
Extending and Applying a Framework for the
Cryptographic Verification of Java Programs

Ralf Küsters1, Enrico Scapin1, Tomasz Truderung1, and Jürgen Graf2

1 University of Trier, Germany
2 Karlsruhe Institute of Technology, Germany

{kuesters,scapin,truderung}@uni-trier.de, graf@kit.edu

Abstract. In our previous work, we have proposed a framework which allows
tools that can check standard noninterference properties but a priori cannot deal
with cryptography to establish cryptographic indistinguishability properties, such
as privacy properties, for Java programs. We refer to this framework as the CVJ
framework (Cryptographic Verification of Java Programs) in this paper.
While so far the CVJ framework directly supports public-key encryption (with-
out corruption and without a public-key infrastructure) only, in this work we fur-
ther instantiate the framework to support, among others, public-key encryption
and digital signatures, both with corruption and a public-key infrastructure, as
well as (private) symmetric encryption. Since these cryptographic primitives are
very common in security-critical applications, our extensions make the frame-
work much more widely applicable.
To illustrate the usefulness and applicability of the extensions proposed in this pa-
per, we apply the framework along with the tool Joana, which allows for the fully
automatic verification of noninterference properties of Java programs, to estab-
lish cryptographic privacy properties of a (non-trivial) cloud storage application,
where clients can store private information on a remote server.

1 Introduction

In [24], a framework has been proposed which allows tools that can check standard
noninterference properties but cannot deal with cryptography directly, in particular
probabilities and polynomially bounded adversaries, to establish cryptographic indis-
tinguishability properties, such as privacy properties, for Java programs. In this paper,
we refer to this framework as the CVJ framework (Cryptographic Verification of Java
programs). The framework combines techniques from program analysis and cryptog-
raphy, more specifically, universal composability [10, 20, 27, 29], a well-established
concept in cryptography. The idea is to first check noninterference properties for the
Java program to be analyzed where cryptographic operations (such as encryption) are
performed within so-called ideal functionalities. Such functionalities typically provide
guarantees even in the face of unbounded adversaries and can often be formulated with-
out probabilistic operations. Therefore, such analysis can be carried out by tools that a
priori cannot deal with cryptography (probabilities, polynomially bounded adversaries).
Theorems shown within the framework now imply that the Java program enjoys strong

cryptographic indistinguishability properties when the ideal functionalities are replaced
by their realizations, i.e., the actual cryptographic operations.

The theorems proved within the CVJ framework are very general in that they guar-
antee that any ideal functionality can be replaced by its realization. In particular, they
are not tailored to specific cryptographic operations. However, to make the framework
directly applicable to a wide range of cryptographic software, i.e., software that uses
cryptographic operations (such as asymmetric and symmetric encryption, digital signa-
tures, MACs, etc.), it is necessary to provide a rich set of ideal functionalities along with
their realizations written in Java. So far, in [24] only an ideal functionality for public-
key encryption has been proposed and it has been shown that this functionality can be
realized by any IND-CCA2-secure public-key encryption scheme, a standard security
notion for such schemes (see, e.g., [5]). This functionality does not support reasoning
about corruption and also it does not support a public-key infrastructure (PKI).

Contribution of this paper. The main goal and the main contribution of this work
is therefore to instantiate the CVJ framework with further (and more suitable) ideal
functionalities which commonly occur in cryptographic applications, and to provide re-
alizations of such functionalities based on standard cryptographic assumptions. We note
that similar functionalities as the once introduced in this work have been considered in
the cryptographic literature based on Turing machine models (see, e.g., [10, 26, 29])
before. The new contribution here is that we provide formulations in Java (more pre-
cisely, in a rich fragment of Java) such that these functionalities can actually be used
to analyze Java programs. Designing such functionalities and carrying out the proofs
(w.r.t. programming language semantics) is non-trivial and requires some care since
the interaction between different classes is much more complex than between Turing
machines, where in the former case we have to deal, for example, with exceptions, in-
heritance, references to potential complex objects that can be exchanged, and hence, the
manipulation of one object can affect many other objects. Also, since the ideal function-
alities we propose will be part of the (Java) programs to be analyzed, they should be
formulated in a “tool friendly” way. For example, for this reason, in our functionalities
corruption is modeled in a quite different way than it is typically done in the Turing
machine models.

More concretely, in this work we propose ideal functionalities, written in Java, for
public-key encryption, digital signatures, (private) symmetric encryption, and nonce
generation.

The functionalities for public-key encryption and digital signatures support static
corruption and a public-key infrastructure. The latter means that parties can register
their public encryption and verification keys using the functionalities. Other parties
can then use the functionalities to encrypt messages and verify signatures by simply
providing the name of the intended recipient of the message/the alleged signer of the
message. The functionality then guarantees that the correct public-key is used for en-
cryption/verification. As for static corruption, the adversary can register his own (pos-
sibly dishonestly generated) public keys which then can be used by other (honest) par-
ties just like honestly generated and registered keys. We show that both functionalities,
public-key encryption and digital signatures, can be realized using standard crypto-

2

graphic schemes and assumptions (IND-CCA2-secure public-key encryption schemes
and UF-CMA-secure digital signature schemes).

The functionality for private symmetric encryption allows a user to encrypt mes-
sages (using a symmetric encryption scheme) for herself. She does not share the sym-
metric key with other parties. This is useful, for example, to store confidential informa-
tion on an untrusted medium. Again, this functionality is realized using a standard sym-
metric encryption scheme, based on standard cryptographic assumptions (IND-CCA2
security).

Finally, the ideal functionality for nonce generation that we propose guarantees that
nonces are always fresh. That is, this functionality prevents collisions of nonces. It is
realized in the obvious way, by choosing nonces (of the length of the security parameter)
uniformly at random.

We illustrate the usefulness and applicability of these functionalities in a case study.
We apply the CVJ framework, along with the tool Joana [17, 18], which allows for the
fully automatic verification of noninterference properties of Java programs, to estab-
lish cryptographic privacy properties of a non-trivial cloud storage application, where
clients can store private information on a remote server. The cloud storage system makes
use of all cryptographic primitives considered in this paper, and hence, the code of these
functionalities is included in the verified program. We note that, except for a much
simpler Java program analyzed in [24], there has been no other verification effort that
establishes cryptographic security guarantees of Java programs.

Related work. Obtaining cryptographic guarantees for programs written in real-world
programming languages is a challenging and quite recent research field (see also [24]
for a discussion of related work). Many approaches in this field carry out symbolic
(Dolev-Yao style) analysis, without computational/cryptographic guarantees (see, e.g.,
[6,12,16]). Most, of the very few, approaches that aim at cryptographic guarantees fol-
low one of the following approaches: i) They rely on symbolic analysis and then apply
computational soundness results (see, e.g., [1,4]), ii) they derive formal models from the
source code and analyze these models using specialized tools for cryptographic verifica-
tion, such as the tool CryptoVerif [8] (see, e.g., [2]), or iii) they derive source code from
formal specifications (see, e.g., [9]). The CVJ framework, in contrast, aims at using
existing program analysis tools and techniques to directly obtain cryptographic secu-
rity guarantees. It is the only approach for the cryptographic analysis of Java programs,
other approaches aim at C or F# code. Also, unlike most other approaches, it considers
cryptographic indistinguishability properties, rather than trace properties, such as au-
thentication and weak secrecy. An approach similar to the approach taken in the CVJ
framework is the one by Fournet et al. [7, 13]. However, they consider F# and focus on
the use of refinement types.

Structure of this paper. In Section 2, we first briefly recall the CVJ framework. In the
four subsequent sections, we present the ideal functionalities for public-key encryption,
digital signatures, private symmetric encryption, and nonce generation, respectively,
including their realizations. In Section 7, we turn to the case study. Further details are
provided in the appendix.

3

2 The CVJ Framework

We briefly recall the framework from [24]. The definitions and theorems stated here are
somewhat simplified and informal, but should suffice to follow the rest of the paper. We
refer the reader to [24] for full details.

As already mentioned in the introduction, in order to establish cryptographic indis-
tinguishability properties for a Java program, by the CVJ framework it suffices to prove
that the program enjoys a (standard) noninterference property when the cryptographic
operations are replaced by so-called ideal functionalities, which in our case will model
cryptographic primitives, such as encryption and digital signatures. The CVJ framework
then ensures that the Java program enjoys the desired cryptographic indistinguishabil-
ity properties when the ideal functionalities are replaced by their realizations, i.e., the
actual cryptographic operations. Since ideal functionalities often do not involve proba-
bilistic operations and are secure even for unbounded adversaries, the noninterference
properties can be verified by tools that a priori cannot deal with cryptography (proba-
bilities, polynomially bounded adversaries). Without the ideal functionalities, the tools
would, for example, consider a secret message that is sent encrypted over a network
controlled by the adversary to be an information leakage, because an unbounded adver-
sary can break the encryption.

Jinja+. The CVJ framework is stated and proven for a Java-like language called Jinja+.
Jinja+ is based on Jinja [19] and extends this language with some useful additional fea-
tures, such as arrays and randomness. Jinja+ covers a rich subset of Java, including
classes, inheritance, (static and non-static) fields and methods, the primitive types int,
boolean, and byte (with the usual operators for these types), arrays, exceptions, and
field/method access modifiers, such as public, private, and protected. It also in-
cludes the primitive randomBit() which returns a random bit each time it is called.

A (Jinja+) program/system is a set of class declarations. A class declaration consists
of the name of the class, the name of its direct superclass, a list of field declarations,
and a list of method declarations. A program/system is complete if it uses only class-
es/methods/fields declared in the program itself.

All Java programs considered in this paper, including the systems considered in our
case study as well as the functionalities fall into the Jinja+ fragment. While the syntax
of Jinja+ and Java differ, their is a straightforward translation from Jinja+ to Java, which
is why we use Java syntax throughout this paper.

Indistinguishability. An interface I is defined like a (Jinja+) system but where (i) all
private fields and private methods are dropped and (ii) method bodies as well as static
field initializers are dropped. A system S implements an interface I, written S : I, if I is a
subinterface of the public interface of S, i.e. the interface obtained from S by dropping
method bodies, initializers of static fields, private fields, and private methods. We say
that a system S uses an interface I, written I ` S, if, besides its own classes, S uses
at most classes/methods/fields declared in I. We write I0 ` S : I1 for I0 ` S and S : I1.
We also say that two interfaces are disjoint if the sets of class names declared in these
interfaces are disjoint.

For two systems S and T we denote by S · T the composition of S and T which,
formally, is the union of (declarations in) S and T . Clearly, for the composition to make

4

sense, we require that there are no name clashes in the declarations of S and T . Of
course, S may use classes/methods/fields provided in the public interface of T , and vice
versa.

A system E is called an environment if it declares a distinct private static variable
result of type boolean with initial value false. Given a system S : I, we call E an
I-environment for S if there exists an interface IE disjoint from I such that IE ` S : I and
I ` E : IE . Note that E ·S is a complete program. The value of the variable result at the
end of the run of E ·S is called the output of the program E ·S; the output is false for
infinite runs. If E ·S is a deterministic program, we write E ·S true if the output of
E ·S is true. If E ·S is a randomized program, we write Prob{E ·S true} to denote
the probability that the output of E ·S is true.

We assume that all systems have access to a security parameter (modeled as a public
static variable of a class SP). We denote by P(η) a program P running with security
parameter η.

To define computational equivalence and computational indistinguishability be-
tween (probabilistic) systems, we consider systems that run in (probabilistic) polyno-
mial time in the security parameter. We omit the details of the runtime notions used in
the CVJ framework here, but note that the runtimes of systems and environments are
defined in such a way that their composition results in polynomially bounded programs.

Let P1 and P2 be (complete, possibly probabilistic) programs. We say that P1 and
P2 are computationally equivalent, written P1 ≡comp P2, if |Prob{P1(η) true}−
Prob{P2(η) true}| is a negligible function in the security parameter η.3

Let S1 and S2 be probabilistic polynomially bounded systems. Then S1 and S2 are
computationally indistinguishable w.r.t. I, written S1 ≈I

comp S2, if S1 : I, S2 : I, both
systems use the same interface, and for every polynomially bounded I-environment E
for S1 (and hence, S2) we have that E ·S1 ≡comp E ·S2.

Simulatability and Universal Composition. We now define what it means for a sys-
tem to realize another system, in the spirit of universal composability, a well-established
approach in cryptography. Security is defined by an ideal system F (also called an ideal
functionality), which, for instance, models ideal encryption, signatures, MACs, key ex-
change, or secure message transmission. A real system R (also called a real protocol)
realizes F if there exists a simulator S such that no polynomially bounded environment
can distinguish between R and S ·F . The simulator tries to make S ·F look like R for the
environment (see the subsequent sections for examples).

More formally, let F and R be probabilistic polynomially bounded systems which
implement the same interface Iout and use the same interface IE , except that in addition
F may use some interface IS provided by a simulator. Then, we say that R realizes F
w.r.t. Iout , written R≤Iout F or simply R≤ F , if there exists a probabilistic polynomially
bounded system S (the simulator) such that R ≈Iout

comp S ·F . As shown in [24], ≤ is
reflexive and transitive.

A main advantage of defining security of real systems by the realization relation ≤
is that systems can be analyzed and designed in a modular way: The following theorem

3 As usual, a function f from the natural numbers to the real numbers is negligible, if for every
c> 0 there exists η0 such that f (η)≤ 1

ηc for all η > η0.

5

implies that it suffices to prove security for the systems R0 and R1 separately in order to
obtain security of the composed system R0 ·R1.

Theorem 1 (Composition Theorem (simplified) [24]). Let I0 and I1 be disjoint inter-
faces and let R0, F0, R1, and F1 be probabilistic polynomially bounded systems such
that R0 ≤I0 F0 and R1 ≤I1 F1. Then, R0 ·R1 ≤I0∪I1 F0 ·F1.

Noninterference. The (standard) noninterference notion for confidentiality [14] re-
quires the absence of information flow from high to low variables within a program.
Here, we define noninterference for a deterministic (Jinja+) program P with some static
variables~x of primitive types that are labeled as high. Also, some other static variables
of primitive types are labeled as low. We say that P[~x] is a program with high variables
~x (and low variables). By P[~a] we denote the program P where the high variables~x are
initialized with values~a and the low variables are initialized as specified in P.

Now, noninterference for a deterministic program is defined as follows: Let P[~x]
be a program with high variables. Then, P[~x] has the noninterference property if the
following holds: for all ~a1 and ~a2 (of appropriate type), if P[~a1] and P[~a2] terminate,
then at the end of their runs, the values of the low variables are the same. Note that this
defines termination-insensitive noninterference.

The above notion of noninterference deals with complete programs (closed sys-
tems). This notion is generalized to open systems as follows: Let I be an interface and
let S[~x] be a (not necessarily closed) deterministic system with a security parameter and
high variables~x such that S : I. Then, S[~x] is I-noninterferent if for every deterministic
I-environment E for S[~x] and every security parameter η, noninterference holds for the
system E ·S[~x](η), where the variable result declared in E is considered to be the only
low variable. Note that here neither E nor S are required to be polynomially bounded.

Tools for checking noninterference often consider only a single closed program.
However, I-noninterference is a property of a potentially open system S[~x], which is
composed with an arbitrary I-environment. Therefore, in [24] a technique has been
developed which reduces the problem of checking I-noninterferent to checking nonin-
terference for a single (almost) closed system. More specifically, it was shown that to
prove I-noninterference for a system S[~x] with IE ` S : I it suffices to consider a single
environment ẼI,IE

~u (or Ẽ~u, for short) only, which is parameterized by a sequence ~u of
values. The output produced by Ẽ~u to S[~x] is determined by ~u and is independent of the
input it gets from S[~x]. To keep Ẽ~u simple, the analysis technique assumes some restric-
tions on interfaces between S[~x] and E. In particular, S[~x] and E should interact only
through primitive types, arrays, exceptions, and simple objects.

Theorem 2 (simplified, [24]). Let S[~x] be a deterministic program with a restricted
interface to its environment, as mentioned above, and let I = /0. Then, I-noninterference
holds for S[~x] if and only if for all sequences~u noninterference holds for Ẽ~u ·S[~x].

Automatic analysis tools, such as Joana [17, 18], often ignore or can ignore specific
values encoded in a program, such as an input sequence ~u. Hence, such an analysis of
E~u · S[~x] implies noninterference for all sequences ~u, and by the theorem, this implies
I-noninterference for S[~x].

6

From I-Noninterference to Computational Indistinguishability. The central theo-
rem that immediately follows from (the more general) results proven within the CVJ
framework is the following.

Theorem 3 (simplified, [24]). Let I and J be disjoint interfaces. Let F, R, P[~x] be
systems such that R≤J F, P[~x] ·F is deterministic, and P[~x] ·F : I (and hence, P[~x] ·R : I).
Now, if P[~x] ·F is I-noninterferent, then, for all~a1 and~a2 (of appropriate type), we have
that P[~a1] ·R ≈I

comp P[~a2] ·R.

The intuition and the typical use of this theorem is that the cryptographic operations
that P needs to perform are carried out using the system R (e.g., a cryptographic li-
brary). The theorem now says that to prove cryptographic privacy of the secret inputs
(∀ ~a1, ~a2: P[~a1] ·R ≈J

comp P[~a2] ·R) it suffices to prove I-noninterference for P[~x] ·F ,
i.e., the system where R is replaced by the ideal counterpart F (the ideal cryptographic
library). The ideal functionality F , which in our case will model cryptographic primi-
tives in an ideal way, can typically be formulated without probabilistic operations and
also the ideal primitives specified by F will be secure even in presence of unbounded
adversaries. Therefore, the system P[~x] ·F can be analyzed by standard tools that a priori
cannot deal with cryptography (probabilities and polynomially bounded adversaries).

As mentioned before, F relies on the interface IE ∪ IS (which, for example, might
include an interface to a network library) provided by the environment and the simula-
tor, respectively. This means that when checking noninterference for the system P[~x] ·F
the code implementing this library does not have to be analyzed. Being provided by
the environment/simulator, it is considered completely untrusted and the security of
P[~x] ·F does not depend on it. In other words, P[~x] ·F provides noninterference for all
implementations of the interface. Similarly, R relies on the interface IE provided by the
environment. Hence, P[~x] ·R enjoys computational indistinguishability for all imple-
mentations of IE . This has two advantages: i) one obtains very strong security guaran-
tees and ii) the code to be analyzed in order to establish noninterference/computational
indistinguishability is kept small, considering the fact that libraries tend to be very big.

