
Synthesizing an Instruction Selection Rule Library
from Semantic Specifications

Sebastian Buchwald
Karlsruhe Institute of Technology

Germany
buchwald@kit.edu

Andreas Fried
Karlsruhe Institute of Technology

Germany
fried@kit.edu

Sebastian Hack
Saarland University

Germany
hack@cs.uni-saarland.de

Abstract

Instruction selection is the part of a compiler that transforms
intermediate representation (IR) code into machine code.
Instruction selectors build on a library of hundreds if not
thousands of rules. Creating and maintaining these rules is
a tedious and error-prone manual process.
In this paper, we present a fully automatic approach to

create provably correct rule libraries from formal specifica-
tions of the instruction set architecture and the compiler
IR. We use a hybrid approach that combines enumerative
techniques with template-based counterexample-guided in-
ductive synthesis (CEGIS). Thereby, we overcome several
shortcomings of existing approaches, which were not able
to handle complex instructions in a reasonable amount of
time. In particular, we efficiently model memory operations.

Our tool synthesized a large part of the integer arithmetic
rules for the x86 architecture within a few days where ex-
isting techniques could not deliver a substantial rule library
within weeks. Using the rule library, we generate a proto-
type instruction selector that produces code on par with
a manually-tuned instruction selector. Furthermore, using
63 012 test cases generated from the rule library, we identi-
fied 29 498 rules that both Clang and GCC miss.

CCS Concepts · Software and its engineering → Re-

targetable compilers;

Keywords Program Synthesis, Instruction Selection

ACM Reference Format:

Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Syn-

thesizing an Instruction Selection Rule Library from Semantic Spec-

ifications. In Proceedings of 2018 IEEE/ACM International Symposium

on Code Generation and Optimization (CGO’18). ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3168821

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CGO’18, February 24ś28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5617-6/18/02. . . $15.00

https://doi.org/10.1145/3168821

1 Introduction

Modern instruction set architectures (ISAs), even those of
RISC processors, are complex and comprise several hundred
instructions. In recent years, ISAs have been more frequently
extended to accelerate computations of various domains (e.g.,
signal processing, graphics, string processing, etc.).
Instruction selectors typically use a library of rules to

transform the program: Each rule associates a pattern of IR
operations to a semantically equivalent, small program of
machine instructions. First, the selector matches the pattern
of each rule in the library to the IR of the program to be
compiled. Then, the selector computes a pattern cover of the
program and rewrites it according to the rules associated
with the patterns.

The rule library contains at least one rule per machine in-
struction. Some instructions even have multiple (minimal) IR
patterns with the same semantics. For example, the patterns
for the x86 instruction andn include:

∼x &y x ⊕ (x |y) y ⊕ (x &y) y − (x &y).

Since any of these patterns might occur in a program, the in-
struction selector needs all rules to ensure a match. Usually,
the number of rules exceeds the number of ISA instructions
by far. Consequently, the rule libraries of modern compilers
have considerable size and consist of hundreds if not thou-
sands of rules. Because of the sheer size of the rule library,
manually specifying these rules is tedious and error-prone.
To remedy this problem, this paper presents a fully automatic

approach to synthesize provably correct instruction selection
rules from formal specifications of the compiler IR’s and the
ISA’s semantics.
We identified two existing approaches in the literature

that, in principle, allow us to find all minimal IR patterns
for a given instruction. The first approach enumerates all IR
patterns and tests whether they are semantically equivalent
to our instruction. This technique is often used in superopti-
mizers [2, 5, 15, 22]. The second approach [12] uses template-
based counterexample-guided inductive synthesis (CEGIS).
This technique is used to synthesize a program that is correct
with respect to a given specification. For now, it is sufficient
to understand that CEGIS constructs and refines candidate
programs from a given multiset of template instructions in
a counterexample-guided feedback cycle using a synthesis
and verification step. Note that every instruction occurrence

300

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3168821
https://doi.org/10.1145/3168821

CGO’18, February 24ś28, 2018, Vienna, Austria Sebastian Buchwald, Andreas Fried, and Sebastian Hack

counts: If the template multiset contains three add instruc-
tions, the synthesized program cannot contain more than
three add instructions. We explain CEGIS in more detail in
Section 2.4.

Unfortunately, both existing approaches reach their limits
when it comes to synthesizing instruction selectors. On one
hand, even if we could enumerate and check one candidate
per CPU cycle, the enumerative approach would need sev-
eral hours to handle an instruction that needs 7 out of 21
available IR operations, for example. On the other hand, the
CEGIS approach is designed to be given exactly the required
operations (in the required multiplicity). Let us assume that
we want to synthesize a simple x86 lea instruction that adds
two values and a constant. Since it is not clear in advance

how many instances of each IR operation will occur in a
pattern, we have to add multiple instances of each opera-
tion. This leads to a tremendous slowdown: With 2×21 IR
instances, the CEGIS approach would need several hours to
find a pattern for the lea instruction.
We solve this problem by a technique we call iterative

CEGIS that combines both approaches. It iteratively enumer-
ates template libraries of increasing size and then synthesizes
IR patterns using the CEGIS approach. In summary, we make
the following contributions:

• We improve the synthesis algorithm of Gulwani et al.
[12] to iteratively explore template libraries of increas-
ing size. Our evaluation shows that this makes the
synthesis of instruction selection rules feasible in the
first place.
• We present a novel encoding of memory operations
that avoids array theory, which we experienced as a
major performance bottleneck in the synthesis step.
This allows for an extension of Gulwani et al. [12] to
memory operations, which are essential when synthe-
sizing instruction selection rules.
• Our experimental evaluation shows that our technique
is able to synthesize a large part of the rules for an x86
integer arithmetic instruction selector, including the
famous addressing modes. Our approach synthesizes a
simple rule library that already covers all primitive x86
integer operations in a few minutes. Using existing
synthesis techniques, even the simple library could
not be synthesized within a reasonable time budget
(days, even weeks). We obtain a more comprehensive
library with large, intricate patterns in four days using
a standard off-the-shelf satisfiability modulo theories
(SMT) solver on a standard desktop workstation.
• We generate a prototype instruction selector from the
synthesized rule library. Using the SPEC CINT2000
benchmark suite, we show that our prototype produces
code that is close to code produced by a carefully hand-
tuned instruction selector.

• We identify 31 612 instruction selection rules missing
in GCC and 36 365 missing in Clang using a total of
63 012 generated test cases.

The remainder of this paper is structured as follows: In Sec-
tion 2, we provide some background information and discuss
related work. Section 3 gives an overview of our work, and
the following sections provide more detail: Section 4 explains
how we model instructions, and Section 5 describes our syn-
thesis algorithm, our prototype instruction selector, and the
test case generation. Section 6 discusses limitations of our
work and opportunities for future improvement. We evaluate
the synthesis algorithm and the quality of the synthesized
instruction selection rules in Section 7. Finally, Section 8
concludes.

2 Preliminaries and Related Work

In this section, we provide preliminaries for instruction se-
lection and program synthesis techniques. Along the way,
we present related work.

2.1 Instruction Selection

Instruction selection is the task of transforming machine-
independent IR operations to machine-dependent instruc-
tions. Over the past decades, compilers used a variety of
instruction selection approaches that differ significantly in
complexity and resulting code quality.
Modern compilers usually represent programs in static

single assignment (SSA) form.We concentrate our discussion
to approaches in this setting. For other techniques and for a
comprehensive survey of instruction selection we refer to
Blindell [4].
The instruction selectors built into SSA-based compilers

typically use directed acyclic graph (DAG) pattern match-
ing/rewriting on SSA data dependence graphs. Koes and
Goldstein [17] have shown that this problem is NP-complete
without restricting the ISA appropriately. There exist opti-
mal approaches using mathematical optimization [9] that
allow for an extension [8] to patterns containing cycles.
Because CEGIS is (currently) limited to loop-free pro-

grams, our approach is limited to DAG patterns. However,
modern compilers like LLVM [18, 20] or HotSpot [23] also
restrict themselves to DAG or tree patterns and some greedy
heuristics for selecting an appropriate covering. In our ex-
perimental evaluation, we evaluate the synthesized rule li-
braries in the research compiler libFirm [19], which also
uses a greedy DAG-based instruction selector.

2.2 Generating Instruction Selectors

Dias and Ramsey [7] proposed an algorithm to generate
instruction selectors from declarative machine descriptions.
They express the input program using a fixed set of small
IR patterns called tiles. Their synthesis algorithm computes
a sequence of machine instructions to implement each tile,

301

Synthesizing an Instruction Selection Rule Library . . . CGO’18, February 24ś28, 2018, Vienna, Austria

given semantics of the machine instructions (the łmachine
descriptionž) and a set of algebraic rewrite rules. They state
that the resulting instruction selector generates code that
łcan be horribly inefficientž and needs further optimization.

