
Optgen: A Generator for Local Optimizations

Sebastian Buchwald

Karlsruhe Institute of Technology
buchwald@kit.edu

Abstract. Every compiler comes with a set of local optimization rules,
such as x + 0 → x and x & x → x, that do not require any global anal-
ysis. These rules reflect the wisdom of the compiler developers about
mathematical identities that hold for the operations of their intermediate
representation. Unfortunately, these sets of hand-crafted rules guarantee
neither correctness nor completeness. Optgen solves this problem by
generating all local optimizations up to a given cost limit. Since Opt-
gen verifies each rule using an SMT solver, it guarantees correctness
and completeness of the generated rule set. Using Optgen, we tested
the latest versions of GCC, ICC and LLVM and identified more than
50 missing local optimizations that involve only two operations.

Keywords: Intermediate Representations, Local Optimizations, Super-
optimization

1 Introduction

Every compiler comes with a set of local optimization rules, like x + 0 → x or
simple constant folding. By definition, such rules exhibit a left-hand side of
limited size and require no global analysis. Thus, they can be applied at any
time during the compile run.

So far, the local optimizations provided by state-of-the-art compilers are
incomplete. For instance, GCC 4.9 and ICC 15 do not support the local op-
timization x | (x⊕ y) → x | y1 whereas LLVM 3.5 fails to perform the op-
timization -((x - y) + z) → y - (x + z). Furthermore, all three compilers miss
some optimizations with non-trivial constants, like x & (0x7FFFFFFF - x) →
x & 0x80000000 for 32-bit integer types. Moreover, the compiler does not guaran-
tee the correctness of the supported optimization rules. This raises the question
for a generator that systematically enumerates and verifies all local optimizations
up to a given pattern size.

On the assembly level, superoptimizers solve a related problem: They try to
generate a better version for a fixed sequence of instructions, while preserving
the semantics of the sequence. In order to guarantee the correctness of their
transformation, they transform the instruction sequences into SAT or SMT for-
mulas. Then, they use the corresponding solver to verify the equivalence of the
constructed formulas. Later, generators for peephole optimizers used the same
1 ⊕ stands for bitwise exclusive or, | for bitwise or, and & for bitwise and.

technique to verify correctness but also aim for completeness. However, they all
used a limited set of constants, like {0, 1,−1}.

The dilemma of supporting all constants is revealed when creating constant
folding rules. On a 32-bit architecture, we would create 264 constant folding rules
for every binary operation: 0 + 0 → 0, 0 + 1 → 1, and so on. Obviously, enumer-
ating all these rules is far too expensive and impractical for end users. Thus, the
handling of constants is the key challenge when aiming for completeness of the
generated rule set.

In contrast to peephole optimizations, local optimizations work on the in-
termediate representation (IR). Since modern IRs in static single assignment
form model data dependencies explicitly, local optimizations match these data
dependencies instead of instruction sequences. This allows to perform local op-
timizations on patterns that span the whole function.

In this paper, we present Optgen2, a generator for local optimization rules.
Optgen takes a set of operations, their costs, and a cost limit as input pa-
rameters. It then generates all local optimizations up to the given cost limit and
provides them in textual or graphical form. Furthermore, it generates a test suite
that finds missing local optimizations in existing compilers. The contributions
of this paper are:

– A generator for all local optimization rules up to a given cost limit.
– An approach how to cope with constants that can be backported to genera-

tors for peephole optimizers.
– An optimization that combines local optimization rules with global analyses.
– An evaluation of state-of-the-art compilers that reveals more than 50 missing

local optimizations that involve only two operations.

The remainder of the paper is structured as follows. In Section 2, we discuss
preliminaries and related work. Section 3 presents design and implementation
techniques of Optgen. In Section 4, we combine local optimization rules with
global analysis information. In Section 5, we evaluate Optgen, state-of-the-art
compilers, and the global optimization phase. Finally, Section 6 concludes and
discusses future work.

2 Preliminaries and Related Work

The goal of Optgen is to generate a set of local optimization rules that is correct
and complete. In this section, we present related work that mostly focuses on
assembly level. Along the way, we learn the advantages and drawbacks of working
on the IR level rather than on the assembly level.

2.1 Superoptimization Research

During the compilation of a program, the compiler performs many optimizations
to improve the resulting code with respect to execution speed, code size, or some
2 http://pp.ipd.kit.edu/optgen/

http://pp.ipd.kit.edu/optgen/

other criterion. Although the term optimization suggests optimal results, modern
compilers fail to produce optimal code even for small inputs.

In 1987, Massalin presented a program that can compute the shortest se-
quence of assembly instructions to realize a given instruction sequence [7]. Since
his approach guarantees optimality and the term optimization was already oc-
cupied, he called his program superoptimizer. The superoptimizer takes a set
of instructions and enumerates sequences of them. It then translates the se-
quence into a boolean expression and compares the resulting minterms with
the minterms of the original instruction sequence to decide whether they are
equivalent.

Massalin presented two techniques to speed up the superoptimizer. First, he
created a set of test inputs and compared the results of the generated sequence
and the original one. In his experience, this filters out almost all sequences that
are not equivalent. The second speed-up technique is to reject generated se-
quences that contain a known non-optimal subsequence. With both techniques,
the superoptimizer is able to generate sequences of up to 13 instructions in a
reasonable amount of time.

In 2002, Joshi et al. presented their superoptimizer Denali that allows to find
larger optimal sequences [4]. In contrast to Massalin’s approach, Denali takes a
set of equivalences that should be used to optimize the program. Thus, Denali’s
task is to find the optimal representation of the input program regarding the
given equivalences.

