
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Test-Case Reduction for
Haskell Programs

Masterarbeit von

Daniel Krüger

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuender Mitarbeiter: M. Sc. Sebastian Graf

Abgabedatum: 16. Dezember 2020

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Mit dem Wachstum der Haskell-Programmiersprache steigt die Anzahl der gefunde-
nen Fehler im Glasgow Haskell Compiler. Um letztere schnell zu beheben, benötigen
die Entwickler minimale, reproduzierbare Beispiele, jedoch kostet das Reduzieren von
Hand viel Zeit. Reduzierer ohne Domänenwissen können nicht alle Anwendungsfälle
der Reduzierung von Haskell-Programmen abdecken. Wir zeigen, dass ein Reduzierer
mit Domänenwissen bis zu 60 % kleinere Reduktionsergebnisse im Vergleich zu den
Reduzierern ohne Domänenwissen erreichen kann und außerdem bis zu 70 % weniger
Zeit benötigt.

The number of bugs for the Glasgow Haskell Compiler is constantly growing. In
order to fix the latter quickly, minimal reproducible examples are required, however,
manual reduction of bugs in Haskell programs takes a lot of time. Domain-independent
reducers are still lacking in some respects. We show that a domain-specific reducer
can produce up to 60 % smaller reduction results compared to domain-indepentent
reducers while also spending 70 % less time.

Contents

1. Introduction 7

2. Preliminaries and Related Work 11
2.1. GHC Haskell . 11
2.2. Delta Debugging . 11
2.3. C-Reduce . 12
2.4. Other Test Case Reducers . 13

2.4.1. Hierarchical Delta Debugging 13
2.4.2. structureshrink . 13
2.4.3. halfempty . 13

2.5. Perses . 14
2.5.1. Berkeley Delta . 14

3. Test Case Reducer Implementation 15
3.1. Modular Reducer Infrastructure . 15

3.1.1. Search . 15
3.1.2. Using hsreduce as a library . 16

3.2. Passes . 16
3.2.1. Replacing Things with "Dummy" Values 18
3.2.2. Removing Unused Entities . 19
3.2.3. Reducing To Subexpressions 23
3.2.4. Exports . 25
3.2.5. Formatting . 25
3.2.6. Other Passses . 26

3.3. Richer Transformations . 26

4. Merger Implementation 31
4.1. Preprocessing . 31
4.2. Existing Tools for Merging . 31
4.3. Requirements for Merging Haskell Modules 32
4.4. Obtaining Project Information . 33
4.5. Accessing Renaming Information . 33
4.6. Essential Renaming . 34

4.6.1. Mapping of Names . 34
4.6.2. Additional Renaming . 35
4.6.3. Prohibited Renaming . 35

5

Contents

4.7. Applying Renamer Information . 35
4.7.1. On Renamed Source . 35
4.7.2. On Parsed Source . 36
4.7.3. Re-Exports by “Our” Modules 36

5. Evaluation 41
5.1. Comparison with C-Reduce . 41

5.1.1. Results . 41
5.1.2. Looking at Test Cases . 45
5.1.3. Discussion . 47

5.2. Comparison with other Related Work 48
5.3. Merging . 48
5.4. Evaluation of Passes . 48

5.4.1. Pass Ordering . 49
5.4.2. Pass Statistics . 49

6. Conclusion and Future Work 55

A. Appendix 63
A.1. hsreduce Implementation . 63
A.2. GHC Issues . 63

6

1. Introduction
The number of bug tickets for the Glasgow Haskell Compiler (GHC) is growing
constantly. Tickets are even appearing faster than they are getting fixed, because
fixing bugs takes a lot of time. One requirement to speed up debugging is for issue
creators to supply minimal reproducible examples of the faulty behavior. GHC
developers do not have the time to minimize bugs, they should mainly be free to
develop new features and users might lack the necessary Haskell knowledge to be
able to minimize their bug examples. This amount of friction might, in the worst
case, incentivize users to not file bugs at all since it is too much work for everybody
involved.

To illustrate this: see T181401 as an example. Here a developer reported a compiler
performance regression when building a library. The case was minimized manually.
The key transformations were:

• merging the error causing module with the other local modules it imports
• removing all instance declarations except for the Mergeable instances
• turning the FileOptions constructor from a record into a prefix constructor
• deleting its deriving clauses
• simplyfing its type parameters to type Maybe Bool
• removing all but one language pragmas
• removing all imports

Figuring out this exact sequence of transformations requires a lot of trial and
error, where after each trial the developer needs to assert that the resulting file is
still a reproducer. This is very time consuming, so there would be much gained in
automating this process. For this, there are already domain-independent reducers
that are able to achieve up to 95 % reduction on some single Haskell files. They
however lack the ability to merge Haskell projects and more advanced intermediate
reduction steps like inlining functions or applying type-level functions. For the
example above, they cannot perform merging of modules, transforming the a record
into a prefix constructor and simplifying type parameters. Take figure 1.1 as an
example, which on GHC 8.2 fails linting of the produced intermediate representation
due to optimization. There, C-Reduce [1] fails to reduce the type family application,
to inline a type alias, to reduce away a let-expression, to reduce to the branch of an
if-expression, inline two functions and to remove the type family declaration.

Additionally, other similar tools [1] [2] [3] [4] waste a lot of time doing non-sensical
reductions, for example syntactically invalid transformations. In this work, we

1https://gitlab.haskell.org/ghc/ghc/-/issues/18140

7

argue that reduction with domain-knowledge can lead to better reduction results in
less time, which is why we wrote our own Haskell-specific test case reducer, called
hsreduce, that achieves the minimal reproducer depicted in figure 1.1b.
The main contributions of this work are:

• In chapter 2 we review other test case reducers and describe in what ways they
are not sufficient for reduction of Haskell programs.

• We describe in chapter 3 a modular test case reducer infrastructure that can
more easily be extended by Haskell programmers than related work with
additional passes for reducing Haskell programs while offering features like
parallel execution of test cases and recording of pass statistics to evaluate ones
efforts.

• In chapter 3 we also describe a starting set of 22 Haskell specific passes that
get reduction done 30 to 80 percent faster than related work. Additionally we
describe 12 richer transformations that manage to get up to 60 percent smaller
reduction results compared to related work. Of the passes we describe, 31 are
implemented as pure transformations of the abstract syntax tree.

• We describe merging functionality in chapter 4, to also be able to handle
Haskell projects.

• In chapter 5 we evaluate our work by comparing it to C-Reduce, the best of
the related work. We also look at the effect of using different pass orderings on
reduction quality and examine quality criteria for passes.

8

{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
module Bug where

j _ = h

type family G a where
G () = Int

data Id a
instance Functor Id
type AnotherType = Bool
newtype Y f a =

MkY (forall b.
AnotherType -> f b)

instance Functor (Y f)

hm :: Id (G ())
hm = (j undefined) ()

weird :: Y f a -> f b
weird (MkY g) = g True

x :: Functor g => g (G ())
x =

let y = weird x
in case True of

False ->
weird

(weird $ weird y)
True ->

if 1 < 2
then

weird $
(weird $

(weird
(weird x)))

else
weird $

(weird $
(weird y))

h _ = x

(a) original file

{-# LANGUAGE RankNTypes #-}

module Bug (hm) where

data Id a
instance Functor Id
newtype Y f a =

MkY (forall b. () -> f b)
instance Functor (Y f)

hm :: Id (Int)
hm = x

weird (MkY g) = g undefined

x :: Functor g => g (Int)
x = weird $ weird $ weird (weird x)

(b) hsreduce’s result

{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
module Bug where

c d = e

type family G a
data Id a
instance Functor Id
type AnotherType = Bool
newtype Y f a =

MkY (forall b. AnotherType -> f b)
instance Functor (Y f)

h :: Id (G ())
h = c undefined 0

i (MkY g) = g True

j :: Functor g => g (G ())
j =

let k = j
in if 1 < 2

then i (i (i (i j)))
else k

e d = j

(c) C-Reduce’s result

Figure 1.1.: C-Reduce’s limits

9

2. Preliminaries and Related Work

2.1. GHC Haskell
The Haskell AST (abstract syntax tree) is really vast, it consists of a large number
of types of elements, like one can see from the example code 2.1 showing a small,
simplified selection. Hand-written traversal would take too much time to implement
and would be very error-prone, because the types are very nested and if the API
changes, those hand-written traversals might break easily. That is why datatype
generic traversal (more general version of the visitor pattern) was used, where we
just describe the change to be made, without having to write the traversal. Since the
Haskell AST implements the Data type class (described in “Scrap Your Boilerplate”
[5]), it allows us to apply a transformations to all elements of a certain type. We
make use of this generic traversal when writing our passes. It allows us to describe
our changes for elements of a certain type and to call those generic traversal functions
later to apply those changes.

2.2. Delta Debugging
There has already been plenty of work into the field of simplifying erroneous programs.
All of the related work are instances of delta debugging where, given a interestingness
test shell script and a test case. The interestingness test shell script outputs an
exit code telling whether the current state of the test case exhibits some interesting
behavior, for example a compiler crash. They all perform simplifications on the test
case and constantly check to see, if the test case still exhibits interesting behavior
despite the simplification.

ddmin [2] by Zeller et al. was the work that created the field of delta debugging.
They see a test case as a set of changes applied to a working, normal file, which leads
to observable faulty behavior. Zeller et al. describe a structure agnostic reducer
that performs a kind of binary search on the input, finding the smallest relevant
part. It starts with granularity two, that means it splits the test case into two halfs
and checks, if any of them is interesting. If a half is interesting, ddmin tries to
reduce to that subset. If it is not, ddmin tries to reduce to the complement. If
that is also not successul, ddmin tries to double the granularity. If granularity n is
already reached, it means ddmin already tried reducing to each individual change or
their complement, so there is nothing else to try. They describe a test case to be
1-minimal, if deleting any character in it leads to the test case not exhibiting that
faulty behavior one is after. They also show that their described ddmin algorithm

11

2.3. C-REDUCE

data HsModule = HsModule ModuleName [Export] [Import] [Decl]

data Decl = ValD Bind | TyClD ... | SigD ... | SpliceD ... | ...

data Bind = FunBind Name Matchgroup Expr | PatBind ... | ...

data Matchgroup = MG [Match]

data Match = Match MatchContext [Pat] GRHSs

data GRHSs = GRHSs [GRHS] LocalBinds

data GRHS = GRHS [GuardStmt] Expr

data Expr = Var ... | Lit ... | Lam ... | LamCase ... | App ... | ...

-- <approximately 121 more>

Figure 2.1.: An excerpt of the Haskell abstract syntax tree (simplified data types
for better readability).

really leads to 1-minimal test cases. We did not consider ddmin further, because
ddmin only does character-based deletions, while other tools also do line-based and
token-based deletions.

2.3. C-Reduce
C-Reduce by Regehr et al. [1] is mainly a reducer for C and C++ programs. It is a
modular reducer with a pluggable set of passes, which are extendable. It tries to
apply all transformations until a fixpoint regarding the size in bytes is reached. In
C-Reduce, a transformation is an iterator that walks through the test case performing
changes. A transformation implements three functions: new which returns a new
state object, transform, which takes a state and path to the test case, it then modifies
the test case returns the resulting status code and third advance, which takes a state
object and a path to the test case and advances to the next location.