3 Public-Key Encryption with a Public Key Infrastructure

We now propose an ideal functionality Ideal-PKIEnc, formulated in Java (Jinja+), for
public-key encryption with a public-key infrastructure (PKI). This functionality is an
extension of a more restricted public-key encryption functionality proposed in [24].
First, the functionality proposed here allows a user to encrypt messages for a given
party based on the identifier of this party. The functionality uses the included public key
infrastructure to obtain the public key of the party registered under the given identifier.
In contrast, to encrypt a message, the user of the functionality in [24] had to provide a
public-key herself, and hence, take care of the correct binding of public keys to parties
herself. Second, in the functionality proposed here, as opposed to the one in [24], we
model static corruption, including dishonestly generated keys. For this, special care was
needed to make sure that the resulting functionality is “tool-friendly”.

We also provide an implementation (realization) of this ideal functionality, denoted
by Real-PKIEnc, in Java (Jinja+) and prove, within the CVJ framework, that this im-

7

plementation realizes the ideal functionality Ideal-PKIEnc under standard cryptographic
assumptions.

As already mentioned in the introduction, the design of such functionalities and the
realization proofs pose additional challenges compared to the Turing machine based
formulations proposed in the cryptographic literature.

In the rest of this section, we first provide the interface for Ideal-PKIEnc, and hence,
Real-PKIEnc. Then, the actual ideal functionality and its realization are presented, along
with a realization theorem.

3.1 The Interface for Public-Key Encryption

In this section, we present the interface IPKIEnc of the ideal functionality Ideal-PKIEnc and
its implementation Real-PKIEnc and discuss the intended way of using it. The interface
IPKIEnc is specified as follows:

1 public class Encryptor {
2 public Encryptor(byte[] publicKey);
3 public byte[] encrypt(byte[] message);
4 public byte[] getPublicKey();
5 }
6 public final class Decryptor {
7 public Decryptor();
8 public byte[] decrypt(byte[] message);
9 public Encryptor getEncryptor();

10 }
11 public class RegisterEnc {
12 public static void registerEncryptor(int id, Encryptor encryptor,
13 byte[] pki_domain) throws PKIError, NetworkError;
14 public static Encryptor getEncryptor(int id, byte[] pki_domain)
15 throws PKIError, NetworkError;
16 }

Typical usage. The intended way for an honest user with identifier ID_A to create and
register her keys is the following:

17 Decryptor decryptor = new Decryptor();
18 Encryptor encryptor = decryptor.getEncryptor();
19 try {
20 RegisterEnc.registerEncryptor(ID_A, encryptor, PKI_DOMAIN);
21 }
22 catch (PKIError e) {} // registration failed: id already claimed
23 catch (NetworkError e) {} // network problems

Intuitively, an object of class Decryptor encapsulates a public/private key pair, gen-
erated when the object is created (line 17 above). This object provides access to the
method decrypt. The owner of this object (that is, the party who has created it) is not
supposed to share it with any other parties. Instead, the owner of the decryptor shares
an associated encryptor (obtained in line 18), which, intuitively, encapsulates only the
public key. More precisely, to make her public key available within a PKI to other par-
ties, the user registers the encryptor she has obtained (line 20). That is, she registers

8

her encryptor under her identifier (ID_A) and what we call a PKI domain (which is a
publicly known identifier used to distinguish keys registered for different purposes/ap-
plications). This step may result in an error: i) if some key has been registered already
under this identifier and PKI domain (exception PKIError), or ii) if some network fail-
ure occurred, e.g., the registration server was unavailable (exception NetworkError). We
emphasize that we do not require the party who wants to register a public key to provide
a proof of possession (PoP) of the private key corresponding to the public key.4 After
an encryptor has been registered, it can be used by other parties as follows:

24 try {
25 Encryptor encryptor = RegisterEnc.getEncryptor(ID_A, PKI_DOMAIN);
26 encryptor.encrypt(message);
27 } catch(PKIError e) {} // id has not been successfully registered
28 catch(NetworkError e) {} // network problems

The encryptor of the party registered under ID_A and PKI_DOMAIN is obtained in line 25
and used in line 26 to encrypt a message. Note that a user can also obtain the public key
encapsulated in the encryptor, using the method getPublicKey.

Corruption. To model (static) corruption, we allow encryptors also to be created di-
rectly, without creating associated decryptors, simply by providing an arbitrary bitstring
pubk as the public key:

29 Encryptor enc = new Encryptor(pubk);
30 try {
31 RegisterEnc.registerEncryptor(ID, enc, PKI_DOMAIN);
32 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring pubk as a public
key, including dishonestly generated keys. This key can then be used by any other party
(honest and dishonest) to encrypt messages for the dishonest party, just like public keys
of honest parties. Note that since we do not require PoPs, a dishonest party can register
any public key of another (possibly honest) party under his identity. (As mentioned
before, the literature on PKIs recommends that applications should not rely on PoPs
being performed [3].)

An encryptor created in the above way is called corrupted. There is no correspond-
ing (corrupted) decryptor, because the adversary can run the decryption algorithm him-
self. For messages encrypted with a corrupted encryptor (public key), no security guar-
antees are provided. (Jumping ahead to Section 3.2, the functionality will hand the
message to be encrypted with a corrupted encryptor directly to the environment/adver-
sary/simulator.)

We note that, as expected, when some party obtains an encryptor by the method
RegisterEnc.getEncryptor, the party does not know a priori whether the obtained en-
cryptor is corrupted (it has been generated directly) or uncorrupted (it has been gener-
ated via Decryptor).

4 In most applications, PoPs are not necessary and as argued in the literature (see, e.g., [3]),
applications should be designed in such a way that their security does not depend on the as-
sumption of such proofs being performed.

9

3.2 The Ideal Functionality for Public-Key Encryption

We now present the ideal functionality for public-key encryption, Ideal-PKIEnc. This
functionality provides the interface IPKIEnc, introduced above, to its users (parties, envi-
ronment) with ideal implementations of the methods declared in IPKIEnc.

The functionality Ideal-PKIEnc is defined on top of the interface ICryptoLibEnc which
contains methods for key generation, encryption, and decryption:

33 public class CryptoLib {
34 public static KeyPair pke_generateKeyPair();
35 public static byte[] pke_encrypt(byte[] message, byte[] publicKey);
36 public static byte[] pke_decrypt(byte[] ciphertext, byte[] privKey);
37 }

So Ideal-PKIEnc expects the above methods to be implemented outside of Ideal-PKIEnc.
In the analysis of a system P[~x] which uses Ideal-PKIEnc (i.e., in the analysis of the
system P[~x] · Ideal-PKIEnc), such methods have to be provided by the environment, and
thus, are completely untrusted. In particular, in the analysis of P[~x] · Ideal-PKIEnc the
code for CryptoLib, which would typically be very large, does not have to be analyzed.
This tremendously simplifies the analysis of P[~x] · Ideal-PKIEnc (see also the explanation
in Section 2 following Theorem 3).

The basic idea of the implementation of Ideal-PKIEnc is that if a message m is to
be encrypted with an (uncorrupted) public key, then not m but a sequence of zeros of
the same length as m is encrypted instead, using method pke_encrypt of CryptoLib. By
this, it is guaranteed that the resulting ciphertext c does not depend on m, except for
the length of m. The functionality stores the pair (m,c) for later decryption. If some
ciphertext c′ is to be decrypted, the functionality first checks whether there exists a pair
of the form (m′,c′) (the functionality guarantees that there is at most one such pair).
Then, m′ is returned as the plaintext. If no such pair exists (and hence, c′ was not created
using the functionality), c′ is decrypted using method pke_decrypt of CryptoLib, and
the resulting plaintext is returned. More specifically, Ideal-PKIEnc works as follows.

On initialization of an object of the class Decryptor, a public/private key pair is
created by calling the key generation method of the class CryptoLib. At this point, the
decryptor object also creates an (initially empty) list of message/ciphertext pairs. This
list is used as a look-up table for decryption by the method decrypt of class Decryptor

as sketched above.
Encryptors returned by the method getEncryptor of class Decryptor are objects

of the class UncorruptedEncryptor (which is a subclass of the class Encryptor). An
encryptor object contains the same public-key as the associated decryptor and shares (a
reference to) the list of message/ciphertext pairs with the associated decryptor. When
method encrypt of such an encryptor is called with a message m, the encryption method
of class CryptoLib is called to encrypt a sequence of zeros of the same length as m,
resulting in a ciphertext c (ciphertexts seen before are rejected). Then, the pair (m,c) is
stored in the list and the ciphertext c is returned as the result of the encryption.

In contrast, a corrupted encryptor (i.e., an encryptor object created directly as in line
29 above, rather than being derived from a decryptor) implements encryptions simply
by calling the encryption method of the class CryptoLib using the bitstring (the pub-

10

lic key) it has been provided with upon creation. Note that in this case, no security
guarantees are provided; the original message instead of zeros is encrypted.

The methods for registering and obtaining encryptors in class RegisterEnc are im-
plemented in a straightforward way by Ideal-PKIEnc, using a list of registered encryptors
along with associated identifiers and domains.

The most important part of the code of Ideal-PKIEnc is listed in Appendix D.1; see
[23] for the full code.

3.3 The Realization of Ideal-PKIEnc

We now provide the realization Real-PKIEnc of the ideal functionality Ideal-PKIEnc pre-
sented above.

The functionality Real-PKIEnc builds on a public key infrastructure. A public-key
infrastructure is a trusted public key registry, where i) users can register their public
keys under their identifiers and (PKI) domains (in the sense of Section 3.1) and ii) users
can obtain other users’ public keys by providing the identifiers and domains of these
users. The interface IPKI for the public key infrastructure used by Real-PKIEnc is the
following:

38 public class PKI {
39 static void register(int id, byte[] domain, byte[] pubKey)
40 throws PKIError, NetworkError;
41 static byte[] getKey(int id, byte[] domain)
42 throws PKIError, NetworkError;
43 }

The method register is supposed to throw PKIError if the provided user identifier and
domain pair has been claimed already, i.e., some other party has registered a key for the
same identifier and domain pair before. The same exception is supposed to be thrown
by the method getKey if the given identifier id has not been registered. Registering or
fetching a public key typically involves to contact a public-key server. If this fails, the
NetworkError is thrown. When proving that Real-PKIEnc realizes Ideal-PKIEnc we will
assume that IPKI is properly implemented (see Section 3.4 for details).

Now, based on IPKI, the different classes and methods provided by Real-PKIEnc are
implemented as presented next.

The methods registerEncryptor and getEncryptor of the class RegisterEnc work
as follows. When an encryptor is to be registered by the method registerEncryptor,
its public key is registered in the PKI using the method register. The method
getEncryptor uses the method getKey to fetch the corresponding public key and wraps
it into an encryptor which is then returned.

The classes Encryptor and Decryptor of Real-PKIEnc are implemented in a straight-
forward way using an encryption scheme: messages are simply encrypted/decrypted
directly using such a scheme. Note that whether an encryptor was obtained from a de-
cryptor (using the method getEncryptor) or whether it was created directly (as in line
29) leads to the same implementation, namely, invoking the encryption function of the
encryption scheme. The only difference is that in one case the public/private key pair
was created (honestely) within the class Decryptor of Real-PKIEnc and in the other case
the public key was created outside of Real-PKIEnc (possibly in some dishonest way).

11

The most important part of the code of Real-PKIEnc is listed in Appendix D.2; see
[23] for the full code.

3.4 Realization Result

We now show that Real-PKIEnc realizes Ideal-PKIEnc, provided that i) the encryption
scheme used in the implementation of Real-PKIEnc is IND-CCA2-secure [5] and ii) that
the public-key infrastructure used by Real-PKIEnc works “properly”.

As for i), we note that IND-CCA2-security is a standard and widely used security
notion for public-key encryption schemes. Similarly to ideal functionality for public-
key encryption proposed in the cryptographic literature, it can been shown that IND-
CCA2-security is necessary to realize Ideal-PKIEnc (see, e.g., [10, 26]).

As for ii), the behavior of a “proper public-key infrastructure” is formalized by an
ideal functionality Ideal-PKI, which operates in the obvious way: It maintains a list of
registration records, each consisting of an identifier, a domain, and a key (the code is
given in Appendix D.5). The adversary (simulator) is informed about registration re-
quests and requests for obtaining public-keys and can schedule when these requests are
answered by Ideal-PKI (because in a realization such requests typically involve commu-
nication over a network controlled by the adversary). We assume the existence of some
public-key infrastructure Real-PKI that realizes Ideal-PKI. Note that there are various
ways of realizing Ideal-PKI and that all of them will require certain trust assumptions.
For example, one could assume the existence of one or more honest certificate author-
ities and that parties are provided with the (authentic) public keys of these authorities.
Typically, one would use some existing public-key infrastructure (with appropriate as-
sumptions) to realize Ideal-PKI. However, this is not the focus of this work. (In fact,
proving the security of a full-fledged PKI would be a challenging task by itself.). In
our case study (see Section 7), we consider a simple realization which involves a single
certificate authority, the assumption being that it in fact realizes Ideal-PKI.

With this, we can now state our main theorem for public-key encryption.

Theorem 4. If Real-PKIEnc uses an IND-CCA2-secure public-key encryption scheme
and Real-PKI≤IPKI Ideal-PKI, then Real-PKIEnc ·Real-PKI≤IPKIEnc Ideal-PKIEnc.

The proof of Theorem 4 is given in Appendix B. The proof is highly modular and lever-
ages such properties of the realization relation as the composition theorem, reflexivity,
and transitivity. In the proof, we split Ideal-PKIEnc and Real-PKIEnc into two parts: one
providing encryption and decryption and one providing key registration and retrieving.
For the former part, we generalize the result of [24] for public-key functionality without
corruption and without PKI to the case with corruption.

4 Digital Signatures with a Public Key Infrastructure

In this section, we propose an ideal functionality Ideal-Sig, formulated in Java (Jinja+),
for digital signatures with a public key infrastructure, where, again, we model cor-
ruption. We also provide a real implementation Real-Sig of this functionality in Java
(Jinja+) and prove, in the CVJ framework, that it realizes Ideal-Sig. Just as for public
key encryption, similar functionalities for digital signatures have been proposed in the

12

cryptographic literature before (see, e.g., [11,26]). But again, the new contribution here
is that we provide a formulation in Java, instead of the (simpler) Turing machine mod-
els, such that these functionalities can actually be used to analyze Java programs. This
is non-trivial and needs some care. We first present the public interface of Ideal-Sig and
Real-Sig.

4.1 The Interface for Digital Signatures

The public interface IPKISig of Ideal-Sig and Real-Sig (both have the same public interface)
is as follows:

1 public final class Signer {
2 public Signer();
3 public byte[] sign(byte[] message);
4 public Verifier getVerifier();
5 }
6 public class Verifier {
7 public Verifier(byte[] verifKey);
8 public boolean verify(byte[] signature, byte[] message);
9 public byte[] getVerifKey();

10 }
11 public class RegisterSig {
12 public static void registerVerifier(int id, Verifier verifier,
13 byte[] pki_domain) throws PKIError, NetworkError;
14 public static Verifier getVerifier(int id, byte[] pki_domain)
15 throws PKIError, NetworkError;
16 }

Typical usage. Similarly to public-key encryption, the intended way for an honest user
with identifier ID_A to create and register her keys is the following:

17 Signer sig = new Signer();
18 Verifier ver = sig.getVerifier();
19 try {
20 SigEnc.registerVerifier(ID_A, ver, PKI_DOMAIN);
21 } catch (PKIError e) {} // registration failed: id already claimed
22 catch (NetworkError e) {} // network problems

Intuitively, an object of the class Signer encapsulates a verification/signing key pair,
which is generated when the object is created (line 17). It allows a party who owns such
an object to sign messages (this requires the signing key), using the method sign (of the
class Signer). This party can also obtain a Verifier object (line 18), which encapsulates
the related verification key and can be used (by other parties) to verify signatures via
the method verify. Similarly to the case of public-key encryption, such a verifier can
be registered in the public-key infrastructure (line 20) in order to make the verification
key available to other parties. Again, we do not require a proof of possession of the
corresponding signing key.

After a verifier has been registered, it can be used by other parties to check whether
a signature signature is valid for a message message w.r.t. the verification key of (ID_A,
PKI_DOMAIN) encapsulated in verifier:

13

23 try {
24 Verifier verifier = RegisterSig.getVerifier(ID_A, PKI_DOMAIN);
25 verifier.verify(signature, message);
26 } catch(PKIError e) {} // id has not been successfully registered
27 catch(NetworkError e) {} // network problems

Corruption. To model (static) corruption, analogously to the case of public-key encyrp-
tion we allow verifiers to be created directly, without creating associated signers, simply
by providing an arbitrary bitstring verif_key as the public key:

28 Verifier ver = new Verifier(verif_key);
29 try {
30 RegisterSig.registerVerifier(ID, ver, PKI_DOMAIN);
31 } catch (PKIError | NetworkError e) {}

By this, a dishonest party (the adversary) can register any bitstring verif_key he wants
as a verification key, including dishonestly generated keys. This key can then be used by
any other party (honest and dishonest) to verify messages signed by the dishonest party,
just like with verification keys of honest parties. Note that since we do not require PoPs,
a dishonest party can register any verification key of another (possibly honest) party
under his identity. A verifier created in such a way is called corrupted. A corresponding
signing object is not necessary as the adversary can directly sign messages by himself
using the matching signing key (if this key is known to the adversary). Note that, given
a verifier object, other parties cannot tell a priori whether this verifier object is corrupted
or not.

4.2 The Ideal Functionality for Digital Signatures

We now present the ideal functionality for digital signatures, Ideal-Sig. This function-
ality provides the interface IPKISig, introduced above, to its users (parties, environment)
with ideal implementations of the methods declared in IPKISig.

The functionality is defined on top of the interface ICryptoLibSig which contains meth-
ods for key generation, signing, and verification. Analogously to the interface ICryptoLibEnc

for public-key encryption, these methods are supposed to be provided by the environ-
ment, and hence, are completely untrusted. In particular, in the analysis of a system
that uses Ideal-Sig, they do not have to be analyzed, which, again, greatly simplifies the
analysis task.