Joshi et al. decided to use E-graphs for a very compact representation of mul-
tiple equivalent representations [8]. Denali iteratively applies the given equiva-
lences until the E-graph contains all possible program realizations. Then, Denali
constructs a boolean formula that is satisfiable if, and only if, the program can
be computed within k cycles. If the formula is satisfiable, Denali can construct a
program from the corresponding logical interpretation that uses exactly k cycles.
Furthermore, if the formula for k−1 is not satisfiable, the previously constructed
program uses the minimal number of cycles.

More recently, Schkufza et al. propose to use a Markov chain Monte Carlo
sampler to find better versions of a given instruction sequence [9]. Their imple-
mentation STOKE sacrifices optimality for the capability to generate optimized
sequences of more than 15 instructions. This allows to find sequences that differ
algorithmically, which may result in larger speed-ups than an optimal approach
that is limited to fewer instructions. In a follow-up paper, Schkufza et al. ex-
tended their approach to floating-point arithmetic [10].

2.2 Generators for Peephole Optimizers

Superoptimizers aim to optimize small performance-critical parts of a larger
program. In particular, the runtime of a superoptimization run is too high to
form an optimization phase of a general-purpose compiler. However, the idea
of having some kind of fast superoptimization for arbitrary programs is very
attractive.

Bansal and Aiken tackle this problem by using training programs to create a
peephole optimization database [1]. The compiler’s peephole optimization phase
can then use a simple look-up to find an applicable optimization for the con-
sidered sequence of instructions. Their approach works as follows: First, they
compile a set of training programs. Then, the harvester extracts all instruction
sequences that are candidates for optimizations. The candidates are inserted
into a hash table, where the hash is based on the execution of some fixed test
inputs. In the second step, they enumerate all instruction sequences up to a
given length. For each sequence they perform a look-up in the hash table. If the
look-up succeeds, the generated sequence is an optimization candidate for the
sequence in the hash table. Thus, they compare both sequences on a larger set
of test inputs and finally use a SAT solver to decide whether both sequences are
equivalent.

2.3 Generated Optimizations for Intermediate Representations

The tools discussed so far work on the assembly level. This allows to fully leverage
the available instruction set and to formulate a precise cost model. However, if we
generate optimizations for multiple target architectures, we notice some common
optimizations. Following an idiom in compiler design, we should perform these
common optimizations on the intermediate representation.

In fact, all compilers come with a set of local optimizations. These optimiza-
tions consist of small rules that require no global analysis. Thus, the compiler can
use these rules at any time, even during construction of an SSA-based IR [2].
In contrast to peephole optimizations, local optimizations have a more global
view on the program. They can follow the data dependencies and the sharing of
values is not obscured by spilling and other backend phases. Figure 1 illustrates
the advantages of working on the IR level. Due to the explicit data dependency,
we can model the local optimization as a graph rewrite rule. Figure 1a shows the
graph rewrite rule for the optimization x | (x⊕ y) → x | y that can be applied
on the IR in Figure 1b. However, a peephole optimizer cannot apply this rule on
the assembly level, since the instructions of basic blocks 2 and 3 occur between
the instructions that belong to the optimization rule.

Currently, the compiler’s local optimizations are handcrafted and reflect the
knowledge of the compiler developers. Thus, the optimization rules guarantee
neither correctness nor completeness. Regarding correctness, the ALIVe tool [6]
demonstrates a possible approach to verify local optimizations. A promising
solution to get the completeness guarantee is to port the idea of a generator
for peephole optimizations to the IR level. So far, there is only little research
regarding this idea. For instance, Tate et al. pick up the ideas of Denali and
apply them to their intermediate representation [12]. However, to the best of
our knowledge, there is no approach that tackles the systematic generation of
local optimizations.

|

⊕

x y

|

x y

(a) Graphical representation of
the rule x | (x⊕ y) → x | y.

v0: x
v1: y
v2: v0 ⊕ v1

.

v3: v0 | v2

1

2 3

4

(b) Program in SSA form.

mov x, r0
mov y, r1
xor r0, r1, r2
. . .
. . .
or r0, r2, r3

(c) Generated
assembly code.

Fig. 1. The local optimization of Figure 1a can be applied on the IR of Figure 1b.
However, on the assembly level of Figure 1c, the generated code of basic blocks 2 and
3 prevent the application of the corresponding peephole optimization.

3 Rule Generation

In this chapter, we present and discuss our tool Optgen that generates local
optimizations. When creating Optgen, our idea was to generate all local opti-
mizations up to a given cost limit. The main challenge for this purpose is the
handling of constants: Since a 32-bit architecture has 232 constants, enumerat-
ing all constant folding rules for a binary operation would result in 264 rules.
Obviously, this cannot be accomplished in a reasonable amount of time. In the
following, we present the general design of Optgen and explain how we tackle
the large amount of available constants.

3.1 General design of Optgen

Optgen’s task is to generate all local optimizations up to a given cost limit.
Thus, Optgen takes the considered operations and their costs, as well as the
cost limit, as input parameters. Furthermore, the user must specify the bit width
of the operations. It then generates the local optimizations and outputs them in
textual and graphical form. Furthermore, it can generate a test suite that can
be used to find missing optimizations in existing compilers. Currently, Optgen
supports the unary integer operations ∼ and -, as well as the binary integer
operations +, &, |, - and ⊕. However, adding a new operation only requires a
mapping to the SMT solver and a method to evaluate the operation for constant
operands.

