediate
VarSet by constructing the InScopeSet directly from the list.

1 -- Construction of an InScopeSet from an intermediate VarSet
2 let in_scope = mkInScopeSet ( mkVarSet tvs1)
3 -- Construction without the intermediate VarSet
4 let in_scope ’ = mkInScopeSetList tvs1

3.2 The transient TInScopeSet
At this point there is only a persistent InScopeSet. This way the usage of the
WordMap and the transient TWordMap are a nicely contained implementation detail of
the InScopeSet. However, the TWordMap is only used in some collective operations
such as extendInScopeSetList. The next step is to use the transient TWordMaps
in more places, and to keep them transient between modifications. Keeping the
TWordMap transient means that nodes that are modified repeatedly do not need to
be copied each time, which improves performance.

In order to use the TWordMap in more places, we make transient variants of the
FastVarSet and the InScopeSet. Doing so adds a bit of boilerplate code, however,
it allows us to use the potentially faster operations on the transient variants without
exposing the WordMap directly.

The transient TFastVarSet type wraps a TWordMap, and we add transient variants
of the operations on FastVarSets that operate on TFastVarSets. These operations
use the transient interface of the WordMap. The transient TInScopeSet type wraps a
TFastVarSet and, similar to the TFastVarSet, we add transient variants of the oper-
ations on InScopeSets that operate on TInScopeSets. Listing 3.4 shows operations
on persistent InScopeSets and FastVarSets aswell as the respective transient vari-
ants. Additionally, we add persistentInScopeSet and transientInScopeSet func-
tions, which convert between persistent InScopeSets and transient TInScopeSets,
as shown in listing 3.5. As the TInScopeSet is eventually backed by a TWordMap
and it is only safe to access the most recent version of the TWordMap, it is also only
safe to access the most recent version of a TInScopeSet.

Listing 3.4: Persistent and transient operations on InScopeSets and FastVarSets
1 newtype FastVarSet = FastVarSet ( WordMap Var)
2 newtype TFastVarSet s = TFastVarSet ( TWordMap s Var)
3

4 extendFastVarSet :: FastVarSet -> Var -> FastVarSet
5 extendFastVarSet ( FastVarSet set) var
6 = FastVarSet ( insert ( varToKey var) var set)
7

8 extendTFastVarSet :: TFastVarSet s -> Var -> ST s ( TFastVarSet s)
9 extendTFastVarSet ( TFastVarSet set) var

10 = TFastVarSet <$> insertT ( varToKey var) var set
11

12 newtype InScopeSet = InScope FastVarSet
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3.3. USING THE TINSCOPESET

13 newtype TInScopeSet s = TInScope ( TFastVarSet s)
14

15 extendInScopeSet :: InScopeSet -> Var -> InScopeSet
16 extendInScopeSet ( InScope in_scope ) v
17 = InScope ( extendFastVarSet in_scope v)
18

19 extendTInScopeSet :: TInScopeSet s -> Var -> ST s ( TInScopeSet s)
20 extendTInScopeSet ( TInScope in_scope ) v
21 = TInScope <$> ( extendTFastVarSet in_scope v)

Listing 3.5: transientInScopeSet and persistentInScopeSet
1 transientInScopeSet :: InScopeSet -> TInScopeSet s
2 transientInScopeSet ( InScope ( FastVarSet in_scope ))
3 = TInScope ( TFastVarSet ( transient in_scope ))
4

5 persistentInScopeSet :: TInScopeSet s -> ST s ( InScopeSet )
6 persistentInScopeSet ( TInScope ( TFastVarSet in_scope ))
7 = InScope . FastVarSet <$> persistent in_scope

3.3 Using the TInScopeSet
The transient variant of an operation can be faster than the corresponding persistent
variant because in the transient variant we can modify nodes, or more specifically
the arrays they contain, in place instead of copying them. However, we can only
modify nodes in place if such a node is not shared with a different WordMap or
TWordMap. Using a transient variant of an operation is therefore only faster than the
corresponding persistent variant if some of the nodes that are modified are marked as
mutable. As all nodes in a transient TWordMap are marked as immutable when it is
converted into a persistent WordMap, using TWordMaps is beneficial if the TWordMap
is modified repeatedly, and it can be kept transient between modifications.

Recall the extendFastVarSetList function in listing 3.1, which is such an op-
portunity. The TWordMap is modified repeatedly because multiple Vars are inserted
into it. As the intermediate versions of the TWordMap are only passed to the next
insertT operation, it can be kept transient between them.