Now, Ideal-Sig works as follows. On initialization of an object of class Signer, a ver-
ification/signing key pair is created by calling the key generation operation of the inter-
face ICryptoLibSig. A signer object also creates an (initially empty) list of signed messages;
this list will be shared with all associated verifiers (objects returned by getVerifier).
When the method sign is called to sign a message m, the signing procedure of ICryptoLibSig

is called to sign m using the encapsulated signing key. Before this signature is returned,
the signed message m is added to the list of signed messages.

A verifier object returned by the method getVerifier belongs to the class Uncor-
ruptedVerifier (a subclass of the class Verifier) and it implements ideal verification
as follows: the method verify when called to verify a signature s on a message m
first uses the verification procedure of ICryptoLibSig to check if s is a valid signature on

14

m w.r.t. the verification key encapsulated in the verifier object. If this is the case, it
additionally checks if m is in the list of signed messages (this list, as mentioned before,
is shared with the associated signer object). If this is true as well, the method returns
‘true’. The idea behind this procedure is that, independently of how the signing and
verification algorithms work, the verification of a signature on some message succeeds
only if this message has been signed before (and hence, logged) using Ideal-Sig.

A (corrupted) verifier object created directly implements the verification procedure
simply by calling the verification method of ICryptoLibSig.

The methods for registering and obtaining verifiers in class RegisterSig are im-
plemented in a straightforward way by Ideal-PKIEnc, using a list of registered verifiers
along with associated identifiers and domains.

The most important part of the code of Ideal-Sig is listed in Appendix D.3; see [23]
for the full code.

4.3 The Realization of Ideal-Sig

The classes Verifier and Signer of the realization Real-Sig of the ideal functionality
Ideal-Sig are implemented in a straightforward way using a digital signature scheme:
messages are simply signed/verified directly using such a scheme. Analogously to the
methods in EncPKI, the methods registerVerifier and getVerifier of the class Reg-
isterSig are based on the interface IPKI introduced in Section 3.3.

The most important part of the code of Real-Sig is listed in Appendix D.4; see [23]
for the full code.

4.4 Realization Result

We prove that Real-PKISig realizes Ideal-PKISig, provided that i) the signature scheme
used in the implementation of Real-PKISig is UF-CMA-secure [15] and ii) that, anal-
ogously to the case of public-key encryption, the public-key infrastructure used by
Real-PKISig realizes the ideal functionality Ideal-PKI (see Section 3.4). Again, it can
been shown that UF-CMA-security is necessary to realize Ideal-PKIEnc (see, e.g., [26]).

Theorem 5. If Real-PKISig uses an UF-CMA-secure signature scheme and
Real-PKI≤IPKI Ideal-PKI, then Real-PKISig ·Real-PKI≤IPKIEnc Ideal-PKISig.

The proof of this theorem is again highly modular and leverages such properties of
the realization relation as the composition theorem, reflexivity, and transitivity. The ba-
sic structure of the proof is analogous to the one for public-key encryption. We split
Ideal-PKISig and Real-PKISig into two parts: i) signing and verification and ii) key reg-
istration and retrieving of verification keys. The most involved part is to show that the
real component for signing and verification realizes the corresponding ideal compo-
nent. Here we make use of an existing results in the cryptographic literature, in partic-
ular [26], and reduce the statement to a corresponding statement in the Turing machine
model. We refer to Appendix C for details.

15

5 Private Symmetric Encryption

In this section, we present an ideal functionality for what we call private symmetric
encryption and a realization of this functionality. Private symmetric encryption allows
a user to encrypt messages (using a symmetric encryption scheme) just for herself. She
does not share the symmetric key with other parties. This is useful, for example, to store
confidential information on an untrusted medium. Since keys do not have to be shared
between parties, the functionality can be kept quite simple.

The public interface ISymEnc of this functionality and its realization consists of only
one class SymEnc with two methods: encrypt and decrypt. These methods use a sym-
metric key generated when an object of this class is created.

In the ideal functionality Ideal-SymEnc for private symmetric encryption, encryption
and decryption work analogously to the case of public-key encryption: a sequence of
zeros is encrypted instead of the given plaintext and the ciphertext obtained in this way
is logged along with the plaintext, which enables the functionality to recover this plain-
text when the ciphertext is to be decrypted. The realization Real-SymEnc simply uses
the encapsulated key to encrypt and decrypt messages using a symmetric encryption
scheme. Clearly, there is no need to model (static) corruption here: a dishonest party can
simply perform private symmetric encryption by himself. We refer the reader to Appen-
dices D.6 and D.7 as well as [23] for the full code of Ideal-SymEnc and Real-SymEnc.

We obtain the following result. We omit the proof here because it closely follows
the one for public-key encryption only that it is much simpler now, as we neither need to
consider a public-key infrastructure nor corruption (see [22] for a corresponding result
in a Turing machine model).

Theorem 6. If Real-SymEnc uses an IND-CCA2-secure symmetric encryption scheme,
then Real-SymEnc≤IPKIEnc Ideal-SymEnc.

6 Nonce Generation

In this section, we propose an ideal functionality and its realization for nonce genera-
tion, formulated in Java (Jinja+). The property that the ideal functionality is supposed
to provide is nonce freshness, i.e., nonces returned by the functionality should always
be different to the once that have been returned so far (no collisions); unguessability of
nonces is not intended to be modeled by this functionality.

The public interface INonce for this functionality consists of one class NonceGen with
one method newNonce only, which is supposed to return a fresh nonce.

The ideal functionality Ideal-Nonce for nonce generation works as follows. The func-
tionality maintains an, initially empty, collection (formally, a static list) of nonces that
have been returned so far. When the method newNonce is called, the environment/simu-
lator is asked to provide a bitstring; more precisely, the method CryptoLib.newNonce(),
which is supposed to be provided by the environment is called. Then, the method
newNonce checks whether the returned bitstring is fresh, i.e., whether it does not already
belong to the collection of returned nonces. If the nonce is indeed fresh, the nonce is
added to the collection and returned to the caller of the method. Otherwise, the above

16

process is repeated until a fresh nonce is returned by the environment/simulator. This
guarantees that Ideal-Nonce always outputs a fresh nonce.

In the realization Real-Nonce of Ideal-Nonce, if the method newNonce is called, a
bitstring of the length of the security parameter is picked uniformly at random and then
returned to the caller. More precisely, we assume the method CryptoLib.newNonce()

called by Real-Nonce to work in this way.
We refer the reader to Appendices D.8 and D.9 for the most important part of the

code of Ideal-Nonce and Real-Nonce; see [23] for the full code. Now, it is easy to prove
that Real-Nonce realizes Ideal-Nonce.

Theorem 7. Real-Nonce≤INonce Ideal-Nonce.

To prove this theorem, we let the simulator S work just like Real-Nonce, i.e., when
asked to provide a new nonce by Ideal-Nonce, it picks a bitstring of the length of the
security parameter uniformly at random and returns this bitstring to Ideal-Nonce. Now,
Real-Nonce cannot be distinguished by any (polynomial bounded) environment from
S · Ideal-Nonce unless Real-Nonce produces a collision, which, however, happens with
negligible probability only.

7 The Case Study

As a case study of the results obtained in this paper, we now describe the verification
of a cloud storage system implemented in Java. This system illustrates how the ideal
functionalities we have developed and presented in this paper can be used to analyze
an interesting and non-trivial Java program. As already mentioned in the introduction,
except for the work in [24], where only a much simpler Java program has been consid-
ered, there has been no other work on establishing cryptographic (indistinguishability)
properties for Java programs.

In what follows, we first provide a brief description of the cloud storage system pro-
gram. Then we state the (cryptographic) security property that we verify and, finally,
report on the verification process carried out using the tool Joana [17, 18], which, as
already mentioned, allows for the fully automatic verification of noninterference prop-
erties of Java programs.

Description of the Cloud Storage System. We have implemented a cloud storage
system that allows a user (through her client application) to store data on a remote
server such that confidentiality of the data stored on the server is guaranteed even if the
server is untrusted: data stored on the server is encrypted using a symmetric key known
only to the client.

More specifically, data is stored (encrypted with the symmetric key of a user) on the
server along with a label and a counter (a version number). When data is to be stored
under some label, a new (higher) counter is chosen and the data is stored under the
label and the new counter; old data is still preserved (under smaller counters). Different
users can have data repositories on one server. These repositories are strictly separated.
The system can be used to securely store any kind of data. A user may use our cloud
storage system, for example, to store her passwords remotely on a server such that she
has access to them on different devices.

17

Communication between a client and a server is secured and authenticated using
functionalities for public-key encryption and digital signatures. Moreover, the function-
ality for nonce generation is essential to prevent reply attacks (when the client and the
server run a sub-protocol to synchronize counter values for labels). Appendix A.1 gives
a more detailed description of our application; see [23] for the full code of the system.

The Security Property. As mentioned, the most fundamental security property of the
cloud storage system is confidentiality of the stored data. This property is supposed to
be guaranteed even if the server and all clients of other users may be dishonest and
cooperate with an active adversary.

To formulate this confidentiality property, we provide (besides the code of the client
and the server) a setup class with the method main, which gets a secret bit secret_bit
as input. This method models the interaction between the program of an honest client
and the active adversary (the environment). The adversary has full control over the net-
work and subsumes the server and all dishonest clients. The adversary also controls the
actions taken by the honest client. In particular, he determines the label and data items
the honest client is supposed to store on the server. More precisely, in every request, the
adversary provides a pair of data items. The secret bit secret_bit determines which of
the two items the client actually asks the server to store (see Appendix A.2 for a more
detailed explanation of the setup class and [23] for the full code).

The security property now requires that no (probabilistic polynomial-time) adver-
sary should be able to determine the secret bit secret_bit, and hence, whether the data
items in the first or in the second component of the item pairs provided by the adversary
are sent by the client. This specifies a strong cryptographic privacy property, common
in cryptography. Formally, this indistinguishability property is state as follows:

CSR[false] ≈ /0
comp CSR[true] (1)

where CSR[b] denotes the described system, consisting of the setup class and the client
class, with secret_bit set to b. The index R indicates that in this system the crypto-
graphic operations are carried out using the real cryptographic schemes (rather than
ideal functionalities).

We note that the computational indistinguishability relation in (1) uses the empty in-
terface I = /0. This means that the adversary (environment) cannot directly call methods
of the client object. As explained before, by the definition of the setup class, the envi-
ronment can nonetheless determine which actions are taken and when. We also point
out that CSR is an open system which uses some classes not defined within CSR, such
as a network library. These classes are provided by the environment and, therefore, are
untrusted. Thus, property (1) implies confidentiality of the stored messages no matter
how such untrusted libraries are implemented.

Verification of the Security Property. In order to prove (1), by Theorem 3 it suffices
to show that

CSI [b] is I-noninterferent, (2)

where CSI denotes the system which coincides with CSR except that the real cryp-
tographic schemes are replaced by their ideal counterparts (ideal functionalities), i.e.,

18

Ideal-PKEnc, Ideal-Sig, Ideal-SymEnc, and Ideal-Nonce. Since, as can easily been seen,
CSI [b] satisfies the conditions of Theorem 2, we can further reduce checking (2) to
checking the following property:

Ẽ~u ·CSI [b] is noninterferent for all~u, (3)

where the family of systems Ẽ~u, parameterized by a finite sequence of integers ~u, is as
described in Section 2. This system can be automatically generated from CSI [b]. Also
note that by “noninterference” we mean standard termination-insensitive noninterfer-
ence (see Section 2). Altogether it suffices to prove (3) in order to obtain (1).

Joana was easily able to establish property (3). It took about 17 seconds on a stan-
dard PC (Core i5 2.3GHz, 8GB RAM) to finish the analysis of the program (with a size
of 950 LoC). Note that the actual running code of the distributed system is much bigger
than what Joana needed to analyze, because the code of the distributed system includes
untrusted libraries, such as the standard Java library for networking, which do not need
to be analyzed, as already mentioned above.

References

1. Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Extracting and verifying crypto-
graphic models from C protocol code by symbolic execution. In CCS 2011, pages 331–340.
ACM, 2011.

2. Mihhail Aizatulin, Andrew D. Gordon, and Jan Jürjens. Computational verification of C
protocol implementations by symbolic execution. In CCS 2012, pages 712–723. ACM, 2012.

3. N. Asokan, Valtteri Niemi, and Pekka Laitinen. On the Usefulness of Proof-of-Possession.
In Proceedings of the 2nd Annual PKI Research Workshop, pages 122–127, 2003.

4. Michael Backes, Matteo Maffei, and Dominique Unruh. Computationally sound verification
of source code. In CCS 2010, pages 387–398. ACM, 2010.

5. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security
for Public-Key Encryption Schemes. In CRYPTO 1998, volume 1462 of LNCS, pages 549–
570. Springer, 1998.

6. Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Modular verification of
security protocol code by typing. In POPL 2010, pages 445–456. ACM, 2010.

7. Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-
Yves Strub. Implementing TLS with verified cryptographic security. In Security and Privacy
2013, IEEE Computer Society 2013.

8. B. Blanchet. A Computationally Sound Mechanized Prover for Security Protocols. In IEEE
Symposium on Security and Privacy (S&P 2006), pages 140–154. IEEE Computer Society,
2006.

9. David Cadé and Bruno Blanchet. Proved Generation of Implementations from Computa-
tionally Secure Protocol Specifications. In POST 2013, volume 7796 of LNCS, pages 63–82.
Springer, 2013.

10. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
In FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

11. R. Canetti. Universally Composable Signature, Certification, and Authentication. In CSFW
2004, pages 219–233. IEEE Computer Society, 2004.

12. S. Chaki and A. Datta. ASPIER: An automated framework for verifying security protocol
implementations. In CSF 2009, pages 172–185. IEEE Computer Society, 2009.

19

13. Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based crypto-
graphic verification. In CCS 2011, pages 341–350. ACM, 2011.

14. Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In Security
and Privacy 1982, pages 11–20, IEEE Computer Society 1982.

15. S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

16. J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code. In
VMCAI 2005, volume 5, pages 363–379. Springer, 2005.

17. Jürgen Graf, Martin Hecker, and Martin Mohr. Using JOANA for Information Flow Control
in Java Programs - A Practical Guide. In ATPS’13, Lecture Notes in Informatics (LNI) 215.
Springer, February 2013.

18. Christian Hammer and Gregor Snelting. Flow-Sensitive, Context-Sensitive, and Object-
sensitive Information Flow Control Based on Program Dependence Graphs. International
Journal of Information Security, 8(6):399–422, December 2009.

19. Gerwin Klein and Tobias Nipkow. A Machine-Checked Model for a Java-Like Language,
Virtual Machine, and Compiler. ACM Trans. Program. Lang. Syst., 28(4):619–695, 2006.

20. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Ma-
chines. In CSFW 2006, pages 309–320. IEEE Computer Society, 2006. See
http://eprint.iacr.org/2013/025/ for a full and revised version.

21. R. Küsters and M. Tuengerthal. Joint State Theorems for Public-Key Encryption and Digital
Signature Functionalities with Local Computation. Technical Report 2008/006, Cryptology
ePrint Archive, 2008. Available at http://eprint.iacr.org/2008/006.

22. R. Küsters and M. Tuengerthal. Universally Composable Symmetric Encryption. In CSF
2009, pages 293–307. IEEE Computer Society, 2009.

23. R. Küsters, E. Scapin, and T. Truderung. A Java Implementation of a Cloud Storage System,
2013. http://infsec.uni-trier.de/publications/software/CloudStorage.zip.

24. R. Küsters, T. Truderung, and J. Graf. A Framework for the Cryptographic Verification of
Java-like Programs. In CSF 2012, pages 198–212. IEEE Computer Society, 2012.

25. Ralf Küsters, Tomasz Truderung, and Jürgen Graf. A Framework for the Cryptographic
Verification of Java-like Programs. Cryptology ePrint Archive, Report 2012/153, 2012.
http://eprint.iacr.org/2012/153.

26. Ralf Küsters and Max Tuengerthal. Joint State Theorems for Public-Key Encryption and
Digital Signature Functionalities with Local Computation. In CSF 2008, pages 270–284.
IEEE Computer Society, 2008.

27. Ralf Küsters and Max Tuengerthal. The IITM Model: a Simple and Expressive Model for
Universal Composability. Technical Report 2013/025, Cryptology ePrint Archive, 2013.
Available at http://eprint.iacr.org/2013/025.

28. Tobias Nipkow and David von Oheimb. Javalight is Type-Safe — Definitely. In POPL,
pages 161–170, 1998.

29. B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Ap-
plication to Secure Message Transmission. In Security and Privacy 2001, pages 184–201.
IEEE Computer Society, 2001.

20

A The Case Study

A.1 Description of the Cloud Storage System

Store
(1) C→ S : EncS(userID,SigC[STORE, label,counter,SymEnck(message)])

(2a) S →C : EncC(SigS[SignC,STORE_OK])
(2b) S →C : EncC(SigS[SignC,STORE_FAIL, lastCounter])

Retrieve
(3) C→ S : EncS(userID,SigC[RETRIEVE, label,counter])

(4a) S →C : EncC(SigS[SignC,RETRIEVE_OK,encryptedMsg,authToken])
(4b) S →C : EncC(SigS[SignC,RETRIEVE_FAIL])

Synchronization

(5) C→ S : EncS(userID,SigC[GET_COUNTER, label,nonce])
(6) S →C : EncC(SigS[SignC,LAST_COUNTER,serverCounter,nonce])

Fig. 1. Messages exchanged between the client and the server, where EncS(m) and EncC(m)
denote m encrypted under the public key of the server and the client, respectively. Analogously,
SigS[m] and SigC[m] denote the signatures of the server and the client, respectively, on m, along
with the message m itself. Finally, SymEnck(m) denotes m encrypted under the symmetric key k.
By SignC, we denote the signature (not the signed message) of C in the previous message. For
example, in (2a) SignC denotes C’s signature in message (1).

In our system, data is stored (encrypted) on the server along with a label and a
counter (a version number). When data is to be stored under some label, a new (higher)
counter is chosen and the data is stored under the label and the new counter; old data
is still preserved (under smaller counters). Different users can have data repositories on
one server. These repositories are strictly separated. The system can be used to securely
store any kind of data. A user may use our cloud storage system, for example, to store
her passwords remotely on a server such that she has access to them on different devices.

