
AOP considered harmful

Constantinos Constantinides∗ Therapon Skotiniotis† Maximilian Stoerzer‡

August 23, 2004

Abstract

In his famous letter “Go To statement considered
harmful” Dijkstra started a discussion finally re-
sulting in banning of most unstructured control
flow statements from modern high level program-
ming languages.

To overcome limitations of todays programming
languages, aspect oriented programming has been
proposed. Unfortunately language elements used
by many AO languages are in a way similar to the
Go To statment, so we ask the provocative: AOP
considered harmful?

1 Go To considered harmful

In his famous letter “Go To statemnt considered
harmful” [2] Dijkstra argued that programmers
should always be able to create a sound mapping
from their variables to values only based on a ’coor-
dinate system’, which of course should not depend
on program values but on external values.

For a sequential program including conditional
and branch statements this for example is a sin-
gle textual index (the line number). Adding loops
introduces an additional loop counter but never-
theless maintains the ability for the programmer to
reason about variable values. Even procedures do
not destroy this ability, although the necessary co-
ordinate system now also comprises the call stack.

However, with unstructured control flow as rep-
resented by the Go To statment, such a coordinate
system does no longer exist.

As a conclusion, Dijkstra claimed that – even
though he did not claim that the list of program-
ming language elements covered by his article was
complete – any programming language construct
has to maintain the property that it does not de-
stroy the coordinate system for the programmer.

∗Concordia University, Montreal, Quebec, Canada,
cc@cse.concordia.ca

†Northeaster Univ., Boston, USA, skotthe@ccs.neu.edu
‡Univ. of Passau, Germany, stoerzer@fmi.uni-passau.de

2 A Coordinate System
for Advice?

The question now is if a sound coordinate system
can be constructed if also pointcuts and advice are
included. On the one hand, advice is very simil-
iar to procedures, on the other hand there are two
important differences:

• obliviousness of application and

• non-certainty of application.

By obliviousness of application we want to ex-
press that at the source code location describing
an affected join point (i.e. a method call, field ac-
cess, ...) the adivce which will be executed is not
visible, in contrast to a method call.

As a result just looking at the source code line,
loop counters or the call stack is not enough to de-
duce a variable value – a piece of advice might have
changed it inbetween, invisible for the programmer.

Although tool support can lighten this problem
by showing applying advice, the language alone
does no longer allow to create a coordinate sys-
tem for the programmer. From that point of view
pointcuts and advice violate Dijkstras postulated
property.

So in a way advice here is even worse than Go
To as the Go To statement is at least visible in the
code, but advice is not. This can be compared to
the Come From statement [1] which has been pro-
posed as a way to avoid Go To – of course only as
an April Fools joke. However, it’s semanics look
surprisingly familiar.

If you consider the example in figure 1 (left),
when control reaches line 10, control it transfered
to the Come From statement in line 20. A similiar
formulation with advice is shown to the right.

The second difference outlined above – the non-
certainty of application refers to pointcuts where

1



5 input x
10 print ’result is :’
15 print x

20 come from 10
25 x = x * x
30 return

main() {
input x
print(result(x))

}
int result(int x) { return x }
around(int x): call(result(int)) && args(x) {

int temp = proceed(x)
return temp * temp

}

Figure 1: Comparing advice and Come From

the set of matching joinpoints cannot be evaluated
statically but depends on runtime values.

In this case, even if a tool shows potential ad-
vice matching, the actual matching state in general
is not known, i.e. the programmer cannot deduce
from the source code alone weather a piece of ad-
vice is applied at a certain joinpoint or not. So any
coordinate system including advice and dynamic
pointcuts also has to consider runtime values – a
clear violation of Dijkstras statments.

3 Dynamic dispatch
compared to Go To

Object-orientation or more specifically the dynamic
dispatch also in a way violate Dijkstras demand
for a coordinate system, as here also the target
of a method call depends on the runtime type of
the callee object. This “feature” of object-oriented
programs can – is misused – also lead to decreased
comprehensibility of programs.

However, the situation of AOP differs in two
ways from OO. First, as AOP is orthogonal to the
OO paradigm (but can add AOP features to OO)
the problem cannot be dismissed by claiming that
OO is problematic but nonetheless successful. So
excusing the breaking of Dijkstras coordinate sys-
tem with some AOP language constructs with OO
is no option.

Second, to counter the effect of the uncertain
method call target the OO community has devel-
oped a set of rules how to use method overriding
and how not to. Informally an overriding method
should only expect less and provide more, by main-
taining all invariants, so each overriding method
ideally has (more or less) the same semanics. As

a consequence, the programmer can reason about
the semantics of a method call even if the actually
called method is statically unknown. This is still
missing for AOP.

4 Conclusion

In this position statement we tried to show that the
AOP pointcut and advice mechanism has some of
the problems associated with the Go To statment,
namely that it does not allow to provide a sound
mapping from variables to values based only on a
coordinate system of non-program values.

We compared these AOP constructs also to dy-
namic dispatch in OO, but argued that for OO in-
heritance rules lighten the problem. For AOP sim-
ilar rules are still missing and thus in our opinion
AOP is considerably more dangerous.

Dijkstra in his letter observed: “ ... that the
quality of programers is indirectly proportional to
the amount of Go To statemets they use in their
programs.”. As currently most AOP research is not
about methodolgy but about more dynamicity in
the future this might be rephrased to “ ... indirectly
proportional to the amount of advice they use in
their programs.”

References

[1] Lawrence R. Clark. A linguiistic contribution
of goto-less programming. DATAMATION, De-
cember 1973.

[2] Edsger W. Dijkstra. Letters to the editor:
Go to statement considered harmful. CACM,
11(3):147–148, March 1968.

2


	Go To considered harmful
	A Coordinate Systemfor Advice?
	Dynamic dispatchcompared to Go To
	Conclusion