C-Reduce consists of five kinds of transformations: The first are ones that operate
on a contiguous segment of the tokens within a test case (changing identifiers and
integer constants to 0 and 1, etc.). The second are those that make localized but
non-contiguous changes (removing balanced parentheses anc curly braces, etc.). The
third closely follows Berkely delta: it removes one or more contiguous lines from
a test case. The number of lines to remove is initially the number of lines in the
test case, and is successively halved until it reaches one line, at which point the test
case is reformatted using topformflat. Fourth, it invokes external pretty-printing

12

2.4. OTHER TEST CASE REDUCERS

commands.
Lastly, C-Reduce consists of a large number of C-specific passes like removing a

level of indirection from a pointer- or array-typed variable, factoring a function call
out of a expression or removing an unused function.

C-Reduce also works really well for other languages using the --not-c flag, where it
does line and token based deletions and none of the richer, domain specific reductions
for C code.

2.4. Other Test Case Reducers

2.4.1. Hierarchical Delta Debugging
Mishergi et al. [6] proposed Hierarchical Delta Debugging (HDD) to also make use
of the fact that program code exhibits a tree structure, which can be exploited to
make more structure focussed reductions. HDD goes in a top-down fashion through
the input tree, tries to remove nodes at the currently visited level and tags the nodes
of the next level for future visitation. It is also a generic reducer, they showed that
it can be used for C programs, XML and video codes. But it cannot be used for
Haskell, since the only implementation of it that we could find [7] relies on it being
supplied a grammar, but there is currently no formal grammar for Haskell2010 with
GHC extensions.

2.4.2. structureshrink
structureshrink by MacIver et al. [3] is a generic reducer. At its core, struc-
tureshrink uses the ddmin algorithm [2] but it applies it in a different way. It extracts
a list of ngrams, which either appear at least a certain number of times in the test
case or have been previously useful. Then it does two passes for each ngram: In the
first pass, it splits the test case by occurrences of the ngram. So for example, for an
ngram with two occurrences we would split the file into two halves. Then it tries
to minimize the sequence of splits. In the second pass, it again splits the test case
by occurences of the ngram. Then it tries to shrink the ngram bytewise such that
joining the splits still leads to an interesting test case. Lastly, it tries to sequence
minimize the whole file bytewise. It is slower by approximately a factor of five to
ten than C-Reduce. Also, when running it on some Haskell test cases, it produced
non-reproducing minimizations. This is why it wasn’t considered further.

2.4.3. halfempty
halfempty [4] is another domain independent reducer, which is focused on par-
allelization of reduction. They solve it by building a binary tree of the possible
bisection steps and then testing those different steps, assuming that most will
fail to result in interesting reductions. We tried running it with the command

13

2.5. PERSES

halfempty ./interesting.sh Bug.hs. On at least two test cases it produced a
very small file with a file size near zero bytes where the example wasn’t interesting
anymore.

2.5. Perses
Perses by Sun et al. [8] is kind of a successor to HDD. It additionally takes
the programming language’s context free grammar as input, transforms it into the
“Perses Normal Form” (a restricted form of the extended Backus-Naur form) and does
transformations on a test case, based on that normal form. This way it can ensure
to only do syntactically valid reductions and also supports richer transformations
than HDD. In the Perses normal form, all rules have the following form:

1. A ::= B∗
1

2. A ::= B+
1

3. A ::= B?
1

4. A ::= B1B2 . . . Bn

5. S ::= ε

For Kleene-Star, Kleene-Plus and Optional nodes (rules of form one, two and
three), Perses uses ddmin to delete their children. For regular nodes (rules of form
four), Perses tries to replace them with one of their children. Perses terminates,
when no tree element can be removed anymore. Perses cannot be applied because
so far as they do not support Haskell and that will probably not change soon since
there is currently no formal grammar for Haskell2010 with GHC extensions. Even
if Perses supports Haskell one day, it cannot do richer transformation like inlining
functions or normalizing type family applications.

2.5.1. Berkeley Delta
Regehr et al. also mention [1] a generic line based delta debugging approach by
McPeak and Wilkerson, but we were unable to find out more about it. This project
might be not maintained anymore. It is supposed to produce variants by removing
one or more lines from the input.

14

3. Test Case Reducer
Implementation

After looking at related works, we saw that they either cannot be applied at all
or do not have domain-specific passes for Haskell. So we decided to develop our
own tool, called hsreduce, for reducing Haskell programs1 , to examine the question:
do domain-specific passes bring better reduction? In this chapter we go over our
modular test case reducer infrastructure, the starting set of Haskell passes and the
richer transformation that we wrote. We will write often write reducer in short for
test case reducer.

3.1. Modular Reducer Infrastructure
hsreduce is a modular reducer with a driver module and several pass modules.
As an overview, hsreduce consists of:

• the main module, which plugs the command line arguments into the driver
module

• a driver module
• several pass modules
• an util module with helper functions that are used by almost all passes
• a parser module for getting the parsed, renamed and typechecked source
• a merging module, to be able to merge Haskell projects

The driver module is the heart of hsreduce. It expects as input a list of passes,
as well as the paths to the interestingness test shell script and the test case. Next,
it does some initilization, mainly parsing the test case and building an initial state.
The driver module then calls all passes each round and terminates, when no pass
was able to be applied in the current round or the changes did not result in a new
and different abstract syntax tree (AST). Every round the passes see the current
AST and return their calculated proposed changes. Those changes are then divided
onto the thread pool, tested if they result in interesting changes and then applied.

3.1.1. Search
Our approach is greedy, the first transformation possible is applied. This might lead
to the possibility to only reach a local maximum regarding the end file size, because

1https://github.com/dnlkrgr/hsreduce

15

3.2. PASSES

a better transformation might be disabled by earlier transformations. On the other
hand: true breadth-first search might be too expensive because all changes should
be looked at in parallel and should be followed; this seems to explode in the space
requirements because all the temporary results of those paths would needed to be
saved in parallel.

3.1.2. Using hsreduce as a library
It is very easy to extend hsreduce. As an example, let us say we want to add a pass
that tries to turn every expression into the undefined expression. In figure 3.1 it is
shown, how we could do that. In that example, myHsreduce has all the functionality
of hsreduce plus this added pass for handling expressions. Now, myHsreduce would
check for any occurring expression in an input Haskel program, whether it can be
turned into undefined. Also, when adding a pass, statistics for that pass are also
automatically recorded. We think this speaks for a certain quality of our approach.
Users do not have to think about parsing, how to apply passes on the AST and other
boilerplate tasks. They can concentrate on thinking about how certain elements can
be simplified and write it down in a straightforward fasion, almost like a reduction
rule. We think because it is that easy to add passes that it speaks for a certain
quality of our architecture. Since almost all users of a Haskell reduction tool are
Haskell programmers, having a tool that is written in Haskell might make it easier
for them to contribute, compared to writing passes in Perl like they would have to if
they wanted to expand C-Reduce.

3.2. Passes
The reduction of hsreduce consists of three major types of functions: local changes,
passes and actions.

Local changes are at the lowest level. With them we specify for a certain kind of
Haskell AST element, in what ways it can be reduced. In our example figure 3.1,
that is the local function f, which shrinks values of type GHC.HsExpr GHC.GhcPs
(i.e. parsed Haskell expressions). The type of local changes is a -> [a -> a].

But local changes do not suffice. To get a new program we have to apply the
change to the AST. This AST changing function we call passes. They encapsulate a
local change and lift it into the context of ASTs, a function of type AST -> [AST ->
AST]. This encapsulation is done by the UU.mkPass function in figure 3.1. First, they
get all the values of that exact type the local change is operating on. Second, they
apply the local change on these values, this gives a list of functions. The functions in
this list are then composed with a helper function to lift those functions to become
global AST transformations (which only do one change at a precise location).

Passes that work on the renamed AST or the typechecked AST can also be added,
but were not needed so far. In contrast to earlier work, here the passes are only

16

3.2. PASSES

module ExtensionExample where

-- imports from the ghc library
import GHC
import OccName as ON
-- imports from hsreduce
import Reduce.Driver as RD
import Reduce.Passes as RP
import Util.Util as UU
import Util.Types as UT

myHsReduce shellScriptPath testCasePath =
RD.hsreduce

[mapM_ UU.runPass (expr2Undefined : RP.allPurePasses)]
1 -- number of threads
shellScriptPath
testCasePath
True -- record statistics

expr2Undefined :: UT.Pass
expr2Undefined = UU.mkPass "expr2Undefined" f

where
f :: UT.WaysToChange (GHC.HsExpr GHC.GhcPs)
f _ = [_ -> GHC.HsVar GHC.NoExt

. GHC.noLoc

. GHC.Unqual
$ ON.mkOccName ON.varName "undefined"]

Figure 3.1.: Example extension of hsreduce.

17

3.2. PASSES

responsible for producing variants; nothing else. Also to our knowledge, this is the
first time that reduction passes are implemented as pure functions.
Passes alone also do not suffice. We additionally have to get the old state, apply

our change on the AST of the current state, then write that change to a file and run
the interestingness test shell script. For that, we have actions in our custom monad
transformer, in which we store our configuration and state. With actions, we take
passes and encapsulate them into our monadic context. In figure 3.1 this is done by
the expression UU.runPass. First, we get the old state and its parsed source. Then
we apply the pass on it, getting a list of proposed changes. For each proposed change
we see if it is interesting by writing the result to a temporary file and running the
interestingness test shell script on it; if the result is interesting, we update our state.
As said earlier, Haskell specific passes are one of the main contributions of this

work. Now follow the individual passes in more detail. We go over a majority of
features from the Haskell language and explain the passes that were implemented to
handle them.

3.2.1. Replacing Things with "Dummy" Values
This is our first pass: it replaces any expression by simply undefined, which is
suitable because it is of polymorphic type, that means it can be plugged in anywhere
and when evaluated throws an error. This is a good way for us to test, whether an
expression is needed or not. If it is needed, it will be evaluated and having turned
that expression into undefined means that the program will just crash. We use the
generic traversal capability of the GHC AST to make it a function that operates
on Haskell expressions. That means for any expression, we check if we can turn it
into undefined. figure 3.2 shows examples of expressions where this transformation
can happen. Adding this pass gives us the ability to test for every expression if it is
needed. If not, we can turn it into this “dummy” value and free up the references in
this expression. This then enables later passes like removing matches or removing
declarations.
Next, we try to turn any type into the unit type. If it is corresponding value is

undefined or unevaluated this succeeds and can delete references on declared types.
We also try to turn types into the wildcard type. They both have almost the same
effect, i.e. freeing up types. We think turning types into unit is a better pass because
turning types into the type wildcard might make specialized types polymorphic,
which might decrease reduction performance. Also, turning types into the type
wildcards might not be usable so often because it requires the PartialSignatures
extension.

Lastly, hsreduce tries to turn patterns into the wildcard pattern. This might free
up references on constructors, which in turn might enable further type simplifications.

Pass 1: Turn Expression into undefined For each expression, try to turn it into
undefined.

Pass 2: Turn Type into Unit For each type, try to turn it into the unit type.