When created, client and server objects are provided with all necessary key material.
In particular, a client object is provided with a user ID and the corresponding public and
private encryption and signing keys as well as the symmetric key for encrypting data.
The server obtains its public and private encryption and signing keys.

The client class of our system offers two methods: store (with parameters message
(data) and label), to store data (message) under a chosen label (label), and retrieve

(with the parameter label), to retrieve data stored under a label (label). The client and
the server internally maintain the current counter. A counter recorded on the client for
a label may differ from the one recorded on the server since, for example, another
instance of the client (with the same user ID) may have stored further data on the server
meanwhile. Store and retrieve actions therefore always start with a synchronization step
(see Figure 1, (5) and (6)) where the client asks the server for the current counter for
the considered label. If this value is higher than the one stored locally by the client, the

21

client updates its counter to this higher value. If the value is lower, the client throws an
exception. The nonce in messages (5) and (6) is used to prevent reply attacks.

Now, when the method store is invoked with parameters message and label, the
client object, after having synchronized the counter with the server (see above), sends
message (1) in Figure 1 to the server, where counter is the current value of the counter
for label obtained after synchronization and k is a private key of the client (not shared
with any other party). The client’s signature in (1) is stored by the server along with
label, counter, and the ciphertext SymEnck(message), and is used later as an authen-
tication token (when retrieving the data). The server may reply with an error message
(2b), indicating a counter error (some message has already been stored for the given
combination of counter and label). Otherwise, the server acknowledges that the storage
operation was successful (2a).

When the method retrieve is called with parameter label, the client sends, again
after synchronization with the server, message (3) to the server, where counter is the
current value of the counter for label after synchronization. The server can, again, re-
spond with an error message (4b) (indicating that there is no message stored under the
given combination label/counter for that user), or it responds with the message (4a),
containing the encrypted data encryptedMsg stored under label/counter and an authen-
tication token authToken (see above), which proves to the client that the response of the
server is correct.

The full code of the system is available under [23].

A.2 Description of the Setup Program

The setup program takes the parameter secret_bit of type boolean as its input. This
program, first, creates a client (i.e. an object of class Client) and registers her public-key
encryption and signing keys in the public-key infrastructure. If this registration process
succeeds, the setup program enters its main loop where the adversary (the environment)
determines, one by one, the actions to be taken by the system by sending instructions
to main. Except for the first instruction, the following instructions can be send by the
adversary arbitrarily often.

– The adversary can decide to end the loop by sending a special end instruction.
– The adversary can register a corrupted encryptor and/or a corrupted verifier. In par-

ticular, he can register such objects under the fixed identifier of the server. By this,
the adversary is able to fully subsume (impersonate) the server: he can decrypt mes-
sages encrypted for the server and produce signatures of the server. Analogously, the
adversary can register (and then subsume) dishonest clients. Note that the adversary
cannot register keys under the ID of the honest client created at the beginning of the
setup, because this ID is already taken.

– The adversary can pick an arbitrary label and an arbitrary message to be stored by
the honest client on the server, by calling client.store(label,message). More
precisely, to do so, the adversary, besides the label, provides a pair (m0,m1) of mes-
sages of the same length (if the two messages do not have the same length, this step
is aborted). Then, depending on the value of the secret bit (secret_bit) m0 or m1 is
picked as message (the message to be stored).

22

– The adversary can choose to have the honest client retrieve a message for a given label
(again, determined by the adversary), using client.retrieve(label). The value
of the returned message is then ignored. However, notice that this step, according to
the honest client program, triggers an exchange of messages between the client and
the server (adversary), which includes the encrypted message.

By this, the adversary has full control over the network, the server, all dishonest clients,
and over the actions taken by the honest client.

B Proof of Theorem 4

As we have mentioned in Section 3.4, the proof of Theorem 4 is highly modular and
leverages such properties of the realization relation as the composition theorem, reflex-
ivity, and transitivity. Due to this modular proof technique, we can even make use of the
result proved in [24] for the public-key functionality without corruption and without a
PKI.

First, we observer that the ideal functionality Ideal-PKIEnc can be split in the follow-
ing way:

Ideal-PKIEnc = Ideal-PKEnc · Ideal-RegEnc ,

where Ideal-PKEnc and Ideal-RegEnc are defined as follows:

Ideal-PKEnc consists of the classes Encryptor and Decryptor of Ideal-PKIEnc, as intro-
duced in Section 3.2. Let IPKEnc denote the public interface of these classes. That is,
IPKEnc coincides with IPKIEnc, as defined in Section 3.1, excluding the interface of the
class RegisterEnc.

Ideal-RegEnc consists of the class RegisterEnc of Ideal-PKIEnc. Let IEncPKI denotes the
public interface of this class. That is, the interface IPKIEnc, as defined in Section 3.1,
restricted to the public interface of the class RegisterEnc.

Similarly, Real-PKIEnc can be split in the following way:

Real-PKIEnc = Real-PKEnc ·Real-RegEnc ,

where Real-PKEnc and Real-RegEnc are defined as follows:

Real-PKEnc consists of the classes Encryptor and Decryptor of Real-PKIEnc, as intro-
duced in Section 3.3. Note that the public interface of Real-PKEnc is IPKIEnc, and
hence, it is the same as the one for Ideal-PKEnc.

Real-RegEnc consists of the RegisterEnc of Real-PKIEnc. Note that the public interface
of Real-RegEnc is IEncPKI, and hence, it is the same as the one for Ideal-RegEnc.

Now, we prove the following sequence of realization relationships:

Real-PKIEnc ·Real-PKI = Real-PKEnc ·Real-RegEnc ·Real-PKI

≤IPKIEnc Real-PKEnc ·Real-RegEnc · Ideal-PKI (4)

≤IPKIEnc Real-PKEnc · Ideal-RegEnc (5)

≤IPKIEnc Ideal-PKEnc · Ideal-RegEnc = Ideal-PKIEnc (6)

23

From this, by transitivity of the realization relation, Theorem 4 follows. Now, we estab-
lish each of the above relationships.

Lemma 1. Relationship (4) holds true, that is

Real-PKEnc ·Real-RegEnc ·Real-PKI≤IPKIEnc Real-PKEnc ·Real-RegEnc · Ideal-PKI .

Proof. This relationship easily follows from the assumption that Real-PKI ≤IPKI

Ideal-PKI, the composition theorem, and reflexivity of the realization relation. Indeed,
by reflexivity of realization relation, we have that

Real-PKEnc ·Real-RegEnc≤IPKIEnc Real-PKEnc ·Real-RegEnc.

Note that IPKIEnc = IPKEnc∪ IEncPKI. Together with Real-PKI≤IPKI Ideal-PKI, by the compo-
sition theorem we immediately obtain that

Real-PKEnc ·Real-RegEnc ·Real-PKI≤IPKIEnc∪IPKI Real-PKEnc ·Real-RegEnc · Ideal-PKI

which implies (4), since if a relationship holds for one interface, then also for all of its
subinterfaces. ut
Lemma 2. The relationship (5) holds true, that is

Real-PKEnc ·Real-RegEnc · Ideal-PKI≤IPKIEnc Real-PKEnc · Ideal-RegEnc.

The two systems are very similar: the main difference is that in the ideal system (the
one on the right hand-side) encryptors are stored directly (in a collection of registered
encryptors), while in the real system (the one on the left hand-side) public keys are
stored instead with wrapping/unwrapping of public keys in encryptors when necessary.
Therefore, the relationship holds true even if unbounded environments try to distinguish
the two systems. The proof of this lemma is given in Appendix B.1.

Finally, relationship (6) follows immediately by the following fact and again using
the composition theorem and reflexivity of realization relation, similarly to the proof of
Lemma 1.

Lemma 3. Real-PKEnc≤IPKEnc Ideal-PKEnc

We prove Lemma 3 by reducing it to the result from [24], where similar functionali-
ties, but without corruption are considered. In the proof we use the fact that corrupted
encryptors can be simulated directly by an environment. The proof is given in Ap-
pendix B.2.

B.1 Proof of Lemma 2

In this section, we prove that

Real-PKEnc ·Real-RegEnc · Ideal-PKI≤IPKIEnc Real-PKEnc · Ideal-RegEnc.

In order to do this, we need to show that there exists a simulator Sim such that

S = Real-PKEnc ·Real-RegEnc · Ideal-PKI ≈IPKIEnc
comp Sim ·Real-PKEnc · Ideal-RegEnc = S̃

Let Sim be the simple forwarding simulator that translates calls to the simulator inter-
face of Ideal-RegEnc (that is class RegisterEncSim) into calls to the simulator interface
of Ideal-PKI (class PKISim):

24

public class RegisterEncSim {
public static boolean register(int id, byte[] domain, byte[] publicKey) {
return PKISim.register(id, domain, publicKey);

}
public static boolean getEncryptor(int id, byte[] domain) {
return PKISim.getKey(id, domain);

}
}

We are able to prove the stronger property

S ≈IPKIEnc
perf S̃

that is, the two systems are perfectly indistinguishable, that is indistinguishable by an
unbounded, deterministic adversary (see [24] for details). For this, let us take an arbi-
trary deterministic IPKIEnc-environment E for S (and hence for S̃). To complete the proof,
it remains to show that

E ·S ≡perf E · S̃ (7)

which simply means that the environment E in the runs of both E · S and E · S̃ outputs
the same value.

On the intuitive level the above statement is quite straightforward. Indeed, the sys-
tems S and S̃, from the point of view of any environment E, realize very similar com-
putations with the only difference being how they implement registration of encryptors.
In the system S, public keys are kept in a collection (along with user identifiers); those
keys are retrieved from an encryptor by method registerEncryptor and, conversely,
wrapped into a newly created encryptor by method getEncryptor. In the system S̃, on
the other hand side, encryptors are stored directly (along with user identifiers). Method
registerEncryptor simply adds such an encryptor (along with a user identifier) into a
collection, when method getEncryptor retrieves an appropriate encryptor and returns
a newly created copy of it. These computations produce the same result, up to the in-
ternal state of the component S/S̃. In other words, the state of the computations in the
considered systems is the same from the point of view of the environment and so, in
particular, the value of variable result (which is determined by the environment) at the
end of the runs is the same in both systems.

To formalize the intuitive argument given above, we need to introduce some nota-
tion.

Structure of states in a run. A configuration q of Jinja+, as defined in [24], is of the
form 〈e,s〉, where e is a Jinja+ expression and s is a state. A state is a pair (h, l) of a heap
and a store. A heap is a mapping from references (addresses) to object instances and a
store is a mapping from variable names to values. A value can be either a reference or
a value of a primitive type.

One particular type of expression is a block expression of the form {V : T ; e}C or
{V : T ; V := Val v; e}C, where V is a local variable (whose scope is this block) of type
T and, in the second variant, with value Val v, e is an expression (e can access the local
variable V), and C is a class name (denoting that the block originates from the code of
the class C).

25

In general, an expression can contain many blocks as its subexpression. However,
when we study expressions that occur in actual runs, it turns out that they have a simpler
form, where all blocks are located on one path. Formally, let

q0 = 〈e0,〈h0, l0〉〉
`→ 〈e1,〈h1, l1〉〉

`→ ···

be a run with the initial state s0 = 〈h0, l0〉. By the definition of the initial state [24, 25],
h0 is empty and l0 bounds the static variables of the program to their initial values (and
no other variables). By inspecting the rules of Jinja+ (see Appendix E), one can see that,
for every i = 0,1, . . . ,

– li bound only static variables,
– for every subexpression e of ei (including ei) either e contains no block as its

subexpression or e is of the form E[b], where E contains no block and b is a block.
That is, e can contain, directly, at most one block (although b can contain other
blocks).

The definitions and results given below assume that expressions originate from runs
of Jinja+ systems and therefore they are of the above form.

By C[·] we denote an expression context (that is, an expression with a hole) and by
C[e] we denote the expression obtained by replacing the hole by e.

We can now state the two following lemmas.

Lemma 4. 〈e,(h, l)〉 −→ 〈e′,(h′, l′)〉 if and only if e contains no block.

The proof can be easily done by structural induction, considering all possible rules
of Jinja+ (Appendix E) that produce a reduction step with label −.

Lemma 5. If 〈e,(h, l)〉 D→ 〈e′,(h′, l′)〉, then

– e is of the form C[e0], where e0 is a block expression of class D without blocks;

– 〈e0,(h, l)〉
D→ 〈e′0,(h′, l′)〉;

– e′ = C[e′0].

Again, this lemma can be easily proven by structural induction.

Pruning. Let C be a set of classes (intuitively, representing a subprogram) and e be an
expression. We define a pruning operator subC (e) in such a way that it removes from e
all those parts that come from classes not in C and only leaves the code originating in
C . Formally, we define subC (e) as follows:

– if e contains no block, then subC (e) = e,
– if e is not a block, but contains one, that is e = E[b], then subC (e) = E[subC (b)],
– if e = {V : T ; e′}D with D∈C , then subC (e) = {V : T ; subC (e′)}D (and similarly

for e = {V : T ; V := Val v; e′}D),
– if e = {V : T ; e′}D with D /∈ C , and e′ contains no blocks, then subC (e) =⊥.
– if e = {V : T ; E[b]}D, where b is a block with D /∈ C , then subC (e) = sub(b),

26

Corresponding states. As it has been already stated, our goal is to show that (7)
holds true. The systems S and S̃ we consider in this equivalence share the component
Real-PKEnc and it will be useful for the remainder of the proof to use the following
notation. Let E ′ denote E ·Real-PKEnc (that is, E ′ is the environment enlarged by the
shared functionality Real-PKEnc), let

T = Real-RegEnc · Ideal-PKI,

T̃ = Ideal-RegEnc ·Sim.

Using this notation, (7), that is the equivalence to be proved, can be represented as

E ′ ·T ≡perf E ′ · T̃ (8)

Let q = 〈e,(h, l)〉 be a configuration of E ′ ·T and q̃ = 〈ẽ,(h̃, l̃)〉 be a configuration
of E ′ · T̃ .

We say that a bijection f : R1 → R2, where R1 and R2 are subsets of the set of all
references, is an (h, h̃)-congruence, if for all r, r̃ such that r̃ = f (r) one of the following
conditions holds true:

(i) Both r and r̃ point to objects of the same class C defined in E ′ and for every field
m of C, either (a) both r′ = h(r).m and r̃′ = h̃(r̃).m have the same primitive value
or (b) both r′ and r̃′ are references and r̃′ = f (r′).

(ii) Both r and r̃ point to an array of the same type T and the same length l such either
(a) T is a primitive type and r and r̃ contain the same values or (b) T is a class and,
for every i ∈ {0, . . . , l−1} and every pair of corresponding references r′ = h(r)[i]
and r̃′ = h̃(r̃)[i], we have r̃′ = f (r′).

Let f be an (h, h̃)-congruence. For primitive values v, ṽ, we write v ≡ f ṽ, if simply
v = ṽ. For references r, r̃, we write r ≡ f r̃, if r̃ = f (r). Finally, we extend the relation
≡ f to expressions by the structural isomorphism, that is e ≡ f ẽ holds if and only if e
and ẽ are (syntactically) equal, up to references occurring as their corresponding subex-
pressions which need to be in the relation ≡ f .

We also define l ≡ f l̃ to be true if, intuitively, the state of E ′ (given by static vari-
ables of E ′) is the same up to reference renaming f and the state of T and T̃ , although
different, represent essentially the same store of registered encryptors. Formally, we put
l ≡ f l̃ if and only if

(a) For every static variable x defined in E ′ we have l(V)≡ f l̃(V).
(b) Static variable IdealPKI.entries (defined in T) and static variable

RegisterEnc.registeredAgents (defined in T̃) contain information which is
strictly corresponding in the following sense.
First let us observe that IdealPKI.entries points to a list of entries, each
containing id of type int, and domain and key of type byte[]. Similarly,
RegisterEnc.registeredAgents points to a list of entries, each containing id of
type int, domain of type byte[], and domain of type Encryptor.
Now, for we require that, for all values id, domain, and key, where id is an integer
and domain and key are arrays of bytes, the following equivalence holds: the list

27

pointed to by IdealPKI.entries contains a tuple with values (id, domain, key) if
and only if the list pointed to by RegisterEnc.registeredAgents contains a tuple
with values id, domain and an encryptor containing key as its public key (that is its
field publicKey points to an array containing the bitstring key).

We say that q = 〈e,(h, l)〉 and q̃ = 〈ẽ,(h̃, l̃)〉 are corresponding, if there exists a (h, h̃)-
congruence f such that

1. subE ′(e)≡ f subE ′(ẽ),
2. l ≡ f l̃.

Condition 1 above means that the expressions e and ẽ (representing the code being
executed), when stripped off the code originatin in T /T̃ , are the same (up to reference
renaming). Condition 2 says that the state, as given by static variables, is the same, up
to reference renaming an up to (not-essential) differences in how T and T̃ store public
keys.

We will sometimes write that q and q̃ are f -corresponding to make it explicit which
congruence is used.

Lemma 6. Let q = 〈e,(h, l)〉 and q̃ = 〈ẽ,(h̃, l̃)〉 be f -corresponding configurations
for an (h, h̃)-congruence f . Let q −→ q′ and q̃ −→ q̃′. Then q′ = 〈e′,(h′, l′)〉 and q̃′ =
〈ẽ′,(h̃′, l̃′)〉 are f ′-corresponding for an (h′, h̃′)-congruence f ′ which is an extension of
f .

Proof. First of all, we prove that the Jinja+ rules applied to q and to q̃ are indeed
the same. By Lemma 4, since 〈e,(h, l)〉 −→ 〈e′,(h′, l′)〉 and 〈ẽ,(h̃, l̃)〉 −→ 〈ẽ′,(h̃′, l̃′)〉, e
and ẽ contain no blocks. Therefore, by the definition of the pruning operator, we have
subE ′(e) = e and subE ′(ẽ) = ẽ and hence, since they are f -corresponding, we have
e≡ f ẽ. Moreover, the f -corresponding relation means also l ≡ f l̃.

The relation ≡ f between expressions implies that e and ẽ are syntactically equal,
up to reference occurring as their corresponding subexpressions. Since applicability of
no Jinja+ rule depends on the particular values of references, the same rule is applied to
〈e,(h, l)〉 and to 〈ẽ,(h̃, l̃)〉.