Another function that modifies an InScopeSet repeatedly is substExpr. A sim-
plified implementation of it is shown in listing 3.6. The substExpr function applies
a Subst to an Expr. If substExpr is called with a lambda expression, the Subst is
passed to substBndr. substBndr modifies the InScopeSet contained in the Subst,
and then substExpr is called recursively with the resulting modified Subst.

Listing 3.6: substExpr
1 data Subst = Subst InScopeSet ...
2

3 data Expr
4 = Var Var
5 | App Expr Expr
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6 | Lam Var Expr
7

8 substExpr :: Subst -> Expr -> Expr
9 substExpr subst expr = go expr

10 where
11 go (Var v) = lookupIdSubst subst v
12 go (App fun arg) = App (go fun) (go arg)
13 go (Lam bndr body) = Lam bndr ’ ( substExpr subst ’ body)
14 where
15 (subst ’, bndr ’) = substBndr subst bndr
16

17 lookupIdSubst :: Subst -> Var -> Expr
18 substBndr :: Subst -> Var -> (Subst , Var)

The objective is to make a transient variant of substExpr that can keep a
TInScopeSet transient between the modifications in substBndrT as often as possible.
The first version of substExprT, which is shown in listing 3.7, does not quite accom-
plish this objective. In case of a lambda expression, substExprT passes the transient
TSubst to substBndrT, the transient variant of substBndr. The resulting modified
TSubst is then passed to substExprT without persisting it. Applying a substitution
to an expression like Lam v1 (Lam v2 (Lam v3 (Var v2))) might therefore be able
to mutate parts of the TSubst in place when substBndrT is called with v2 and v3.
However, consider the expression App (Lam v1 (Var v1)) (Lam v2 (Var v10)).
In case of an application, the same substitution is applied to the function as well as
the argument. In this expression, both the function and the argument are lambda
expressions, which result in a modification of the TSubst when passed to substExprT.
Therefore, the TSubst must be persisted before it is passed to substExprT again. It
is not always actually necessary to persist the TSubst though. For instance, if the
argument of an application is a variable, like in App (Lam v1 (Var v1)) (Var v2),
applying the substitution to it does not modify the TSubst. In this case, applying the
TSubst to the argument first and then the function without persisting the TSubst
would still apply the same substitution to both the function and the argument. Not
persisting the TSubst would have the advantage that following modifications might
need to copy less.

Listing 3.7: First version of substExprT.
1 data TSubst s = TSubst ( TInScopeSet s) ...
2

3 substExpr :: Subst -> Expr -> Expr
4 substExpr subst expr
5 = runST $ substExprT ( transientSubst subst) expr
6

7 substExprT :: TSubst s -> Expr -> ST s Expr
8 substExprT subst expr = go expr
9 where

10 go (Var v) = lookupIdSubstT subst v
11

12 go (App fun arg) = do
13 p_subst <- persistentSubst subst
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14 arg ’ <- substExprT ( transientSubst p_subst ) arg
15 fun ’ <- substExprT ( transientSubst p_subst ) fun
16 return (App fun ’ arg ’)
17

18 go (Lam bndr body) = do
19 (subst ’, bndr ’) <- substBndrT subst bndr
20 body ’ <- substExprT subst ’ body
21 return (Lam bndr ’ body ’)
22

23 lookupIdSubstT :: TSubst s -> Var -> ST s Expr
24 substBndrT :: TSubst s -> Var -> ST s ( TSubst s, Var)

We want to only persist the TSubst that is applied to the argument of an application
if the TSubst is actually modified. This problem is similar to a problem that can
occur in Rust [8]. In Rust, there are shared borrows and mutable borrows. Data
cannot be mutated through shared borrows. When only a shared borrow is available,
but mutation is required, it is often possible to clone the borrowed data. Of course,
cloning is potentially expensive and therefore, if mutation is only required in some
cases, the data should only be cloned in those cases. Additionally, the data should
not be cloned if it is already owned because that would also be unnecessary.

There are a few differences between the situtation in Rust and our substExprT
function in Haskell. In Haskell, there is no concept of borrowing, but we can think
of data that is not allowed to be mutated as being borrowed. For instance, in the
substExprT function, in the case of an application, when the TSubst is applied to
the argument without being persisted first, it may not be mutated because the same
TSubst also needs to be applied to the function. Therefore, while being applied to
the argument, we can think of the TSubst as borrowed. In Rust, when borrowed data
needs to be modified, the data is cloned. Since we are using a transient data structure
though, the TSubst does not need to be cloned, it only needs to be persisted.