In contrast, our work produces patterns that combine mul-
tiple IR operations, and thus make better use of the machine.
In addition, whereas Dias and Ramsey rely on a set of rewrite
rules, we specify the semantics of IR and machine code using
SMT.

2.3 Satisfiability Modulo Theories

In our tool, we use the SMT solver Z3 [6], which follows
the wide-spread SMT-LIB standard [3]. In addition, Z3 has
preliminary floating-point support, which gives us the op-
portunity for future support of floating-point instructions.

Even though Z3 supports combining multiple theories in
one query, we found that it runs most efficiently with only a
single theory. We therefore constrained Z3 to the SMT-LIB
theory QF_BV (quantifier-free bit vectors) and modeled all
values including indices as bitvectors. Compared to freely
combining theories, this reduced the solving time by a factor
of two.

2.4 Synthesis

Gold [11] and Shapiro [26] introduced the idea of inductive
synthesis. The aim of inductive synthesis is to construct an
object (e.g. a program), given a finite set of test cases. In the
case of program synthesis, these are program arguments
along with the expected results.

Solar-Lezama et al. [28] developed this idea into counter-
example-guided inductive synthesis (CEGIS). CEGIS iterates
inductive syntheses to construct a program that is correct
for all possible arguments. It uses two alternating steps to
produce new test cases incrementally.
For example, suppose that we want to synthesize a pro-

gram p that satisfies ϕ for all inputs y. However, the formula
∃p.∀y.ϕ(p,y) contains a universal quantifier, with which
SMT solvers have performance problems. CEGIS eliminates
this universal quantifier.
CEGIS uses two calls to the SMT solver. The first of these

is the synthesis query. It constructs a candidate p∗ that is
valid for all test cases yi ∈ Y . The second SMT call is the
verification query. It checks whetherp∗ is valid for all possible
y by querying for a counterexampley∗. If no counterexample
is found, p∗ is correct for all y. Otherwise, y∗ is a useful new
test case to refine the next synthesis query.
Gulwani et al. [12] used this technique to build a super-

optimizer. A superoptimizer is a tool to find the shortest
possible program that implements a given functionality [22].
They developed a representation that can encode loop-free
programs as a set of integer variables of limited range, so
that a standard SMT solver can enumerate the programs.

They benchmark their tool using examples from the micro-
optimization book łHacker’s Delightž [32]. The tool is able

to synthesize programs of 16 instructions, albeit with super-
vision in picking the types of instructions to use.

In our work, we expand the model presented by Gulwani
et al. to support more types of instructions, and to be able to
synthesize programs unsupervised. See Section 4 and Sec-
tion 5 for a detailed discussion.
We also investigated modeling instruction selection syn-

thesis as a syntax-guided synthesis (SyGuS) problem [1] and
submitted a set of benchmarks to the SyGuS-COMP 2017 [31].
To solve the benchmarks, the participating solvers had to
synthesize patterns with at least 6 IR operations. However,
the benchmarks already provided the minimal set of neces-
sary IR operations. Unfortunately, none of the participating
solvers was able to solve any of these benchmarks.
Another approach in synthesis is to forgo completeness

and heuristically prune the search space. Thus, the synthe-
sizer can find significantly larger implementations. This ap-
proach has been used in superoptimizers [15, 25] as well as
for program synthesis [13, 29, 30]. Unfortunately, this ap-
proach is not applicable to instruction selection synthesis,
where we need to synthesize all minimal IR patterns for each
machine instruction. If a pattern is missing, the instruction
selector cannot generate the corresponding instruction if
that pattern occurs. If a pattern is not minimal, it is very
unlikely to occur, because the compiler will have already
optimized the IR.

2.5 Formal Instruction Semantics

Godefroid and Taly [10] synthesize bit-vector formulas for
processor instructions from input/output pairs. They exam-
ine an instruction’s behavior by actually executing it on
random test inputs. Then, they synthesize a semantics for
the instruction based on a set of templates. Their synthesis
algorithm is similar to CEGIS, except that they also search
for counterexamples by running more experiments on the
actual instruction.

Heule et al. [13] present an approach that synthesizes the
formal semantics of complex instructions from a small set of
basic instructions. Their algorithm starts with a set of test
inputs and results for the machine instruction. It then uses a
CEGIS-like loop, using STOKE [25] as its synthesizer and an
SMT solver as its verifier.

These approaches are complementary to ours. In principle
one could use them to automatically obtain a specification
for the machine semantics. However, they cannot be used for
synthesizing pattern libraries because they are not complete:
Their goal is to obtain a specification and not to enumerate
all possible corresponding IR patterns.

3 Overview

In this section, we give an overview of our work, before
describing its components in more detail in the following
sections. Our tool consists of three main components: The

302

CGO’18, February 24ś28, 2018, Vienna, Austria Sebastian Buchwald, Andreas Fried, and Sebastian Hack

synthesizer, the code generator, and the test case generator.
Algorithm 1 gives an overview of the process.

The synthesizer takes semantic models (see Section 4) of
both IR operations (parameter I) and machine instructions
(parameterM) as its input. Then, the solver runs our iterative
CEGIS algorithm (see Section 5) with each instruction from
M as the goal д. Each of these runs produces all minimal
patterns that implementд using nodes from I (see Section 5.3
for more detail). The synthesizer pairs these patterns with д,
and stores all pairs in a pattern database.
The pattern database can aggregate patterns found by

different synthesizer runs (see Section 5.5). Either we can
run the synthesizer in parallel on multiple machines, or we
can first synthesize patterns for a basic set of instructions
and expand on these as needed.
The code generator reads the pattern database and pro-

duces code for a compiler’s instruction selection phase. The
code generator is free to use any instruction selection algo-
rithm that works with DAG patterns.
The test case generator reads the pattern database and

produces a test case for each pattern. These test cases can be
used to identifymissing patterns in state-of-the-art compilers
(see Section 7.4).

Algorithm 1 Overview

1: procedure Synthesizer(I : {Instruction},M : {Instruction})

2: S ← {} ▷ S : {(M × Pattern(I))}

3: for each д ∈ M do

4: {p1, . . . ,pn } ← IterativeCEGIS(I ,д) ▷ pi : Pattern(I)

5: S ← S ∪ {(д,p1) , . . . , (д,pn)}

6: end for

7: Save S to pattern database

8: end procedure

9: procedure CodeGenerator(S : {(M × Pattern(I))})

10: Filter S : Remove non-normalized and duplicated patterns

11: Sort S from more specific to less specific patterns

12: for each (д,p) ∈ S do

13: Emit code: If p matches, replace it with д.

14: Otherwise try next pattern

15: end for

16: end procedure

17: procedure TestCaseGenerator(S : {(M × Pattern(I))})

18: Filter S : Remove duplicated patterns

19: for each (д,p) ∈ S do

20: Emit test case for p.

21: end for

22: end procedure

4 Modeling Instructions

Our synthesizer needs semantic models of both IR operations
and machine instructions. Following Gulwani et al. [12], we
model these as SMT predicates that relate their inputs and
outputs. However, we extend Gulwani’s model to include

multiple sorts, instructions with preconditions, instructions
with multiple results, and instructions that access memory.

An instruction takes n arguments, and from these com-
putesm results. In addition, some instructions have internal
attributes, whose values are chosen at synthesis time. For
example, a conditional branch instruction has the condition
code as an internal attribute.
The sorts of the arguments, internal values, and results

form the instruction’s interface. The interface determines the
ways in which instructions may be combined. We specify
the interface in three functions Sa , Si , and Sr . These take
an instruction and return the list of argument, internal, and
result sorts respectively.

We specify the behavior of an instruction by the two SMT
formulae defined below. Each of them takes an instruction
and three lists of SMT expressions va , vi , and vr . These are
the values to be substituted for the instruction’s arguments,
internal attributes, and results respectively.

• P(i,va ,vi ,vr) is i’s precondition. If it does not hold, the
instruction’s behavior is undefined.
• Q(i,va ,vi ,vr) is i’s postcondition. If the precondition
holds,Q(i,va ,vi ,vr) also holds. Its purpose is to define
vr in terms of va and vi .

In order to fulfill the interface of the instruction i , we require
the values in va to have the sorts in Sa(i), i.e.

∀0 ≤ k < |Sa(i)|.va[k] : Sa(i)[k],

and similarly for vi /Si (i), and vr /Sr (i).

Example 1 (Right-shift instruction). Consider the specifica-
tion of a 32 bit wide right-shift instruction with the semantics

of C. In this semantics, the result vr [0] of the shift is undefined
if the shift amount is negative or not less than the bit width.

The value to be shifted is va[0], the shift amount is va[1].