18

3.2. PASSES

a = 32 7−−−−−−−−−−−→
turn into undefined

a = undefined

b = "hello" 7−−−−−−−−−−−→
turn into undefined

b = undefined

c = 5 + 6 7−−−−−−−−−−−→
turn into undefined

c = undefined

d =
let x = 5
in 2 + x

7−−−−−−−−−−−→
turn into undefined

d = undefined

e = if isPrime n
then Just n
else Nothing

7−−−−−−−−−−−→
turn into undefined

e = undefined

Figure 3.2.: Turning expressions into undefined.

f :: String -> Int 7−−−−−−−−−→
turn Int into ()

f :: String -> ()

g :: Bool -> Char 7−−−−−−−−−−→
turn Bool into _

g :: _ -> Char

h (Just 3) = "hello" 7−−−−−−−−−−−→
turn (Just 3) into _

h _ = "hello"

Figure 3.3.: Turning things into dummy values and handling declarations.

Pass 3: Turn Type into Type Wildcard For each type, try to turn it into a type
wildcard.

Pass 4: Turn Pattern into Wildcard Pattern For each pattern, try to turn it into
the wildcard pattern.

3.2.2. Removing Unused Entities
Declarations

Now that we have a way to turn values into dummy values, which frees a lot of
references, we now also need a way to delete declarations. Before we can delete dec-
larations though, we need to also delete their type signatures. Deleting a declaration
which still has a type signature is a useless transformation, since it will always fail
because we cannot have stand-alone type signatures. Here one has two options: to
delete type signatures while deleting declarations or removing type signatures sepa-
rately. We opted to do it separately because even if we do not delete the declaration,
removing the type signature might still free references on types. But then we face
another problem: multiple identifiers can share the same type signature, which can
then make it impossible to remove the signature because it might be necessary for
other identifiers.
So first, we split type signatures. This operation should always work, and it is a

semantic preserving transformation.

19

3.2. PASSES

f, g :: double -> double
f = undefined
g x = 2 * x

7−−−−−−−−−−−−−−−−→
split signatures for f and g

f :: double -> double
f = undefined

g :: double -> double
g x = 2 * x

f :: double -> double
f = undefined

g :: double -> double
g x = 2 * x

7−−−−−−−−−−−−−→
remove type signature

f = undefined

g :: Double -> Double
g x = 2 * x

f = undefined

g :: Double -> Double
g x = 2 * x

7−−−−−−−−−−−−−−→
remove declaration of f

g :: Double -> Double
g x = 2 * x

Figure 3.4.: Splitting signatures, removing signatures and removing declarations.

Next, we try to remove signatures. The signature type also includes fixity decla-
rations and several types of pragmas, like inline and specialize pragmas. If we try
to remove a declaration first we might run into the problem that the signature is
still around and without a corresponding declaration. Removing signatures should
be possible most of the time because the types can be inferred anyway. This might
not be a semantic preserving transformation, because it might give expressions more
polymorphic types than they had.
Lastly, we try to remove unused declarations, one by one. This can be any

declaration, whether it be a data declaration, type synonym, class, instance and else.
This is of course not a semantic preserving transformation. For unused declarations
we call GHC with flags to show warnings for unused bindings. If nothing shows up,
we try brute-force to delete all possible declarations.

For all three passes, see figure 3.4 for an example.

Pass 5: Split Type Signatures If a type signature cotains multiple identifiers, try
to split it into multiple type signatures.

Pass 6: Remove Type Signatures For each type signature, try to remove it.

Pass 7: Remove Declarations For each declaration, try to remove it.

Data Declarations and Data Types

After running out of declarations to remove, we have to step further down. One of
the the most common declarations are data declarations. For data declarations, all

20

3.2. PASSES

data A = B | C 7−−−−−−−−−−−−→
remove constructor B

data A = C

data Expr a where
IVal :: Int -> Expr Int
BVal :: Bool -> Expr Bool

7−−−−−−−−−−−−→
remove constr. BVal

data Expr a where
IVal :: Int -> Expr Int

data A = C { a :: Int
, b :: Bool } 7−−−−−−−−−→

remove field a
data A = C { b :: Bool }

Figure 3.5.: Removing unused constructors and unused fields.

unused constructors are filtered out. This is of course a destructive pass. Additionally,
we see if we can simplify the constructors in declarations. For record constructors
we try to remove unused fields. For generalized algebraic datatypes (GADTs), we
try to remove qualifying variables. For both passes, see figure 3.5 for an example.

Pass 8: Remove Constructors For a data declaration, try to remove each of its
constructors.

Pass 9: Simplify Constructors For a constructor, if its a record constructor try to
remove each of its fields. If its a GADT constructor, try to remove qualifying
variables.

We also thought of turning GADTs into algebraic datatypes (ADTs) but thought
this wouldn’t make sense most of the time, because GADTs are used exactly to have
type distinctions between the several constructors.

Functions

After turning expressions into undefined there are often some reduction opportunities
in functions. For functions, we have three things where reductions can be done: If
there are unused matches in a function then we can remove them. This most ofen
happens if the right-hand side of the match is equal to the undefined expression.
After matches, the next big thing to reduce are right-hand sides (RHS), which a
match can have multiple of. Furthermore, multiple of the latter might be unused.
Some guards might be garbage and can be collected.

Pass 10: Remove Matches For a function, try to remove each of its matches.

Pass 11: Remove Right-Hand Sides For a match, try to remove each of its right-
hand sides.

Pass 12: Remove Guards For a right-hand side, try to remove each of its guards.

For all these three one can see examples in figure 3.6.

21

3.2. PASSES

f _ = undefined
f (Left s) = s 7−−−−−−−−→

remove match
f (Left s) = s

f
| undefined = expr1
| otherwise = expr2

7−−−−−−−→
remove RHS

f | otherwise = expr2

f x
| 1 < 2
, x == Just 3 = True

7−−−−−−−−→
remove guard

f x | x == Just 3 = True

Figure 3.6.: Removing matches, right-hand sides and guards.

Expressions with Lists of Subexpressions

We also handle all expressions that have lists of subexpressions. We try to filter out
all unnecessary subexpressions. Examples of expressions with lists of subexpressions
include record update expressions, explicit tuples, list expressions, case expressions
and multi-way-if expressions. See figure 3.7 for an example.
For example when removing field updates, this might free up those fields for

removal from their constructor. For case expressions and multi-way if-expressions,
we also try for each of their branches to replace them by their branch.

Pass 13: Filter out List of Subexpressions
Take an expression with a list of subexpressions and try to filter them out, one
by one.

Miscellaneous

First, we try to remove functional dependencies. This might tell us, if the behavior
stems from functional dependencies.
Then, we try to remove result kind signatures from type families. If the kind

annotation is just Type or *, it is redundant information.
For deriving clauses, we delete type classes from them or try to remove the whole

clause.
For all three one can see examples in figure 3.8.

Pass 14: Remove Functional Dependencies For each functional dependency, try
to remove it.

Pass 15: Remove Deriving Clause For each deriving clause, try to remove it.

Pass 16: Filter out Typeclasses from Deriving Clauses
For a deriving clause, try to remove each of its typeclasses.

22

3.2. PASSES

f = case mMessage of
Just s -> s
Nothing -> undefined

7−−−−−−−→
remove case

f = case mMessage of
Just s -> s

g = if
| x > 0 -> undefined
| x < 0 -> Left ()
| x = 0 -> Right True

7−−−−−−−−−−−→
remove if−branch

g = if
| x < 0 -> Left ()
| x = 0 -> Right True

h myState = myState {
count = oldCount + 1

, alive = undefined
}

7−−−−−−−−−−−−→
remove field update

h myState = myState {
count = oldCount + 1

}

i = [1,2, undefined] 7−−−−−−−−−−−→
remove list element

i = [1,2]

Figure 3.7.: Simplifying expressions with lists of subexpressions.

Pass 17: Remove Result Kind Signature For each type family, try to remove its
result kind signature.

3.2.3. Reducing To Subexpressions
Expressions

Additionally, we look at simplifying expressions, which most often means reducing
to one subexpression. We try to turn if-expressions into one of their branches, try
substituting case-expressions with one of their cases, turning application of two
expressions to one of the two and turning an operation involving two expressions
into one of the two. Moreover, we try to remove type annotations, type applications
and strictness annotations.
For example in an if-expression we try to substitute it to one of its branches. If

that succeeds, it frees up the expression in the head of the if-statement.
Other types of expressions that are reduced: arithmetic expressions, list and tuple

expressions.
For examples, see figure 3.9.

Pass 18: Simplify Expression For each expression, try to replace it by one of its
subexpressions.

23

3.2. PASSES

class C a b | a -> b where 7−−−−−−−−−−−−−→
remove functional dep.

class C a b where

type family F a :: k where 7−−−−−−−−−−−→
remove result kind

type family F a where

data A = B
deriving (C1, C2) 7−−−−−−→

remove C2
data A = B deriving (C1)

data A = B
deriving (C1, C2) 7−−−−−−−−−−−−−→

delete deriving clause
data A = B

Figure 3.8.: Removing functional dependencies, kind annotations and handling
deriving clauses.

f = if expr1
then expr2
else undefined

7−−−−−−−−−−−−−−→
reduce to subexpression

f = expr2

g x = h x 7−−−−−−−−−−−→
reduce to argument

g x = x

i = expr + undefined 7−−−−−−−−−−→
reduce to operand

i = expr

j = undefined `op` expr 7−−−−−−−−−−→
reduce to operand

j = expr

k = undefined :: Int 7−−−−−−−−−−−−−−→
remove type annotation

k = undefined

l = m @Int undefined 7−−−−−−−−−−−−−−→
remove type application

l = m undefined

n = let x = undefined
in expr 7−−−−−−−−−→

remove binding
n = expr

Figure 3.9.: Reducing to subexpressions.

24

3.2. PASSES

o :: forall a b. a -> () 7−−−−−→
remove b

o :: forall a. a -> ()

p :: (Data a
, Show b)

=> a -> ()
7−−−−−−−−−−−−−−−−−−→
remove typeclass from context

p :: (Data a)
=> a -> ()

q :: Maybe Int
q = undefined 7−−−−−−−−−−→

reduce to subtype

q :: Int
q = undefined

r :: [Int] 7−−−−−−−−−−→
reduce to subtype

r :: Int

s :: t1 @@ () 7−−−−−−−−−−→
reduce to operand

s :: t1

t :: (u :: k) -> v 7−−−−−−−−−−−−−−→
remove kind annotation

t :: u -> v

Figure 3.10.: Reducing to subtypes.

Types

Next, hrseduce tries to simplify types. We try to reduce contexts, qualified type
variables in foralls, removing kind signatures and turning applications and type
operations into one of the subtypes. See figure 3.10 for examples.
For example with a type operator we try to reduce to one of its operands. This

might free up the other operand.

Pass 19: Simplify Type For each type, try to replace it by one of its subtypes.

3.2.4. Exports
If exports are explicitly listed, hsreduce tries to delete unused exports.

If no exports are specified, everything is exported implicitly. We turn the implicit
export-alls into explicit export-alls. hsreduce takes all declaration names and adds
them to the list of exports. Type operators need special treatment, there we need to
add the keyword "type" to disambiguate type and normal value operators.

Pass 20: Remove Exports If exports are implicit, make them explicit. Then for
each export, try to remove it.