In Rust, the objective is to only clone the data if mutation is required and the
data is not owned. In order to achieve that, Rust has the Cow enum, which is a
clone-on-write smart pointer. The enum has a borrowed variant and an owned variant,
and immutable access to the data is always possible. However, when mutation is
required and the data is only borrowed, it is cloned before it is mutated. On the
other hand, if the data is owned, it is not cloned.

In the substExprT function, we want to only persist the TSubst being applied to
the argument of an application if the TSubst is modified. The version of substExprT
shown in listing 3.8 does that, and it has some similarities to the solution using
the Cow enum in Rust. In substExprT, the TSubst is only modified in the Lam case
because lookupIdSubstT never modifies the TSubst. Therefore, the TSubst is only
persisted in the Lam case and never in the App case directly. However, as the objective
is to keep the TSubst transient between modifications, we cannot always persist the
TSubst in the Lam case. Instead, in the Lam case, we need to distinguish between
TSubsts that need to be persisted before they are modified and TSubsts that do not
need to be persisted. In order to make this distinction possible, substExprT is passed
an additional argument, owned, which indicates whether the TSubst is owned and
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therefore may be modified. The owned parameter in combination with the TSubst
is similar to the Cow enum in Rust. The owned enum variant in Rust corresponds
to owned being true and the borrowed enum variant corresponds to owned being
false. As we do not have separate types for owned and borrowed TSubsts, we do
not need a persistent-on-write type that can hold the two variants and the owned
parameter is sufficient. In Rust, if the data is not owned, it is cloned. Here, in the
Lam case, the TSubst is persisted if it is not owned. When substExprT is called in
substExpr, the TSubst is only used in this call and may be modified. The same is
true for the TSubst passed to substExprT in the Lam case. On the other hand, in the
App case, the substitution may be used both when applying it to the argument and
when applying it to the function. Therefore, when it is applied to the argument, it
may not be modified. When applying a substitution to the example expression from
before, App (Lam v1 (Var v1)) (Var v2), in contrast to the first version, in this
version of substExprT the TSubst is not persisted. Thus, following modifications to
the TSubst might be able to happen in place.

Listing 3.8: Second version of substExprT.
1 substExpr :: Subst -> Expr -> Expr
2 substExpr subst expr = runST $ substExprT ( transientSubst subst)

True expr
3

4 substExprT :: TSubst s -> Bool -> Expr -> ST s Expr
5 substExprT subst owned expr
6 = go expr
7 where
8 go (Var v) = lookupIdSubstT subst v
9

10 go (App fun arg) = do
11 arg ’ <- substExprT subst False arg
12 fun ’ <- go fun
13 return (App fun ’ arg ’)
14

15 go (Lam bndr body) = do
16 owned_subst <- toOwned subst
17 (subst ’, bndr ’) <- substBndrT owned_subst bndr
18 body ’ <- substExprT subst ’ True body
19 return (Lam bndr ’ body ’)
20

21 toOwned subst
22 | owned = return subst
23 | otherwise = transientSubst <$> persistentSubst subst
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4 Evaluation
In order to evaluate our transient WordMap implementation, we benchmark the lookup
and insert operations directly. As we also used the transient WordMap in GHC, we
evaluate the performance of our modified GHC1, too.

4.1 Lookup and Insert
We compare the performance of the lookup and insert operations of our transient
WordMap with the strict IntMap from the containers package2. For this comparison,
we adapt a benchmark for dictionary data structures3 to include our WordMap.

For the insert operation, we compare the performance of the strict IntMap with
the persistent WordMap and the transient TWordMap. The benchmark inserts the keys
from 1 to n into empty dictionaries for n ∈ 10, 100, 1000, 10000. The means of the
times that these insertions took, are shown in figure 4.1.

n IntMap TWordMap WordMap

10 230.3 ns 390.8 ns 437.4 ns
100 4.073 µs 5.546 µs 6.991 µs
1000 55.86 µs 66.02 µs 97.38 µs
10000 890.8 µs 804.7 µs 1.569 ms

Figure 4.1: The means of the times the insertion of the keys 1 to n into an empty
dictionary took for different dictionaries with integer keys.

As expected, insertions into the TWordMap are faster than insertions into the
persistent WordMap because the WordMap needs to copy nodes more often than the
TWordMap. The TWordMap is only faster than the IntMap for the highest number of
keys, 10000. As the IntMap is a compressed binary trie, a node in an IntMap only
differentiates one bit of the keys compared to the 4 bits in the WordMap. Therefore
the height of an IntMap tree is generally bigger than the height of a WordMap tree, but
the operations on IntMaps are simpler than the ones on WordMaps. That suggests
that the lower tree height of the TWordMap and the reduced number of copies only
outweighs the simplicity of the IntMap if there are lots of keys.