We use Figure 2 and a running example to demonstrate the work flow of
Optgen: We want Optgen to generate all local optimizations up to cost 2 for
the 8-bit operations & and |, which both have cost 1. Before Optgen starts
the actual generation, it creates a number of random test inputs. Later, we will
use these random tests to compute a semantic hash for each expression. The

Operations

GeneratorExpressions

Matcher Optimization
Rules

Semantic
Checker

Semantic
Hash Table

Syntax
Hash Table

Rule
Generalizer

Fig. 2. General design of Optgen.

underlying idea is that if two expressions evaluate to different values for the test
inputs, the considered expressions cannot be semantically equivalent.

Optgen now generates all expressions for each cost. For cost 0 the generator
generates the variable x and the constants 0 to 255. The generator passes each of
these expressions to the matcher. The matcher checks whether we have already
found an optimization rule that applies to the given expression. Since we have
found no optimization rule yet, the matcher passes the expression to the semantic
checker. The semantic checker computes the semantic hash and looks up a list of
possibly equivalent expressions in the semantic hash table. Assuming a perfect
hash function, the lookup finds no such expression in our example. Thus, the
semantic checker inserts the expression into the list of expression as well as into
the semantic hash table.

Before Optgen generates the expressions with cost 1, it realizes that we
have a binary operation with cost 1 and introduces a new variable y. Then,
it starts the actual generation process by applying the available operations to
the already generated expressions. The first generated expression is x & x. Since
we have found no optimization rule yet, the matcher passes the expression to
the semantic checker. The semantic checker now computes the semantic hash
and looks up a list of possibly equivalent expressions. Assuming a perfect hash
function, our list only contains the expression x. The semantic checker now uses
an SMT solver to determine whether both expressions are equivalent. In our case,
the expressions are equivalent. Since x is cheaper than x & x, Optgen creates a

new optimization rule x & x → x and inserts it into the list of rules. In the next
step, Optgen creates the optimization rule x & 0 → 0 in a similar fashion.

The next generated expression is x & 1. Again, the matcher finds no existing
optimization rule and passes the expression to the semantic checker that looks
up possibly equivalent expressions in the semantic hash table. Let us assume the
hash table lookup finds some candidate, e.g., the expression 1. In this case, the
following SMT check fails. Thus, we insert the expression x & 1 into the list of
candidates for the computed hash value.

When generating expressions with cost 2, another interesting case occurs:
Processing the expression (x & y) & 0, the matcher finds the applicable optimiza-
tion rule x & 0 → 0. In this case, we skip the generated expression. Otherwise,
the semantic checker would create the optimization rule (x & y) & 0 → 0 that is
subsumed by the existing optimization rule x & 0 → 0.

3.2 Handling constants

For our running example, Optgen generates many similar constant folding rules
like 1 & 2 → 0 and 1 & 3 → 1. Returning each of these rules to the user is incon-
venient. Instead, the user is interested in a single constant folding rule for each
operation. Thus, Optgen provides a rule generalizer that tries to generalize
the generated rules. In our running example, we want to create a rule c0 & c1
→ eval(c0 & c1), where c0 and c1 are symbolic constants and eval performs
constant folding.

Before we can start the generalization, we need to find sets of syntactically
equivalent rules. We solve this problem by computing a syntax hash for each
expression that only depends on the structure of the expression, i.e., ignoring
the values of the constants. Thus, we can use a syntax hash table to efficiently
find syntactically equivalent rules. As shown in Figure 2, the semantic checker
is responsible for filling the syntax hash table with rules that contain constants.

Given a set of syntactically equivalent rules, the rule generalizer first tries
to find expressions that compute the constants of the right-hand side using the
constants of the left-hand side. Currently, it does this by considering the already
enumerated expressions. In our running example, we have one constant on the
right-hand side and two constants on the left-hand side. Hence, the rule gener-
alizer searches a function f(x,y) such that f(1,2) = 0, f(1,3) = 1 and so on.
If it finds an appropriate function, it creates the corresponding rule and checks
its correctness using an SMT solver. If the check succeeds, the rule generalizer
found a rule that supersedes the considered rules. Otherwise, it continues the
search for an appropriate function. In our running example, the rule generalizer
finds f(x,y) = x & y and verifies the resulting rule c0 & c1 → eval(c0 & c1).

An interesting situation occurs for the rules (x | 2) & 1 → x & 1, (x | 1) & 2
→ x & 2 and so on. In general, the optimization (x | c1) & c2 → x & c2 is not
valid. However, it becomes valid if c1 and c2 are bitwise disjoint. Optgen tackles
such cases by using conditional rules. By definition, a conditional rule is valid if
the corresponding condition evaluates to true. Furthermore, the condition must

be a function that only depends on the symbolic constants that appear on the
left-hand side of the rule.

The rule generalizer solves the problem of finding a condition by searching
a condition expression that evaluates to 0 if, and only if, the condition holds.
Finding a condition expression is similar to finding the computations for con-
stants on the right-hand side of a rule: We simply check the already enumerated
expressions for an appropriate one. Since the enumerated expressions are sorted
according to their costs, simpler condition expressions are considered before
complex ones. For our example, Optgen finds the appropriate condition ex-
pression c1 & c2 and creates the conditional rule (c1 & c2) == 0 ⇒ (x | c1) & c2
→ x & c2.

The main advantage of symbolic constants is their independence of the bit
width. Thus, the SMT solver can verify the local optimization rule (c1 & c2) == 0
⇒ (x | c1) & c2 → x & c2 for 8 bits as well as for 32 bits. If we generalize every
non-trivial set of syntactically equivalent rules, we can easily extend the verifi-
cation from 8 bits to 32 bits. For the remaining rules with particular constants,
Optgen expands the 8-bit constants to 32 bits by padding the most significant
or least significant bits with zeros or ones and checks all four resulting rules using
an SMT solver. In our experience, this approach is sufficient to find the corre-
sponding 32-bit rule. Thus, we can generate all local optimizations for 8 bits,
extend the resulting rules to 32 bits, and verify them for the latter bit width.
Whether the rule set of the extended bit width is also complete depends on
the operations and the bit width used during generation. A proven approach to
achieve completeness is to increase the generation bit width until the generated
rule set for the extended bit width remains unchanged. For instance, generating
all 3-bit rules with cost limit 3 for the bitwise operations ∼, &, | and ⊕ creates
the same 32-bit rule set as generating all 4-bit rules.

