

Sebastian Buchwald, Manuel Mohr, Ignaz Rutter

Chair for Programming Paradigms & Chair for Algorithmics, Karlsruhe Institute of Technology (KIT)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Register Allocation and Shuffle Codea = 10;ab = 20;r1c = 30;r1d = 40; \dots print (a, a, c, b, d);

2 August 5, 2015

Register Allocation and Shuffle Code

```
c = 30;
d = 40;
. . .
```

a = 10;

b = 20;

print(a, a, c, b, d);

Register Allocation and Shuffle Code

r5

r5

d

С

r4

r4

b

b

r3

r3

с

a = 10; b = 20; c = 30; d = 40; ... print(a, a, c, b, d);

Register Transfer Graph (RTG)

а

r1

r1

а

r2

а

Register Allocation and Shuffle Code

a = 10; b = 20; c = 30; d = 40; ... print(a, a, c, b, d);

Register Transfer Graph (RTG)

copy r1, r2 swap r3, r4

c = 30; d = 40; ... print(a, a, c, b, d); r1 r2 r(a) (a) (c)

Register Allocation and Shuffle Code

Register Transfer Graph (RTG)

a = 10; b = 20;

$$\begin{array}{c} & & \\ 1 \rightarrow 2 & 3 \\ \hline & 4 & 5 \end{array}$$

copy r1, r2 swap r3, r4

Shuffle Code Generation Problem

Find a shortest shuffle code that implements a given RTG.

- For large RTGs, implementations can get lengthy
- ⇒ Proposed more powerful permutation instructions [Mohr et al. 2013]

- For large RTGs, implementations can get lengthy
- ⇒ Proposed more powerful permutation instructions [Mohr et al. 2013]

- For large RTGs, implementations can get lengthy
- ⇒ Proposed more powerful permutation instructions [Mohr et al. 2013]

- For large RTGs, implementations can get lengthy
- ⇒ Proposed more powerful permutation instructions [Mohr et al. 2013]

- Exists as FPGA-based prototype processor with modified compiler [Mohr et al. 2013]
 - Improves performance in practice
 - Uses greedy heuristic

SCGP with permutation instructions

Given RTG, find a shortest shuffle code using permi5, permi23 and copy.

SCGP with permutation instructions

Given RTG, find a shortest shuffle code using permi5, permi23 and copy.

Naive implementation: copy r1, r2 copy r1, r3 permi5 r4, r5, r6

SCGP with permutation instructions

Given RTG, find a shortest shuffle code using permi5, permi23 and copy.

SCGP with permutation instructions

Given RTG, find a shortest shuffle code using permi5, permi23 and copy.

Optimal implementation: permi23 r1, r2, r4, r5, r6 copy r2, r3

SCGP with permutation instructions

Given RTG, find a shortest shuffle code using permi5, permi23 and copy.

SCGP with permutation instructions

Given RTG, find a shortest shuffle code using permi5, permi23 and copy.

Optimal implementation: copy r1, r2 copy r1, r3 permi5 r4, r5, r6

Shuffle Code Generation as a Graph Problem

$$\pi \quad \bullet \quad (V, E) = (V, \{(\pi(u), v) \mid (u, v) \in E\})$$
$$] \bullet \quad 1 \quad 2 \quad 3 = 1 \quad 2 \quad 3$$

$$\pi \quad (V, E) = (V, \{(\pi(u), v) \mid (u, v) \in E\})$$

$$[\bullet \quad 1 \quad 2 \quad 3 = 1 \quad 2 \quad 3$$

- Defines group action of permutations on RTGs
- For permutation RTGs (PRTGs): make given PRTG trivial

- Defines group action of permutations on RTGs
- For permutation RTGs (PRTGs): make given PRTG trivial

Effect of a copy:

Observations on Shuffle Code

Observations	Karlsruhe Institute of Technology	
rewrite to	Copy $a \rightarrow b$ followed by transposition $\tau = (c$	c d)
	Transposition (<i>c d</i>) followed by copy $\tau(a) \rightarrow$	τ(b)

Observations	KIT Karlsruhe Institute of Technology	
rewrite to	Copy $a ightarrow b$ followed by transposition $ au = (a)$	c d)
	Transposition (<i>c d</i>) followed by copy $\tau(a) \rightarrow$	→ τ(b)

All outgoing edges

of u in πG are copies

• All outgoing edges (except one) of u in πG are copies

All outgoing edges (except one) of *u* in π*G* are copies
 π permutes edge sources in *G*

Can transform shuffle code such that in πG , for every copy $u \rightarrow v$:

- All outgoing edges (except one) of u in πG are copies
- π permutes edge sources in G
- \Rightarrow All outgoing edges (except one) of *u* in *G* correspond to copies

Can transform shuffle code such that in πG , for every copy $u \rightarrow v$:

- All outgoing edges (except one) of u in πG are copies
- π permutes edge sources in G
- ⇒ All outgoing edges (except one) of u in G correspond to copies → copy set

Step 1: Pick a copy set C.