1Git Commit Hash: e7c4eec138a70a933447fe3f9b2edc9922e0569c
2https://hackage.haskell.org/package/containers
3https://github.com/haskell-perf/dictionaries
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As the lookup operation of persistent WordMaps and transient TWordMaps are the
same, there is no point in comparing those two. Therefore, for the lookup operation,
we only compare the strict IntMap with the persistent WordMap. The benchmark
performs a lookup for all the keys in a dictionary with random keys of size n for
n ∈ 10, 100, 100010000, 100000, 1000000. The means of the times that these lookups
took, are shown in figure 4.2. Lookups are faster for the WordMap compared to the
IntMap for n ≥ 100, which is probably because of the higher trees in the IntMap.

n IntMap WordMap

10 177.5 ns 193.4 ns
100 2.658 µs 2.412 µs
1000 87.00 µs 30.12 µs
10000 1.569 ms 529.4 µs
100000 26.52 ms 9.118 ms
1000000 622.6 ms 235.4 ms

Figure 4.2: The means of the times the insertion of the keys 1 to n into an empty
dictionary took for different dictionaries with integer keys.

4.2 GHC
We evaluate the performance of our modified compiler by comparing it to a commit
on the GHC master branch, bd92184.

4.2.1 Allocations
GHC has a test suite that also includes performance tests. Figure 4.3 shows the
bytes allocated in the heap for the performance test cases. Test cases with changes
that are smaller than 0.4 percent are omitted.

The change of allocated bytes in the heap ranges from -15.3 percent to +2.9 percent.
Given that we only made changes to a small part of the compiler, a reduction of
15.3 percent shows that using transient data structures in Haskell can improve the
performance. However, in most test cases, the performance of our modified compiler
and the master commit is very similar. In order to explain this spread, we look at
two of those test cases in more detail.

When compiling T18223, our modified compiler allocated 15.3 percent less than the
master commit. In contrast, when compiling T9630, our modified compiler allocated
1.1 percent more than the master commit. In order to gain more insight into where
those changes to the allocations happen, we look at the ticky-ticky profiles of the

4Git Commit Hash: bd92182cd56140ffb2f68ec01492e5aa6333a8fc
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master commit and our modified compiler, each compiling T18223 and T9630. As we
replaced the IntMap that eventually backs the InScopeSet with a WordMap, some of
the allocations that are made by IntMap operations in the master commit are gone in
our modified compiler. In the modified compiler, there are instead allocations made
by WordMap operations. For T18223, the IntMap operation with the biggest reduction
in allocations is insert with 113,879,272 bytes less allocated. These 113,879,272
bytes are about 12 percent of total heap allocations during compilation with the
master commit. For T9630, insert is also the IntMap operation with the biggest
reduction. However, with 52,062,672 bytes, this reduction is only about 3 percent
of total heap allocations during the compilation with the master commit. As we
want to reduce allocations by replacing the IntMap with a WordMap, the amount
of reduced bytes allocated by IntMap operations is sort of an upper bound to the
reduction of bytes allocated we can achieve with our changes. Therefore, as for
T9630, the reduction of bytes allocated by IntMap operations is only 3 percent of
total heap allocations, the potential for reducing allocations in T9630 is already very
low. An explanation for why the number of bytes allocated was even increased, is
that an insertion into our transient WordMap does not always allocate less than an
insertion into an equivalent IntMap. Such an insertion into a TWordMap probably
only allocates less if some of its nodes are mutable.

4.2.2 Runtime
In addition to comparing the allocations of the performance tests in GHCs test suite,
we also evaluate the runtime of our modified compiler. We do that by compiling
T18223 and Cabal5 with the GHC commit on the master branch and our modified
compiler. For compiling Cabal, we use this script6. In order to determine the
runtimes for compiling Cabal, we let hyperfine7 execute that script ten times with
each compiler. Our modified compiler allocated 15.3 percent less than the master
commit when compiling T18223 with the -O flag, so we also let hyperfine run the
compilation of T18223 ten times with each compiler.