Sa(shr32) = [BitVec32,BitVec32]

Si (shr32) = []

Sr (shr32) = [BitVec32]

P(shr32,va ,vi ,vr) = 0 ≤ va[1] < 32

Q(shr32,va ,vi ,vr) = (vr [0] = va[0] >> va[1])

4.1 Memory Access

Graph-based IRs typically model the state of memory as an
SSA value [19, 23]. We call this memory value M-value in
the remainder of this paper. Each instruction that accesses
memory takes anM-value as an additional argument and pro-
duces an M-value as an additional result: The load operation
has typeM × Pointer → M × Value, and the store operation
has typeM × Pointer × Value→ M . An operation’s M-value
result is then used as the argument to the next memory op-
eration. Thus, all memory operations are totally ordered in
a chain of M-values1. This also holds for load operations, in

1This requirement can be relaxed if memory accesses are proven not to

alias, but we do not consider this case in our model.

303

Synthesizing an Instruction Selection Rule Library . . . CGO’18, February 24ś28, 2018, Vienna, Austria

order to model write-after-read dependencies to subsequent
store operations.

SMT Model. We exploit this structure in our SMT represen-
tation: We model M-values as values of an SMT sort that can
hold the relevant state of memory for the synthesis. Thus,
the patterns we use in our synthesis are the same as those
of the IR.

We must ensure that the memory access operations in our
patterns are properly chained. Since a load operation has
no effect on the contents of memory, it must change the M-
value representation in some other way in order to force the
synthesizer to include it in the memory chain. Therefore, the
M-value holds two pieces of information for each address:
the memory contents for that address, and an access flag. A
load operation sets the access flag of the address it loads
from, thus changing the M-value. We assume here that every
goal instruction loads from each address at most once. If this
is not the case, the access flag can be replaced by a counter.
For basic memory access, we use the SMT functions ld

and st , which load or store a single byte respectively. Their
sorts are the same as in the IR, with Pointer = BitVec32 and
Value = BitVec8.
The exact definitions of the sortM for M-values, as well

as the functions ld and st , are specialized to the goal instruc-
tion of the synthesis. Therefore, we first specify the goal
instruction as a template, using these symbols as placehold-
ers for the actual sorts or functions. Then, we compute the
specializedM , ld , and st from this template, and substitute
them for the placeholders.

Representation of M-Values. Program verifiers typically
model contents memory using the SMT theory of arrays [27]
or an Ackermannized variant of it [21], but we found these
approaches to be unsuitable for our needs: During CEGIS,
we have to prove that our synthesis candidate is valid for all
initial states of memory. When trying to prove this, the SMT
solver (Z3) consistently ran out of memory.
Therefore, we use a different technique to represent M-

values that is specific to our application: Because we only
consider one machine instruction д at a time as our goal,
we can restrict the SMT representation of M-values to only
represent those addresses that д uses. If a candidate pattern
accesses any other memory, it cannot be equivalent to д.

We call the pointers used byд the valid pointers for the syn-
thesis of д, and collect them in a list of unevaluated SMT ex-
pressionsV (д,va ,vi ,vr). To obtain this list, we syntactically
analyze д’s postcondition, and extract all pointer arguments
to load and store operations from it.

For example, suppose that our goal instruction is a 32 bit
store łstore32ž. We construct this by chaining SMT byte store
functions, passing M-values from one to the next.

Q(store32,va ,vi ,vr) =

letm0 ← st(va[0], va[1], va[2][7 . . . 0]) in

letm1 ← st(m0, va[1] + 1, va[2][15 . . . 8]) in

letm2 ← st(m1, va[1] + 2, va[2][23 . . . 16]) in

letm3 ← st(m2, va[1] + 3, va[2][31 . . . 24]) in

vr [0] =m3

The valid pointers for synthesizing store32 are then

V (store32,va ,vi ,vr) = [va[1],va[1]+ 1,va[1]+ 2,va[1]+ 3]

Using the valid pointers, we can then define a sort M(д)
of M-values, and the primitive load and store functions for
the synthesis of д. Even though we define st in terms of the
valid pointers, this is not a circular dependency, since we
only analyzed Q on a syntactic level that does not require
the definition of st to be known.
M(д) is a bit vector of size |V (д,va ,vi ,vr)| · (w + 1), where

w is the bit width of a byte in memory. For each valid pointer,
the M-value thus has storage for one byte of memory and
its access flag.

In the example above, we haveM(д) = BitVec36, whereby
bits 0 to 7 store the memory contents forva[1] (the first valid
pointer), bit 8 stores its access flag, and so on.

SMT Store Function. We can now define the SMT store
function st . For simplicity, we will fix V = V (д,va ,vi ,vr),
and not pass it explicitly as an argument. st takes an M-value
m, a pointer p and a value x to store. It evaluates each valid
pointer and compares its value with p. If V [i] = p, it returns
a modifiedm, setting the memory contents for V [i] to x .

Thus, continuing the example, we implement st as follows:

st(m,p,x) =

replace(m, 0,x) if p = eval(V [0])

replace(m, 9,x) if p = eval(V [1])

replace(m, 18,x) if p = eval(V [2])

replace(m, 27,x) if p = eval(V [3])

,

whereby replace(m, i,x) returns the bit vector m with the
bits from i to i + 7 replaced by the bit vector x .

The load function ld traverses V in the same order to find
a matching valid pointer V [i], and then extracts and returns
the memory contents for V [i]. In addition, it returns the
M-value with the access flag for V [i] set.
Note that the valid pointers are not evaluated until the

call to st or ld . Since we use CEGIS, this means that we can
substitute concrete values for p and the variables used in V .

The definitions of ld and st require that their pointer argu-
ment is equal to a valid pointer. However, if the synthesizer
tries a wrong solution, this might not be the case. We force
the synthesizer to only use valid pointers by placing an ad-
ditional constraint on the synthesis (see Section 5.2).

We must also handle aliasing valid pointers. It is possible
that д’s arguments alias or that a pointer was expressed
in two different but arithmetically equivalent ways in д’s

304

CGO’18, February 24ś28, 2018, Vienna, Austria Sebastian Buchwald, Andreas Fried, and Sebastian Hack

specification. Since we compute V by syntactic analysis, the
M-values then have multiple entries referring to the same
address. However, ld and st always check the valid pointers
against p in a fixed (albeit arbitrary) order. Therefore, only
the first of the aliasing valid pointers will be used for loads
and stores, and our model remains consistent.

4.2 Control Flow

In machine language, jumps take a target to jump to when
their condition is fulfilled, or fall through. On the other hand,
IR jumps make their fall-through target explicit as well. They
take references to both basic blocks where execution might
continue after the branch.

We follow the idea of IR jumps with their explicit control
flow. Our representation of a jump operation computes as
many boolean results as the original operation has jump
targets (usually two). It sets the result for the branch taken
to True, and the other results to False. Thus, when two jump
operations return the same values given the same arguments
in our model, they will perform the same jumps in the IR or
machine language.

Different IRs and processor architectures differ in the way
in which they represent conditional jumps. They either use a
test for a specific condition and a jump if the test succeeded
(e.g. MIPS, libFirm, LLVM), or they use a generic comparison
instruction and specify the condition in the jump instruction
(e.g. x86, ARM). In order to unify these different approaches,
we consider a combination of one comparison and one con-
ditional jump as our goal instruction.

5 Instruction Selection Synthesis

In this section, we discuss the core problem of instruction
selection synthesis: Given a goal machine instruction д and
the multiset of IR operations I , synthesize an IR pattern that
implements д.

We assume that д has no internal attributes. To synthesize
a goal instruction with internal attributes, we run a separate
synthesis for each possible assignment to them. For example,
we have to synthesize a pattern for each condition code of a
compare-and-jump pair.

5.1 Pattern Representation

Given the current state of SMT solver technology, we cannot
directly represent DAG patterns as an SMT datatype. Instead,
we use an extended version of the encoding presented by
Gulwani et al. [12]. This encoding uses location variables L

in order to place operations from a given multiset in a linear
order and to determine the operations’ arguments. These can
either be the result of another operation or one of the pat-
tern’s/machine instruction’s arguments. In addition, further
location variables select the source of the pattern’s/machine
instruction’s results. Thewell-formed program constraint ϕwf

ensures that the assignment to the location variables repre-
sents a valid program.

We extend this encoding to support instructions with mul-
tiple results, and values of different sorts. To support multiple
sorts in a program, we restrict each location variable associ-
ated with an operation’s argument to those sources with the
same sort. We also exclude the ill-sorted connections from
the connection constraint, as they would produce invalid SMT
formulae.