(For each vertex, color one outgoing edge red, rest blue.)

Step 1: Pick a copy set C.

(For each vertex, color one outgoing edge red, rest blue.)

- Step 1: Pick a copy set *C*. (For each vertex, color one outgoing edge red, rest blue.)
- **Step 2:** Find an optimal shuffle code for the red RTG G C. (Has maximum out-degree 1.)

Step 1: Pick a copy set C.

(For each vertex, color one outgoing edge red, rest blue.)

Step 2: Find an optimal shuffle code for the red RTG G - C. (Has maximum out-degree 1.)

Step 1: Pick a copy set C.

(For each vertex, color one outgoing edge red, rest blue.)

- **Step 2:** Find an optimal shuffle code for the red RTG G C. (Has maximum out-degree 1.)
- Step 3: Implement blue edges using copy operations.

Choice of copy set is crucial:

Step 1: Pick a copy set C.

(For each vertex, color one outgoing edge red, rest blue.)

- **Step 2:** Find an optimal shuffle code for the red RTG G C. (Has maximum out-degree 1.)
- Step 3: Implement blue edges using copy operations.

Choice of copy set is crucial:

- Step 1: Pick a copy set *C*. (For each vertex, color one outgoing edge red, rest blue.)
- **Step 2:** Find an optimal shuffle code for the red RTG G C. (Has maximum out-degree 1.)
- Step 3: Implement blue edges using copy operations.

Problem 1: Given copy set *C*, compute optimal shuffle code for G - C. **Problem 2:** Find copy set *C* where G - C requires fewest instructions.

Complete each directed path into directed cycle

Complete each directed path into directed cycle

- Complete each directed path into directed cycle
- Phase 1
 - While there is a cycle K of size 4 or more: use permi5 to reduce K's size

- Complete each directed path into directed cycle
- Phase 1
 - While there is a cycle K of size 4 or more: use permi5 to reduce K's size

- Complete each directed path into directed cycle
- Phase 1
 - While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size \leq 3 left

- Complete each directed path into directed cycle
- Phase 1
 - While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size ≤ 3 left
 - 2-cycle and 3-cycle available: resolve using permi23

- Complete each directed path into directed cycle
- Phase 1
 - While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size ≤ 3 left
 - 2-cycle and 3-cycle available: resolve using permi23
 - Only 2-cycles available: resolve pairs using permi23

Complete each directed path into directed cycle

Phase 1

- While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size ≤ 3 left
 - 2-cycle and 3-cycle available: resolve using permi23
 - Only 2-cycles available: resolve pairs using permi23
 - Only 3-cycles available: resolve groups of three using permi23

Complete each directed path into directed cycle

Phase 1

- While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size ≤ 3 left
 - 2-cycle and 3-cycle available: resolve using permi23
 - Only 2-cycles available: resolve pairs using permi23
 - Only 3-cycles available: resolve groups of three using permi23

Complete each directed path into directed cycle

Phase 1

- While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size ≤ 3 left
 - 2-cycle and 3-cycle available: resolve using permi23
 - Only 2-cycles available: resolve pairs using permi23
 - Only 3-cycles available: resolve groups of three using permi23

Signature $sig(G) = (X, a_2, a_3)$

•
$$X = \sum_{\sigma \in G} \lfloor \operatorname{size}(\sigma)/4 \rfloor$$

• $a_i = |\{\sigma \in G \mid \operatorname{size}(\sigma) = i \mod 4\}|$

Complete each directed path into directed cycle

Phase 1

- While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size ≤ 3 left
 - 2-cycle and 3-cycle available: resolve using permi23
 - Only 2-cycles available: resolve pairs using permi23
 - Only 3-cycles available: resolve groups of three using permi23

$\begin{aligned} &\textbf{Signature } \operatorname{sig}(G) = (X, a_2, a_3) \\ & \textbf{X} = \sum_{\sigma \in G} \lfloor \operatorname{size}(\sigma) / 4 \rfloor \\ & \textbf{a}_i = |\{\sigma \in G \mid \operatorname{size}(\sigma) = i \mod 4\}| \\ & \textbf{Cost function } \operatorname{GREEDY}(G) = X + \begin{cases} \lceil (a_2 + a_3)/2 \rceil & \text{if } a_2 \geq a_3 \\ \lceil (a_2 + 2a_3)/3 \rceil & \text{if } a_2 < a_3 \end{cases} \end{aligned}$