Figure 4.4 shows that it takes our modified compiler about 180 ms less than
the master commit to compile T18223, which is about 13 percent of the master
commits time. However, the table also shows that the commit on the master branch
is about 1 percent faster than our modified compiler at compiling Cabal. In order
to understand, why our modifications to the compiler do not result in a shorter
runtime when compiling Cabal, we look at the ticky-ticky profiles of the master
commit and our modified compiler. As we replaced the IntMap that eventually
backs the InScopeSet with a WordMap in the modified compiler, we use the change
in allocations by the insert operation on IntMap as an indicator whether the
InScopeSet has enough impact on the performance of the compiler. The allocations
made by the insert operation on IntMaps were reduced by 325,831,736 bytes, which

5https://github.com/haskell/cabal/
6https://gitlab.haskell.org/bgamari/ghc-utils/-/blob/master/build-cabal.sh
7https://github.com/sharkdp/hyperfine
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is about 0.7 percent of total heap allocations during the compilation with the master
commit. Therefore, the InScopeSet likely does not have enough impact on the time
it takes to compile Cabal.
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Test bd9218 e7c4ee change
LargeRecord(normal) 6,049,739,192 6,078,551,904 +0.5%
PmSeriesS(normal) 55,046,928 55,287,072 +0.4%
PmSeriesT(normal) 77,475,520 78,027,080 +0.7%
PmSeriesV(normal) 54,326,304 54,565,648 +0.4%
T10421(normal) 114,096,472 114,545,008 +0.4%
T10421a(normal) 80,456,776 80,756,272 +0.4%
T10858(normal) 133,430,864 134,157,656 +0.5%
T11195(normal) 238,318,968 239,538,152 +0.5%
T12150(optasm) 81,753,960 82,332,752 +0.7%
T13056(optasm) 350,455,952 352,972,376 +0.7%
T13253(normal) 345,927,808 348,625,048 +0.8%
T13253-spj(normal) 126,119,808 127,214,104 +0.9%
T14683(normal) 2,830,711,432 2,911,607,904 +2.9%
T15164(normal) 1,298,449,592 1,291,408,096 -0.5%
T17516(normal) 1,814,191,904 1,837,285,800 +1.3%
T18140(normal) 77,604,224 77,997,248 +0.5%
T18223(normal) 916,239,720 776,460,976 -15.3%
T18282(normal) 151,491,680 152,495,464 +0.7%
T18698a(normal) 202,368,224 201,199,792 -0.6%
T18923(normal) 68,562,752 68,821,320 +0.4%
T19695(normal) 1,446,608,872 1,455,410,136 +0.6%
T20049(normal) 92,395,512 91,933,872 -0.5%
T20261(normal) 603,105,184 606,903,544 +0.6%
T3064(normal) 181,464,840 182,107,008 +0.4%
T5631(normal) 533,662,664 536,621,112 +0.6%
T6048(optasm) 103,707,224 104,448,600 +0.7%
T783(normal) 385,375,704 387,498,344 +0.6%
T9233(normal) 721,456,800 672,129,808 -6.8%
T9630(normal) 1,527,790,320 1,543,899,336 +1.1%
T9675(optasm) 440,199,376 402,840,488 -8.5%
WWRec(normal) 622,269,864 619,549,680 -0.4%
geo. mean -0.1%
minimum -15.3%
maximum +2.9%

Figure 4.3: The bytes allocated by a commit on the master branch, bd9218, and
our modified compiler, e7c4ee. Tests with changes smaller than 0.4
percent are omitted.
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bd9218 e7c4ee
Cabal 46.242 s 46.781 s
T18223 1.395 s 1.213 s

Figure 4.4: The means of the times it took a commit on the master branch, bd9218,
and our modified compiler, e7c4ee, to compile Cabal and T18223.
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5 Conclusion
The evaluation showed that replacing an immutable data structure with a transient
one in a large codebase like GHC can improve performance in some cases. There
are probably two main reasons why the performance could not be improved more.
As the evaluation also showed, in some test cases, the InScopeSet we replaced was
not responsible for enough allocations. Similarly, the InScopeSet likely does not
have enough impact on the time it takes to compile Cabal. The other reason is that
insertions into transient WordMaps only require fewer allocations than IntMaps if the
dictionary contains enough keys and the nodes are mutable.

However, lookups are faster for our WordMap than for the IntMap. Therefore,
the ideal use case for the WordMap is probably when the performance of lookups is
relevant and most updates happen in bulk. In that case, one could benefit from the
fast lookups of the persistent WordMap while keeping the performance of updates
reasonable by using the transient TWordMap.

An open questions that remains is whether replacing a data structure in GHC that
is used more than the InScopeSet like the VarSet would be feasible and improve
performance. There is also a GHC proposal for mutable constructor fields1, which
our WordMap could benefit from. When a node is inserted into or deleted from the
array of child nodes, the bitmap of the node changes. So, even if we can modify
the array in place, we need to allocate a new node with the changed bitmap. With
mutable constructor fields we would not have to allocate a new node.

1https://github.com/simonmar/ghc-proposals/blob/mutable-fields/proposals/
0000-mutable-fields.rst
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