3.2.5. Formatting
Using the GHC-API, we get the AST representation of the test-case. When printing
that represention we also get rid of confusing formatting which the input might have

25

3.3. RICHER TRANSFORMATIONS

had. Unnecessary white space and comments are thrown away in the process.

3.2.6. Other Passses
Additionally, hsreduce includes these passes, which are too small to be worthy of
their own section.

Pass 21: Remove Imports For each import, try to remove it.

Pass 22: Remove Pragmas For each pragma, try to remove it.

3.3. Richer Transformations
The previous passes could mostly be written as a local change lifted into the context
of transforming ASTs. The following transformations necessitate several elements of
the AST to be changed at once.

Removing Unused Parameters

Removing parameters / arguments can be done for different types of Haskell language
features:

Pass 23: Remove Function Parameters For a function, its type signature and its
usage sites: try to remove each of its parameters.

Pass 24: Remove Method Parameters For a method, try to remove each parame-
ter from both the typeclass and its instances.

Pass 25: Remove Constructor Arguments For a constructor, try to remove argu-
ments from it and its usage sites.

Pass 26: Remove Type Family Parameters For a type family, try to remove pa-
rameters from both the declaration and usage sites.

Pass 27: Remove Typeclass Parameters For a multi-parameter typeclass, try to
remove each of its parameters.

They all share a common reduction helper function. First, we need a way to get a
list of all names of elements that have parameters and their respective parameter
counts. Then, we map over a list of the indices of the parameters for each name and
see if we can remove it. But before we can do that, we need to check the number of
indices again, since it might have decreased because we were able to delete earlier
indices. Finally, we can run a custom transformation on the AST. The transformation
needs to change several parts in the AST at once. For example for functions, we need
to remove a parameter from the binding, type signatures and expressions. Otherwise
we would receive an error that there is a mismatch in the number of parameters.

26

3.3. RICHER TRANSFORMATIONS

type A = String

f :: A -> t
7−−−−−−−−→
inline at type

type A = String

f :: String -> t

newtype B = C t1

g :: B -> t2
g (C e1) = e2

7−−−−−−−−−−−−−−−→
inline at type and pattern

newtype B = C t1

g :: t1 -> t2
g e1 = e2

newtype B t1 = C t2

g :: B t3 -> t4
g (C e1) = e2

7−−−−−−−−−−−−−−−→
inline at type and pattern

newtype B t1 = C t2

g :: t2 -> t4
g e1 = e2

Figure 3.11.: Inlining data types.

Template Haskell

hsreduce also tries to dump Template Haskell splices. This pass is only possible if the
test case succeeds the renaming and typechecking phases of GHC. If we succeeded in
obtaining a renamed source of the test case, we write it out to the temporary file and
check if the test-case is still interesting. This has the effect of expanding all splices
at once. In contrast to dumping single splices one by one, this approach does not
work for test-cases that fail during typechecking. For future work, we also want to
support dumping single splices by running GHC with the -ddump-splices option
and for each splice, try to dump it.
Pass 28: Expand Template Haskell Try to expand all Template Haskell splices at

once.

Inlining Data Types

Additionally, we try to inline type aliases and newtypes. This pass needs two things
to happen: inlining at types and inlining at patterns. Examples can be seen in
figure 3.11.
Pass 29: Inline Data Types For prefix data constructors and newtypes, try to

inline them in type signatures and patterns.

Type Classes

For type classes, we try to remove unused methods, both from the classes and
instances. See figure 3.12.
Pass 30: Remove Typeclass Methods For each method, try to remove it simulta-

neously from the typeclass and all its instances.

27

3.3. RICHER TRANSFORMATIONS

class C1 t where
f :: t1
g :: t2

instance C1 Bool where
f = expr1
g = expr2
{-# INLINE g #-}

7−−−−−−−−−→
remove method

class C1 t where
f :: t1

instance C1 Bool where
f = expr1

class C2 t4 t5 where

instance C2 Char Int where
7−−−−−−−−−−→
remove parameter

class C2 t4 where

instance C2 Char where
Figure 3.12.: Handling typeclasses.

Inlining Functions

Before inlining we look at functions with only one match and try to eta-reduce them.
First, we look at trivial inlining opportunities, where we have a binding of the

form f = g, so we just replace occurences of f with g.
For other function bindings, hsreduce tries to do true inlining. There we look for

occurences of the function name and replace it with a lambda expression. Then, we
try to do beta reduction on the lambda application expression. For functions with
multiple right-hand sides or multiple matches, there is not much we can do, because
we might not know the value or the “form” of the argument.

So for inlining, the question when to inline is important. Inlining too many
functions leads to unreducible large lambda expressions that decrease readability of
the test-case.

We have chosen to inline when there is only one usage site and if the function has
got one match, one right-hand side and no guards.

Pass 31: Eta-reduce matches For each match, try to eta-reduce it.

Pass 32: Inline Function If a function has only one match and only one usage site,
try to inline it as a lambda function.

Pass 33: Beta-reduce Expressions For expressions of an expression being applied
to a lambda, try to beta-reduce it.

One could also merge these passes into one pass but separating them might lead
to more flexibility.

Type Families

For type families, hsreduce sees if it can apply them. We look at all type family
equations and occurences of the type family and see if one of the equations can

28

3.3. RICHER TRANSFORMATIONS

type family F a where
F Int = Char
F a = String

f :: F Int -> ()

g :: F Bool -> Bool

7−−−−−−−−−−−−−−→
reduce applications of F

type family F a where
F Int = Char
F a = String

f :: Char -> ()

g :: String -> Bool

Figure 3.13.: Handling type families.

be applied. The best way to do it would be to use information provided by the
typechecker of GHC and to use it to normalize types with type family applications in
it. However, when trying out those type normalizing functions, they failed to reduce
type family applications that could already be reduced by syntactic transformations.
It seems that we do not apply those type normalizing functions correctly and we
did not find a way to do so. We currently only do syntactic transformations to
reduce type family applications. Our approach also lacks pattern matching, so the
transformations we can do are somewhat limited.
Lastly, we try to remove type family equations.
See figure 3.13 for an example.

Pass 34: Reduce Type Family Application For application of a type family, try
to reduce it using one of the type families equations.

29

4. Merger Implementation
While we now have the means to reduce single Haskell modules, most bugs come up
in large projects, consisting of multiple inter-dependent Haskell modules. We need to
squash these down to a single module that our reduction machinery can boil down.
Haskell projects can be handled by several tools, cabal [9] and stack [10] being the
most popular choices, but make [11] and shake [12] can also be used. In this work,
we will focus on cabal projects. Because stack also uses cabal files, this approach
should also work for stack projects. With that, our work should cover the two most
popular build tools for Haskell.

Cabal projects are specified using cabal files which specify the name of the project,
its dependencies, its build artefacts (libraries or executables) and their constituents,
flags that should be passed to the compiler and more.

4.1. Preprocessing
First, one often needs to simplify the cabal file. This includes removing unnecessary
sections like unused benchmarks, unused testsuites, unused libraries and executables
and unused modules. Another preprocessing step is to inline dependencies. These
steps are not automated yet because with the current test-cases it was quicker to do
it by hand so far. On the contrary, merging modules most often cannot be done by
hand because the number of names can quickly increase, even with a small number
of modules. Therefore, we need to automate this step.

4.2. Existing Tools for Merging
First, we looked if there are already existing tools we could use to do merging of
Haskell modules. hs-all-in-one [13] is a Haskell project by Joachim Breitner. It uses
the haskell-src-exts [14] library for parsing and works on its AST representation.
This library is very user-friendly and the implementation is quite small, however, it
does not work for all projects. One example: we could not merge files that use the
C preprocessor language extension, although that is solvable by using the hse-cpp
[15] library. Additionally, hs-all-in-one only disambiguates names from the modules
we want to merge. This can lead to ambiguous names from conflicting imports.
Problems we encountered when trying to use hs-all-in-one:

• not in scope data types
• ambiguous occurrences (data types, operators not being renamed)

31

4.3. REQUIREMENTS FOR MERGING HASKELL MODULES

{-# language CPP #-}

#if __GLASGOW_HASKELL__ > 710
main = pure ()
#else
main = undefined
#endif

(a) Example using the CPP extension.

import Data.List
import A

main = pure ()

f = map id [1,2,3]

{-# language NoImplicitPrelude #-}
module A where

import qualified Prelude
import Data.Map

g = map Prelude.id Prelude.$ fromList [(1, 'a')]
(b) Ambiguous occurence of map when merged.

Figure 4.1.: Two examples that hs-all-in-one cannot merge.

• multiple declarations for the same name
• duplicate type signatures
• names where the module name did not fit with the import module name
• external names not being qualified
• operators not being renamed and clashing

Finally, we learned that the haskell-src-exts library is not maintained anymore
[16]. This will in the future lead to a mismatch between what the GHC API can
parse and what this library can parse. These issues led us to write our own version
of a merging tool using the GHC API. The goal was to write a merging tool that is
more future-proof (by using GHC’s parsing infrastructure) and works for a wider
range of Haskell programs and projects.

4.3. Requirements for Merging Haskell Modules
First, we need to get the build information from the project files, namely being cabal
files. This is information such as the modules that are to be built, as well as the flags
and extensions to set and enable, respectively. Especially, we need to obtain the
module graph. Mostly, this is information to correctly set up a GHC API session.
Next, each module needs to be parsed and renamed. The renamer resolves for

each name its provenance: where it is declared and from where it is imported [17].

32

4.4. OBTAINING PROJECT INFORMATION

Third, the information from the renamer needs to be applied on names occuring
in the parsed or renamed source.
Lastly, all the renamed modules need to be merged into one big module.

4.4. Obtaining Project Information
We found three ways to get the build information:

the first is to use the Cabal library to parse the cabal file. By doing that, a package
description is obtained, which contains the different components declared in the cabal
file. Disadvantageous here is that the users have to setup a GHC session themselves.
That means they have to fetch all the correct flags, include directories and source
dirctories themselves.
Secondly, GHC plugins [18] can be used. Here, users would build the project

with cabal, but with a flag specifying their plugin. The plugin then automatically
provides the build information and the right flags and no manual management of
the GHC API session is needed. But the disadvantage is that the plugin is only run
on modules individually. Using this tool would require to first rename the modules,
print that information in temporary files and then run a separate tool to merge the
renamed modules.
Lastly, there is the hie-bios [19] library by Matthew Pickering. It is used by the

haskell-language-server [20] and ghcide [21] project to set up GHC API sessions [19].
It supports [19] a wide range of Haskell packaging tools including cabal-install [9],
stack [10], rules_haskell, hadrian and obelisk. We opted for using hie-bios, because
it offers the easiest way to setup a GHC API session. For users of our merging
utility, this means they have to create a hie.yaml file and write down the name of
the executable or library to which the error inducing module belongs to. Then they
have to specify the name of the latter module, Our tool finds the hie.yaml file and
takes it from there.

4.5. Accessing Renaming Information
After the renaming phase, GHC should know for each name the module from where
it was declared and imported. Now we need a way to access this information to use
it for our merging tool. We found two major ways to get module information about
a name: nameModule_maybe and lookupGRE_name.
The first lookup function we used was nameModule_maybe, which given a name,

returns the module where that name was declared. This leads to the problem that
the name of the declaring module might be very different from the name of the
importing module, as can see in example figure 4.2. Very often they are so different
that it is impossible to find out the importing module name from the declaring
module name. In the example that is the case, we have no way of knowing that
Prelude re-exports things that were declared in GHC.Types.