To support operations with multiple results, we associate
a set of consecutive locations with each operation, so that
further instructions can select any of the return values as
their arguments. We therefore have to adapt Gulwani et al.’s
consistency constraint (a part of ϕwf), which ensures that
each location only has one operation assigned to it. If L(o) is
the location of operation o ∈ I , and distinct(S) holds if all ele-
ments of S are pair-wise distinct, our consistency constraint
becomes

ψcons = distinct({0, . . . , |Sa(д)| − 1} ∪
⋃

o∈I

{L(o), . . . ,L(o) + |Sr (o)| − 1}).

The predicate łdistinctž is included in SMT-LIB [3] and there-
fore supported by all conforming SMT solvers.

With this pattern encoding, we have achieved two things:
First, the SMT solver can select any program of IR operations
by assigning values to the location variables. Second, using
the location variables we can construct an SMT formula
that assigns values to the pattern’s results according to the
semantics of the IR program and the pattern’s arguments.
Gulwani et al. call this the connection constraint; we write
Q+(I ,L,va ,vi ,vr) by analogy with a single operation’s Q .

Similarly, we extend other parts of the specification to
whole patterns, namely P+ (by conjunction of all P), V + (by
union of all V), and S+i (by union of all Si).

Example 2 (Pattern representation). We want to synthesize

an addition instruction that loads one of its operands from

memory. The instruction has three arguments (M-value, pointer,

register-operand) and two results (M-value, sum). Given the set

of IR operations I = {Add, Load}, we obtain the set of location

variables L. Figure 1c shows a well-formed assignment to L.

This assignment places the operations as shown in Figure 1b

and fully encodes the pattern shown in Figure 1a.

Considering the pattern semanticsQ+, we can substitute the

location variables with their assignments. This allows us to

partially evaluate Q+ until we receive the formula shown in

Figure 1c. This formula contains intermediate variables e0 to e6,

which hold the argument and result values of the operations.

5.2 Search Algorithm

We now formulate the SMT queries for our synthesis. Again,
these are an extension of the scheme presented by Gulwani
et al. [12].

305

Synthesizing an Instruction Selection Rule Library . . . CGO’18, February 24ś28, 2018, Vienna, Austria

Res1

AddRes0

Op
Load

Mem Value

Mem Ptr

(a) IR pattern

Mem 0

Ptr 1

Op 2

Load-Mem 3

Load-Value 4

Add 5

(b) Locations

Q+(I ,L,va ,vi ,vr) = Q(Load, [e0, e1], [], [e2, e3])

∧Q(Add, [e4, e5], [], [e6]) ∧ e0 = va[0] ∧ e1 = va[1]

∧ e4 = e3 ∧ e5 = va[2] ∧vr [0] = e2 ∧vr [1] = e6

L : lLoad = 3 lLoad-Arд0 = 0 lLoad-Arд1 = 1

lAdd = 5 lAdd-Arд0 = 4 lAdd-Arд1 = 2

lRes0 = 3 lRes1 = 5

(c) Pattern postcondition Q+ and location variables L

Figure 1.Well-formed assignment of an IR pattern to locations by location variables L. The provided SMT formula Q+ depicts
the partially evaluated postcondition fixing the location variables as shown in the assignment to L.

Roughly speaking, we are looking for an IR pattern (i.e. an
assignment to the location variables) that behaves the same
as the goal instruction for every set of arguments. This query
is in principle solvable by an SMT solver, because the location
variables have finite range. However, it contains universal
quantifiers, and thus solving it still takes an impracticable
amount of memory and time. Therefore, Gulwani et al. use
CEGIS to split the query into a synthesis and a verification
step.
The synthesis query produces an assignment to the loca-

tion variables and the internal arguments of the IR operations
that is valid for a small set of test cases. We define a test case
to be the list ta :: Sa(д) of pattern arguments. The set of all
test cases is T . The synthesis formula ϕsynth(I ,T ,д) is then
as follows:

∃L : LocationVariables(I). ∃vi :: S
+

i (I).ϕwf (I) ∧
∧

ta ∈T

(
∃vr :: Sr (д). P

+(I , ta ,vi ,vr) =⇒

P(д, ta , [],vr) ∧Q(д, ta , [],vr) ∧Q
+(I ,L, ta ,vi ,vr) ∧

V +(I , ta ,vi ,vr) ⊆ V (д, ta ,vi ,vr)
)

If ϕsynth is satisfiable, we obtain a model for the location
variables L∗ and the internal attributes v∗i . In the next step,
we check them with the verification formula:

∃ta :: Sa(д). ∃vr :: Sr (д). ∃v
′
r :: Sr (д).

P+(I , ta ,v
∗
i ,vr) ∧Q

+(I ,L∗, ta ,v
∗
i ,vr) ∧Q(д,va , [],v

′
r) ∧

(¬P(д, ta , [],vr) ∨ (1)

vr , v
′
r ∨ (2)

V +(I , ta ,vi ,vr) ⊈ V (д, ta ,vi ,vr)) (3)

The verification formula verifies that the IR pattern repre-
sented by L∗ and v∗i is equivalent to д. It does this by search-
ing for a test case ta , which could (1) meet the pattern’s but
not д’s precondition, (2) cause the pattern and д to produce
different results, or (3) lead to an invalid memory access. If
the solver finds a t∗a fulfilling these conditions, the candidate

pattern is not equivalent to д, and we discard it. Then, we
add t∗a to the set of test cases T .

If no counterexample exists, L∗ and v∗i represent a pattern
that is equivalent to д. We can then reconstruct this pattern
from L∗ and v∗i as described by Gulwani et al. [12].

5.3 Finding All Patterns

We have already remarked that an instruction selector needs
to know about all IR patterns matching a goal instruction.
We therefore repeat the CEGIS algorithm, each time request-
ing a pattern not seen before. We do this by adding clauses
that exclude patterns that we have already found. Let F be
the set of patterns we have already found, consisting of pairs
(Lf ,vf), where Lf : LocationVariables(I) andvf :: S+i (I). We
then add the following condition to the synthesis constraint
to exclude patterns in F :

∧

(Lf ,vf)∈F

(L , Lf ∨vi , vf)

We refer to this algorithm as CEGISAllPatterns below.

5.4 Iterative CEGIS

The biggest performance issue with synthesis using classical
CEGIS is the size of I . It must contain every operation suffi-
ciently often to synthesize any machine instruction, but each
single machine instruction will only use a small part of I .
In iterative CEGIS, we exploit this discrepancy by replacing
one large CEGIS with several smaller ones.
The iterative CEGIS algorithm (Algorithm 2) takes the

simple set of IR operations I as input (containing each op-
eration only once). Then, it performs a classical CEGIS for
each ℓ-multicombination of I with increasing ℓ. It returns all
results with minimal ℓ (i.e. all IR patterns of minimal size).

For a given ℓ we have
((|I |

ℓ

))
=

(|I |+ℓ−1
ℓ

)
iterations of the

inner loop. Knuth [16] presents several efficient iteration
algorithms over multicombinations.

Refining the Iteration. Many of our goal instructions ac-
cess memory, which means that they take an argument and
produce a result of sortM(д). We can surmise that they will

306

CGO’18, February 24ś28, 2018, Vienna, Austria Sebastian Buchwald, Andreas Fried, and Sebastian Hack

Algorithm 2 Iteration over all multisets

1: procedure MultisetIteration(I : {Instruction},
д : Instruction)

2: ℓ ← 1

3: R ← ∅

4: while R = ∅ do

5: for each ℓ-multicombination I ′ of I do
6: R ← R ∪ CEGISAllPatterns(I ′, д)
7: end for

8: ℓ ← ℓ + 1

9: end while

10: end procedure

not leave this value untouched, which we can check with this
simple SMT query (suppose thatm andm′ are the indices of
the argument and result in question):

¬∃va :: Sa(д),vi :: Si (д),vr :: Sr (д).

Q(д,va ,vi ,vr) ∧va[m] , vr [m
′].

If this query is satisfiable, vr [m
′] must be the result of an

IR operation, and we can be sure that д requires a memory
operation. By checking whether va[m] and vr [m

′] differ in
memory contents or in an access flag, we can even find out
whether д requires a load, store, or both operations.

Assume that our analysis showed that д requires the mem-
ory operations O ⊆ {load, store}. We can then prune our
iteration space in the following way: Where we would nor-
mally iterate over multisets of size ℓ, we instead takeO as the
fixed first members of I ′, and only iterate over the remaining
ℓ − |O | members. This means that we can reduce our work

from
((|I |

ℓ

))
iterations to

((|I |
ℓ−|O |

))
iterations. For example, if

|I | = 21, ℓ = 6, and |O | = 2, we require 10 626 instead of
230 230 iterations.
In addition, we sometimes know a priori that no valid

pattern can be produced from a certain I ′. We implement
two criteria that allow us to skip an iteration:

• Assume n operations in I ′ each have only one value
of a certain sort S as their result, but there are m <
n consumers of values of S . Then, the pattern must
ignore the result of at least one of these operations
(say, o), and could have been synthesized from I ′ \ {o}.
Because this has lower cost than I ′, we must have
already tried it unsuccessfully, and we can thus skip
synthesis for I ′.
• Assume that I ′ contains an operation that requires an
argument of sort S . In this case, we require that there
is a source of S . A source is either a pattern argument,
or an instruction that has a value of S as its result
without requiring one as its argument. If we cannot
find a source, we skip synthesis for I ′.