Currently, Optgen can only generalize rules if the required condition ex-
pression and computations of the symbolic constants on the right-hand side are
enumerated expressions. A more general solution would use superoptimization
techniques to find the appropriate expressions. The basic idea is that the existing
optimization rules define partial functions for the condition expression and com-
putations of the symbolic constants that appear on the right-hand side of the
generalized rule. These functions are partial, because we skip expressions that
are matched by existing optimization rules. For instance, the generalized rule
(c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2 covers the optimization rule (x | 1) & 0
→ x & 0. However, we will never create the latter one because we can apply x & 0
→ 0 on its left-hand side.

Based on the partial functions, we can use superoptimization techniques to
find the appropriate expressions. This may require to limit the cost of each
expression to guarantee termination. If we found an expression for each partial
function, we can use the SMT solver the verify the corresponding rule. If the SMT
check fails, the SMT solver can generate a counterexample for these expressions.
Thus, we can use this counterexample to refine our partial functions and continue
the search for appropriate expressions.

3.3 Performance Tuning

In this section, we present some speed-up techniques implemented in Optgen.
The key insight regarding performance is that SMT checks are slow. Thus,

we need to avoid them if possible. The main source of unnecessary SMT checks
are collisions in the semantic hash table. In this case, a created expression could
have multiple candidates of equivalent expressions that are compared via SMT
checks. However, at most one of them can be equivalent to the expression at
hand.

Our solution to this problem are witnesses: A set of test inputs such that
each pair of expressions of the hash table bucket evaluates to a different result
for at least one witness. Since each hash table bucket has it own set of witnesses,
these sets are usually very small. For a new expression with multiple candidates,
we first evaluate the witnesses and compare the results with the results of the
available candidates. By definition, at most one candidate can compute the same
results for all witnesses. Thus, we need at most one SMT check per generated
expression. Whenever this SMT check fails, we insert the new expression into
the hash table bucket. Hence, we need a new witness to distinguish the two
expressions. Fortunately, the SMT solver also generates a counterexample as a
result of the failing SMT check. Thus, we simply use this counterexample as a
new witness for the checked expressions.

Another performance-critical task is to check the applicability of existing
rules to expressions. Optgen performs such checks for each generated expres-
sion. Furthermore, Optgen uses these checks to identify rules that are covered
by more general ones. For an efficient matching, we use an n-ary tree structure
that can be indexed by the available operation types. If we find a new optimiza-
tion rule, we traverse the nodes of the left-hand side in preorder and insert the
corresponding nodes into the tree. The created leaf contains a reference to the
inserted rule. Figure 3 shows the search tree after inserting the rules x & 0→ 0
and (c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2.

Assume we want to find a rule that matches (x | 3) & 1. In order to use
our data structure, we process our expression in preorder. The type of the first
operation is &. The matcher now descends into every child that corresponds to
a type that matches &. Thus, it visits node 1 and proceeds with the | node of
the expression. Since both existing children of the search tree are labeled with
matching types, we must visit them both.

Let us assume the matcher first descends into node 2. Since the variable
matches the whole subexpression x | 3, the matcher skips the corresponding
nodes of the expression and proceeds with the constant 1. In the next step,
the matcher reaches the leaf that contains the rule x & 0→ 0. Thus, it tries to
apply the rule to the expression. Unfortunately, the constant 0 does not match
the constant 1.

The matcher continues its search by descending from node 1 to node 3. Since
the path to the second rule fits our expression, the matcher tries to apply the
rule (c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2. This time the condition of the
rule is not fulfilled. Thus, the matcher continues its search. Since the matcher

root

1

2

x & 0→ 0

Constant

Variable

&

(a) Tree data struc-
ture after inserting
x & 0→ 0.

root

1

2

x & 0→ 0

Constant

Variable

3

4

5

(c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2

Constant

Constant

Variable

|

&

(b) Tree data structure after further inserting
(c1 & c2) == 0 ⇒ (x | c1) & c2 → x & c2.

Fig. 3. Tree data structure to find applicable rules for an expression. Each inner node
can be indexed by the available operations types. For an insert or lookup operation the
operation types of the expression are considered in preorder.

has already processed the interesting paths of the search tree, it stops and reports
that no matching rule exists.

3.4 Applications of Optgen

Optgen supports the compiler developer by providing an optimization test
suite. The test suite helps to find missing optimizations of the developed com-
piler. Furthermore, it identifies optimization applications that should be pre-
vented by the compiler in case of shared subexpressions. Figure 4 shows such a
situation: Applying the local optimization -((x - y) + z) → y - (x + z) increases
the global costs, because of the shared subexpression (x - y) + z. However, if the
value (x - y) + z is already present the optimization is worthwhile. A possible so-
lution to this problem would be to conservatively prevent optimizations in case
of shared subexpressions.

−

+

z−

x y

+

− −

y +

x z

Fig. 4. The compiler should prevent the application of the local optimization rule
-((x - y) + z) → y - (x + z), since the subexpression (x - y) + z has another user.

4 Combining Local Optimizations with Global Analyses

Local optimizations have the advantage that they do not require any prior anal-
ysis. Thus, they can be applied at any time, e.g., directly after the construction
of an operation. In our experience, it is also worthwhile to have a compiler phase
that applies all local optimizations until it reaches a fixpoint. During this phase,
we can provide analysis information that improves the existing local optimiza-
tions.