33

4.6. ESSENTIAL RENAMING

main = pure ()

n :: Int
n = 3

(a) Original file.

import qualified Prelude

main = GHC.Base.pure ()

n_Main :: GHC.Types.Int
n_Main = 3

(b) Using nameModule_Maybe

import qualified Prelude

main = Prelude.pure ()

n_Main :: Prelude.Int
n_Main = 3

(c) Using lookupGRE_name

Figure 4.2.: Observable differences in using two provenance functions.

lookupGRE_name uses the global renamer environment table. Given a name, we
can find its corresponing element in that environment and its provenance, where we
find exactly the module which brought this name into scope.
We chose to use lookupGRE_name since it gives us exactly what we want: the

importing module name for external names.

4.6. Essential Renaming

Now that we have a way to find the correct module information for a name, at which
places should we apply it? Should we apply it at every name that we encounter?
Unfortunately, it does not suffice to just rename all names we encounter. Let us first
look what we should do for names that are interesting for us.

4.6.1. Mapping of Names

A name we encounter can only be one of three things: a built-in name (something
like Haskell list syntax), an external name (brought into scope by an import) or an
internal name (a name from a module of the module graph we are currently working
on). For built-in names, we do not have to do anything. External names we qualify
to be explicit where this name is coming from. Internal names we disambiguate by
concatenating the module name with the name.

34

4.7. APPLYING RENAMER INFORMATION

4.6.2. Additional Renaming
Record fields are not renamed by our name-renaming function, since they only
contain RdrNames. Some of them are not disambiguated until type checking because
the user might have enable overloaded record fields. So we have a separate function
to properly rename them.

4.6.3. Prohibited Renaming
Our name-renaming function qualifies some things that should not be qualified:

• binding positions (for example type class method names)
• type signatures
• names of type families

We run separate functions to unqualify them.

4.7. Applying Renamer Information
Now, there are two major ways to apply the provenance information that we got from
the renamer: we can either apply it on the parsed source or the renamed sourced.

4.7.1. On Renamed Source
With the renamed source, we can directly change the names there. We also do not
have to do any clean up after merging, which is necessary with other approaches.
Another advantage is that we always get one module, we never have to exclude
modules from the merging process.
But we still have problems: Template Haskell splices with hidden names being

expanded cannot be handled by this approach because we cannot get provenance
information for those names except for their exact module name where they were
declared. There are two problems that can appear: either the exact module name
is a hidden module or the name itself is a hidden name. In figure 4.4 there is an
example for that. In the merged file, there is valueConName being used, which
is a non-exported, hidden name and additionally there are hidden modules like
Data.Aeson.Types.FromJSON being used. To our knowledge, this problem appears
only in a small amount of cases and libraries that use Template Haskell seldom
expand their splices to expressions using hidden symbols. One solution would be for
libraries to change their Template Haskell code to not expand with hidden names.

Because of these problems we briefly considered using the parsed source, but there
we encounter the problems of having to indirectly apply the renaming information
and running into the Template Haskell staging restriction.

35

4.7. APPLYING RENAMER INFORMATION

4.7.2. On Parsed Source
Applying the changes on the parsed source means for each name in the renamed
source that its location and its corresponding change are to be saved. It has the
advantage that template haskell splices possibly containing hidden symbols are not
expanded.

But there was then the problem, that splices were not renamed properly. Somehow,
their locations are not visited during the renamer. So in another run, splices are
focussed explicitly and their names are renamed.

But then shows up another problem that there might be functions in splices which
are declared in the same module which violates the staging restriction. This can
be solved by excluding the module where that function is declared from the set of
modules to merge.
So, using the parsed source, in some cases it might not be possible to merge all

modules into one.

4.7.3. Re-Exports by “Our” Modules
Another problem that can appear are re-exports by modules that belong to the set of
modules we want to merge. In figure 4.5 there is an example where we would resolve
for map its declaring name. This came from us choosing the declaring name over
the importing name if the two differed. The rationale for this was, if we import one
of “our” modules (the modules belonging to the graph we want to merge), which is
exporting a name that was declared in another one of our modules, then we need to
choose the declaring name. In this case, we resolved the importing name for map to
be module A, which is correct, but it is not really the module where map is coming
from. To find that out, we need to check, whether module A is declaring or importing
map, and if that is the case, follow up recursively. So we included a check: if the
importing module name belongs to “our” modules but the declaring module name
differs, then we recursively query for the importing module name.

36

4.7. APPLYING RENAMER INFORMATION

{-# LANGUAGE TemplateHaskell #-}

import A

main = $(f)

(a) Main.hs

{-# LANGUAGE TemplateHaskell #-}

module A where

import Language.Haskell.TH

f = varE $ mkName "undefined"

(b) A.hs

(c) Initial files

{-# LANGUAGE TemplateHaskell #-}

module AllInOne where

import Language.Haskell.TH

f_A = varE $ mkName "undefined"

main = $(f_A)

(d) Result using parsed source

{-# LANGUAGE TemplateHaskell #-}

import qualified Prelude
import qualified Language.Haskell.TH

f_A
= Language.Haskell.TH.varE

Prelude.$ Language.Haskell.TH.mkName "undefined"
main = (Prelude.undefined)

(e) Result using renamed source

Figure 4.3.: Staging restriction.

37

4.7. APPLYING RENAMER INFORMATION

{-# LANGUAGE TemplateHaskell #-}
import Data.Aeson.TH

main = pure ()

data A = B

$(deriveJSON defaultOptions ''A)

(a) Initial file

{-# LANGUAGE TemplateHaskell #-}
module Main where
import qualified Prelude
import qualified Data.Aeson.TH
main = Prelude.pure ()

data A_Main = B_Main

instance Data.Aeson.Types.FromJSON.FromJSON A_Main where
parseJSON

= \ value_a8m9
-> case value_a8m9 of

Data.Aeson.Types.Internal.Array arr_a8ma
| Data.Vector.null arr_a8ma -> Prelude.pure B_Main
| Prelude.otherwise
-> (((Data.Aeson.TH.parseTypeMismatch' "B") "Main.A")

"an empty Array")
("Array of length "

Prelude.++
(Prelude.show Prelude.. Data.Vector.length) arr_a8ma)

other_a8mb
-> (((Data.Aeson.TH.parseTypeMismatch' "B") "Main.A") "Array")

(Data.Aeson.TH.valueConName other_a8mb)
instance Data.Aeson.Types.ToJSON.ToJSON A_Main where

toJSON
= \ value_a8m7

-> case value_a8m7 of {
B_Main -> Data.Aeson.Types.Internal.Array Data.Vector.empty }

toEncoding
= \ value_a8m8

-> case value_a8m8 of {
B_Main -> Data.Aeson.Encoding.Internal.emptyArray_ }

(b) merged file

Figure 4.4.: Problems caused by Template Haskell splices.38

4.7. APPLYING RENAMER INFORMATION

import A

main = pure ()

a = A.map id [1,2,3]

(a) Main.hs

module A (map) where

import B

(b) A.hs

module B (map) where

import Data.List

(c) B.hs

module Main where
import qualified Prelude
import qualified Data.List

main = Prelude.pure ()
a_Main = GHC.Base.map Prelude.id [1, 2, 3]

(d) Merged file with problem with our previous approach

Figure 4.5.: Re-Export by “our” modules.

39

5. Evaluation
To evaluate our new reducer, we evaluated it on some real-world issues from the
GHC tracker and measured the reduction quality measured in bytes, tokens and
identifiers, the time spent and the total test invocations. We compare it to the best
of the related work, C-Reduce. Finally, we look at the passes individually and the
pass ordering.

We created a separate repository and added 11 test cases that were derived from
real-world issues directly from the GHC tracker 1. They exhibit a variety from bugs
ranging from the issues in type checker, the simplifier, to bugs that show up in
decreased time and space performance. Another variety that the test cases exhibit is
that for each there are different techniques needed to reduce it. As examples: for
T14270 turning expressions into undefined does most of the work, for T13877 we
needed to turn types into the Unit type and for T16979 we need to reduce type
family applications. Almost all these issues are triggered by different GHC versions
2. With T15696_2 and T18140_2, the Haskell files were produced by using our
merging functionality.
Evaluation was done on a Lenovo Yoga 920 with an Intel i7 eight core CPU and

16 gigabytes of RAM. We evaluated with C-Reduce version 2.9. On all test cases we
called C-Reduce and hsreduce with eight interestingness tests running concurrently
and having a timeout of 30 seconds 3.

5.1. Comparison with C-Reduce
We compare with C-Reduce because it is the best one of the related work. Our goal
is to see how many identifiers and bytes it can reduce, in what amount of time and
with how many test invocations. We focus on reduction of identifiers because it is a
stronger metric than reduced number of bytes since C-Reduce shortens identifiers.

5.1.1. Results
Our tool is better at reducing identifiers than C-Reduce. hsreduce removes in the
median 78 percent of the identifiers compared to C-Reduce being able to remove

1See appendix for links to the issues
2We used the nix package manager to get specific GHC versions and in one test case we build a
specific commit of GHC

3On T18140_1 we called C-Reduce and hsreduce with two threads and a timeout of 150 seconds,
on and T18140_2, we called C-Reduce and hsreduce with two threads and a timeout of 150
seconds

41

5.1. COMPARISON WITH C-REDUCE

60 percent in the median. Looking at the geometric mean, hsreduce removes 79
percent of identifiers compared to C-Reduce being able to remove 70 percent. This
suggests that hsreduce’s transformations are more meaningfull. We think hsreduce’s
domain-specificity seems to lead to that that difference.