The second criterion is useful in skipping all patterns with
memory access operations if the goal instruction does not
access memory.

Search Space Estimate. To compare the search space of
classical and iterative CEGIS, we only consider the num-
ber of possible arrangements of components in the pattern.
Classical CEGIS has to consider all arrangements of |I | ele-
ments (more if some operations occur multiple times), giv-
ing a search space of |I |!. With iterative CEGIS, we have

to perform
((|I |

ℓ

))
CEGIS runs with ℓ operations to find pat-

terns with ℓ operations. Its search space therefore comes to∑ℓmax

ℓ=1

((|I |
ℓ

))
· ℓ!.

If we take |I | = 21 and ℓmax = 7, this yields search spaces
of ≈ 265 for classical CEGIS, and ≈ 232 for iterative CEGIS.
We can see that the oversupply of IR operations presents an
issue to classical CEGIS.

5.5 Aggregation and Post-Processing

We collect all synthesized patterns in a pattern library. This
allows us to aggregate patterns from different (parallel) syn-
thesizer runs. We also perform some filtering on the pattern
library to remove duplicated patterns that might stem from
commutative arithmetic operations or from similar goal in-
structions.

5.6 Code Generation

After loading the rule library, the code generator can perform
a compiler-dependent filtering step that removes all rules
with non-normalized IR patterns. Then, it sorts the rules to
match more specific ones first, and generates the instruction
selection code.
Of course, the code generator is tightly coupled to the

targeted compiler and its instruction selection mechanism.
However, our synthesis algorithm is independent from the
type of instruction selector used, as long as that instruc-
tion selector can work with DAG patterns. In particular,
our results are suitable to generate any instruction selec-
tor discussed by Blindell [4], except those based on macro
expansion.

5.7 Test Case Generation

We also implemented a test case generator that creates a
C program for each pattern of the pattern database. This
allows us to test which patterns are supported by a certain
C compiler, while allowing the compiler to normalize and
optimize the given program. Of course, we can also use these
test cases to test the code generator of the synthesized in-
struction selector.

6 Limitations and Future Work

There are several areas where improvement on our work is
still possible. In some cases, we are restricted by the available
technology in SMT solving:

307

Synthesizing an Instruction Selection Rule Library . . . CGO’18, February 24ś28, 2018, Vienna, Austria

Division. Division of bit vectors is especially hard for SMT
solvers: It is usually specified indirectly in terms of multipli-
cation, which is already a complex operation. The current
performance of SMT solvers in the face of division opera-
tions is insufficient for our needs, and we chose to exclude
division from our set of IR operations.
In practice, one might choose to put a timeout on the

verification and accept any pattern where verification times
out. We chose not to do this, as it compromises the provable
correctness of the generated instruction selection.

Floating-Point Arithmetic. We did not include floating-
point arithmetic at all in our work, because there is no effi-
cient way to use it in an SMT query at present. The SMT-LIB
project has defined a theory [3, 24], and the SMT solver Z3
has preliminary support for it, but its performance is not yet
up to our needs.

Other limitations are due to our program representation
and search algorithm:

Different Bit Widths. Currently, we only synthesize in-
structions for 32 bit wide values. There are three approaches
to this problem, none of which is satisfactory:

• We can run separate syntheses for the different bit
widths. This approach has tolerable performance, but
cannot exploit interactions between operations with
different bit widths. For example, the x86 instruction
setcc only operates on 8-bit-registers but can still be
useful for other bit widths.
• We can include IR operations for all bit widths in
our synthesis. With our present synthesis algorithm,
adding IR operations has exponential performance im-
pact. We would therefore have to restrict ourselves to
patterns of approximately size 3.
• We canmodel instructions in a way that they can stand
in for their smaller counterparts if possible. For exam-
ple, a 32-bit addition can also implement a 16- or 8-bit
addition, but a right-shift instruction only works in
one bit width. This approach requires us to model un-
known bits, because some smaller-width instructions
(e.g. Loads) leave the upper bits of their destination in
an undefined state. The possibility of unknown bits
makes all models more complicated, and again hinders
synthesis performance.

Patterns with Loops. Our pattern representation can only
handle straight-line programs. The representation can sup-
port conditional assignments, but not actual conditional exe-
cution or loops.We have this restriction because SMT solvers
cannot work with recursive definitions, and therefore also
not with unbounded loops.

In program verification, a standard technique is to unroll
loops a limited number of times. Using this approach, we
could synthesize instructions with fixed iteration length (e.g.

SIMD instructions). We could synthesize a pattern with the
loop unrolled, and then łroll upž the loop for the purposes
of matching. However, our current approach does not scale
to the necessary size of pattern.

Unrolling or rolling up loops is only possible for synthesis
if the number of iterations is fixed. When this is not the case
(e.g. with x86’s rep prefix), we need more powerful synthesis
tools. A fixpoint engine [14] is now part of Z3, although it
has not yet been used in program synthesis.

The last item does not affect the synthesis but the further
processing of the rule library.

Handling Compile-Time Constants. When handling im-
mediates we currently do not distinguish between compile-
time constants and link-time constants. This causes some
problems in combination with constant folding. For instance,
let us consider the rule that transforms if (x <s (x & (~c)))...
into test x, c; js/jns. If c is a compile-time constant, we will
not find the pattern, because the compiler will constant-fold
~c to a new constant c'.

A solution to this problem is to also create a (symboli-
cally) constant-folded pattern for compile-time constants.
The main challenge then is to reconstruct the immediate
from the folded constants. In our example, we can simply
use c = ~c'. However, if the immediate is used multiple times
by more complex IR operations, this might become tricky.
For the test generator, another challenge is to find particular
constants that prevent additional optimizations.

7 Evaluation

In this section, we evaluate the instruction selection synthe-
sis as well as the quality of the resulting prototype instruction
selector.

7.1 Setup

For the evaluation, our goal is to generate a prototype instruc-
tion selector for the libFirm compiler [19]. Since libFirm
provides a well-tuned 32-bit x86 backend, we choose x86
as our target architecture. We provided bit-vector formulas
for libFirm’s IR operations and our target set of 32-bit x86
integer instructions. We also extended our synthesis tool
to generate matcher code for libFirm’s greedy instruction
selection algorithm. The resulting prototype instruction se-
lector first checks the synthesized patterns and falls back
to existing patterns if no synthesized pattern matches. For
a given program, the coverage is the ratio of IR operations
translated by the synthesized instruction selection rules.

We consider two setups for the synthesis: The basic setup
only contains the register variants of the machine instruc-
tions, whereas the full setup also contains more complex
variants. The two setups aim for different goals. The basic
setup aims to minimize the synthesis time while having the
same coverage as the full setup. On the other hand, the full

308

CGO’18, February 24ś28, 2018, Vienna, Austria Sebastian Buchwald, Andreas Fried, and Sebastian Hack

Table 1. Runtime of generated executables for different instruction selections with standard deviation σ . Handwritten refers to
the greedy instruction selection implemented in libFirm, whereas Basic and Full refers to the synthesized prototype instruction
selections using the corresponding synthesis setups. The coverage column shows the ratio of IR operations translated by the
synthesized instruction selector.

