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Zusammenfassung

Der Glasgow Haskell Compiler (GHC) setzt zur Implementierung von Optimierun-
gen die Zwischensprache Core ein. Während der Entwicklung solcher Optimierungen
werden zur Fehlersuche Vergleiche zwischen Core-Programmen herangezogen, die
von verschiedenen GHC-Versionen erzeugt wurden.

Diese Vergleiche werden textbasiert, beispielsweise per diff, durchgeführt. Auf
diese Weise werden viele falsch-positive Unterschiede gefunden. Da verschiedene
GHC-Versionen unterschiedliche Variablennamen erzeugen, ist es beispielsweise so
nicht immer möglich, α-Äquivalenz von Programmen festzustellen.

Diese Arbeit stellt ein Vergleichswerkzeug vor, das Core-Programme nicht textbasiert
sondern in ihrer Struktur betrachtet. Dieser Ansatz ermöglicht es, bestimmte irrele-
vante Unterschiede auszublenden.

The Glasgow Haskell Compiler (GHC) uses its intermediate language Core to
implement optimization passes. During the development of such optimization passes,
Core programs generated by different versions of GHC are compared for debugging
purposes.
These comparisons are drawn textually, using for example the utility diff. In

this manner, many false positive differences are found. Because different versions of
GHC generate different names for variables, it is for example not always possible to
determine α-equivalence in this way.
This thesis presents a comparison utility, which compares Core programs not

textually but in their structure. This approach makes it possible to hide some
irrelevant differences.
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1. Introduction
Functional programming (FP) languages such as Haskell pioneered language features
that recently made their way into mainstream programming languages. For example,
lambda functions and local variable type inference, both a part of Haskell since its
inception in 1990, were implemented in Java 8 (2014) and Java 10 (2018) respectively.
This makes Haskell a suitable staging area for a variety of language and compiler
features.
The Glasgow Haskell Compiler (GHC) manipulates a variety of intermediate

representations during compilation. Dividing compilation into multiple passes allows
the GHC development community to independently work on compiler features on
different levels of abstraction. One of these intermediate representations is GHC
Core [1], which is used to implement high-level optimization passes that, among
other things, leverage the language’s strict type system and FP features such as
laziness.
In order to debug optimization passes in Core, GHC developers compare the

outputs of different compiler runs. For this purpose, they compile the same file using
two different versions of GHC and inspect the generated Core programs.

A widespread and simple to use tool for comparing computer code is diff, which
compares two files line by line and displays the ones that are different.
In some cases, diff by itself is insufficient for comparing Core programs. For

example, consider the following snippets of Core programs generated from the same
Haskell program by different versions of GHC. The first version generates:

a'_sNB
= \ (s1_aN5 :: Int) ->

case s1_aN5 of { GHC.Types.I# x_aNl ->
a'_sNB (GHC.Types.I# (GHC.Prim.+# x_aNl 1#))
}

The second version generates:

a'_sLj
= \ (eta2_aKN :: Int) ->

case eta2_aKN of { GHC.Types.I# x_aL3 ->
a'_sLj (GHC.Types.I# (GHC.Prim.+# x_aL3 1#))
}

Looking closely, we notice that a'_sNB and a'_sLj are the same function. They
are in fact “α-equivalent”, i.e. they share the same structure and differ only in the

7



names of their variables. diff, comparing only the textual form of the functions,
does not recognize this:

-a'_sNB
- = \ (s1_aN5 :: Int) ->
- case s1_aN5 of { GHC.Types.I# x_aNl ->
- a'_sNB (GHC.Types.I# (GHC.Prim.+# x_aNl 1#))
+a'_sLj
+ = \ (eta2_aKN :: Int) ->
+ case eta2_aKN of { GHC.Types.I# x_aL3 ->
+ a'_sLj (GHC.Types.I# (GHC.Prim.+# x_aL3 1#))

}

The foremost reason for these differences is the “unique” identifier GHC attaches to
each variable name. The generation of these tags is not uniform across GHC versions.
This leads to a high number of false positives when comparing programs, even if
they are structurally equal.
In this thesis, we will develop CoreDiff, an utility for comparing GHC Core pro-

grams. Unlike diff, which draws a purely textural comparison, we take a structural
approach. In order to reduce the output of irrelevant differences, we will pair up
definitions from two Core programs and assimilate them using nominal techniques
inspired by [2] before they are compared. Next to using diff for comparison, our
utility also offers to use a tree-based differencing algorithm derived from the algorithm
presented in [3]. This algorithm calculates differences not by inspecting the lines of
the programs’ textual representation, but their inherent tree structure.
In Chapter 2, we will elaborate on the example above in order to demonstrate

the problems CoreDiff solves more specifically and give some background on the
approaches we used to solve them. We will then give a general overview of how we
applied these concepts in Chapter 3. Chapter 4 presents challenges encountered during
implementation. In Chapter 5, we will show some exemplary output of CoreDiff
and compare its results to diff. Chapter 6 concludes this thesis by discussing the
practical use of CoreDiff and listing some opportunities to improve it.
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2. Preliminaries
Before we get into the gritty technical details, we will illustrate the specific problems
we are trying to solve with an example. For this example, we chose the module
T18231 from the GHC test suite:

module T18231 where

import Control.Monad (forever)
import Control.Monad.Trans.State.Strict

m :: State Int ()
m = forever $ modify' (+1)