Complete each directed path into directed cycle

Phase 1

- While there is a cycle K of size 4 or more: use permi5 to reduce K's size
- Phase 2: Only cycles of size ≤ 3 left
 - 2-cycle and 3-cycle available: resolve using permi23
 - Only 2-cycles available: resolve pairs using permi23
 - Only 3-cycles available: resolve groups of three using permi23

Signature $sig(G) = (X, a_2, a_3)$

•
$$X = \sum_{\sigma \in G} \lfloor \text{size}(\sigma)/4 \rfloor$$

• $a_i = |\{\sigma \in G \mid \text{size}(\sigma) = i \mod 4\}|$

Cost function GREEDY(G) = $X + \begin{cases} \lceil (a_2 + a_3)/2 \rceil & \text{if } a_2 \ge a_3 \\ \lceil (a_2 + 2a_3)/3 \rceil & \text{if } a_2 < a_3 \end{cases}$

Theorem

GREEDY is optimal for PRTGs.

G

• Take arbitrary permutation instruction π

- Take arbitrary permutation instruction π
- Show that always $GREEDY(G) \le GREEDY(\pi G) + 1$ $\Leftrightarrow GREEDY(G) - GREEDY(\pi G) \le 1$

- Look at all possible signature changes $(\Delta_X, \Delta_2, \Delta_3)$
- Cost change only depends on signature change

- Look at all possible signature changes (Δ_X, Δ₂, Δ₃)
- Cost change only depends on signature change

	0	1	2	3		0	1	2	3	
0	0	0	0	0	0	0	0	0	0	
1		1/2	0	1⁄2	1		1⁄3	1⁄3	1⁄3	
2			0	0	2			1⁄3	0	
3				1/2	3				0	
$a_2 \geq a_3$						$a_2 < a_3$				
Merges

- Look at all possible signature changes (Δ_X, Δ₂, Δ₃)
- Cost change only depends on signature change

	0	1	2	3		0	1	2	3	
0	0	0	0	0	0	0	0	0	0	
1		1/2	0	1/2	1		1⁄3	1⁄3	1⁄3	
2			0	0	2			1⁄3	0	
3				1/2	3				0	
$a_2 \ge a_3$						$a_2 < a_3$				

Merges

- Look at all possible signature changes (Δ_X, Δ₂, Δ₃)
- Cost change only depends on signature change

	0	1	2	3		0	1	2	3	
0	0	0	0	0	0	0	0	0	0	
1		1/2	0	1/2	1		1⁄3	1⁄3	1⁄3	
2			0	0	2			1⁄3	0	
3				1/2	3				0	
$a_2 \geq a_3$						$a_2 < a_3$				

⇒ Merges are never worthwhile!

■ permi5 can implement 4 transpositions $\Rightarrow -\frac{1}{2} \cdot 4 = -2?$

- permi5 can implement 4 transpositions $\Rightarrow -\frac{1}{2} \cdot 4 = -2?$
- However: because of structure of instructions, not every transposition can reduce costs

- permi5 can implement 4 transpositions $\Rightarrow -\frac{1}{2} \cdot 4 = -2?$
- However: because of structure of instructions, not every transposition can reduce costs

GREEDY is optimal for PRTGs

GREEDY computes an optimal shuffle code for PRTGs in linear time.

Given G, have to find copy set C, s.t. GREEDY(G - C) is minimal

Given *G*, have to find copy set *C*, s.t. GREEDY(G - C) is minimal Equivalent to minimizing

$$\mathsf{GREEDY}'(\mathbf{G} - \mathbf{C}) = \begin{cases} X + \frac{a_2}{2} + \frac{a_3}{2} \\ X + \frac{a_2}{3} + \frac{2a_3}{3} \end{cases}$$

if $a_2 \ge a_3$ if $a_2 < a_3$

• Distinguish cases with diff $(G - C) = a_2 - a_3$

Given G, have to find copy set C, s.t. GREEDY(G - C) is minimal Equivalent to minimizing

$$\mathsf{GREEDY}'(G-C) = \begin{cases} X + \frac{a_2}{2} + \frac{a_3}{2} =: cost^1(G-C) & \text{if } a_2 \ge a_3 \\ X + \frac{a_2}{3} + \frac{2a_3}{3} =: cost^2(G-C) & \text{if } a_2 < a_3 \end{cases}$$

Distinguish cases with diff $(G - C) = a_2 - a_3$

Given G, have to find copy set C, s.t. GREEDY(G - C) is minimal Equivalent to minimizing

$$\mathsf{GREEDY}'(G-C) = \begin{cases} X + \frac{a_2}{2} + \frac{a_3}{2} =: cost^1(G-C) & \text{if } a_2 \ge a_3 \\ X + \frac{a_2}{3} + \frac{2a_3}{3} =: cost^2(G-C) & \text{if } a_2 < a_3 \end{cases}$$