We can now prove the q′ and q̃′ are also corresponding, depending on the Jinja+
rule applied to both q and q̃.

Rule 21. In this case we have

q = 〈Cast C e1,(h, l)〉
−→ 〈Cast C e′1,(h

′, l′)〉= q′

and analogously

q̃ = 〈Cast C ẽ1,(h̃, l̃)〉
−→ 〈Cast C ẽ′1,(h̃

′, l̃′)〉= q̃′,

where, by the premise of the rule,

〈e,(h, l)〉 −→ 〈e′,(h′, l′)〉 and 〈ẽ,(h̃, l̃)〉 −→ 〈ẽ′,(h̃′, l̃′)〉.

28

By definition of ≡ f (which is by structural isomorphism), we have e1 ≡ f ẽ1 and, there-
fore, 〈e1,(h, l)〉 and 〈ẽ1,(h̃, l̃)〉 are also f -corresponding. Therefore, by the inductive
hypothesis, there exists an (h′, h̃′)-congruence f ′ such that 〈e′1,(h′, l′)〉 and 〈ẽ′1,(h̃′, l̃′)〉
are f ′-corresponding, where f ′ is an extension of f . By the definition of ≡ f ′ , we
conclude that configurations 〈Cast C e′1,(h

′, l′)〉 and 〈Cast C ẽ′1,(h̃
′, l̃′)〉 are also f ′-

corresponding.

Rule 36. We have

q = 〈new C,(h, l)〉 −→ 〈addr a,(h(a 7→ (C, init-fields FDT s)), l)〉= q′

and

q̃ = 〈new C,(h̃, l̃)〉 −→ 〈addr ã,(h̃(ã 7→ (C, init-fields FDT s)), l̃)〉= q̃′,

where a and ã are fresh references (that is, references unused in h and h̃, respectively).
We extend (h, h̃)-congruence f to an (h′, h̃′)-congruence f ′ in the following way: (i)

dom(f ′) = dom(f)∪{a}; (ii) ∀r ∈ dom(f), f (r) = f ′(r); (iii) ã= f ′(a). By the definition
of≡ f ′ , we have a≡ f ′ ã. Furthermore, since the rule leaves the stores l and l̃ unchanged,
l ≡ f ′ l̃. Therefore, q′ and q̃′ are f ′-corresponding.

Rule 40. We have

q = 〈V := Val v,(h, l)〉 −→ 〈unit,(h, l(V 7→ v))〉= q′

and
q̃ = 〈V := Val ṽ,(h̃, l̃)〉 −→ 〈unit,(h̃, l̃(V 7→ ṽ))〉= q̃′

with l ≡ f l̃ by the lemma’s hypothesis. Since q≡ q̃, by the definition of≡ f (which is by
structural isomorphism), we also have v≡ f ṽ and, since l′= l(V 7→ v) and l̃′= l̃(V 7→ ṽ),
we also have l′ ≡ f l̃′. Therefore, since the rule leaves unchanged the heaps h and h̃, q′

and q̃′ are f ′-corresponding where f ′ = f .

Rule 43. We have

q = 〈addr a.F{D} := Val v,(h, l)〉 −→ 〈unit,(h(a 7→ (C, f s((F,D) 7→ v))), l)〉= q′

and

q̃ = 〈addr ã.F{D} := Val ṽ,(h̃, l̃)〉 −→ 〈unit,(h̃(ã 7→ (C, f s((F,D) 7→ ṽ))), l̃)〉= q̃′.

Since q ≡ q̃, by the definition of ≡ f (which is by structural isomorphism), we have
a ≡ f ã and v ≡ f ṽ. The rule changes the heaps h, h̃ in such a way that the fields F{D}
of the references a,ã are updated with the values v, ṽ, respectively:

h′ = h(a 7→ (C, f s((F,D) 7→ v)))

and
h̃′ = h̃(ã 7→ (C, f s((F,D) 7→ ṽ))).

Since the two fields are updated with the corresponding values v, ṽ, they remain cor-
responding also after the application of the rule. Therefore, by the definition of ≡ f ,
the (h, h̃)-congruence f is also an (h′, h̃′)-congruence. Since the rule leaves unchanged
the stores l and l̃, 〈e′,(h′, l′)〉 = 〈unit,(h′, l)〉 and 〈ẽ′,(h̃′, l̃′)〉 = 〈unit,(h̃′, l̃)〉 are f ′-
corresponding where f ′ = f .

29

Rule 44. In this case we have q = 〈addr a.M(map Val vs),(h, l)〉 and analogously
q̃ = 〈addr ã.M(map Val ṽs),(h̃, l̃)〉. By the definition of f -corresponding and of ≡ f ,
we have a≡ f ã and vs≡ f ṽs. Therefore both a and ã point to objects of the same class
C defined in E ′.

By the premise of the rule we have “P ` C sees M : T s→ T = (pns, body) in D”,
which means that method M called for an object of class C (which is the actual class
of the object a that we call M for) is defined in class D as (pns,body), where pns
are the parameters of the method and body is its body). Now, when configuration q is
considered, P = E ′ ·T ; when q̃ is considered, P = E ′ · T̃ . One can see that in both these
cases, the above relation gives the same pns and body. This is because, as we have
noted, class C is defined in E ′ and this component does not refer to T /T̃ .

Therefore

e′ = blocksD(this · pns, Class D ·T s, addr a · vs, body)

and
ẽ′ = blocksD(this · pns, Class D ·T s, addr ã · ṽs, body)

respectively. Since a ≡ f ã and vs ≡ f ṽs, by the definition of ≡ f (which is by struc-
tural isomorphism), we have e′ ≡ f ẽ′. Furthermore, since the rule does not change the
state i.e., (h, l) = (h′, l′) and (h̃, l̃) = (h̃′, l̃′) respectively, also l′ ≡ f l̃′ holds. Therefore
〈e′,(h′, l′)〉 and 〈ẽ′,(h̃′, l̃′)〉 are f ′-corresponding where f ′ = f .

We consider the remaining rules only quickly, as the reasoning they require is either
trivial or similar to the cases discussed above.

– Rules 22-27, 31-35, 55, 57, 75-77 can be proved by following the inductive reason-
ing (rule induction) for the rule 21, since they also perform just a reduction step in
one of their subexpressions.

– Rules 28, 29, 30 cannot be applied to q and q̃ because the function g(`,D), which
defines the transition’s label of these rules, never returns −.

– Rules 37, 39, 41, 42, 51, 59, 60, 84-87, 89,90 can be proved by following the
reasoning for rule 44 since they also leave the state of the configurations unchanged:
(h, l) = (h′, l′) and (h̃, l̃) = (h̃′, l̃′) respectively. Therefore, the (h′, h̃′)-congruence f ′

is such that f ′ = f .
– Rules 38, 47-50, 52-54, 56, 58, 61-67, 70-74, 78-80, 83 can be proved by following

the reasoning for rule 44 because also these rules leave the state of the configura-
tions unchanged (hence, f ′ = f) and, moreover, they are trivial to prove since they
do not have any premise (as in case of rule 40).

– Rules 45, 46, 68, 69 cannot be applied to q and q̃ because their transition’s label is
D.

– Rule 81 can be proved by following the reasoning for rule 44, with the only differ-
ence that, since the method D.M is static, the local variable this does not appear as
argument of the auxiliary block function.

– Rule 82 can be proved by following the reasoning for rule 36: since also in this
case two new array references a and ã are created inside their heaps h and h̃ re-
spectively, the (h, h̃)-congruence f must be extended in the same way i.e., with a
(h′, h̃′)-congruence f ′ such that a ∈ dom(f ′) and ã = f ′(a).

30

– Rule 88 can be proved by following the same reasoning of rule 43: two array ref-
erences r = h(a)[n] and r̃ = h̃(ã)[n] are updated, but also in this case the (h, h̃)-
congruence f remains unchanged for (h′, h̃′) i.e., f ′ = f .

ut

E ′-configurations. We say that a configuration q is an E ′-configuration, if E ′ has con-
trol at q, i.e. q `→ q′ for ` ∈ E ′.

Let q be an E ′-configuration. We write q 7→ q′, if q′ is also an E ′-configuration and

q
`0→ q1

`1→ ··· `n−1→ qn
`n→ q′

where (`0 ∈ E ′ and) `i /∈ E ′ for i∈ {1, . . . ,n}, that is q1, . . . ,qn are not E ′-configurations.
(Note that the special case of the above definition is when q′ is obtained from q in one
step). As we can see, q′ is the first E ′-configuration after q.

Now one can prove that two E ′ configurations q and q̃ that are corresponding reduce in
one step to configurations which are also corresponding:

Lemma 7. Let q and q̃ be corresponding E ′-configurations. Let q→ q′ and q̃→ q̃′.
Then q′ and q̃′ are also corresponding.

Proof. Let q = 〈e,(h, l)〉 and q̃ = 〈ẽ,(h̃, l̃)〉. Since they are E ′-configurations, we have

〈e,(h, l)〉 D→ 〈e′,(h′, l′)〉 and 〈ẽ,(h̃, l̃)〉 D̃→ 〈ẽ′,(h̃′, l̃′)〉, respectively, with D, D̃ ∈ E ′. By
Lemma 5, we then have:

– e = C[e0], where e0 is a block expression of class D without nested blocks;
– ẽ = C̃[ẽ0], where ẽ0 is a block expression of class D̃ without nested blocks;
– 〈e0,(h, l)〉

D→ 〈e′0,(h′, l′)〉 and e′ = C[e′0];

– 〈ẽ0,(h̃, l̃)〉
D̃→ 〈ẽ′0,(h̃′, l̃′)〉 and ẽ′ = C̃[ẽ′0].

Since 〈e,(h, l)〉 and 〈ẽ,(h̃, l̃)〉 are corresponding configurations, we have
subE ′(C[e0]) ≡ f subE ′(C̃[ẽ0]) for some (h, h̃)-congruence f and hence, by the
definition of pruning operator, subE ′(C)[subE ′(e0)] ≡ f subE ′(C̃)[subE ′(ẽ0)]. By the
definition of ≡ f (which is by structural isomorphism), we then have:

– subE ′(C)≡ f subE ′(C̃) and
– subE ′(e0)≡ f subE ′(ẽ0).

Therefore 〈e0,(h, l)〉 and 〈ẽ0,(h̃, l̃)〉 are also f -corresponding and D = D̃, because
D, D̃ ∈ E ′ and, hence, the block expressions e0 and ẽ0 are preserved by subE ′ . Further-
more, since e0 and ẽ0 contain no block as their proper subexpressions, by the definition
of pruning operator, we have subE ′(e0) = e0 and subE ′(ẽ0) = ẽ0 and therefore e0 ≡ f ẽ0.

The relation ≡ f between expressions implies that e0 and ẽ0 are syntactically equal,
up to reference occurring as their corresponding subexpressions. But, since aplicability
of Jinja+ rules does not depend on particular values of references, the same block rule
is applied to both 〈e0,(h, l)〉 and 〈ẽ0, h̃, l̃)〉.

We now prove that 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are f ′-corresponding for an (h′, h̃′)-
congruence f ′ which is an extension of f . We need to distinguish the following cases,
depending on the block rule applied to e0 (and thus to e′0).

31

(a) Rule 28, 29: we have e0 = {V : T ;e1}D, where neither e1 = Val u nor
e1 = Throw a, and g(`,D) = D.

(b) Rule 45: we have e0 = {V : T ; Val u}D.
(c) Rule 68: we have e0 = {V : T ; Throw a}D.
(d) Rule 30: we have e0 = {V : T ;V := Val v;e1}D, where neither e1 = Val u nor

e1 = Throw a, and g(`,D) = D.
(e) Rule 46: we have e0 = {V : T ; V := Val v}D.
(f) Rule 69: we have e0 = {V : T ;V := Val v; Throw a}D.

Let us consider the case (a) and (b); the case (d) is analogous to case (a), whereas
the cases (c), (e) and (f) are analogous to case (b) and, moreover, trivial because the
rules do not assume any premise and do not change the state of the configurations.

Case (a): We have e0 = {V : T ;e1}D and ẽ0 = {V : T ; ẽ1}D. Furthermore, by definition
of ≡ f , we have e1 ≡ f ẽ1 and hence 〈e1,(h, l)〉 and 〈ẽ1,(h̃, l̃)〉 are f -corresponding.

The block rule applied is either 28 or 29. Let us consider the rule 28; reasoning for
the other other is analogous. Since e1 and ẽ1 do not contain any blocks, by Lemma 4

〈e1,(h, l(V := None)〉 −→ 〈e′1,(h′, l′1)〉 with l′ = l′1(V := l V) (9)

and
〈ẽ1,(h̃, l̃(V := None)〉 −→ 〈ẽ′1,(h̃′, l̃′1)〉 with l̃′ = l̃′1(V := l̃ V). (10)

By Lemma 6, 〈e′1,(h′, l′1)〉 and 〈ẽ′1,(h̃′, l̃′1)〉 are f ′-corresponding for an (h′, h̃′)-
congruence f ′ which is an extension of f . It implies subE ′(e′1) ≡ f ′ subE ′(ẽ′1) and
l′1 ≡ f ′ l̃′1. Therefore, by the definition of l′ in (9) and l̃′ in (10), we have

l′ ≡ f ′ l̃′. (11)

By the definition of ≡ f ′ (which is by structural isomorphism), we have

{V : T ; subE ′(e
′
1)}D ≡ f ′ {V : T ; subE ′(ẽ

′
1)}D, (12)

and, hence, by the definition of the pruning operator, we obtain

subE ′(e
′
0) = subE ′({V : T ;e′1)}D)≡ f ′ subE ′({V : T ; ẽ′1}D) = subE ′(ẽ

′
0). (13)

By relations (11) and (13), 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are also f ′-corresponding.

Case (b): We have e0 = {V : T ; Val u}D and ẽ0 = {V : T ; Val ũ}D. Furthermore,
by the definition of ≡ f , we have Val u ≡ f Val ũ. The block rule applied is 45, where
〈e′0,(h′, l′)〉= 〈Val u,(h, l)〉 and 〈ẽ′0,(h̃′, l̃′)〉= 〈Val ũ,(h̃, l̃)〉, respectively. In particular,
since l≡ f l̃ (by the lemma’s hypothesis) and since l′= l and l̃′= l̃, we also have l′≡ f l̃′.

Therefore 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are f ′-corresponding, where f ′ = f .

We have proved that 〈e′0,(h′, l′)〉 and 〈ẽ′0,(h̃′, l̃′)〉 are f ′-corresponding. In particular, it
means that subE ′(e′0)≡ f ′ subE ′(ẽ′0). Since subE ′(C)≡ f subE ′(C̃) and f ′ is an extension
of f , by the definition of the pruning operator, we have

subE ′(e
′) = subE ′(C)[subE ′(e

′
0)]≡ f ′ subE ′(C̃)[subE ′(ẽ

′
0)] = subE ′(ẽ

′). (14)

By (11) and (14), we conclude that q′ = 〈e′,(h′, l′)〉 and q̃′ = 〈ẽ′,(h̃′, l̃′)〉 are corre-
sponding, which completes the proof. ut

32

Now we are ready to prove the following statement.

Lemma 8. Let q0 be the initial configuration of the run of E ′ ·T and q̃0 be the initial
configuration of the run of E ′ · T̃ . Let q1, . . . ,qn and q̃1, . . . , q̃n be configurations such
that q0 7→ q1 7→ · · · 7→ qn and q̃0 7→ q̃1 7→ · · · 7→ q̃m where qn and q̃m are final configu-
ration (i.e. configuration that do not reduce). Then n = m and, for all i ∈ {0, . . . ,n}, the
configurations qi and q̃i are corresponding.

Proof. We will prove a more general fact, than the one stated in the lemma, allowing
q0 and q̃0 to be any corresponding E-states (not necessarily the initial ones). The proof
proceeds by induction on the number of E ′-blocks—that is block expressions of the
form {. . .}C with C ∈ E ′—in q0 (and q̃0), where to prove that the statement is true
for configurations with a given number of E ′-blocks, we assume that it holds true for
configurations with bigger numbers of E ′-blocks.

If q and q̃ are corresponding and q 7→ q′ where q′ is obtained from q in one step, then
q̃ 7→ q̃′ where q̃′ is obtained also in one step. Moreover, by Lemma 7, the configurations
q′ and q̃′ are corresponding. Therefore, to complete the proof, it is enough to consider
the remaining case and show that calls to the (public) methods of T and T̃ do not brake
this property. We consider, on the case by case basis, all calls from E ′ to methods of
T /T̃ (that is to registerEncryptor and to getEncryptor) made in corresponding states
and show that they end in corresponding states as well. Here we present the reasoning
only for the former case (the proof for getEncryptor proceeds in a similar way).

Method registerEncryptor with arguments encryptor, id, pki_domain:
First, we can observe (by inspecting the code of this method in T /T̃ , see Appendix D.1
and D.2), these methods do not change the sate of E ′ which formally means, that they
preserver condition (a) of the definition of corresponding states. Therefore, it is enough
to show that a call to this method also preserves condition (b) of this definition.

This call, in both systems T and T̃ makes three steps:

1. Method PKI.register is called with arguments id, the PKI domain pki_domain,
and k, where k is the public key stored in encryptor.
Indeed, in the system T , the control is immediately handed over to PKISim.register

(with arguments id, pki_domain, k; see line 155), where method PKISim.register

is called with the same arguments. In the system T̃ , on the other hand, the first
things that happens is the call to register method of class RegisterEncSim (line
64, Appendix D.1) with arguments id, pki_domain, and k. By the definition of
the simulator, this call is directly translated into the corresponding call to method
PKISim.register.
As this is the first action in both systems, the configurations of the systems T /T̃ ′

when this method is called remain corresponding. Hence, by the inductive hypothe-
sis, the state of these systems after the call are corresponding as well. This includes
the return value from the method call (as this value has been determined by E ′ in
corresponding states).
Finally, in both systems, if the return value from the call to PKISim.registe is true
(which is, as we have noticed, the same in both systems), exception NetwokError

is thrown. If this is the case, the method call is aborted in corresponding states.
Otherwise, the systems enter the next step in corresponding states.