In the following, we present two analyses that allow a compact and power-
ful implementation of the local optimizations generated by Optgen. As we
will see, the generated local optimization rules with symbolic constants are
crucial to our approach. We start with a simple optimization rule to moti-
vate our idea: (x + 2) & 1→ x & 1. Optgen covers this rule by the generalized

rule ((c0 | -c0) & c1) == 0⇒ (x + c0) & c1→ x & c1. The condition ensures that
adding the constant c0 only influences bits that are masked out by the constant
c1. Our plan is to stepwise relax the condition to apply this optimization in even
more cases.

4.1 Constant-Bit Analysis

Our first insight to improve the optimization (x + 2) & 1→ x & 1 is that the second
operand of the addition can be an arbitrary expression as long as the rightmost
bit is not set. For instance, (x + (y & 42)) & 1→ x & 1 is also a valid optimization
rule.

This motivates us to implement a constant-bit analysis that indicates bits
that are always set or not set, respectively. For the expression y & 42, the analysis
computes 00?0 ?0?0 for the rightmost 8 bits, where 0 indicates bits that are
guaranteed to be zero and ? indicates bits that are not constant. Similarly,
y | 42 results in ??1? 1?1?. The bit information is stored in two bit vectors. The
bit vector zeros contains a cleared bit if the corresponding bit is guaranteed to
be cleared and a set bit otherwise. Likewise, the bit vector ones contains a set
bit if the corresponding bit is guaranteed to be set and a cleared bit otherwise.

The Constant-bit analysis is a forward data flow analysis that generalizes
sparse conditional constant propagation [13]. Since the data-flow analysis is op-
timistic, it initializes the zeros bit vector with zeros and the ones bit vector
with ones. Then, it applies the transfer function until the analysis reaches the
fixpoint.

Some of the transfer functions are straight-forward. For constants we set the
bit vectors according to the bits of the constants. For loads from memory we set
all bits of the zeros vector and clear the bits of the ones vector. The bitwise oper-
ations & and | can be transformed by applying the same operation to correspond-
ing bit vectors of the operands. For instance, ones(x & y) = ones(x) & ones(y).
For the bitwise complement ∼ we must apply the operation to the other bit vec-
tor of the operand: ones(∼x) =∼zeros(x), zeros(∼x) =∼ones(x). Contrarily,
the transfer function for the exclusive or ⊕ is more complex:
ones(x⊕ y) = (ones(x) &∼zeros(y)) | (ones(y) &∼zeros(x)),
zeros(x⊕ y) = (zeros(x) &∼ones(y)) | (zeros(y) &∼ones(x)).

Transfer functions for arithmetic operations also reuse the operation itself.
For the addition x + y, we first add the ones and zeros of the operands: vo =
ones(x) + ones(y) and vz = zeros(x) + zeros(y). Then, we compute bit vec-
tors that indicate which bits are not constant: xnc = ones(x)⊕ zeros(x), ync
= ones(y)⊕ zeros(y) and vnc = vo⊕ vz. This allows us to determine the non-
constant bits of the result: nc = xnc | ync | vnc. Finally, we can compute the
constant-bit information of x + y: ones(x + y) = vz &∼nc and zeros(x + y) =
vz | nc. Due to the use of the add operation, we handle carry bits correctly. For
instance, 00?? 1110 + 10?? 1?10 results in 1??? 1?00.

A typical use case for constant-bit information is to determine the equiva-
lence of multiple operations. If the operands of an addition have disjoint bits

set, we can also use a | or ⊕ operation. Thus, the optimizer may apply lo-
cal optimizations that are valid for the | operation but not in general for the
addition.

4.2 Don’t Care Analysis

The second insight to improve the optimization (x + 2) & 1→ x & 1 is that due
to the &, we only care for the least significant bit of the sum. The don’t care
analysis provides exactly this information: Its result is a bit vector that indi-
cates relevant (1) and irrelevant (0) bits [11]. This allows to specify the more
compact optimization rule care(x + 2) == 1 ⇒ x + 2→ x, which also covers
(x + 2) |∼1→ x |∼1.

In contrast to the constant-bit analysis, the don’t care analysis is a backward
data-flow analysis. At the beginning of the analysis, all bits are set to irrelevant.
Since the transfer functions of return or store operations always care for their
operands, they create some initial relevant bits. These bits will then propagate
through the program until the analysis reaches its fixpoint.

There are several expressions that can create more irrelevant bits for at least
one of their operands: x | 1, x * 2, x & 2, and so on. In most cases, the don’t care
analysis uses known bits from one operand and derives irrelevant bits for the
other one. Thus, we extend the don’t care analysis to consider the constant-bit
information. In consequence, if we use constant-bit information to gain precision,
we must care for the bits that provided this constant-bit information.

4.3 Generalizing the Optimization Rules

Starting with the optimization rule (x + 2) & 1→ x & 1, we manually derived the
optimization ((zeros(y) | -zeros(y)) & care(x + y)) == 0⇒ x + y→ x. The gen-
eralized rule encapsulates the essential optimization, while using the global anal-
ysis information to check whether the rule can be applied. This allows to perform
the optimization even in complex scenarios.

The presented analyses allow an even more compact optimization: The cre-
ation of occult constants [11]. This optimization can be performed if all rele-
vant bits are known to be constant: ((zeros(x)⊕ ones(x)) & care(x)) == 0⇒
x→ eval(zeros(x) & care(x)). For instance, the constant 2 of the expression
(x + 2) & 1 is an occult constant that can be optimized to zero. However, in a
larger program the constant 2 can have other users that render more bits rele-
vant.