T16979, T18098 and T13877 are test cases where hsreduce performs much better
than C-Reduce. With T16979 hsreduce achieves a 60 percent smaller end result
while only spending one third the time. With T18098 hsreduce achieves a 30 percent
smaller end result while spending 1/17 the time. For T13877 hsreduce achieves a 50
percent smaller end result while spending less than half as much time. These test
cases profit from domain knowledge which hsreduce is able to exploit. T8763 is a
test case where hsreduce is surprisingly bad compared to C-Reduce. hsreduce only
spends half as much time but its end result is 39 percent bigger. Reasons for this
are still unclear.
For all other test cases both tools are close regarding end reduction size, but

hsreduce is about two times faster. For these tests, domain-specificity is not needed
as much for the previously mentioned ones. Another reason is that C-Reduce also
does shortening of identifiers, which improves the reduction in bytes but decreases
readability.
Looking at the reduction in identifiers, hsreduce is in all but one test case the

better reducer. This suggests that the reductions of hsreduce are more meaningful.
hsreduce does about a tenth the interestingness test shell script invocations that

C-Reduce does.
The results of the comparison can be seen in table 5.1. For each test case we

recorded:

• the number of identifiers before reducing, after reducing with C-Reduce and
after reducing with hsreduce

• the time spent by both tools
• the amount of test invocations done by both tools
• the number of bytes before reducing, after reducing with C-Reduce and after

reducing with hsreduce

For the column Identifiers there are three sub-columns: the column “s” (short
for starting value) stands for the number of identifiers of the test case before any
reduction. For test case T8763 that is 221 identifiers. The column “C” (short for
C-Reduce) stands for the number of identifiers in the result of C-Reduce’s test case
reduction. For T8763 there were 63 identifiers left after running C-Reduce on it. In
parentheses we have the reduction in percent. For T8763, C-Reduce resulted in a
-72% change in the number of identifiers. To calculate this value, we take the ratio
of the number of identifiers after reduction compared to the number of identifiers
before the reduction. In this example that is 63

221 = 0.285. Now we subtract this
from one and get 0.715 = 71.5%. Because this represents the amount of identifiers
that were reduced away, we negate it. This is how we get at at the rounded value of
-72% in the table. Because for C-Reduce this value it achieved on T8763 is higher
than the one achieved by hsreduce, we put it in boldface. For the “winning” tool

42

5.1. COMPARISON WITH C-REDUCE

regarding a certain test case, we always mark this value in boldface. The next column
in the Identifiers multi-column is “h” (short for hsreduce), which stands for the
number of identifiers in the result of hsreduce’s reduction of the test case. For T8763,
there were 84 identifiers left after running hsreduce and hsreduce resulted in a -62%
change in the number of identifiers, which is calculated the same way like it was for
C-Reduce. As the last column of the Identifiers multi-column, we have the column
“f” standing for a factor, where that factor tells us how much bigger the amount of
identifiers in the result of the losing tool is, in comparison to the amount in the result
of the winning tool. Here with T8763, hsreduce is the worse performing tool. So we
calculate the number of identifiers for the result of hsreduce and divide that by the
number of identifiers in the result of C-Reduce. For T8763, we calculate 84

63 = 1.33.
For Time Spent, there are only two columns: one for how much time C-Reduce

spent and one for how much time hsreduce spent. We display the time spent in
seconds.
Tests Run displays for both tools, how many interestingness test shell script

invocations they did.
The last multi-column is about Bytes, meaning the byte size of the test case before

and after reduction. Like with Identifiers, we have a starting value, a value for
C-Reduce and one for hsreduce. Calculation of these values is analogous to the ones
in Identifiers, except for that we look at the byte sizes instead of the number of
names.
Lastly, we include median and geometric mean for the reductions of C-Reduce

and hsreduce. These are calculated like this: for the median, we take the ratios of
the amount of identifiers after reduction and the amount before reduction, which
we calculated earlier (63

221 for C-Reduce’s result on T8763) for each test case and
calculate the median for these gathered ratios. We then subtract this value from one,
turn it into a percentage and negate it. For the geometric mean, the calculation is
analogous.

43

5.1. COMPARISON WITH C-REDUCE

Te
st

C
as
e

Id
en

tifi
er
s

T
im

e
Sp

en
t

Te
st
s
Ru

n
By

te
s

s
C
-R

ed
uc
e

hs
re
du

ce
f

C
h

C
h

C
-R

ed
uc
e

hs
re
du

ce
T
87
63

22
1

63
(-

72
%
)

84
(-
62
%
)

1.
33

26
24

13
10

13
64
0

10
67

68
9
(-

73
%
)

95
7
(-
63
%
)

T
13
87
7

28
3

11
9
(-
58
%
)

45
(-

84
%
)

2.
64

84
0

31
3

18
42
5

14
24

10
57

(-
59
%
)

56
0
(-

78
%
)

T
14
27
0

37
2

41
(-
89
%
)

36
(-

90
%
)

1.
14

39
3

76
12
07
0

79
4

38
9
(-

89
%
)

43
9
(-
88
%
)

T
14
77
9

13
9

59
(-
58
%
)

55
(-

60
%
)

1.
07

24
0

70
45
46

76
2

52
1
(-

78
%
)

56
1
(-
76
%
)

T
14
82
7

66
48

(-
27
%
)

46
(-

30
%
)

1.
04

45
60

27
44

12
4

10
41

23
97

(-
88

%
)

25
33

(-
87
%
)

T
15
69
6_

1
16
5

88
(-
47
%
)

65
(-

61
%
)

1.
35

24
0

16
1

33
23

51
2

43
1
(-

69
%
)

43
6
(-
68
%
)

T
15
69
6_

2
42
97

21
5
(-
95
%
)

12
7
(-

97
%
)

1.
69

49
80

46
75

43
33
9

43
45

19
68

(-
96
%
)

14
77

(-
97

%
)

T
16
97
9

11
64

66
1
(-
43
%
)

23
0
(-

80
%
)

2.
87

35
54

12
76

56
02
3

61
77

52
19

(-
31
%
)

20
26

(-
73

%
)

T
18
09
8

13
61

51
6
(-
62
%
)

31
5
(-

77
%
)

1.
64

63
00
0

27
28

19
45
28

86
78

36
68

(-
68
%
)

24
59

(-
75

%
)

T
18
14
0_

1
62
8

11
8
(-
81
%
)

98
(-

84
%
)

1.
20

24
00
0

21
53
1

27
09
8

35
94

42
04

(-
76
%
)

37
04

(-
79

%
)

T
18
14
0_

2
16
34

-
11
1
(-

93
%
)

-
-

33
69
1

-
63
79

-
47
83

(-
94

%
)

m
ed
ia
n

-6
0%

-7
8%

-7
4%

-7
7%

ge
om

.
m
ea
n

-7
0%

-7
9%

-7
8%

-8
1%

Ta
bl
e
5.
1.
:C

om
pa
ris
on

C-
Re

du
ce

an
d
hs
re
du

ce
;a

bb
re
via

tio
ns
:
s
(s
ta
rt
in
g
va
lu
e)
,C

(C
-R
ed
uc
e)
,h

.
(h
sr
ed
uc
e)

an
d
f(

siz
e

in
cr
ea
se

fa
ct
or
);

tim
e
sp
en
ti
n
se
co
nd

s,
ge
om

et
ric

m
ea
n
(g
eo
m
.
m
ea
n)

44

5.1. COMPARISON WITH C-REDUCE

5.1.2. Looking at Test Cases
Here are some noteworthy observations we came across while evaluating.
T16979 is the test case where hsreduce does best in comparison with C-Reduce.

It manages to reduce to a size, that a human expert got in their second version of
reduction. To get to this result, hsreduce does several things.

Reduce Type Family Applications The main obstacle of this test case are its many
type families. They are declarations which we can remove but first their
equations need to be unused. At the beginning, this is not the case. All type
families are referenced in types. To free those references, we use our pass to
reduce type family applications. That enables our pass to remove type family
equations, which might free more identifiers referencing other type families. At
last, we can remove the whole declaration. Even though we only reduce type
families syntactically, we can remove all type families in that test case. To be
able to remove them, one needs to reduce their applications.

Remove Typeclass Profunctor To be able to remove this declaration, references to
its typeclass method #. need to be freed. This happens by turning undefined
#. l undefined into l undefined at some point. This was done by the pass that
reduces expressions to their subexpressions. Next, we can remove the typeclass
method, the instance and lastly remove the typeclass declaration.

Remove Typeclass GenericN Another typeclass that is removed is GenericN For
that to happen, the references to GenericN, toN, fromN need to be removed.
GenericN gets freed by removing it from a context in another typeclass instance.
fromN gets freed by turning fromN undefined into just undefined toN also gets
freed by turning a reference to it into undefined. After turning those three all
dead, we can remove its instance and typeclass declaration.

Remove Instances We additionally remove instance for GHasParam and GHasParam-
Rec. These removals are enabled by removing their identifiers from contexts
and turning references to them in types to the unit type.

Remove Functor and Applicative Instances There are also Functor and Applicative
instances for the Yoneda type which can be removed. For Applicative, this is
enabled by turning a use of <*> into undefined

Inline Functions Lastly, there are several one-match-one-call-site functions that can
be inlined.

Of all the previously mentioned changes, removing the Profunctor typeclass and its
instances are the only change which can also be done by C-Reduce.
T18098 is another ticket where hsreduce achieves better performance than C-

Reduce. C-Reduce spent 17 hours producing the result. For C-Reduce, this is the
slowest test case. The running time is three times longer than the next worst test

45

5.1. COMPARISON WITH C-REDUCE

case. We do not know why C-Reduce’s running time was so high for this test case,
it also has a high amount of test invocations, almost four times as much as the
next worst one. It seems that its passes are not as effective in this test case as they
are in others. In comparison, hsreduce took less than one hour, while having the
result being 30 percent smaller C-Reduce’s result still has 30 function bindings, while
hsreduce’s result has 16.

Inlining Functions This is because right as one of the first reduction steps hsreduce
inlines more than five functions. For example it replaces nunstream with (\s ->
s ‘seq‘ New (gmvunstream s)). After inlining those functions their declarations
aren’t referenced anymore and can be removed later.

Removing Parameters Next, hsreduce removes parameters from functions, for ex-
ample simultaneously turning the function application expression checkedAdd
Exact m n into checkedAdd m n, turning the type signature checkedAdd :: (Int
-> Size) -> Int -> Int -> Size into checkedAdd :: Int -> Int -> Size and turning
the match checkedAdd con m n into checkedAdd m n.

Removing Constructor Arguments hsreduce also removes arguments from the Bun-
dle data constructor. It does that simultaneously in function patterns and
expressions.

C-Reduce cannot do those transformations. After those transformations are done,
a lot can be removed by removing matches, signatures and declarations.
T8763 exhibits a performance bug in GHC where a loop written with a library

function allocates 50 percent more than a hand-written loop. It is the worst test case
for hsreduce in comparison with C-Reduce. C-Reduce beats hsreduce by 39 percent
lower reduction size. hsreduce fails to perform reductions like turning [3, 5 .. n]
into [], \k -> do unsafeWrite sieve k p into \k -> k or when isPrime $ m
into m. These are all reductions that hsreduce normally can do. When trying one of
these by hand on hsreduce’s result, we saw that the test case becomes temporarily
uninteresting. Uninteresting here means that it the difference became too big, for
example reducing too aggressively might turn the hand-written loop into a no-op.
However, applying several of these leads to the test case being interesting again. We
do not yet know, how C-Reduce does these changes and how it bridges that gap of
this uninteresting test invocation.

For all other test cases, the results between C-Reduce and hsreduce were surprisingly
close. Even though these test cases use several language extensions, C-Reduce still
reduced more than 60 percent in those. Explanations for this are that these files have
advantageous formatting and advantageous structure, where line-based reductions
and reductions of braces, brackets, and parentheses with their contents still work
well.

46

5.1. COMPARISON WITH C-REDUCE

5.1.3. Discussion
An advantage of C-Reduce is that it can apply its deletions in a very general way.
C-Reduce manages through its language-agnostic passes such as line deletion, token
removal, removing an operator and one of its operands, removing balanced pair
of curly braces and all the including text, and renaming tokens to capture about
the same reduction quality that we get with our more trivial passes. For example,
removing declarations is something that C-Reduce also manages to do by trying to
delete a certain amount of lines. C-Reduce is better tested, optimized and language
agnostic, so it might also be better prepared for new language extensions coming to
the Haskell language.