33

2. It is checked if a key has been already registered for the given id and pki_domain

(line 346 for the system T and line 66 for the system T̃).
One can notice, again, that this step does not change the state of the system and
therefore preserves correspondence of states of T /T̃ . Moreover, by condition (b)
of the definition of corresponding states, the result of this step is the same in both
systems. Therefore either both T and T̃ throw PKIError in corresponding states, or
both T and T̃ enter the next step in corresponding states.

3. A public key/encryptor is registered under id and pki_domain.
This is done in line 347 for the system T and in line 68 for the system T̃ . One can
see, by inspecting the code of the invoked methods, that the only part of the state
that is changed are the collections considered in condition (b) of the definition of
corresponding states. So, condition (a) of this definition is preserved by this step.
Moreover, the changes made to the considered collections are such that condition
(b) is also preserved after this step. Hence, the states of T and T̃ after this step are
still corresponding.

Now we can complete the proof of Lemma 2. By the above lemma, the final con-
figurations of (E · S) = (E ′ ·T) and (E · S̃) = (E ′ · T̃) (that is, respectively, qn and q̃m,
as defined in the lemma) are corresponding, which means, in particular, that the sate of
E ′, which includes the variable result in those configurations is the same. Therefore
the environment outputs the same result in both cases. ut

B.2 Proof of Lemma 3

In this section, we provide the proof of the realization result for public-key encryption:

Real-PKIEnc≤IPKIEnc Ideal-PKIEnc. (15)

In our previous paper [24] we considered the case without corruption. In this paper,
we consider an extended case with (static) corruption: in our Jinja+ implementation, we
model corruption by allowing the direct creation of Encryptor objects with an arbitrary
public key provided by the adversary.

We structure the proof in the following way: first we discuss the functionalities
without corruption by referencing to a result obtained in [24] and then, based on this
result, we consider the case with corruption and prove Lemma 3.

The Functionalities without Corruption. The real functionality of public key encryp-
tion without corruption, as considered in [24] coincides with the real functionality with
corruption we consider in this paper. The ideal functionality for public key encryption
without corruption, as considered in [24], is, however, different (see Appendix D.10).
We will denote it by Ideal-PKEnc−.

Similarly, the interface they implement (again, as considered in [24]) will be de-
noted by I−PKEnc. For completeness, we recall this interface (note that the difference to
IPKEnc is the lack of the constructor of class Encryptor):

34

1 public final class Decryptor {
2 public Decryptor();
3 public Encryptor getEncryptor();
4 public byte[] decrypt(byte[] message);
5 }
6 public final class Encryptor {
7 public byte[] getPublicKey();
8 public byte[] encrypt(byte[] message);
9 }

We have the following result proven in [24]:

Lemma 9. Real-PKEnc≤I−PKIEnc Ideal-PKEnc−

The Functionalities with Corruption. Now, using the result just discussed, we prove
(15). That is, we show that there exists a probabilistic polynomially bounded simulator
S such that for each polynomially bounded IPKEnc-environment E we have (Section 2):

E ·Real-PKEnc ≡comp E ·S · Ideal-PKEnc (16)

In order to reduce this proof to the case without corruption, we take an arbitrary IPKEnc-
environment E and construct a new I−PKEnc-environment E− out of it. This environment
E− consists of the following parts:

1. A copy of the code of the class Encryptor from the real functionality renamed
EncryptorCorr. (Note that the code of class Encryptor in the real functionality and
the ideal is identical).

2. A new class EncryptorWrapper which is meant to wrap either an object of
class Encryptor of the interface I−PKEnc (objects of this class are returned by
PKI.Decryptor.getEncryptor()), or an object of class EncryptorCorr, as intro-
duced above.

1 public class EncryptorWrapper {
2 Encryptor enc;
3 EncryptorCorr encCorr;
4

5 public EncryptorWrapper(Encryptor enc) {
6 this.enc=enc;
7 this.encCor=null;
8 }
9 public EncryptorWrapper(EncryptorCorr encCorr) {

10 this.encCorr=encCorr;
11 this.enc=null;
12 }
13 public byte[] encrypt(byte[] message) {
14 if(enc!=null)
15 return enc.encrypt(message);
16 else
17 return encCorr.encrypt(message);

35

18 }
19 public byte[] getPublicKey(){
20 if(enc!=null)
21 return enc.getPublicKey();
22 else
23 return encCorr.getPublicKey();
24 }
25 }

3. A copy of the code of E modified in the following way:

(a) every expression where an encryptor is obtained by a decryptor i.e.,
decryptor.getEncryptor()

is replaced by
new EncryptorWrapper(decryptor.getEncryptor())

(b) every expression where a corrupted encryptor is directly created i.e.,
EncryptorCorr(pubk)

is replaced by
new EncryptorWrapper(new EncryptorCorr(pubk));

The reason for using the wrapper class is to make it possible to treat objects of two,
formally unrelated classes (the encryptor class provided by the environment and the
encryptor class provided by the functionality) in a uniform way.

Using this construction, we can state the two following lemmas.

Lemma 10. E ·Real-PKEnc ≡comp E− ·Real-PKEnc

Proof (sketch). The proof is quite straightforward and it it follows by the construction
of E−. The class EncryptorCorr contains a copy of the code of class Encryptor of
Real-PKEnc. Furthermore, the wrapper and the modified version of E perform the same
actions (up to additional relaying steps of the wrapper class).

The presented above reasoning can be strictly formalized, as it has been in the proof
of Lemma 2. The difference to the proof of Lemma 2 is that now we cannot prove per-
fect indistinguishability of the considered system, but the following property (which is
still stronger than the one postulated in the lemma): the considered systems behave in
exactly the same way from the point of view of an unbounded (but possibly probabilis-
tic) adversary, for the same sequence of random coins.

In a very similar way we can prove the following result.

Lemma 11. E ·S · Ideal-PKEnc ≡comp E− ·S · Ideal-PKEnc−

Now we are ready to complete the proof of Lemma 3. From Lemma 9, we know
that Real-PKEnc ≤I−PKEnc Ideal-PKEnc− i.e., exists a probabilistic polynomially bounded
simulator S such that for each polynomially bounded I−PKEnc-environment E− we have
(Section 2):

E− ·Real-PKEnc ≡comp E− ·S · Ideal-PKEnc− (17)

36

Therefore, we obtain:

E ·Real-PKEnc
Lemma 10≡comp E− ·Real-PKEnc

(17)
≡comp E− ·S · Ideal-PKEnc−

Lemma 11≡comp E ·S · Ideal-PKEnc (18)

C Proof of Theorem 5

The proof of Theorem 5 is, as it is in the case of the realization result for PKIEnc,
modular and uses such properties of the realization relation as the composition theorem,
reflexivity, and transitivity.

We begin with analyzing the structure of the ideal and real functionalities we con-
sider. The ideal functionality consists of the following components:

Ideal-Sig — the (ideal) implementation of digital signatures, i.e. classes Verifier and
Signer, as described in Section 4.2. Let ICryptoLibSig denote the public interface of
this component.

Ideal-SigPKI — the (ideal) implementation of verifier registration, that is of the class
RegisterSig. Let ISigPKI denotes the public interface of this component.

Similarly, the real functionality for PKISig consists of the following components:

Real-Sig — the (real) implementation of classes Verifier and Signer, as sketched in
Section 4.3. Note that the public interface of this component is ICryptoLibSig, as in the
case of Ideal-Sig.

Real-SigPKI — the (real) implementation of verifier registration, that is RegisterSig.
This implementation uses the next component, Real-PKI, and only wraps/unwraps
verification keys into/from verifiers. Note that the public interface of this compo-
nent is ISigPKI.

Real-PKI — The real implementation of the functionality for the public key infrastruc-
ture (see Section 3.3).

Now, proving Theorem 5 can be reduced (in an analogous way as in the proof of
Theorem 4) to proving the following two facts:

Lemma 12. Real-Sig ·Real-SigPKI · Ideal-PKI ≤IPKISig Real-Sig · Ideal-SigPKI.

The proof of this lemma is very similar to the proof of Lemma 2 given in Appendix B.1.

Lemma 13. Real-Sig≤IPKISig Ideal-Sig.

The rest of this section is devoted to proving this lemma. We organize this proof in
a similar way to the proof of Lemma 3. First, we discuss the case without corruption,
where the adversary (the environment) cannot create verifiers with arbitrary verification
keys. Then we extend the proof to the case with (static) corruption, where the adversary
can directly create verifiers with an arbitrary verification keys.

37

C.1 The Functionality without Corruption

As in the proof of Lemma 3, we denote ideal functionality without corruption as
Ideal-Sig− (see Appendix D.10 for the code). Similarly, the interface the real and
ideal functionalities for digital signatures without corruption implement is denoted by
I−CryptoLibSig.

1 public final class Signer {
2 public Signer();
3 public byte[] sign(byte[] message);
4 public Verifier getVerifier();
5 }
6 public class Verifier {
7 public boolean verify(byte[] signature, byte[] message);
8 public byte[] getVerifKey();
9 }

Note that the only difference to the interface ICryptoLibSig is the lack of the constructor of
the class Verifier.

To prove the following theorem we use here a proof technique similar to those
used in [24]: we reduce the problem to the corresponding problem stated in the Turing
Machine representation in order to use a result from [21, 26].

Lemma 14. Real-Sig≤I−PKISig Ideal-Sig−

Proof. Before we give the proof, we want to point out some critical points and assump-
tions that are used in this proof.

1. First, we assume that we have a correct implementation of an UF-CMA-secure (ex-
istential unforgeability under adaptive chosen-message attacks) digital signatures
scheme (we do not prove correctness of this implementation). We assume that, in
particular, the above mentioned implementation does not fail (i.e. always returns the
expected result) unless the expected result is too big to fit within an array (recall that
the maximum size of an array depends on the security parameter and the function
intsize).
We also assume that this signature scheme is such that the length of a signature is
the (polynomially computable) function of the length of the signed message and vice
versa.

2. It is critical to assume that the Jinja+ program has unbounded memory, as otherwise
the asymptotic notion of security our results are based upon does not make sense.

Now, we shortly present an ideal functionality F and a real functionality R for
digital signatures in the Turing machine model following [21, 26].

TM functionalities. Different instances of functionalities are distinguished by different
id-s, sent with each request. The functionalities accept the following requests (where
the request is written on the input tape of a TM)
1. Initialization-Signer: The functionality is supposed to return a verification key vk.
2. Initialization-Verifier The functionality responds with the message “comleted”.

38

3. Signature-Generation(m): The functionality is supposed to sign m using the stored
signing key and return the signature σ.

4. Signature-Verification(vk, m, σ): The functionality is supposed to verify that σ is a
valid signature for the message m under the verification key vk.
Both the real and the ideal functionalities, on initialization, obtain a corruption bit.

As already explained at the beginning of this section, because for now we handle the
case without corruption i.e., in our simulation, the environment never corrupts function-
alities, we will skip the description of actions of these functionalities if this bit is set
to 1.

The real functionality R, on initialization (be it Initialization-Signer or
Initialization-Verifier), generates a fresh verification/signing key pair and returns the
verification key. Then, it uses the signing key to sign messages, and the key vk provided
in the verification request to verify messages.

The ideal functionality, on creation, asks the environment (the simulator) for verifi-
cation and signing algorithms as well as a verification (public) and a signing (private)
key. On signing requests, it (similarly to the considered Jinja+ functionality) computes
a signature for the message provided using the given signing algorithm and private key.
Then, by using the recorded verification algorithm and public key, it checks whether
the signature verifies or not. If this check fails, it returns an error message. Otherwise,
it records the message provided (to prevent forgery) and returns the signature. On ver-
ification, if the key vk is the same as the verification key stored in the functionality, it
verifies the signature σ for m using the provided vk and checks that m has been stored
as signed; see [21, 26] for details.

We want to prove that Real-Sig realizes Ideal-Sig− w.r.t. I−PKISig. In this proof we will use
a result from [21,26] that R realizes F . Let S be the simulator used in the realization
proof in [21, 26]. The simulator for Ideal-Sig− we will use in the proof is S = UF-CMA,
as described above.

Let E be a bounded-environment with I−PKISig ` E.

Simulating E. We define a Turing machine ME that simulates E. Clearly, every com-
plete Jinja+ program can be simulated by Turing machine. Moreover, if a program is
bounded (for a given intsize), then its simulation is also polynomial (recall that a run
with security parameter η uses integers of maximal size intsize(η); operations on inte-
gers of this size can be polynomially simulated by a Turing machine).

In our case, however, the system E we consider is not a complete Jinja+ program; it
interacts with another system (such as Real-Sig or Ideal-Sig−). Therefore we assume that
ME communicates with another Turing machine (or more generally, a system of Turing
machines).

The machine ME is defined in such a way that it maintains a representation of a
Jinja+ state, the state of E. In this representation, references are represented by consec-
utive identifiers. We distinguish two types of references: those pointing to an internal
object, that is instances of a classes defined in E or an arrays, and those pointing to an
external object which can be either instances of Signer or Verifier. For each reference
to an internal object, a representation of this object is maintained by ME . For references
to external objects this is not the case (some additional information, however, is stored

39

along with these references; see below). A method call for an internal reference is mod-
elled internally by ME ; a method call to an external object is realized by triggering
another Turing Machine.

When the simulation of E by ME if finished, this machine outputs the value of the
(simulated) variable result.

Method invocations for external references are simulated in the following way:

1. Creating a new instance of Signer: ME creates a new instance of Signer (Turing
Machine) by sending the Initialization-Signer request with a fresh identifier id. This
identifier will be used as the reference to this object. ME waits then for a response
containing a verification key. This key is stored together with id.

2. Signer.getVerifier for an object represented by id: ME creates a new instance
of Verifier (TM) by sending the Initialization-Verifier request with id and a fresh
identifier id′, which will serve as the reference to this object. The identifier id′ is
stored together with id.

3. Signer.sign for an object represented by id and array m: ME sends Signature-
Generation request to machine id with the data stored under m, and waits for the
response. A response is a sequence of bytes. ME simulates creation of a new array
and copies the obtained byte-sting to this array.

4. Verifier.verify for an object represented by id′ and two arrays m and σ: ME
retrieves the verification key associated with id′ and uses it in the request Signature-
Verification along with id′ and the data stored under both m (the message) and σ (the
signature). A response is one bit. ME retrieves the response.

5. Verifier.getVerifKey for an object represented by id′: ME retrieves the veri-
fied key associated with the Verifier (without any external call).

Representing runs. Let T be either the system Real-Sig or the system (S · Ideal-Sig−).
Let u be a random input (a sequence of bits) and η be a security parameter. The (de-
terministic) finite run ρ of E ·T with random input u and security parameter η can be
represented as

A1[s1,x1]B1[t1,y1]A2 · · ·Bn−1[tn−1,yn−1]An[sn]

where

– Every Ai is a part of the run (a sequence of configurations) where only expressions
originating from E are reduced, i.e. all the transitions in Ai are labelled with names
of classes defined in E. Every Ai, except for the last one, ends with a state of the form
(ei[e′i],si) where the subexpression e′i is about to be rewritten by a method invocation
rule.

– Every Bi is a part of run where only expressions originating from T are reduced. It
begins with (ei[{e′′i }D],si), where {e′′i }D is the block obtained by applying the method
invocation rule to e′i for some class D defined in T (it depends only on e′i), and ends
with (ei[{vi}D], s̄i), where vi is a value (that is return by the method).

– si and ti are the states after Ai and Bi, respectively.
– By xi we denote the invocation data consisting of the name of the called method and

the values passed as arguments (if an argument is of type byte[] then xi contains the
values in the array, not the reference to this array). This data is determined by ei and
si.

40

– By yi we denote the return value (again, if an array is returned, then yi contains the
values in this array, not the reference). This return value is determined by vi and ti.

Similarly, we represent the (deterministic) execution ρ̃ of the system of Turing Ma-
chines ME |MT with random input u and security parameter η, where ME is defined
above and MT is either R or (S |F) as

Ã1[s̃1, x̃1]B̃1[t̃1, ỹ1]Ã2 · · · B̃n−1[t̃n−1, ỹn−1]Ãn[sn]

where

– Every Ãi is a part of the run of the system where ME is active. Every Ãi, except for
the last one, ends with ME sending data x̃i to MT (and activating MT).

– Every B̃i is a part of the run of the system where MT is active. It ends with MT sending
a response ỹi back to ME .

– s̃i is the state of ME after Ãi (notice the difference to si which was the state of the
whole system after Ai).

– t̃i is the state of MT after B̃i (notice, as above, the difference to ti).

Let s = (h, l) be a Jinja+ state that occurs in the run ρ of E ·T . We want to define the
part of the state s that “belongs” to E and the part that “belongs” to T .

We define h|E to be the restriction of h to only those references that, in the run ρ,
have been created by E or have been obtained by E as a return value from a call to T .
By h|T we denote the restriction of s to the remaining references, that is the references
in the run ρ that have been created by T but not returned to E.

We define l|E to be the restriction of l to those (static) variables that are accessible
from E. Similarly, l|T denotes the restriction of l to those static variables that are acces-
sible from T . Note that these restrictions are disjoint except for the read-only security
parameter (T does not access any static fields of E; E does not access any static fields
of T).

We take s|E = (h|E , l|E) and s|T = (h|T , l|T).
Let s̃ be a Jinja+ state as represented by ME and s be a (real) Jinja+ state. We say

that s̃ represents s = (h, l), written s̃ |= s, if there is a function f from identifiers (that
represent references in ME) to (Jinja+) references (addresses) such that

– the domain of h is f (X) where X is the set of identifiers used by ME to represent
references,

– if r̃ ∈ X , then the representation of the object pointed by r̃ agrees with the object
pointed by r = f (r̃) (in the Jinja state) in the following sense: (i) corresponding
fields (in the TM representation and in the Jinja object) of primitive types have the
same values, (ii) if a field of the TM representation contains an identifier id, then the
corresponding field of the Jinja object contains f (id).

– The values of variables in l are—up to mapping f —the same as the values in the TM
representation of l.

We say that x̃i matches xi, where x̃i and xi are as above, if the requests x̃i is the
translation of the method invocation xi, as specified in the simulation process above. In
a similar way, we can say that a response ỹi matches yi.

41

Relation between Jinja runs and TM runs. Now we are ready to relate the runs of the
corresponding Jinja programs and Turing machine systems, as introduced above.