Benchmark Synthesized Handwritten σHandwritten
Basic

Handwritten
Full

Handwritten

Coverage Basic σBasic Full σFull

164.gzip 68.39 % 59.37 s 0.48 s 55.78 s 0.18 s 56.41 s 0.28 s 105.25 % 98.87 %
175.vpr 64.72 % 43.97 s 0.12 s 42.06 s 0.36 s 39.55 s 0.15 s 111.16 % 106.34 %
176.gcc 79.26 % 20.56 s 0.03 s 18.67 s 0.02 s 18.38 s 0.02 s 111.84 % 101.60 %
181.mcf 88.35 % 21.52 s 0.11 s 20.12 s 0.10 s 20.12 s 0.12 s 106.95 % 99.97 %
186.crafty 84.32 % 28.68 s 0.03 s 24.16 s 0.03 s 24.79 s 0.03 s 115.67 % 97.43 %
197.parser 73.23 % 57.22 s 0.06 s 52.72 s 0.05 s 52.11 s 0.05 s 109.80 % 101.17 %
253.perlbmk 76.01 % 51.14 s 0.04 s 38.62 s 0.04 s 39.14 s 0.04 s 130.67 % 98.68 %
254.gap 66.04 % 23.84 s 0.13 s 22.53 s 0.12 s 22.14 s 0.13 s 107.70 % 101.78 %
255.vortex 79.37 % 42.75 s 0.19 s 38.97 s 0.14 s 37.42 s 0.11 s 114.26 % 104.15 %
256.bzip2 78.92 % 46.47 s 0.19 s 42.84 s 0.13 s 42.24 s 0.16 s 110.02 % 101.44 %
300.twolf 75.02 % 61.48 s 0.20 s 58.78 s 0.26 s 58.06 s 0.15 s 105.89 % 101.26 %

Geom. Mean 75.46 % 111.56 % 101.13 %

setup aims to maximize the quality of the instruction selec-
tion at the cost of an increased synthesis time. Since our
modular approach allows to iteratively add new goal instruc-
tions to the basic setup, the two chosen setups show the
range of all possible setups with the same coverage.
The synthesis as well as the measurements were per-

formed on an Intel Core i7-6700 3.40GHz with 64GB RAM.
The machine runs a 64-bit Ubuntu 16.04 distribution that
uses the 4.4.0-92-generic version of the Linux kernel. We use
the SMT solver Z3 in version 4.5.0.

7.2 Synthesis

In this section, we investigate synthesis time. Since our ap-
proach allows for modular synthesis, we first synthesize the
basic setup and iteratively extend the resulting instruction
selection by synthesizing all variants of several instruction
groups.
Table 2 shows the chosen instruction groups and the

corresponding synthesis time. The synthesis time strongly
depends on the maximum pattern size and ranges from a
few seconds to several hours for a single goal instruction.
For the basic setup, we need 3min 25 s to synthesize the
patterns and 5 s to generate the instruction selection code.
Based on this setup, we can improve the quality of the in-
struction selection by incrementally adding more complex
goal instructions. Eventually, this leads to the full setup,
which needs 100 h 50min 54 s to synthesize the patterns and
1 h 06min 08 s to generate the instruction selection code.

A simple experiment puts these results into contrast with
the original CEGIS algorithm [12]. We then tried to synthe-
size an x86 addition instruction with a memory operand.

Table 2. Synthesis time for different groups of goal instruc-
tions. For each instruction group, we also depict the number
of goal instructions, the number of synthesized patterns, and
the maximum pattern size. The instruction groups contain
multiple variants of the following x86 instructions: Load/S-
tore: mov; Unary: neg, not, inc, dec; Binary: add, and, lea,
or, rol, ror, sar, shl, shr, sub, xor; Flags: cmp, jcc, jmp,
test. The basic setup only contains the basic variants of mov,
neg, not, and, lea, or, sar, shl, shr, sub, xor, cmp, jcc, jmp.

Group #Goals Patterns Synthesis Time

Size

Basic 39 575 4 3min 25 s

Load/Store 35 607 4 5min 45 s
Unary 70 2106 7 18 h 10min 58 s
Binary 260 6316 6 10 h 27min 06 s
Flags 265 145441 7 72 h 07min 05 s

Total 630 154470 7 100 h 50min 54 s

This instruction uses 3 IR operations (Load, Add, Store) and
takes 5 seconds to synthesize with our iterative approach.
Running the original CEGIS algorithm on the same machine,
the synthesis for this instruction did not finish within 64
hours.

7.3 Generated Instruction Selection

In this section, we evaluate the quality of our generated pro-
totype instruction selector. For this purpose, we compile the
C programs of the SPEC CINT2000 benchmark suite with

309

Synthesizing an Instruction Selection Rule Library . . . CGO’18, February 24ś28, 2018, Vienna, Austria

our generated instruction selector and the existing instruc-
tion selector of libFirm. When compiling with the generated
instruction selector, we measure its coverage, i.e. the ratio of
IR operations that it can translate. Furthermore, we compare
the time taken by the instruction selection phase and the
runtime of the generated executables.
When comparing the time taken by the instruction se-

lector, we observe that the basic setup takes about 1.66×
as long as the existing instruction selector, with the whole
compiler backend taking 14 % longer. However, the full setup
takes between 1217× and 1804× as long as the existing in-
struction selector, and the whole backend takes between
57× and 132× as long. This is because our pattern library
still has 60 000 rules after post-processing, which the pro-
totype instruction selector tries one by one. Note that this
is only a deficiency of the prototype instruction selector
and orthogonal to the synthesis of the pattern library. With
more advanced pattern matching algorithms, which can ex-
ploit the common sub-structure among patterns, we expect
a significant reduction in compile time.
Table 1 shows the results of compiling and running the

benchmarks with both basic and full synthesized instruction
selection. The coverage column shows that our instruction
selector can transform 75.46 % of all IR operations on average.
The remaining operations include function calls, operations
involving other bit widths than 32 bit, floating-point opera-
tions, and variadic ϕ-functions.
In addition, we compare the runtime of the generated

executables when compiled with the basic and full synthe-
sized instruction selector, and the pre-existing handwritten
instruction selector. The depicted times show the average of
20 executions. Compared to the handwritten instruction se-
lector, the full and basic setup increases the average runtime
by 1.13 % and 11.56 %, respectively.

The performance benefit of the handwritten selector comes
from several hand-coded łtricksž that our automatically gen-
erated selector does not (yet) support. First, the handwritten
instruction selector supports overlapping patterns in some
cases. In particular, it can repeat the computation of the same
effective address in multiple machine instructions to reduce
register pressure. Our generated prototype instruction selec-
tor strictly avoids overlapping patterns and would hold the
effective address in a register. Again, note that this is not an
issue of the synthesized pattern library but of the instruction
selector itself. Second, the handwritten instruction selector
tries to use existing arithmetic operations to produce de-
sired x86 flags. For instance, it can combine subtraction and
comparison operations with the same operands into a single
sub instruction. Such a pattern has multiple roots and our
prototype instruction selector currently cannot match it.

7.4 Testing State-of-the-Art Compilers

We used our generated test programs (cf. Section 5.7) to
identify unsupported patterns in GCC 7.2 and Clang 5.0.With

a total of 63 012 test programs, we found 31 612 unsupported
patterns in GCC and 36 365 unsupported patterns in Clang.
We give some examples of the 29 498 patterns that are not
supported by both compilers:

• While both compilers support x & (x − 1)→blsr x, they
do not support x + (x | −x)→blsr x.
• Full addressing mode for the lea instruction is not sup-
ported: &bytes[x + 4 ∗ y + 42]→lea bytes+42(x,y,4).
Another lea pattern that is missing in both compil-
ers is &bytes[42 + (x << 2) − x]→lea bytes+42(x,x,2),
which uses the same value as base and index register.
• The majority of missing patterns involves cmp or test
instructions, combined with conditional jumps. For
instance, int z = x − y; if (z < ~z)... can be translated to
cmp x, y; js/jns ..., but both compilers fail to recognize
that if(z < ~z) tests the sign bit.

We provide the tools to create a full HTML report of missing
patterns as part of our artifact evaluation (see Section A.4).
In addition, we provide a website accompanying this paper
at http://libfirm.org/selgen.

8 Conclusion

In this paper, we presented a fully automatic approach to
create provably correct rule libraries for instruction selection.
Our approach is based on template-based counterexample-
guided inductive synthesis (CEGIS), a technique to automat-
ically synthesize programs that are correct with respect to
a formal specification. We overcome several shortcomings
of an existing SMT-based CEGIS approach, which was not
applicable to our setting in the first place. We propose a
novel way of handling memory operations and show how
the search space can be iteratively explored to synthesize
rules that are relevant for instruction selection.
Our approach automatically synthesized a large part of

the integer arithmetic rules for the x86 architecture within
a few days where existing techniques could not deliver a
substantial rule library within weeks. Using the rule library,
we generate a prototype instruction selector that produces
code on par with a manually-tuned instruction selector. Fur-
thermore, using 63 012 test cases generated from the rule
library, we identified 29 498 rules that both Clang and GCC
miss. This shows that even state-of-the-art compilers have
room for improvements in their instruction selections.

A Artifact Description

A.1 Abstract

We provide a Docker image to demonstrate the different
stages of our workflow. You can synthesize an instruction
selection rule library (Section 7.2), test the state-of-the-art
compilers (Section 7.4), build a C compiler using that library,
and run it on the SPEC CINT2000 benchmarks (Section 7.3,
benchmarks must be provided separately for licensing rea-
sons). The stages can be executed in sequence or separately.

310

http://libfirm.org/selgen

CGO’18, February 24ś28, 2018, Vienna, Austria Sebastian Buchwald, Andreas Fried, and Sebastian Hack

A.2 Description

A.2.1 Check-List (Artifact Meta Information)

• Algorithm: Synthesis of instruction selection patterns.