Currently, Optgen does not derive local optimization rules that use the
presented analysis information. The constant-bit analysis would require another
analysis that determines whether we need a conservative approximation of the
set or cleared bits. For the don’t care analysis, we would just need to perform
the analysis for the expressions of the rule. Furthermore, we would need to adapt
the generated formulas for the SMT solver. Similar to the generation of symbolic
rules discussed in Section 3.2, superoptimization techniques could be helpful to
find appropriate conditions for the derived rules.

5 Evaluation

In this section, we evaluate Optgen’s runtime and compare its generated op-
timizations with state-of-the art compilers. All measurements are performed on
an Intel Core i7-3770 3.40GHz with 16GB RAM. The machine runs a 64-bit
Ubuntu 14.04 LTS distribution that uses the 3.13.0-37-generic version of the
Linux kernel. For Optgen, we use Z3 4.3.1 as SMT solver [3].

5.1 Optgen Runtime

In order to evaluate the runtime of the generation of local optimizations, we run
Optgen in multiple configurations. All runs include the unary operations ∼ and
-, as well as the binary operations +, &, |, - and ⊕. Table 1 shows the different
configurations as well as the resulting runtime and maximum memory usage for
each configuration. The configurations differ in the used bit width for the rule
generation, in the number of involved operations and in the usage of constants.

Operations Bit width Constants Runtime Memory Usage

Generation Verification

2 8 32 X 6h 7min 0 s 1 046 568 kB
2 8 32 × 1 s 7456 kB
2 32 32 × 6min 21 s 19 892 kB
3 8 32 × 36 s 17 900 kB
4 8 32 × 8h 27min 16 s 686 104 kB

Table 1. Runtime and maximum memory usage of Optgen for different configura-
tions.

For a fixed number of operations, the results suggest two aspects that heavily
influence the runtime: The use of constants and the bit width used during the rule
generation. We already argued that the use of constants increases the number of
generated rules and, thus, the runtime. However, the bit width only influences the
SMT checks. Since the generation for two 8-bit operations is significantly faster
than the generator for two 32-bit operations, the SMT solver does not scale
very well with increasing bit width. Consequently, using different bit widths for
generation and verification dramatically improves the runtime.

5.2 Testing State-of-the-Art Compilers

In order to give valuable feedback to compiler engineers, we let Optgen generate
an optimization test suite. This test suite includes a test for each generated
optimization. Using these tests, it lets the compiler of interest generate x86-
64 assembly and then counts the number of generated arithmetic instructions.

If the compiler generates more instructions than expected, we found a missing
optimization for the compiler.

We use the run of Optgen with two operations and constants to test state-
of-the-art compilers. Table 2 shows the missing optimizations for GCC 4.9,
LLVM 3.5, and ICC 15. In total, Optgen found 63 optimizations that are
missing in at least one of the compilers. The optimizations include rules without
constants (20.), rules with symbolic constants (54.), and rules with particular
constants (26.). Since Optgen currently considers only generated expressions
for conditional rules, the conditions of the rules 16, 21, 22, and 59 are created
by hand.

Optimization Compiler

LLVM GCC ICC

1. -∼x → x + 1 X X ×
2. -(x & 0x80000000) → x & 0x80000000 × X ×
3. ∼-x → x - 1 X X ×
4. x +∼x → 0xFFFFFFFF X X ×
5. x + (x & 0x80000000) → x & 0x7FFFFFFF × × ×
6. (x | 0x80000000) + 0x80000000 → x & 0x7FFFFFFF X × ×
7. (x & 0x7FFFFFFF) + (x & 0x7FFFFFFF) → x + x X X ×
8. (x & 0x80000000) + (x & 0x80000000) → 0 X X ×
9. (x | 0x7FFFFFFF) + (x | 0x7FFFFFFF) → 0xFFFFFFFE X X ×
10. (x | 0x80000000) + (x | 0x80000000) → x + x X X ×
11. x & (x + 0x80000000) → x & 0x7FFFFFFF X × ×
12. x & (x | y) → x X X ×
13. x & (0x7FFFFFFF - x) → x & 0x80000000 × × ×
14. -x & 1 → x & 1 × X ×
15. (x + x)& 1 → 0 X X ×
16. is_power_of_2(c1) && c0 & (2 * c1 - 1) == c1 - 1

⇒ (c0 - x) & c1 → x & c1 × × ×
17. x | (x + 0x80000000) → x | 0x80000000 X × ×
18. x | (x & y) → x X X ×
19. x | (0x7FFFFFFF - x) → x | 0x7FFFFFFF × × ×
20. x | (x⊕ y) → x | y X × ×
21. ((c0 | -c0) &∼c1) == 0 ⇒ (x + c0) | c1→ x | c1 X × X
22. is_power_of_2(∼c1) && c0 & (2 *∼c1 - 1) ==∼c1 - 1

⇒ (c0 - x) | c1 → x | c1 × × ×
23. -x | 0xFFFFFFFE → x | 0xFFFFFFFE × × ×
24. (x + x) | 0xFFFFFFFE → 0xFFFFFFFE X X ×
25. 0 - (x & 0x80000000) → x & 0x80000000 × X ×
26. 0x7FFFFFFF - (x & 0x80000000) → x | 0x7FFFFFFF × × ×
27. 0x7FFFFFFF - (x | 0x7FFFFFFF) → x & 0x80000000 × × ×
28. 0xFFFFFFFE - (x | 0x7FFFFFFF) → x | 0x7FFFFFFF × × ×
29. (x & 0x7FFFFFFF) - x → x & 0x80000000 × × ×

Table 2: Missing local optimizations of state-of-the-art compilers.
A X indicates that the corresponding optimization is supported,
whereas a × indicates a missing optimization.