In general, it is remarkable how effective C-Reduce is, given that it lacks domain
knowledge of Haskell. But hsreduce is able to match that performance and even beat
C-Reduce in some cases, especially when there are more advanced features like type
families and functions with multiple parameters. Also, looking at the number of
identifiers, hsreduce’s reduction seems to be better. This is owing to Haskell domain
knowledge. Here are passes that none of the related work can do:

• using the undefined expression, Unit type, wildcard type expressions and
wildcard patterns

• removing unused data constructors

• turning record constructors into prefix constructors

• replacing a case- or an if-expression by one of their branches

• inlining functions

• reducing type family application

• removing function parameters simultaneously from declaration and call sites

• deleting typeclass parameters simultaneously from typeclass and instances

• deleting methods simultaneously from typeclass and instances

Another advantage of hsreduce is that does not use the byte size as a fixpoint
criteria. For example turning a short variable name into undefined. At first glance
this makes the test case worse because its size increases. But this might enable other
passes later and lead to a lower byte size in the end.

Lastly, none of the related works can merge modules in any way. They only work
on single Haskell files with an interestingness test. So for test cases like T15696
and T18140, where with hsreduce one can get to results of same quality achieved by
human experts, one would not even get to the starting point of the reduction (the
merged module) with the other tools.

47

5.2. COMPARISON WITH OTHER RELATED WORK

Our tool is still far from perfect. Especially on T8763 and T14827 we think there
is still a little bit more reduction that could be done. Also it seems that hsreduce
cannot exploit its low number of test invocations. Looking at the time spent, the
difference to C-Reduce is not as large as it is with the test invocations. hsreduce
makes about 1/16 test invocations compared to C-Reduce but only manages to
spent 1/2 of time compared to C-Reduce. There still seems plenty of overhead or
inefficiencies in the parallelization that can be worked on. Also confusing is that
in T14827, hsreduce does more test invocations than C-Reduce but still arrives at
a similar running time. My suspicion is that the shorter the running time of the
interestingness test and the larger the AST, the cost of traversing the AST becomes
larger. This might be solvable by creating hand-written instances of the generic
traversal for the GHC AST instead of using the derived ones, which might make
traversal faster.

5.2. Comparison with other Related Work
Compared to ddmin [2], our tool produces only syntactically valid changes. Similarly
to HDD [6] and Perses [8] it also uses structural information to make changes, for
instance reducing to subexpressions. They do not support Haskell yet, but even if
they did, hsreduce works for a much wider variety of Haskell programs, since GHC
has many extensions which are not in the Haskell 2010 standard. structureshrink
[3] also uses structure to guide reduction but is five to ten times slower and fails to
produce reproducible examples in multiple test cases. Also similarly to halfempty [4]
and C-Reduce [1] it uses parallel test case execution assuming that most of them
will fail to speed up the reduction process. And like C-Reduce it employs a modular
reducer infrastructure with a pluggable set of passes.

5.3. Merging
To evaluate our merging functionality we used two test cases: T15696_3 and
T18140_3. With T15696_3 we can merge it into a 56 kilobyte file and with
T18140_3 we can merge it into a 800 kilobyte file. With both test cases, the merged
files are still interesting. The merged file for T15696_3 is very similar to the test
case of T15696_2, which resulted from using an earlier version of our merging utility,
so it was not evaluated in section section 5.1. The merged file for T18140_3 was
not evaluated because that level of merging functionality was reached at a very late
stage of the work, so it was not evaluated due to time constraints.

5.4. Evaluation of Passes
Because our search is greedy and might only reach a local optimum regarding the
reduced number of identifiers and because it seems that some passes inhibit other

48

5.4. EVALUATION OF PASSES

passes, it is important in which way we order the passes. After that, we also look at
pass statistics to see, which passes were worth implementing and which ones were
not.

5.4.1. Pass Ordering
We also looked at what effect different ordering of the passes has on reduction
performance. To evaluate this, we ran hsreduce on the test cases T13877, T14270,
T14779, T16979, T18098 and T8763 with a shuffled ordering and collected perfor-
mance statistics. First, we looked at putting all pure passes into one list and running
those. We tried out 164 different orderings. We summed up the end number of bytes,
tokens, identifiers and running times.

The reduction ranged from 518 identifiers for the best ordering and 850 identifiers
for the worst one. Looking at byte sizes, it ranged from 5268 bytes to 7299 bytes.
So the right ordering can improve reduction by up to 27.8 percent.

Looking at running times, the fastest ordering took 2317 seconds and the slowest
one took 3477 seconds. If one is interested in speedy reduction, choosing the right
ordering can speed up things up to 33.3 percent. Another observation is that
reduction quality and running time seem to be opposing goals. Here the correlation
between end name size and time spent is -0.1879.
We chose to use pass ordering nr. 1, which lead to 30 percent improvements in

reduction performance with T16979 and T18098. Pass ordering nr. 1 can be seen in
figure 5.1a.

We have not gotten any explanations yet on why one ordering is good or bad. One
example we saw, was that putting type2Wildcard before type2Unit in a previously
used ordering decreased performance considerably. This seems to be a weakness
of the search algorithm, since taking the first change possible might inhibit better
changes

5.4.2. Pass Statistics
In table 5.3 we look at pass statistics to see which passes were how successful. This
is to guide future efforts so that others can see which areas might be more fruitful to
write passes for.

So what makes a pass valuable? A valuable pass would have a low amount of total
invocations, a high ratio of successful to total invocations and enabling a lot of other
passes, mainly by deleting a large amount of identifiers. To delete a lot of identifiers,
it should be applicable to large elements and to a large number of elements, but this
would also lead to a high number of test invocations. We expect that a high amount
of deleted identifiers correlates with a high number of test invocations. To get a high
rate of success, the pass should focus on a specific type of element, for example only
handle expressions with a certain form and do nothing for the rest.
We defined two metrics, rate of success that is, the ratio of successful to total

invocations and efficiency the number of removed identifiers divided by the total

49

5.4. EVALUATION OF PASSES

ordering nr. bytes tokens identifiers t. s. s. i. t. i.
1 5268 1215 518 3050 862 22363
2 6024 1467 680 2820 841 15996
3 6284 1505 689 3182 801 21350
4 6318 1520 698 2620 781 17398
5 6284 1530 700 3009 833 21285
6 6260 1509 700 2963 785 13462
7 6318 1514 701 2729 831 19159
8 6261 1514 701 2663 786 12469
9 6249 1523 705 2345 771 22882
10 6408 1521 707 3133 744 22146
11 6514 1556 717 3138 812 14958
12 6472 1563 721 2770 855 18479
13 6379 1563 721 2559 795 20301
14 6466 1577 723 3120 890 17784
15 6527 1586 729 3073 814 14177
16 6510 1574 732 2891 760 13961
17 6552 1593 732 3163 819 15998
26 6578 1612 744 2635 763 19986
27 6612 1628 747 2623 841 17827
28 6695 1646 748 2601 795 23076
29 6925 1683 764 3477 827 26149
30 6710 1688 764 2541 763 25666
31 6644 1644 767 2720 834 20481
32 6856 1658 767 3403 842 22991
33 6784 1659 767 3535 807 14203
34 6651 1653 774 2526 857 22596
35 6654 1655 774 2818 814 21358
36 6934 1704 780 2641 856 15635
37 6634 1674 781 2901 779 26792
38 6607 1658 782 2956 899 20131
39 7021 1733 782 2744 821 22020
40 6806 1713 783 3297 835 21839
41 6968 1714 784 2604 796 21082
42 6967 1705 785 2698 813 28935
43 6818 1718 787 2778 879 20998
44 6752 1697 793 2549 699 18667
45 7078 1719 797 2430 802 18842
46 6960 1740 800 2918 836 22316
47 6954 1710 808 3037 763 22933
48 7299 1840 850 2999 867 23766

Table 5.2.: Comparison of different pass orderings; abbreviations: time spent (t. s.),
successful invocations (s. i.), total invocations (t. i.)

50

5.4. EVALUATION OF PASSES

[rmvRHSs
, TypeFamilies.apply
, TypeFamilies.rmvUnusedParams
, pat2Wildcard
, rmvFunDeps
, localBinds
, betaReduceExprs
, TypeFamilies.familyResultSig
, Functions.inline
, Parameters.rmvUnusedParams
, rmvConstructors
, unqualImport
, rmvDerivingClause
, DataTypes.inline
, simplifyType
, TypeFamilies.rmvEquations
, rmvConArgs
, rmvGuards
, rmvMatches
, simplifyDerivingClause
, tyVarBndr
, contexts
, type2WildCard
, rmvImports
, filterExprSubList
, etaReduceMatches
, rmvSigs
, handleMultiParams
, splitSigs
, rmvTyClMethods
, type2Unit
, expr2Undefined
, simplifyConDecl
, Typeclasses.rmvUnusedParams
, rmvDecls
, simplifyExpr]

(a) Best ordering

[handleMultiParams
, simplifyType
, rmvMatches
, TypeFamilies.rmvUnusedParams
, rmvGuards
, betaReduceExprs
, type2WildCard
, etaReduceMatches
, simplifyDerivingClause
, rmvDerivingClause
, rmvConstructors
, splitSigs
, TypeFamilies.familyResultSig
, pat2Wildcard
, Functions.rmvUnusedParams
, rmvImports
, tyVarBndr
, filterExprSubList
, inlineType
, contexts
, rmvRHSs
, simplifyConDecl
, unqualImport
, rmvConArgs
, rmvDecls
, simplifyExpr
, rmvFunDeps
, localBinds
, rmvTyClMethods
, TypeFamilies.apply
, Typeclasses.rmvUnusedParams
, rmvSigs
, Functions:inline
, type2Unit
, expr2Undefined
, TypeFamilies.rmvEquations
]

(b) Worst ordering

51

5.4. EVALUATION OF PASSES

invocations.
To calculate them, we record for every pass the number of: successful invocations,

total invocations, removed bytes, removed tokens and removed identifiers. These
were recorded with 32 different pass orderings to lessen the influence of the pass
ordering. The results can be seen in table 5.3.

The best passes, based on identifiers removed were: removing declarations, turning
types into the unit type, removing signatures and removing matches. The worst
passes were inlining functions, splitting signatures, removing constructor arguments
and inlining types. This makes sense, since declarations are one of the largest
elements that can be deleted at once and for inlining functions it also makes sense,
since it does not remove anything but transform a function call into a lambda which
at first seems to make the test case “worse”. Turning types into the unit type and
removing matches seem to remove a lot of identifiers because those elements come
up very often in programs.

For rate of success, passes that work on types that appear a lot in Haskell programs
were the worst. Examples of these passes are turning types to the unit type, turning
expressions into undefined. The passes with the highest rate of success were spezialized
passes focussing only on certain types of elements in the GHC AST like beta reducing
expressions or removing functional dependencies.
For efficiency, the most efficient were also mostly the specialized passes and

passes that focus on removing large elements. Examples for these are beta reducing
expressions and removing declarations.

So the most valuable passes were those that were also early considered: removing
declarations, turning types into the unti type and removing matches.

As an example for a bad pass, an older version of reducing type family applications
was really bad, because it was applicable to all Haskell types in the program but
only succeeded if there really was a type family application present, which is really
rare. So it had a high number of test invocations, which made hsreduce spent a lot
of time and a really low success rate, so it was rarely useful.