• Program: SPEC CINT2000 (proprietary, not included).

• Compilation: GCC 7.2.0 and Clang 5.0.0-3 included.

• Binary: Pre-built compiler with synthesized instruction

selection pass included.

• Run-time environment: Any Linux, Ubuntu 17.10 in-

cluded.

• Hardware: x86-64, multicore recommended.

• Execution: Disable power-saving for accurate benchmark

results.

• Output: Instruction selection pattern library, compiler with

synthesized instruction selection pass, SPECCINT2000 bench-

mark results, comparison table of supported patterns be-

tween compilers.

• Experiment workflow: Shell scripts.

• Experiment customization: Yes.

• Publicly available?: Yes.

A.2.2 How Delivered

The AE archive can be downloaded from https://doi.org/10.

5281/zenodo.1095055.
Most required software is bundled in a Docker container.

Due to license restrictions, the user has to provide an ISO
image of the SPEC CPU2000 benchmarks.

A.2.3 Hardware Dependencies

The software runs on any x86-64 processor. We recommend
a recent multi-core model due to the long running time of
our experiments. On an eight-core Intel i7-6700, the full
experiment runs for approx. five days.

A.2.4 Software Dependencies

We require a Linux host system with Docker installed. In
order to mount the SPEC ISO image, the host system must
support loop devices, and our container must run in privi-
leged mode.

A.2.5 Datasets

An ISO image of the SPEC CPU2000 benchmarks (named
cpu2000-1.3.1.iso) is required to run the compiler bench-
marking experiments. The other experiments do not need
external datasets.

A.3 Installation

Docker may have problems accessing network file systems. We

recommend saving the SPEC ISO image and the AE archive on

a local hard drive.

1. (optional) Place the SPEC CPU2000 ISO image in a
directory readable by the Docker daemon. We refer to
this directory as ISODIR.

2. Extract the AE archive into a directory of your choice.

3. (with SPEC ISO image) Start the Docker container with
./start.sh ISODIR. Pass the name of the directory
where the SPEC ISO image resides as the argument,
not the image file itself.

3. (without SPEC ISO image) Start the Docker container
with ./start.sh.

A.4 Experiment Workflow

Each experiment is provided as a script in the directory
/app/experiments. You should be in this directory when
the container has started.
To replicate our full workflow, run these experiments in

order:

full-synthesis.sh: This experiment synthesizes instruction
selection patterns for all instructions that are also supported
by the manually written instruction selector.

On a recent eight-core machine, this synthesis takes four
days. If you choose to skip the synthesis, you can run the
remaining experiments with the pre-built rule library.

build-compiler.sh: This experiment takes the rule library
synthesized by full-synthesis.sh, generates an instruc-
tion selector from it, and builds a compiler with this instruc-
tion selector.

The compilation of the compiler takes approx. five hours. If
you choose to skip the synthesis, you can run the remaining
experiments with the pre-built compiler.

With the rule library and compiler you can now reproduce
our evaluation using the following scripts.

run-tests.sh: This experiment checks whether the different
compilers support each pattern from the synthesized pattern
library. It generates a short C program from each pattern
and compiles it to assembly using GCC, Clang, and libFirm

with the handwritten and synthesized instruction selector.
Then, it counts how many assembler instructions each of
the compilers required.
This script runs for approx. three hours.

spec.sh: This experiments runs the SPEC CPU2000 bench-
marks using libFirm with the handwritten and synthesized
instruction selector.
Both SPEC runs together take approx. ten hours.

We have also included two experiments that demonstrate
our full workflow but require less time.

basic.sh: This experiment runs the full workflow with a
minimal set of patterns. It synthesizes a rule library in approx.
5 minutes, compiles libFirm with an instruction selector
synthesized from this library, and finally compares it against
the handwritten instruction selector in the SPEC CINT2000
benchmarks.
Since the SPEC runs dominate this experiment, it also

takes approx. 10 hours.

311

https://doi.org/10.5281/zenodo.1095055
https://doi.org/10.5281/zenodo.1095055

Synthesizing an Instruction Selection Rule Library . . . CGO’18, February 24ś28, 2018, Vienna, Austria

bmi.sh: This experiment shows how to extend libFirm’s
handwritten instruction selector with a synthesizsed instruc-
tion selector that supports new instructions. It synthesizes a
rule library for the bit manipulation instructions andn, blsi,
blsmsk, blsr, btc, btr, and bts. Then, it compiles libFirm
with an instruction selector synthesized from this library.

Finally, it generates tests (see run-tests.sh) to check
whether GCC and Clang support the patterns for the bit
manipulation instructions.
This experiment takes about five minutes.

A.5 Evaluation and Expected Results

All experiments place their results in /app/results/within
the container.
The result directory can also be accessed from outside

the container as the directory results/ in the extracted AE
archive. You need root privileges to write to this directory
outside the container, because user IDs within and without
Docker do not match up.

The result directory is cleaned every time the container starts.

Save any results you would like to keep before starting the

container.

full-synthesis.sh: This experiment places the rule library
in rule-library.dat.
The rule library should have 154 470 entries.

build-compiler.sh: This experiment saves the synthesized
instruction selector as instruction-selector.c and pro-
duces the compiler binary, named cparser. The compiler
fully supports C99 and is largely GCC-compliant. When
given the option -mautotransform, the compiler uses the
synthesized instruction selector.

run-tests.sh: This experiment produces an HTML table in
test-result.html. The table contains one row for each
pattern where at least one compiler produced more instruc-
tions than expected. The entries for each compiler give the
number of instructions produced, with non-optimal entries
being colored red.

You can expand each table cell by clicking on it, showing
the source code of the tests and the assembly generated by
each compiler.

The table should show 31 612 unsupported rules for GCC
and 36 365 unsupported rules for Clang.

spec.sh: This experiment stores the usual SPEC results in
spec-handwritten/ for the handwritten instruction selec-
tor and spec-autotransform/ for the synthesized instruc-
tion selector.
In addition, it produces an HTML table comparing the

instruction selectors in spec-comparison-full.html. This
table contains the average running times of the binaries pro-
duced by the handwritten and the synthesized instruction
selector for each benchmark. It also contains the standard

deviations of the running times for each benchmark. In ad-
dition, it provides the ratio between the running times and
the geometric mean over all benchmarks.
Compare this table with the łFull/Handwrittenž column

in Table 1 in the paper.

basic.sh: This experiment produces SPEC results in the
same way as spec.sh, namely:

• spec-handwritten/

• spec-basic-autotransform/

• spec-comparison-basic.html

Compare the results with the łBasic/Handwrittenž column
in Table 1 in the paper.

bmi.sh: This experiment produces a table of test cases in
the same way as run-tests.sh.
Observe here that libFirm with the synthesized instruc-

tion selector can handle all patterns, but the other compilers
miss some of them. Note also that libFirm with the hand-
written instruction selector does not support any of the in-
structions. They are fully implemented by the synthesized
instruction selector.

A.6 Experiment Customization

Due to the nature of Docker, all customizations will be lost

after you exit the container.

You can customize the set of goal instructions for which
full-synthesis.sh generates patterns by editing the script
/app/selgen/run_groups.sh.

This script calls run.sh with different groups of instruc-
tions to synthesize. To speed up the synthesis, you can skip
one or more groups by deleting or commenting out the calls
to run.sh. Refer to Table 2 in the paper to get an estimate of
how much time each group will take. For example, to skip
the synthesis of the cmp and test instructions, delete lines
30ś33 from run_groups.sh.

Alternatively, you can also reduce the number of address-
ing modes. They are listed after --srcam and --destam for
source and destination addressing modes respectively. An
instruction’s synthesis takes longer the more components
(base, index, scale, displacement) its addressing mode has.
Furthermore, an instruction using a destination addressing
mode needs one more IR operation than the corresponding
instruction using the same source addressing mode.

Acknowledgments

We thank Christoph Mallon, Manuel Mohr, Maximilian Wag-
ner, Andreas Zwinkau, our shepherds Tipp Moseley and
Santosh Nagarakatte, as well as the anonymous reviewers
for their many helpful comments and suggestions.

This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Re-
search Centre łInvasive Computingž (SFB/TR 89).

312

CGO’18, February 24ś28, 2018, Vienna, Austria Sebastian Buchwald, Andreas Fried, and Sebastian Hack

References
[1] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,

S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. 2013.

Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided

Design. 1ś8. https://doi.org/10.1109/FMCAD.2013.6679385

[2] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole

Superoptimizers. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XII). ACM, New York, NY, USA, 394ś403. https:

//doi.org/10.1145/1168857.1168906

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiabil-

ityModulo Theories Library (SMT-LIB). (2016). http://www.smt-lib.org

[4] Gabriel Hjort Blindell. 2016. Instruction Selection: Principles, Methods,

and Applications (1st ed.). Springer Publishing Company, Incorporated.