Optimization Compiler

LLVM GCC ICC

30. x⊕ (x + 0x80000000) → 0x80000000 X × ×
31. x⊕ (0x7FFFFFFF - x) → 0x7FFFFFFF × × ×
32. (x + 0x7FFFFFFF)⊕ 0x7FFFFFFF → -x × × ×
33. (x + 0x80000000)⊕ 0x7FFFFFFF → ∼x X X ×
34. -x⊕ 0x80000000 → 0x80000000 - x × × ×
35. (0x7FFFFFFF - x)⊕ 0x80000000 → ∼x × X ×
36. (0x80000000 - x)⊕ 0x80000000 → -x × X ×
37. (x + 0xFFFFFFFF)⊕ 0xFFFFFFFF → -x X X ×
38. (x + 0x80000000)⊕ 0x80000000 → x X X ×
39. (0x7FFFFFFF - x)⊕ 0x7FFFFFFF → x × × ×
40. x - (x & c) → x &∼c X X ×
41. x⊕ (x & c) → x &∼c X X ×
42. ∼x + c → (c - 1) - x X X ×
43. ∼(x + c) → ∼c - x X × ×
44. -(x + c) → -c - x X X ×
45. c -∼x → x + (c + 1) X X ×
46. ∼x⊕ c → x⊕∼c X X ×
47. ∼x - c → ∼c - x X X ×
48. -x⊕ 0x7FFFFFFF → x + 0x7FFFFFFF × × ×
49. -x⊕ 0xFFFFFFFF → x - 1 X X ×
50. x & (x⊕ c) → x &∼c X X ×
51. -x - c → -c - x X X ×
52. (x | c) - c → x &∼c × × ×
53. (x | c)⊕ c → x &∼c X X ×
54. ∼(c - x) → x +∼c X × ×
55. ∼(x⊕ c) → x⊕∼c X X ×
56. ∼c0 == c1 ⇒ (x & c0)⊕ c1 → x | c1 X X ×
57. -c0 == c1 ⇒ (x | c0) + c1 → x &∼c1 × × ×
58. (x⊕ c) + 0x80000000 → x⊕ (c + 0x80000000) X X ×
59. ((c0 | -c0) & c1) == 0 ⇒ (x⊕ c0) & c1→ x & c1 X X ×
60. (c0 &∼c1) == 0 ⇒ (x⊕ c0) | c1→ x | c1 X × ×
61. (x⊕ c) - 0x80000000 → x⊕ (c + 0x80000000) X X ×
62. 0x7FFFFFFF - (x⊕ c) → x⊕ (0x7FFFFFFF - c) × × ×
63. 0xFFFFFFFF - (x⊕ c) → x⊕ (0xFFFFFFFF - c) X X ×
Sum 23 27 62

Table 2: Missing local optimizations of state-of-the-art compilers.
A X indicates that the corresponding optimization is supported,
whereas a × indicates a missing optimization.

As discussed in Section 4.3, we further tested whether the compilers prevent
optimizations if all subexpressions are shared. Since such cases do not appear

with two operations, we used the optimizations with three operations but with-
out constants. Table 3 shows all cases, where at least one compiler increases
the cost by applying the corresponding optimization. For instance, the first opti-
mization ∼(x |∼y) → ∼x & y is supported by GCC and LLVM. However, only
GCC prevents the application if the subexpression (x |∼y) is used by another
operation.

Optimization Compiler

LLVM GCC ICC

1. ∼(x |∼y) → ∼x & y × X
2. ∼(x &∼y) → ∼x | y × X
3. (x + x) & (y + y) → (x & y) + (x & y) ×
4. (x + x) | (y + y) → (x | y) + (x | y) ×
5. (x & y) | (z & y) → y & (x | z) X × X
6. x - ((x - y) + (x - y)) → y +(y - x) X ×
7. (x - y) - (x + z) → -(y + z) X X ×
8. ((x - y) + (x - y)) - x → x - (y + y) X X ×
9. (x + x)⊕ (y + y) → (x⊕ y) + (x⊕ y) ×

10. (x & y)⊕ (z & y) → y & (x⊕ z) X × X

Table 3. State-of-the-art compilers apply optimization rules even if the operands are
shared. If the compiler supports the optimization X/× indicates whether the compiler
prevents the optimization in case of shared operands. If the compiler does not support
the optimization the item is left blank.

5.3 Global Optimization Phase

In Section 4, we claimed that it is worthwhile to perform local optimizations until
a fixpoint is reached. We used the libFirm compiler [5] and the SPEC CINT2000
benchmark to prove our claim. Table 4 shows the number of executed instructions
of the generated binaries. On average, the application of local optimizations until
the fixpoints reduces the number of executed instructions by 3.22%.

Furthermore, we evaluated the effect of the constant-bit and don’t care anal-
yses. Table 5 shows that using the analyses further improved the overall perfor-
mance by 0.64%. The enabled analyses achieve their best improvement for the
186.crafty benchmark that contains a lot of bit operations. Here, the analyses
discover an occult constant that results in an improvement by 3.14%.