Lemma 15. For every random input u and every security parameter η (and Ai, Ãi, . . . as
above) we have:

(a) si|E = ti|E and ti|T = si+1|T ,
(b) x̃i matches xi,
(c) ỹi matches yi,
(d) s̃i |= si|E ,
(e) t̃i |= ti|T ,

Item (a) states that sub-states of E and T are separated (the execution of Ai does not
changes what T can access and the execution of Bi does not change what E can access).

Items (b) and (c) state that the components E and T in the Jinja run and the cor-
responding components in the TM system exchange exactly the same data, up to the
provided translation.

Item (d) states that ME correctly simulates E (which is given by the definition of
ME).

Item (e) states that the Jinja+ program T is functionally equivalent to the corre-
sponding Turing Machine MT . In particular, for the same input, R produces the same
data as Real-Sig and S |F produces the same data as S · Ideal-Sig−. This is given by the
definition of these systems.

In the reasoning below, we leverage the fact that, without loss of generality, we can
assume that E, when connected with T , never makes requests to T that fail (i.e. never
makes method calls that return null). This is because E can compute the expected size
of the output message (recall that we assumed that the length of a plaintext and a corre-
sponding ciphertext are polynomially related). Therefore E can predict potential failure
and avoid requests that would fail (E does not lose any information by not executing
these requests, as it knows the result up front).

Now, we can observe that a direct consequence of the above lemma (more precisely,
of the fact that s̃n |= sn|E) is that the final value of variable result in ρ and ρ̃ is the same
and, therefore, these (finite) runs output the same result. As it holds for all random input
u and all security parameters η, up to some negligible function, the system E ·Real-Sig
outputs true with the same probability the system ME |R outputs 1 and the system E ·
S · Ideal-Sig outputs true with exactly the same probability the system ME |S |F outputs
1. Now, as we know that ME |R ≡ME |S |F , it follows that the probability that true is
output by E ·Real-Sig and by E ·S · Ideal-Sig is the same up to some negligible value.

C.2 Proof of Lemma 13

As in the realization proof for public-key encryption, we take an ICryptoLibSig-environment
E and we construct a I−CryptoLibSig-environment E ′ which consists of (1) a copy of the class
Verifier (renamed as VerifierCorr), (2) a wrapper class VerifierWrapper providing
unified access to corrupted and uncorrupted verifiers, and (3) an appropriately aligned
copy of E (as in Appendix B.2). Using this construction, we obtain results analogous to
Lemmas 10 and 11:

42

Lemma 16. E ·Real-Sig ≡comp E ′ ·Real-Sig

Lemma 17. E ·S · Ideal-Sig ≡comp E ′ ·S · Ideal-Sig−

From Lemma 14 we know that Real-Sig ≤I−PKISig Ideal-Sig−, i.e. there exists a prob-
abilistic polynomially bounded simulator S such that for each polynomially bounded
I−PKISig-environment E ′ we have (Section 2):

E ′ ·Real-Sig ≡comp E ′ ·S · Ideal-Sig− (19)

Therefore we obtain

E ·Real-Sig
Lemma 16≡comp E ′ ·Real-Sig

(19)
≡comp E ′ ·S · Ideal-Sig−

Lemma 17≡comp E ·S · Ideal-Sig (20)

which completes the proof of Lemma 13.

D Code of the Functionalities

We present here the most important parts of the code of the proposed functionalities.
This code should be sufficient to understand the functionalities and follow the proofs;
see [23] for the full code.
D.1 Ideal Functionality for PKIEnc

1 public class Encryptor {
2 protected byte[] publicKey;
3 public Encryptor(byte[] publicKey) {
4 this.publicKey = publicKey;
5 }
6 public byte[] encrypt(byte[] message) {
7 return copyOf(CryptoLib.pke_encrypt(copyOf(message),
8 copyOf(publicKey)));
9 }

10 public byte[] getPublicKey() {
11 return copyOf(publicKey);
12 }
13 protected Encryptor copy() {
14 return new Encryptor(publicKey);
15 }
16 }

—

43

17 public final class UncorruptedEncryptor extends Encryptor {
18 private Decryptor.EncryptionLog log;
19

20 UncorruptedEncryptor(byte[] publicKey, Decryptor.EncryptionLog log) {
21 super(publicKey);
22 this.log = log;
23 }
24 public byte[] encrypt(byte[] message) {
25 byte[] randomCipher = null;
26 while(randomCipher==null || log.containsCiphertext(randomCipher)) {
27 randomCipher = copyOf(CryptoLib.pke_encrypt(getZeroMessage(message.length),
28 copyOf(publicKey)));
29 }
30 log.add(copyOf(message), randomCipher);
31 return copyOf(randomCipher);
32 }
33 protected Encryptor copy() {
34 return new UncorruptedEncryptor(publicKey, log);
35 }
36 }

—

37 public class Decryptor {
38 private byte[] publicKey;
39 private byte[] privateKey;
40 private EncryptionLog log;
41

42 public Decryptor() {
43 KeyPair keypair = CryptoLib.pke_generateKeyPair();
44 this.privateKey = copyOf(keypair.privateKey);
45 this.publicKey = copyOf(keypair.publicKey);
46 this.log = new EncryptionLog();
47 }
48 public byte[] decrypt(byte[] message) {
49 byte[] messageCopy = copyOf(message);
50 if (!log.containsCiphertext(messageCopy)) {
51 return copyOf(CryptoLib.pke_decrypt(copyOf(privateKey), messageCopy));
52 } else {
53 return copyOf(log.lookup(messageCopy));
54 }
55 }
56 public Encryptor getEncryptor() {
57 return new UncorruptedEncryptor(publicKey, log);
58 }
59 }

—

60 public class RegisterEnc {
61 public static void registerEncryptor(Encryptor encryptor, int id,
62 byte[] pki_domain) throws PKIError, NetworkError

44

63 {
64 if(RegisterEncSim.register(id, pki_domain, encryptor.getPublicKey()))
65 throw new NetworkError();
66 if(registeredAgents.fetch(id, pki_domain) != null)
67 throw new PKIError();
68 registeredAgents.add(id, pki_domain, encryptor);
69 }
70 public static Encryptor getEncryptor(int id, byte[] pki_domain)
71 throws PKIError, NetworkError
72 {
73 if(RegisterEncSim.getEncryptor(id, pki_domain))
74 throw new NetworkError();
75 Encryptor enc = registeredAgents.fetch(id, pki_domain);
76 if (enc == null)
77 throw new PKIError();
78 return enc.copy();
79 }
80

81 public static class PKIError extends Exception { }
82

83 /// IMPLEMENTATION
84 private static class RegisteredAgents {
85 private static class EncryptorList {
86 final int id;
87 byte[] domain;
88 Encryptor encryptor;
89 EncryptorList next;
90 EncryptorList(int id, byte[] domain, Encryptor encryptor,
91 EncryptorList next) {
92 this.id = id;
93 this.domain = domain;
94 this.encryptor= encryptor;
95 this.next = next;
96 }
97 }
98 private EncryptorList first = null;
99

100 public void add(int id, byte[] domain, Encryptor encr) {
101 first = new EncryptorList(id, domain, encr, first);
102 }
103

104 Encryptor fetch(int ID, byte[] domain) {
105 for(EncryptorList node = first; node != null; node = node.next) {
106 if(ID == node.id && MessageTools.equal(domain, node.domain))
107 return node.encryptor;
108 }
109 return null;
110 }
111 }
112

45

113 private static RegisteredAgents registeredAgents = new RegisteredAgents();
114 }

D.2 Real Functionality for PKIEnc

115 public class Encryptor {
116 private byte[] publicKey;
117

118 public Encryptor(byte[] publicKey) {
119 this.publicKey = publicKey;
120 }
121 public byte[] encrypt(byte[] message) {
122 return copyOf(CryptoLib.pke_encrypt(copyOf(message),
123 copyOf(publicKey)));
124 }
125 public byte[] getPublicKey() {
126 return copyOf(publicKey);
127 }
128 }

—

129 public class Decryptor {
130 byte[] publicKey;
131 byte[] privateKey;
132

133 public Decryptor() {
134 KeyPair keypair = CryptoLib.pke_generateKeyPair();
135 this.privateKey = copyOf(keypair.privateKey);
136 this.publicKey = copyOf(keypair.publicKey);
137 }
138 Decryptor(byte[] pubk, byte[] prvkey) {
139 this.publicKey = pubk;
140 this.privateKey = prvkey;
141 }
142 public byte[] decrypt(byte[] message) {
143 return copyOf(CryptoLib.pke_decrypt(copyOf(message),
144 copyOf(privateKey)));
145 }
146 public Encryptor getEncryptor() {
147 return new Encryptor(copyOf(publicKey));
148 }
149 }

—

150 public class RegisterEnc {
151 public static void registerEncryptor(Encryptor encryptor, int id,
152 byte[] pki_domain) throws PKIError, NetworkError
153 {
154 try {

46

155 PKI.register(id, pki_domain, encryptor.getPublicKey());
156 } catch (PKI.Error e) {
157 throw new PKIError();
158 }
159 }
160 public static Encryptor getEncryptor(int id, byte[] pki_domain)
161 throws PKIError, NetworkError
162 {
163 try {
164 byte[] key = PKI.getKey(id, pki_domain);
165 return new Encryptor(key);
166 } catch (PKI.Error e) {
167 throw new PKIError();
168 }
169 }
170

171 public static class PKIError extends Exception { }
172 }

D.3 Ideal Functionality for PKISig

174 public class Verifier {
175 protected byte[] verifKey;
176

177 public Verifier(byte[] verifKey) {
178 this.verifKey = verifKey;
179 }
180 public boolean verify(byte[] signature, byte[] message) {
181 return CryptoLib.verify(message, signature, verifKey);
182 }
183 public byte[] getVerifKey() {
184 return copyOf(verifKey);
185 }
186 protected Verifier copy() {
187 return new Verifier(verifKey);
188 }
189 }

190 public final class UncorruptedVerifier extends Verifier {
191 private Signer.Log log;
192

193 UncorruptedVerifier(byte[] verifKey, Signer.Log log) {
194 super(verifKey);
195 this.log = log;
196 }
197 public boolean verify(byte[] signature, byte[] message) {
198 return CryptoLib.verify(message, signature, verifKey)
199 && log.contains(message);
200 }

47

201 protected Verifier copy() {
202 return new UncorruptedVerifier(verifKey, log);
203 }
204 }

205 final public class Signer {
206 private byte[] verifKey;
207 private byte[] signKey;
208 private Log log;
209

210 public Signer() {
211 KeyPair keypair = CryptoLib.generateSignatureKeyPair();
212 this.signKey = copyOf(keypair.privateKey);
213 this.verifKey = copyOf(keypair.publicKey);
214 this.log = new Log();
215 }
216 public byte[] sign(byte[] message) {
217 byte[] signature = CryptoLib.sign(copyOf(message), copyOf(signKey));
218 if (signature == null) return null;
219 if(!CryptoLib.verify(copyOf(message), copyOf(signature), copyOf(verifKey)))
220 return null;
221 log.add(copyOf(message));
222 return copyOf(copyOf(signature));
223 }
224 public Verifier getVerifier() {
225 return new UncorruptedVerifier(verifKey, log);
226 }
227 }

228 public class RegisterSig {
229

230 public static void registerVerifier(Verifier verifier, int id,
231 byte[] pki_domain) throws PKIError, NetworkError
232 {
233 if(RegisterSigSim.register(id, pki_domain, verifier.getVerifKey()))
234 throw new NetworkError();
235 if(registeredAgents.fetch(id, pki_domain) != null)
236 throw new PKIError();
237 registeredAgents.add(id, pki_domain, verifier);
238 }
239 public static Verifier getVerifier(int id, byte[] pki_domain)
240 throws PKIError, NetworkError
241 {
242 if(RegisterSigSim.getVerifier(id, pki_domain)) throw new NetworkError();
243 Verifier verif = registeredAgents.fetch(id, pki_domain);
244 if (verif == null)
245 throw new PKIError();
246 return verif.copy();
247 }
248

48

249 public static class PKIError extends Exception { }
250

251 /// IMPLEMENTATION ///
252 private static class RegisteredAgents {
253 private static class VerifierList {
254 final int id;
255 byte[] domain;
256 Verifier verifier;
257 VerifierList next;
258 VerifierList(int id, byte[] domain, Verifier verifier,
259 VerifierList next)
260 {
261 this.id = id;
262 this.domain = domain;
263 this.verifier = verifier;
264 this.next = next;
265 }
266 }
267

268 private VerifierList first = null;
269

270 public void add(int id, byte[] domain, Verifier verif) {
271 first = new VerifierList(id, domain, verif, first);
272 }
273 Verifier fetch(int ID, byte[] domain) {
274 for(VerifierList node = first; node != null; node = node.next) {
275 if(ID == node.id && MessageTools.equal(domain, node.domain))
276 return node.verifier;
277 }
278 return null;
279 }
280 }
281

282 private static RegisteredAgents registeredAgents = new RegisteredAgents();
283 }

D.4 Real Functionality for PKISig

284 public class Verifier {
285 private byte[] verifKey;
286

287 public Verifier(byte[] verifKey) {
288 this.verifKey = verifKey;
289 }
290 public boolean verify(byte[] signature, byte[] message) {
291 return CryptoLib.verify(copyOf(message), copyOf(signature), copyOf(verifKey));
292 }
293 public byte[] getVerifKey() {
294 return copyOf(verifKey);

49

295 }
296 }

—

297 public class Signer {
298 byte[] verifKey;
299 byte[] signKey;
300

301 public Signer() {
302 KeyPair keypair = CryptoLib.generateSignatureKeyPair();
303 this.signKey = copyOf(keypair.privateKey);
304 this.verifKey = copyOf(keypair.publicKey);
305 }
306 Signer(byte[] verifKey, byte[] signKey) {
307 this.verifKey = verifKey;
308 this.signKey = signKey;
309 }
310 public byte[] sign(byte[] message) {
311 byte[] signature = CryptoLib.sign(copyOf(message), copyOf(signKey));
312 return copyOf(signature);
313 }
314 public Verifier getVerifier() {
315 return new Verifier(verifKey);
316 }
317 }

—

318 public class RegisterSig {
319 public static void registerVerifier(Verifier verifier, int id,
320 byte[] pki_domain) throws PKIError, NetworkError
321 {
322 try {
323 PKI.register(id, pki_domain, verifier.getVerifKey());
324 } catch (PKI.Error e) {
325 throw new PKIError();
326 }
327 }
328 public static Verifier getVerifier(int id, byte[] pki_domain)
329 throws PKIError, NetworkError
330 {
331 try {
332 byte[] key = PKI.getKey(id, pki_domain);
333 return new Verifier(key);
334 } catch (PKI.Error e) {
335 throw new PKIError();
336 }
337 }
338

339 public static class PKIError extends Exception { }
340 }

50

D.5 Ideal Functionality for PKI

341 public class IdealPKI {
342 static void register(int id, byte[] domain, byte[] key)
343 throws PKIError, NetworkError
344 {
345 if (PKISim.register(id, domain, key)) throw new NetworkError();
346 if (registered(id, domain)) throw new PKIError();
347 entries.add(id, domain, key);
348 }
349 static byte[] getKey(int id, byte[] domain) throws PKIError, NetworkError {
350 if (PKISim.getKey(id, domain)) throw new NetworkError();
351 byte[] key = entries.getKey(id, domain);
352 if (key == null) throw new PKIError();
353 return key;
354 }
355 static private boolean registered(int id, byte[] domain) {
356 return entries.getKey(id, domain) != null;
357 }
358

359 /// IMPLEMENTATION ///
360 private static class Entry {
361 final int id;
362 byte[] domain;
363 byte[] key;
364

365 Entry(int id, byte[] domain, byte[] key) {
366 this.id = id;
367 this.domain = domain;
368 this.key = key;
369 }
370 }
371

372 private static class EntryList {
373 private static class Node {
374 Entry entry;
375 Node next;
376 Node(Entry entry, Node next) {
377 this.entry = entry;
378 this.next = next;
379 }
380 }
381

382 private Node first = null;
383

384 void add(int id, byte[] domain, byte[] key) {
385 first = new Node(new Entry(id,domain,key), first);
386 }
387 byte[] getKey(int id, byte[] domain) {

51

388 for(Node node=first; node!=null; node = node.next) {
389 if (node.entry.id==id && MessageTools.equal(node.entry.domain, domain)) {
390 return node.entry.key;
391 }
392 }
393 return null;
394 }
395 }
396

397 static private EntryList entries = new EntryList();
398 }

D.6 Ideal Functionality for Private Symmetric Encryption

399 public class SymEnc {
400 private byte[] key;
401 private EncryptionLog log;
402

403 public SymEnc() {
404 key = CryptoLib.symkey_generateKey();
405 }
406 public byte[] encrypt(byte[] plaintext) {
407 byte[] randomCipher = null;
408 while(randomCipher==null || log.containsCiphertext(randomCipher)) {
409 randomCipher = copyOf(CryptoLib.symkey_encrypt(copyOf(key),
410 getZeroMessage(plaintext.length)));
411 }
412 log.add(copyOf(plaintext), randomCipher);
413 return copyOf(randomCipher);
414 }
415 public byte[] decrypt(byte[] ciphertext) {
416 if (!log.containsCiphertext(ciphertext)) {
417 return copyOf(CryptoLib.symkey_decrypt(copyOf(key), copyOf(ciphertext)));
418 } else {
419 return copyOf(log.lookup(ciphertext));
420 }
421 }
422 }

D.7 Real Functionality for Private Symmetric Encryption

423 public class SymEnc {
424 private byte[] key;
425

426 public SymEnc() {
427 key = CryptoLib.symkey_generateKey();
428 }
429 public byte[] encrypt(byte[] plaintext) {

52

430 return CryptoLib.symkey_encrypt(copyOf(key), copyOf(plaintext));
431 }
432 public byte[] decrypt(byte[] ciphertext) {
433 return CryptoLib.symkey_decrypt(copyOf(key), copyOf(ciphertext));
434 }
435 }

D.8 Ideal Functionality for Nonce Generation

436 public class NonceGen {
437 public NonceGen() {
438 }
439 public byte[] newNonce() {
440 byte[] nonce = null;
441 // keep asking for a nonce until we get a fresh value
442 while(nonce==null || log.contains(nonce)) {
443 nonce = CryptoLib.newNonce();
444 }
445 log.add(nonce); // log the nonce
446 return nonce;
447 }
448 }

D.9 Real Functionality for Nonce Generation

449 public class NonceGen {
450 public NonceGen() {
451 }
452 public byte[] newNonce() {
453 return CryptoLib.newNonce();
454 }
455 }

D.10 Ideal Functionality for Public-key Encryption without Corruption [24]

456 public final class Encryptor {
457 private Decryptor.EncryptionLog log;
458

459 Encryptor(byte[] publicKey, Decryptor.EncryptionLog log) {
460 super(publicKey);
461 this.log = log;
462 }
463

464 public byte[] encrypt(byte[] message) {
465 byte[] randomCipher = null;
466 while(randomCipher==null || log.containsCiphertext(randomCipher)) {
467 randomCipher = copyOf(CryptoLib.pke_encrypt(getZeroMessage(message.length),

53

468 copyOf(publicKey)));
469 }
470 log.add(copyOf(message), randomCipher);
471 return copyOf(randomCipher);
472 }
473

474 protected Encryptor copy() {
475 return new Encryptor(publicKey, log);
476 }
477 }

The class Decryptor is as in the functionality with corruption (Appendix D.1)

D.11 Ideal Functionality for Digital Signatures without Corruption

478 public final class Verifier {
479 private Signer.Log log;
480

481 Verifier(byte[] verifKey, Signer.Log log) {
482 super(verifKey);
483 this.log = log;
484 }
485 public boolean verify(byte[] signature, byte[] message) {
486 // verify both that the signature is correct
487 // and that the message has been logged as signed
488 return CryptoLib.verify(message, signature, verifKey)
489 && log.contains(message);
490 }
491 protected Verifier copy() {
492 return new Verifier(verifKey, log);
493 }
494 }

The class Signer is as in the functionality with corruption (Appendix D.3)

E Jinja+

E.1 Jinja+ Extensions

As a basis of our formal results we take language Jinja+ that extends Jinja with: (a) the
primitive type byte with natural conversions from and to int, (b) arrays, (c) abort
primitive, (d) static fields (with the restriction that they can be initialized by literals
only), (e) static methods, (f) access modifier for classes, fields, and methods (such as
private, protected, and public), (g) final classes (classes that cannot be extended),
(h) the throws clause of a method declaration (that declare which exceptions can be
thrown by a method).