• Distinguish cases with diff $(G - C) = a_2 - a_3$

Dynamic program with tables $T^1[\cdot]$, $T^2[\cdot]$ $T^i[d] = \min\{ \cot^i(G - C) \mid C \text{ copyset with } \operatorname{diff}(G - C) = d \}$

Given G, have to find copy set C, s.t. GREEDY(G - C) is minimal Equivalent to minimizing

$$\mathsf{GREEDY}'(G-C) = \begin{cases} X + \frac{a_2}{2} + \frac{a_3}{2} =: cost^1(G-C) & \text{if } a_2 \ge a_3 \\ X + \frac{a_2}{3} + \frac{2a_3}{3} =: cost^2(G-C) & \text{if } a_2 < a_3 \end{cases}$$

• Distinguish cases with diff $(G - C) = a_2 - a_3$

Dynamic program with tables $T^1[\cdot]$, $T^2[\cdot]$ $T^i[d] = \min\{ \cot^i(G - C) \mid C \text{ copyset with } \operatorname{diff}(G - C) = d \}$

Computing Tables for Different RTG Shapes

Disconnected RTGs $O(n^2)$

Computing Tables for Different RTG Shapes

Disconnected RTGs Tree RTGs

Computing Tables for Different RTG Shapes

Disconnected RTGs $O(n^2)$ Tree RTGs $O(n^3)$ Connected RTGs containing cycle $O(n^4)$

Conclusion

Problem 1: Given copy set C, compute optimal shuffle code for G - C.

- Shown that GREEDY is optimal for PRTGs, runs in O(n) time
- Equivalent to factoring permutation into shortest product of permutations of maximum size 5

Conclusion

Problem 1: Given copy set C, compute optimal shuffle code for G - C.

- Shown that GREEDY is optimal for PRTGs, runs in O(n) time
- Equivalent to factoring permutation into shortest product of permutations of maximum size 5

Problem 2: Find copy set C s.t. G - C requires fewest instructions.

- Used dynamic programming to solve optimally
- Runs in $O(n^4)$ time

Conclusion

Problem 1: Given copy set C, compute optimal shuffle code for G - C.

- Shown that GREEDY is optimal for PRTGs, runs in O(n) time
- Equivalent to factoring permutation into shortest product of permutations of maximum size 5

Problem 2: Find copy set C s.t. G - C requires fewest instructions.

- Used dynamic programming to solve optimally
- Runs in $O(n^4)$ time

Future work:

- Works for k = 3, 4, 5, 6, what about larger sizes?
- Problem NP-complete if permutation size is part of input
- \Rightarrow FPT-algorithm?

Backup Slides

Speedup Measurements

• $C := C_1 \cup C_2$ • $\cot(G - C) = \cot(H_1 - C_1) + \cot(H_2 - C_2)$ • $\operatorname{diff}(G - C) = \operatorname{diff}(H_1 - C_1) + \operatorname{diff}(H_2 - C_2)$

• $C := C_1 \cup C_2$

- $\operatorname{cost}(G C) = \operatorname{cost}(H_1 C_1) + \operatorname{cost}(H_2 C_2)$
- diff(G C) = diff $(H_1 C_1)$ + diff $(H_2 C_2)$
- \Rightarrow Can find optimal copy set C by trying all pairs C_1 , C_2
- \Rightarrow Can be computed in $O(n^2)$ time

- Process tree RTGs in bottom-up fashion
- Extend table to track length of path

starting at root

- Process tree RTGs in bottom-up fashion
- Extend table to track length of path (modulo 4) starting at root

Tree RTGs

- Process tree RTGs in bottom-up fashion
- Extend table to track length of path (modulo 4) starting at root
- \Rightarrow Can find optimal copy set C by trying all outgoing edges of root
- \Rightarrow Can be computed in time $O(n^3)$

Either keep cycle K and put edges leaving K into copy set

Either keep cycle K and put edges leaving K into copy set

Either keep cycle K and put edges leaving K into copy set

Either keep cycle K and put edges leaving K into copy set
Or cut K, G - C is a tree
Connected RTGs

Either keep cycle K and put edges leaving K into copy set
Or cut K, G - C is a tree

Connected RTGs

- Either keep cycle K and put edges leaving K into copy set
- Or cut K, G C is a tree
- \Rightarrow Can find optimal copy set C by trying all of K's edges (or keeping K)
- \Rightarrow Can be computed in time $O(n^4)$