52

5.4. EVALUATION OF PASSES

Pass name t. i. ∆ identifiers r.o.s. efficiency
rmvDecls 9990 -11995 0.24704 -1.20070
type2Unit 70811 -7440 0.06359 -0.10506
rmvSigs 1811 -4801 0.57482 -2.65102
rmvMatches 7759 -4079 0.12694 -0.52571
simplifyType 10409 -2786 0.21817 -0.26765
expr2Undefined 48599 -2665 0.05520 -0.05483
type2WildCard 89891 -2293 0.02419 -0.02550
simplifyExpr 28649 -2201 0.06935 -0.07682
tyVarBndr 2607 -2022 0.72266 -0.77560
TypeFamilies.rmvEquations 1492 -1940 0.33914 -1.30026
TypeFamilies.apply 12512 -1440 0.05370 -0.11508
rmvConstructors 3166 -1430 0.26405 -0.45167
pat2Wildcard 11355 -1293 0.09660 -0.11387
filterExprSubList 3085 -1218 0.09983 -0.39481
rmvGuards 1237 -948 0.07518 -0.76637
contexts 2140 -824 0.14766 -0.38504
rmvFunDeps 311 -765 0.61093 -2.45980
simplifyConDecl 2656 -645 0.20745 -0.24284
TypeFamilies.rmvUnusedParams 1519 -633 0.19881 -0.41672
localBinds 2775 -626 0.09081 -0.22558
Functions.rmvUnusedParams 5256 -474 0.07534 -0.09018
TypeFamilies.familyResultSig 971 -473 0.36148 -0.48712
betaReduceExprs 239 -421 0.80753 -1.76150
unqualImport 1907 -416 0.11641 -0.21814
rmvTyClMethods 1073 -355 0.03355 -0.33084
rmvRHSs 9362 -238 0.00854 -0.02542
simplifyDerivingClause 540 -75 0.13888 -0.13888
etaReduceMatches 101 -64 0.38613 -0.63366
Typeclasses.rmvUnusedParams 517 -50 0.04448 -0.09671
rmvDerivingClause 421 -29 0.04038 -0.06888
rmvConArgs 2234 -14 0.00134 -0.00626
rmvImports 2030 -13 0.10738 -0.00640
handleMultiParams 3212 -12 0.00217 -0.00373
formatting 199 0 1.00000 0.00000
inlineType 61 0 0.44262 0.00000
splitSigs 976 8 0.00102 0.00819
Functions:inline 1687 1564 0.15826 0.92708
Arithmetic mean 0.21653 -0.41858
Median 0.11641 -0.21814

Table 5.3.: Comparison of the different passes;
abbreviations: total invocations (t. i.), rate of success (r.o.s.)

53

6. Conclusion and Future Work
We built hsreduce, a Haskell-specific test case reducer that beats domain-independent
reducers like C-Reduce by up to 60 percent on single-file tests. This is due to it
exploiting richer transformations like reducing type family applications, function
inlining and turning values into stand-in dummy values. For isolating the effect of
large dependencies, we also implemented a tool that merges imported modules into a
single file, which significantly frees the user of the labor of having to do so manually.

There are still many things to explore that were not possible to realize due to time
constraints. First, there is the merging of projects. Right now, hsreduce is able to
merge some projects but there are bigger ones like GHC itself which are not possible
to merge at this point.

Then there are still a lot of passes, which were out of scope for this work, one can
implement. Examples are: dumping of single template haskell splices, normalizing
types using the typechecker information and specializing polymorphic functions.
Additionally one could explore different search strategies more, for example to

apply the same one that C-Reduce uses.
One could also write Arbitrary instances for the Haskell AST, to be able to fuzz

Haskell programs, which can then be reduced by hsreduce. Another advantage would
be to then be able to use QuickCheck’s shrink function. If one would also write
Generic instances for the GHC AST, then one could even use genericShrink. But
to do this, there would be a lot of boilerplate code be involved and and it would be
hard to balance terms, for example not to generate to deep App expressions.
Last, we feel it should be possible to build monadic pass combinators, similar to

parser combinators. This might improve the usability of this tool and might unlock
new synergies of combining existing passes.

55

Bibliography
[1] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-case

reduction for c compiler bugs,” in Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Implementation, pp. 335–346,
2012.

[2] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,”
IEEE Transactions on Software Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[3] D. MacIver, “structureshrink.” https://github.com/DRMacIver/
structureshrink, 2020.

[4] T. Ormandy, “halfempty.” https://github.com/googleprojectzero/
halfempty, 2020.

[5] R. Lämmel and S. P. Jones, “Scrap your boilerplate: a practical design pattern
for generic programming,” ACM SIGPLAN Notices, vol. 38, no. 3, pp. 26–37,
2003.

[6] G. Misherghi and Z. Su, “Hdd: hierarchical delta debugging,” in Proceedings of
the 28th international conference on Software engineering, pp. 142–151, 2006.

[7] R. Hodován, “picireny.” https://github.com/renatahodovan/picireny,
2020.

[8] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided program
reduction,” in Proceedings of the 40th International Conference on Software
Engineering, pp. 361–371, 2018.

[9] “Cabal homepage.” https://www.haskell.org/cabal/". Accessed: 2020-12-
13.

[10] “Stack homepage.” https://docs.haskellstack.org/en/stable/README/.
Accessed: 2020-12-13.

[11] “Gnu make homepage.” https://www.gnu.org/software/make/. Accessed:
2020-12-13.

[12] “Shake homepage.” https://shakebuild.com/. Accessed: 2020-12-13.

[13] J. Breitner, “hs-all-in-one.” https://github.com/nomeata/hs-all-in-one,
2017.

57

https://github.com/DRMacIver/structureshrink
https://github.com/DRMacIver/structureshrink
https://github.com/googleprojectzero/halfempty
https://github.com/googleprojectzero/halfempty
https://github.com/renatahodovan/picireny
https://www.haskell.org/cabal/"
https://docs.haskellstack.org/en/stable/README/
https://www.gnu.org/software/make/
https://shakebuild.com/
https://github.com/nomeata/hs-all-in-one

Bibliography

[14] N. Broberg, “haskell-src-exts.” https://github.com/haskell-suite/
haskell-src-exts, 2020.

[15] R. Cheplyaka, “hse-cpp.” https://github.com/haskell-suite/hse-cpp,
2020.

[16] “haskell-src-exts - no more releases.” https://mail.haskell.org/pipermail/
haskell-cafe/2019-May/131166.html. Accessed: 2020-12-13.

[17] T. Tani, “Ghc renamer description.” https://gitlab.haskell.org/ghc/ghc/
-/wikis/commentary/compiler/renamer, 2020.

[18] M. Pickering, N. Wu, and B. Németh, “Working with source plugins,” in
Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell,
pp. 85–97, 2019.

[19] M. Pickering, “hie-bios.” https://github.com/mpickering/hie-bios, 2020.

[20] H. Organization, “Haskell language server.” https://github.com/haskell/
haskell-language-server, 2020.

[21] H. Organization, “ghcide.” https://github.com/haskell/ghcide, 2020.

58

https://github.com/haskell-suite/haskell-src-exts
https://github.com/haskell-suite/haskell-src-exts
https://github.com/haskell-suite/hse-cpp
https://mail.haskell.org/pipermail/haskell-cafe/2019-May/131166.html
https://mail.haskell.org/pipermail/haskell-cafe/2019-May/131166.html
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/renamer
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/renamer
https://github.com/mpickering/hie-bios
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://github.com/haskell/ghcide

Erklärung

Hiermit erkläre ich, Daniel Krüger, dass ich die vorliegende Masterarbeit selbstständig
verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht
und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis beachtet
habe.

Ort, Datum Unterschrift

59

Danke
Ich danke Sebastian Graf für die Unterstützung, Tipps und Anregungen.

61

A. Appendix

A.1. hsreduce Implementation
The implementation can be found here.

A.2. GHC Issues
Here are the issues corresponding to the test cases in our test case repository:

• T8763
• T13877
• T14270
• T14779
• T14827
• T15696
• T16979
• T18098
• T18140

Our test case repository sometimes has multiple versions of ticket.
Our test case for T8763 stems from this comment.
For T14827 it wasn’t possible to get the original source code because it was in

a now defunct bitbucket repository. Our test case is based on the self contained
example posted there.
With T15696 we have three versions. T15696_1 stems from the first example

posted there. T15696_2 contains a test case that resulted from using an earlier
version of our merging utility. T15696_3 contains the containers repository as a
submodule and can be used to test the merging utility. It should produce a file that
is very similar to the one in T15696_2.
With T18140 we also have three versions. T18140_3 contains protocol-buffers-

descriptor as a submodule and can be used to test the merging utility. T18140_2
contains a test case that resulted from using an earlier version of our merging utility.
With that earlier version we weren’t able to merge the whole project when we inlined
the protocol-buffers dependency. That is why there is also a Text folder in there.
C-Reduce can’t work on that test case because it only copies the shell script and the
test case to its temporary directories. T18140_1 resulted from taking the result of

63

https://github.com/dnlkrgr/hsreduce
https://github.com/dnlkrgr/hsreduce-test-cases
https://gitlab.haskell.org/ghc/ghc/-/issues/8763
https://gitlab.haskell.org/ghc/ghc/-/issues/13877
https://gitlab.haskell.org/ghc/ghc/-/issues/14270
https://gitlab.haskell.org/ghc/ghc/-/issues/14779
https://gitlab.haskell.org/ghc/ghc/-/issues/14827
https://gitlab.haskell.org/ghc/ghc/-/issues/15696
https://gitlab.haskell.org/ghc/ghc/-/issues/16979
https://gitlab.haskell.org/ghc/ghc/-/issues/18098
https://gitlab.haskell.org/ghc/ghc/-/issues/18140
https://gitlab.haskell.org/ghc/ghc/-/issues/8763#note_174637
https://gitlab.haskell.org/ghc/ghc/-/issues/15696#note_160886

A.2. GHC ISSUES

applying hsreduce to T18140_2, putting that file as the main file of protocol-buffers-
descriptor, inlining the dependency protocol-buffers dependency and merging (which
now worked because the main file had now less imports.
All other test cases are based on the first examples posted on those tickets.

64

	Introduction
	Preliminaries and Related Work
	GHC Haskell
	Delta Debugging
	C-Reduce
	Other Test Case Reducers
	Hierarchical Delta Debugging
	structureshrink
	halfempty

	Perses
	Berkeley Delta

	Test Case Reducer Implementation
	Modular Reducer Infrastructure
	Search
	Using hsreduce as a library

	Passes
	Replacing Things with "Dummy" Values
	Removing Unused Entities
	Reducing To Subexpressions
	Exports
	Formatting
	Other Passses

	Richer Transformations

	Merger Implementation
	Preprocessing
	Existing Tools for Merging
	Requirements for Merging Haskell Modules
	Obtaining Project Information
	Accessing Renaming Information
	Essential Renaming
	Mapping of Names
	Additional Renaming
	Prohibited Renaming

	Applying Renamer Information
	On Renamed Source
	On Parsed Source
	Re-Exports by "Our" Modules

	Evaluation
	Comparison with C-Reduce
	Results
	Looking at Test Cases
	Discussion

	Comparison with other Related Work
	Merging
	Evaluation of Passes
	Pass Ordering
	Pass Statistics

	Conclusion and Future Work
	Appendix
	hsreduce Implementation
	GHC Issues