For the last three extensions—access modifiers, final classes, and throws clauses—
we assume that they are provided by a compiler that, first, ensures that the policies
expressed by access modifiers, the final modifier, and throws clauses are respected

54

and then produces pure Jinja+ code (without access modifiers, the final modifier, and
throws clauses). In the similar manner we can deal with constructors: a program using
constructors can be easily translated to one without constructors (where creation and
initialisation of an object is split into two separate steps).

The remaining extensions are described below:

Primitive types. The Jinja language, as specified in [19], offers only boolean and in-
teger primitive types. For our purpose, we find it useful to also include type byte with
natural conversions from and to int. Also, the set of operators on primitive types is ex-
tended to include the standard Java operators (such as multiplication). This extensions
can be done in very straightforward way and, thus, we skip its detailed description.

Arrays. We will consider only one-dimensional arrays (an extension to multi-
dimensional arrays is then quite straightforward; moreover multi-dimensional arrays
can be simulated by nested arrays). To extend the Jinja language with one-dimensional
arrays, we adopt the approach of [28].

First, we extend the set of types to include array types of the form τ[], where τ is
a type. Next, we extend the set of expressions by: (a) creation of new array: new τ[e],
where e is an expression (that is supposed to evaluate to an integer denoting the size of
the array) and τ is a type, (b) array access: e1[e2], (c) array length access: e.length,
and (d) array assignment: e1[e2] := e3.

For this extension, following [28], we redefine a heap to be a map from references
to objects, where an object is either an object instance, as defined above, or an array.
An array is a triple consisting of its component type, its length l, and a table mapping
{0, . . . , l−1} to values.

Extending (small-step) semantic rules to deal with arrays is quite straightforward.

The abort primitive. Expression abort, when evaluated, causes the program to stop.
(Technically this expression cannot be reduced and causes the program execution to get
stuck.)

Static methods and fields. Fields and methods can be declared as static. However,
as can be seen below, to keep the semantics of the language simple, we impose some
restrictions on initializers of static fields.

A static method does not require an object to be invoked. The syntax of static
method call is C.f(args), where C is the name of a class that provides f.

Extending Jinja with with static methods is straightforward. The rule for static
method invocation is very similar to the one for non-static method invocation: the dif-
ference is that the variable this is not added to the context (block) within which the
method body is executed (a static method cannot reference non-static fields and meth-
ods).

We assume that static fields can be initialized only with literals (constants) of appro-
priate types. If there is no explicit initializer, then a static variable is initialized with the
default value of its type. For example, while static int x = 7 and static int[] t are
valid declarations, the declaration static A a = new A() and static int y = A.foo()

are not.

55

Dealing with more general static initializers is not difficult in principle, but it would
require a precise—and quite complicated—model of the initialisation process, the com-
plication we want to avoid.

Extending Jinja with static filed requires only a very little overhead: for a static field
f declared in class C we introduce a global variable C.f (note that names of this form
do not interfere with names of local variables and method parameters). These global
variables are initialized before actual program (expression) is executed, as described in
the definition of a run below.

Exceptions. A method declaration can contain a throws clause in which classes of
exceptions that can be propagated by the method are listed. Such a clause can be omit-
ted, in which case the above mentioned list is considered empty. When the meaning of
throws clauses is considered, standard subtyping rules are applied (if class A is listed
in such a clause, then the method can propagate exceptions of class A or any subclass
of A).

As mentioned, we assume that the compiler (or a static verifier) statically checks
whether the program complies with throws clauses.

Unlike in Java, however, we can assume without loss of generality that all excep-
tions must be declared in a throws clause if they are propagated by a method (in the
Java terminology, we can say that all exceptions are checked). This will give us more
control on the information which is passed between program components.

We consider the following hierarchy of standard (system) exceptions. In the root
of this hierarchy we place (empty) class Exception. We require that only object of
this class (and its subclasses) can be used as exceptions. Class SystemException, also
empty, is a subclas of class Exception, and is a base class for the following system
exceptions (exceptions which are not thrown explicitly, but may occur in result of some
standard operations on expressions):
ArrayStoreException — trown to indicate an attempt to store an object of the wrong

type into an array,
IndexOutOfBoundsException — thrown to indicate that an array has been indexed

with an index being out of range,
NegativeArraySizeException — thrown to indicate an attempt to create an array

with negative size,
NullPointerException — thrown if the null reference is used when an object is

required,
ClassCastException — thrown to indicate an illegal cast.

We will assume that the above classes are predefined, and can be used in any program.

For completeness of the presentation, in this section we summarize all the rules of
Jinja+. We start with rules of Jinja, following [19] (see this paper for the details on the
used symbols). In particular, the syntactical convention used in these rules is that an
application of a function f to an argument a is denoted by f a.

The rules assume a function binop that provides semantics for operations on atomic
types. The exact definition of this function depends on the maximal size of integers that
we consider (recall that we consider different variants of semantics for different size of
integers given by intsize(η) where η is the security parameter).

56

E.2 Rules of Jinja

There are two points where our presentation rules diverge from the ones of [19]. First, as
we assume unbounded memory, we do not have rules which throw OutOfMemoryError

(and we assume that (new-Addr h) is never None). Second, we added labels to rules.
These labels allow us to count the number of steps performed within (by) a given class
or subsystem. A label D in a step

〈e,s〉 D→ 〈e′,s′〉

means, informally, that the step was executed by the code of class D. More precisely, the
expression that was selected to be reduced by an elementary rule comes from a method
of D. We use the label − if the origin of the reduced expression is not known (because,
at that point, the context of this expression is not known; typically this empty label is
overwritten by a subexpression reduction rule for blocks, that is rules (28)–(30)).

To define labeling of transitions, labels are also added to blocks that are obtained
from the method call rule (a block is labeled by the name of the class from which
the body of the method comes). Then, the labels of transitions are, roughly speaking,
inherited from the innermost block within which the reduction takes place.

Now, for the run of a program P with a subsystem S, we say that a step 〈s1,e1〉
D→

〈s2,e2〉 is performed by S and write 〈s1,e1〉
S→〈s2,e2〉, if D is the name of a class defined

in S.

Subexpression reduction rules (Figure 2) describe the order in which subexpressions
are evaluated. The relation [→] it the extension of → to expression list (· is the list
constructor).

Expression reduction rules (Figure 3) are applied when the subexpressions are suffi-
ciently reduced. In the rule for method invocation, the required nested block structure
is built with the help of the auxiliary function blocks:

blocksC([], [], [],e) = e

blocksC(V ·V s,T ·T s,v · vs,e) =

= {V : T ; V :=v; blocksC(V s,T s,vs,e)}C

(where · is the list constructor and [] denotes the empty list).

Exceptional reduction and exception propagation rules (Figure 4 and 5) describe how
exception are thrown and propagated.

Note that we do not have a rule reducing abort. That means that, if this expression is
to be reduced, the execution gets stuck.

E.3 Rules of Jinja+

In this section we present additional rules of Jinja+. Theres rules concern static method
invocation and arrays. The rules are given in Figure 7 and 6.

57

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Cast C e,s〉 `→ 〈Cast C e′,s′〉
(21)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈V := e,s〉 `→ 〈V := e′,s′〉
(22)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D},s〉 `→ 〈e′.F{D},s′〉
(23)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D} := e2,s〉
`→ 〈e′.F{D} := e2,s′〉

(24)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v.F{D} := e,s〉 `→ 〈Val v.F{D} := e′,s′〉
(25)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e� bop� e2,s〉
`→ 〈e′� bop� e2,s′〉

(26)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v1� bop� e,s〉 `→ 〈Val v1� bop� e′,s′〉
(27)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = None ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
g(`,D)→ 〈{V : T ;e′}D,(h′, l′(V := l V))〉

(28)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = v ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉
g(`,D)→ 〈{V : T ; V := Val v;e′}D,(h′, l′(V := l V))〉

(29)

P ` 〈e,(h, l(V := v))〉 `→ 〈e′,(h′, l′)〉 l′ V = v′

P ` 〈{V : T ;V := Val v;e}D,(h, l)〉
g(`,D)→ 〈{V : T ; V := Val v′;e′}D,(h′, l′(V := l V))〉

(30)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.M(es),s〉 `→ 〈e′.M(es),s′〉
(31)

P ` 〈es,s〉 [`→] 〈es′,s′〉

P ` 〈Val v.M(es),s〉 `→ 〈Val v.M(es′),s′〉
(32)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e;e2,s〉
`→ 〈e′;e2,s′〉

(33)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈if (e) e1 else e2,s〉 → 〈if (e′) e1 else e2,s′〉

(34)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e · es,s〉 [`→] 〈e′ · es,s′〉

P ` 〈es,s〉 [`→] 〈es′,s′〉

P ` 〈Val v · es,s〉 [`→] 〈Val v · es′,s′〉
(35)

Fig. 2. Subexpression reduction rules. We define g(`,D) = D, if `=−; otherwise g(`,D) = `.

58

new-Addr h = a P `C has-fields FDT s

P ` 〈new C,(h, l)〉 −→ 〈addr a,(h(a 7→ (C, init-fields FDT s)), l)〉
(36)

hp s a = (D, f s) P ` D�∗ C

P ` 〈Cast C (addr a),s〉 −→ 〈addr a,s〉
(37)

P ` 〈Cast C null,s〉 −→ 〈null,s〉 (38)

lcl s V = v

P ` 〈Var V,s〉 −→ 〈Val v,s〉
(39)

P ` 〈V := Val v,(h, l)〉 −→ 〈unit,(h, l(V 7→ v))〉 (40)

binop (bop,v1,v2) = v

P ` 〈Val v1� bop� Val v2,s〉
−→ 〈Val v,s〉

(41)

hp s a = (C, f s) f s(F,D) = v

P ` 〈addr a.F{D},s〉 −→ 〈Val v,s〉
(42)

hp a = (C, f s)

P ` 〈addr a.F{D} := Val v,(h, l)〉 −→ 〈unit,(h(a 7→ (C, f s((F,D) 7→ v))), l)〉
(43)

hp s a = (C, f s) P ` C sees M : T s→ T = (pns, body) in D |vs|= |pns| |T s|= |pns|
P ` 〈addr a.M(map Val vs),s〉 −→ 〈blocksD(this · pns, Class D ·T s, addr a · vs, body),s〉

(44)

P ` 〈{V : T ; Val u}D,s〉
D→ 〈Val u,s〉 (45)

P ` 〈{V : T ; V := Val v; Val u}D,s〉
D→ 〈Val u,s〉 (46)

P ` 〈Val v; e2,s〉
−→ 〈e2,s〉 (47)

P ` 〈if(true) e1 else e2,s〉
−→ 〈e1,s〉 (48)

P ` 〈if(f alse) e1 else e2,s〉
−→ 〈e2,s〉 (49)

P ` 〈while(b) c,s〉 −→ 〈if(b) (c; while(b) c) else unit,s〉 (50)

Fig. 3. Expression reduction

59

hp s a = (D, f s) ¬ P ` D�∗ C

P ` 〈Cast C(addr a),s〉 −→ 〈THROW ClassCastException, s〉
(51)

P ` 〈null.F{D},s〉 −→ 〈THROW NullPointerException, s〉 (52)

P ` 〈null.F{D} := Val v,s〉 −→ 〈THROW NullPointerException, s〉 (53)

P ` 〈null.M(map Val vs),s〉 −→ 〈THROW NullPointerException, s〉 (54)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈throw e,s〉 `→ 〈throw e′,s′〉
(55)

P ` 〈throw null,s〉 −→ 〈THROW NullPointerException,s〉 (56)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈try e catch (C V) e2,s〉
`→ 〈try e′ catch (C V) e2,s′〉

(57)

P ` 〈try Val v catch (C V) e2,s〉
−→ 〈Val v,s〉 (58)

hp s a = (D, f s) P ` D �∗ C

P ` 〈try THROW a catch (C V) e2,s〉
−→ 〈{V : Class C; V := addr a; e2},s〉

(59)

hp s a = (D, f s) ¬ P ` D �∗ C

P ` 〈try THROW a catch (C V) e2,s〉
−→ 〈Throw a,s〉

(60)

Fig. 4. Exceptional expression reduction

60

P ` 〈Cast C (throw e),s〉 −→ 〈throw e,s〉 (61)

P ` 〈V := throw e,s〉 −→ 〈throw e,s〉 (62)

P ` 〈throw e.F{D},s〉 −→ 〈throw e,s〉 (63)

P ` 〈throw e.F{D} := e2,s〉
−→ 〈throw e,s〉 (64)

P ` 〈Val v.F{D} := throw e,s〉 −→ 〈throw e,s〉 (65)

P ` 〈throw e � bop� e2,s〉
−→ 〈throw e,s〉 (66)

P ` 〈Val v1 � bop� throw e,s〉 −→ 〈throw e,s〉 (67)

P ` 〈{V : T ; Throw a}D,s〉
D→ 〈Throw a,s〉 (68)

P ` 〈{V : T ;V := Val v; Throw a}D,s〉
D→ 〈Throw a,s〉 (69)

P ` 〈throw e.M(es),s〉 −→ 〈throw e,s〉 (70)

P ` 〈Val v.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (71)

P ` 〈throw e; e2,s〉
−→ 〈throw e,s〉 (72)

P ` 〈if(throw e) e1 else e2,s〉
−→ 〈throw e,s〉 (73)

P ` 〈throw(throw e),s〉 −→ 〈throw e,s〉 (74)

Fig. 5. Exception propagation

61

P ` 〈es,s〉 [`→] 〈es′,s′〉

P ` 〈D.M(es),s〉 `→ 〈D.M(es′),s′〉
(75)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e[e2], s〉 `→ 〈e′[e2], s′〉
(76)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈(Val v)[e], s〉 `→ 〈(Val v)[e′], s′〉
(77)

P ` 〈D.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (78)

P ` 〈(throw e)[e′],s〉 −→ 〈throw e,s〉 (79)

P ` 〈e′[throw e],s〉 −→ 〈throw e,s〉 (80)

Fig. 6. Subexpression reduction and exception propagation rules for Jinja+.

62

P ` D has-static M : T s→ T = (pns, body) |vs|= |pns| |T s|= |pns|
P ` 〈D.M(map Val vs),s〉 −→ 〈blocksD(pns,T s,vs, body),s〉

(81)

n≥ 0, new-Addr h = a
P ` 〈new τ[intg(n)], (h, l)〉 → 〈addr a,(h(a 7→ initArr(τ ,n)), l)〉

(82)

P ` 〈null.F{D},s〉 −→ 〈THROW NullPointerException, s〉 (83)

n< 0

P ` 〈new τ[intg(n)], (h, l)〉 −→ 〈THROW NegativeArraySizeException, (h, l)〉
(84)

h a = (τ ,m, t), 0≤ n< m, h t(n) = v

P ` 〈(addr a)[intg n], (h, l)〉 −→ 〈Val v, (h, l)〉
(85)

h a = (τ ,m, t), ¬(0≤ n< m),

P ` 〈(addr a)[intg n], (h, l)〉 −→ 〈THROW IndexOutOfBoundsException, (h, l)〉
(86)

h a = (τ ,m, t),

P ` 〈(addr a).lenght, (h, l)〉 −→ 〈intg m, (h, l)〉
(87)

h a = (τ ,m, t), 0≤ n< m, isOfType(v,τ), t ′ = arrayUpdate(t,n,v)

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 −→ 〈unit, (h(a 7→ (τ ,m, t ′)), l)〉
(88)

h a = (τ ,m, t), ¬(0≤ n< m),

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 −→ 〈THROW IndexOutOfBoundsException, (h, l)〉
(89)

h a = (τ ,m, t), 0≤ n< m, ¬isOfType(v,τ),

P ` 〈(addr a)[intg n] := Val v, (h, l)〉 −→ 〈THROW ArrayStoreException, (h, l)〉
(90)

Fig. 7. (Exceptional) expression reduction rules for Jinja+, where: Function initArr(τ ,n) returns
an array of length n with elements initialized to the default value of type τ . Expression P `
D has-static M : T s→ T = (pbs,body) means that in program P, class D contains declaration
of static method M with argument types T s, return type T , formal arguments pbs, and the body
body.

63