6 Conclusion and Future Work

In this paper, we presented the local optimization generator Optgen. In contrast
to generators for peephole optimizers, Optgen generates optimization rules that

Benchmark Without Local Phase With Local Phase Without Local Phase
With Local Phase

164.gzip 306,800,522,532 290,253,056,191 105.70%
175.vpr 215,443,006,054 203,496,140,283 105.87%
176.gcc 150,470,998,502 149,081,148,091 100.93%
181.mcf 48,034,571,679 48,924,041,098 98.18%
186.crafty 192,013,840,675 184,861,683,227 103.87%
197.parser 313,187,450,212 291,055,655,200 107.60%
253.perlbmk 1,147,112,186 1,106,164,617 103.70%
254.gap 220,455,529,344 216,480,669,077 101.84%
255.vortex 329,083,783,116 311,764,008,973 105.56%
256.bzip2 285,176,110,773 278,769,705,624 102.30%
300.twolf 293,847,320,971 293,190,467,622 100.22%

Average 103.22%
Table 4. Effect of local optimizations phase. The table compares the number of exe-
cuted instructions of the generated code with and without an optimization phase that
applies local optimizations until a fixpoint is reached.

Benchmark Without Analyses With Analyses Without Analyses
With Analyses

164.gzip 290,253,056,191 285,201,958,027 101.77%
175.vpr 203,496,140,283 203,495,172,137 100.00%
176.gcc 149,081,148,091 146,088,405,963 102.05%
181.mcf 48,924,041,098 48,969,263,250 99.91%
186.crafty 184,861,683,227 179,226,675,963 103.14%
197.parser 291,055,655,200 291,053,327,116 100.00%
253.perlbmk 1,106,164,617 1,106,163,127 100.00%
254.gap 216,480,669,077 216,345,138,043 100.06%
255.vortex 311,764,008,973 311,764,025,981 100.00%
256.bzip2 278,769,705,624 278,229,736,806 100.19%
300.twolf 293,190,467,622 293,190,431,795 100.00%

Average 100.64%
Table 5. Effect of constant-bit and don’t care analyses. The table compares the number
of executed instructions of the generated code with and without the constant-bit and
don’t care analyses.

work on the IR level. This allows a more abstract view on the program behavior
than working on assembly level.

A unique feature of Optgen is its full support of constants. This includes the
generalization of syntactically equivalent rules to a rule with symbolic constants.
Furthermore, we demonstrated that it is sufficient to generate rules for a small
bit width and later extend them to a larger bit width. Together, these techniques
allow the efficient generation of all rules that involve constants.

We further generalized the generated rules of Optgen by using the analysis
information of the constant-bit and don’t care analyses. This compacts the rule
specification and allows to apply the local optimizations in more cases. Using the
SPEC CINT2000 benchmark, we obtain an reduction of the executed instructions
by up to 3.14%, when using the analysis information.

We used Optgen to find unsupported optimizations in the state-of-the-art
compilers GCC, ICC and LLVM. For these compilers, we identified more than
50 missing optimizations that involve at most two operations. Furthermore, we
showed that compilers should prevent the application of some optimization rules
due to shared subexpressions. For the state-of-the-art compilers, we identified
ten optimizations that are applied in such scenarios.

During the development of Optgen, we identified three interesting research
topics for future work. The first idea is the use of superoptimization techniques
to derive appropriate conditions during the rule generalization as discussed at
the end of Section 3.2. Furthermore, such techniques can be used to find opti-
mal implementations for the transfer functions of the constant-bit analysis. The
second idea is to extend Optgen to automatically derive condition expressions
that are based on constant-bit and don’t care information as discussed at the end
of Section 4.3. The third research topic concerns the sharing of subexpressions.
Here, algorithms that reassociate existing expression to allow the application of
local optimizations or to improve the sharing with existing subexpressions would
be worthwhile for state-of-the-art compilers.

Acknowledgments We thank Christoph Mallon and Manuel Mohr for many
fruitful discussions and valuable advices, and the anonymous reviewers for their
helpful comments. This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre “Invasive
Computing” (SFB/TR 89).

References

1. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In: Pro-
ceedings of the 12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. pp. 394–403. ASPLOS XII, ACM,
New York, NY, USA (2006)

2. Braun, M., Buchwald, S., Hack, S., Leißa, R., Mallon, C., Zwinkau, A.: Simple and
efficient construction of static single assignment form. In: Jhala, R., Bosschere, K.
(eds.) Compiler Construction. Lecture Notes in Computer Science, vol. 7791, pp.
102–122. Springer Berlin Heidelberg (2013)

3. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337–340. TACAS’08/ETAPS’08,
Springer-Verlag, Berlin, Heidelberg (2008)

4. Joshi, R., Nelson, G., Randall, K.: Denali: A goal-directed superoptimizer. In:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation. pp. 304–314. PLDI ’02, ACM, New York, NY, USA
(2002)

5. libFirm – The FIRM intermediate representation library, http://libfirm.org
6. Lopes, N., Menendez, D., Nagarakatte, S., Regehr, J.: ALIVe: Automatic LLVM

InstCombine Verifier, http://blog.regehr.org/archives/1170
7. Massalin, H.: Superoptimizer: A look at the smallest program. In: Proceedings of

the Second International Conference on Architectual Support for Programming
Languages and Operating Systems. pp. 122–126. ASPLOS II, IEEE Computer
Society Press, Los Alamitos, CA, USA (1987)

8. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (Apr 1980)

9. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. In: Proceedings
of the Eighteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. pp. 305–316. ASPLOS ’13, ACM, New
York, NY, USA (2013)

10. Schkufza, E., Sharma, R., Aiken, A.: Stochastic optimization of floating-point pro-
grams with tunable precision. In: Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 53–64. PLDI
’14, ACM, New York, NY, USA (2014)

11. Seltenreich, A.: Minimizing bit width using data flow analysis in libfirm (Feb 2013)
12. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new approach

to optimization. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 264–276. POPL ’09,
ACM, New York, NY, USA (2009)

13. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (Apr 1991)

http://libfirm.org
http://blog.regehr.org/archives/1170

	Optgen: A Generator for Local Optimizations