[5] Sebastian Buchwald. 2015. Optgen: A Generator for Local Optimizations.

Springer Berlin Heidelberg, Berlin, Heidelberg, 171ś189. https://doi.

org/10.1007/978-3-662-46663-6_9

[6] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the Theory and Practice of Software, 14th In-

ternational Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin,

Heidelberg, 337ś340.

[7] João Dias and Norman Ramsey. 2010. Automatically Generating In-

struction Selectors Using Declarative Machine Descriptions. In Pro-

ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL ’10). ACM, New York, NY,

USA, 403ś416. https://doi.org/10.1145/1706299.1706346

[8] Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall,

Peter Wiedermann, and Albrecht Kadlec. 2008. Generalized instruc-

tion selection using SSA-graphs. In Proceedings of the 2008 ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

bedded Systems (LCTES’08), Tucson, AZ, USA, June 12-13, 2008, Krisztián

Flautner and John Regehr (Eds.). ACM, 31ś40. https://doi.org/10.1145/

1375657.1375663

[9] Erik Eckstein, Oliver König, and Bernhard Scholz. 2003. Code In-

struction Selection Based on SSA-Graphs. In Software and Compil-

ers for Embedded Systems, 7th International Workshop, SCOPES 2003,

Vienna, Austria, September 24-26, 2003, Proceedings (Lecture Notes in

Computer Science), Andreas Krall (Ed.), Vol. 2826. Springer, 49ś65.

https://doi.org/10.1007/978-3-540-39920-9_5

[10] Patrice Godefroid and Ankur Taly. 2012. Automated Synthesis of

Symbolic Instruction Encodings from I/O Samples. In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’12). ACM, New York, NY, USA, 441ś452.

https://doi.org/10.1145/2254064.2254116

[11] E. Mark Gold. 1967. Language identification in the limit. Information

and Control 10, 5 (1967), 447ś474.

[12] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-

san. 2011. Synthesis of Loop-free Programs. In Proceedings of the

32Nd ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’11). ACM, New York, NY, USA, 62ś73.

https://doi.org/10.1145/1993498.1993506

[13] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016.

Stratified Synthesis: Automatically Learning the x86-64 Instruction Set.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’16). ACM, New York, NY,

USA, 237ś250. https://doi.org/10.1145/2908080.2908121

[14] Kryštof Hoder, Nikolaj Bjùrner, and Leonardo de Moura. 2011. µZś An

Efficient Engine for Fixed Points with Constraints. Springer Berlin

Heidelberg, Berlin, Heidelberg, 457ś462. https://doi.org/10.1007/

978-3-642-22110-1_36

[15] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-

directed Superoptimizer. In Proceedings of the ACM SIGPLAN 2002 Con-

ference on Programming Language Design and Implementation (PLDI

’02). ACM, New York, NY, USA, 304ś314. https://doi.org/10.1145/

512529.512566

[16] Donald E. Knuth. 2005. The Art of Computer Programming, Volume 4,

Fascicle 3: Generating All Combinations and Partitions. Addison-Wesley

Professional.

[17] David Ryan Koes and Seth Copen Goldstein. 2008. Near-optimal

instruction selection on DAGs. In Sixth International Symposium on

Code Generation and Optimization (CGO 2008), April 5-9, 2008, Boston,

MA, USA, Mary Lou Soffa and Evelyn Duesterwald (Eds.). ACM, 45ś54.

https://doi.org/10.1145/1356058.1356065

[18] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In 2nd IEEE

/ ACM International Symposium on Code Generation and Optimiza-

tion (CGO 2004), 20-24 March 2004, San Jose, CA, USA. IEEE Computer

Society, 75ś88. https://doi.org/10.1109/CGO.2004.1281665

[19] libFirm Website 2017. Firm ś Optimization and Machine Code Gener-

ation. (2017). http://libfirm.org

[20] LLVMWebsite 2017. The LLVMCompiler Infrastructure Project. (2017).

http://llvm.org

[21] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John

Regehr. 2015. Provably Correct Peephole Optimizations with Alive.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’15). ACM, New York, NY,

USA, 22ś32. https://doi.org/10.1145/2737924.2737965

[22] HenryMassalin. 1987. Superoptimizer: A Look at the Smallest Program.

In Proceedings of the Second International Conference on Architectual

Support for Programming Languages and Operating Systems (ASPLOS

II). IEEE Computer Society Press, Los Alamitos, CA, USA, 122ś126.

[23] Michael Paleczny, Christopher A. Vick, and Cliff Click. 2001. The Java

HotSpot Server Compiler. In Proceedings of the 1st Java Virtual Machine

Research and Technology Symposium, April 23-24, 2001, Monterey, CA,

USA, Saul Wold (Ed.). USENIX. http://www.usenix.org/publications/

library/proceedings/jvm01/paleczny.html

[24] Philipp Rümmer and Thomas Wahl. 2010. An SMT-LIB Theory of

Binary Floating-Point Arithmetic. In Informal proceedings of 8th In-

ternational Workshop on Satisfiability Modulo Theories (SMT) at FLoC,

Edinburgh, Scotland.

[25] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Su-

peroptimization. In Proceedings of the Eighteenth International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS ’13). ACM, New York, NY, USA, 305ś316.

https://doi.org/10.1145/2451116.2451150

[26] Ehud Y. Shapiro. 1983. Algorithmic Program Debugging. MIT Press,

Cambridge, MA, USA.

[27] Carsten Sinz, Stephan Falke, and FlorianMerz. 2010. A PreciseMemory

Model for Low-level Bounded Model Checking. In Proceedings of the

5th International Conference on Systems Software Verification (SSV’10).

USENIX Association, Berkeley, CA, USA, 1ś9.

[28] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,

and Vijay Saraswat. 2006. Combinatorial Sketching for Finite Programs.

In Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

XII). ACM, New York, NY, USA, 404ś415. https://doi.org/10.1145/

1168857.1168907

[29] Venkatesh Srinivasan and Thomas Reps. 2015. Synthesis of Machine

Code from Semantics. SIGPLAN Not. 50, 6 (June 2015), 596ś607. https:

//doi.org/10.1145/2813885.2737960

[30] Venkatesh Srinivasan, Tushar Sharma, and Thomas Reps. 2016. Speed-

ing Up Machine-code Synthesis. SIGPLAN Not. 51, 10 (Oct. 2016),

165ś180. https://doi.org/10.1145/3022671.2984006

[31] SyGuS-COMP 2017. SyGuS-COMP 2017. (2017). http://www.sygus.

org/SyGuS-COMP2017.html

[32] Henry S. Warren Jr. 2012. Hacker’s Delight (2nd ed.). Addison-Wesley

Professional.

313

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/1168857.1168906
https://doi.org/10.1145/1168857.1168906
http://www.smt-lib.org
https://doi.org/10.1007/978-3-662-46663-6_9
https://doi.org/10.1007/978-3-662-46663-6_9
https://doi.org/10.1145/1706299.1706346
https://doi.org/10.1145/1375657.1375663
https://doi.org/10.1145/1375657.1375663
https://doi.org/10.1007/978-3-540-39920-9_5
https://doi.org/10.1145/2254064.2254116
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1145/512529.512566
https://doi.org/10.1145/512529.512566
https://doi.org/10.1145/1356058.1356065
https://doi.org/10.1109/CGO.2004.1281665
http://libfirm.org
http://llvm.org
https://doi.org/10.1145/2737924.2737965
http://www.usenix.org/publications/library/proceedings/jvm01/paleczny.html
http://www.usenix.org/publications/library/proceedings/jvm01/paleczny.html
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/2813885.2737960
https://doi.org/10.1145/2813885.2737960
https://doi.org/10.1145/3022671.2984006
http://www.sygus.org/SyGuS-COMP2017.html
http://www.sygus.org/SyGuS-COMP2017.html

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Instruction Selection
	2.2 Generating Instruction Selectors
	2.3 Satisfiability Modulo Theories
	2.4 Synthesis
	2.5 Formal Instruction Semantics

	3 Overview
	4 Modeling Instructions
	4.1 Memory Access
	4.2 Control Flow

	5 Instruction Selection Synthesis
	5.1 Pattern Representation
	5.2 Search Algorithm
	5.3 Finding All Patterns
	5.4 Iterative CEGIS
	5.5 Aggregation and Post-Processing
	5.6 Code Generation
	5.7 Test Case Generation

	6 Limitations and Future Work
	7 Evaluation
	7.1 Setup
	7.2 Synthesis
	7.3 Generated Instruction Selection
	7.4 Testing State-of-the-Art Compilers

	8 Conclusion
	A Artifact Description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Results
	A.6 Experiment Customization

	Acknowledgments
	References