This module is referenced in GHC merge request !4207 1. It defines a single variable
m, which represents an infinite loop counting up in the State monad 2.
The changes made to arity analysis in this merge request lead to unexpected

compilation behavior: Without these changes, m – while not having a visible effect –
compiles and runs without problems. With these changes, running m makes the run
time system panic because of an infinite loop. We can replicate this behavior by
compiling the following module, which lets m count up from 0:

module Main where

import T18231
import Control.Monad.Trans.State.Strict

main = print $ runState m 0

We compile and run it using a GHC master checkout from June 2020 3, which we
will refer to as GHC 8.92de9e, according to the major version it reports for itself and
the first letters of its commit hash:

$ ghc8.92de9e --version
The Glorious Glasgow Haskell Compilation System, version 8.11.0.20200610

$ ghc8.92de9e -O2 Main.hs -o t18231
1See https://gitlab.haskell.org/ghc/ghc/-/merge_requests/4207#note_304817
2From the transformers package: https://hackage.haskell.org/package/transformers-0.

5.6.2/docs/Control-Monad-Trans-State-Strict.html#t:State
3Git commit hash: 92de9e25aa1a6f7aa73154868521bcf4f0dc9d1e
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[1 of 2] Compiling T18231 ( T18231.hs, T18231.o )
[2 of 2] Compiling Main ( Main.hs, Main.o )
Linking t18231 ...

$ ./t18231
[No output, program "hangs"]

The program prints nothing and just “hangs” – which is exactly what it should do,
since we have not programmed it to do anything but count up infinitely. Using a
system monitoring tool we can see that the program is in fact doing something, as it
consumes a whole CPU core. We will now use the GHC version from merge request
!4207 4 to compile and run the same program. We refer to this version as GHC
9.ef9dbc.

$ ghc9.ef9dbc --version
The Glorious Glasgow Haskell Compilation System, version 9.1.0.20201013

$ ghc9.ef9dbc -O2 Main.hs -o t18231
[1 of 2] Compiling T18231 ( T18231.hs, T18231.o )
[2 of 2] Compiling Main ( Main.hs, Main.o )
Linking t18231 ...

$ ./t18231
t18231: <<loop>>

$ echo $?
1

The program immediately terminates with the message <<loop>> and an exit status
of 1 5, which indicates that the run time system detected an infinite loop.
In order to discover the reason for this behavior, we will inspect the differences

in the optimizations the two GHC versions perform on the intermediate language
Core. The canonical way to do this comparison is to have two versions of GHC print
out the Core programs generated by each of their passes and compare them using a
textual differencing tool like diff or vimdiff, e.g.:

$ ghc8.92de9e -O2 T18231.hs -dverbose-core2core > T18231.ghc8.verbose
$ ghc9.ef9dbc -O2 T18231.hs -dverbose-core2core > T18231.ghc9.verbose
# Flags are chosen for reproducibility.
$ diff -u --color=always T18231.ghc8.verbose T18231.ghc9.verbose

In the following sections, we will take an in-depth look at the results of this comparison
and consider some approaches to improve it. We will begin by giving some background
information on the Core language itself.

4Git commit hash: ef9dbc8f403194d4422a551bf6874c6d532f92bd
5YMMV on a non-Unix system.
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2.1. THE CORE LANGUAGE

2.1. The Core language
Haskell is a large programming language with over fifty constructors for terms.
Consequently, GHC converts it into an intermediate language called Core which only
has ten constructors. Core is capable of representing any Haskell program but uses
a vastly smaller syntax. For example, do-blocks, list comprehensions and nested
pattern matching are all syntactical features of Haskell not present in Core. In order
to transform a Haskell abstract syntax tree (AST) into Core, it first needs to be type
checked as each Core term has an explicit type. The resulting fully typed Haskell
AST is then “de-sugared”, i.e. converted into a Core AST. [4, 5, 6]

GHC implements a variety of optimizations and analysis passes as Core-to-Core
passes. Optimizations are meant to increase the efficiency of a program, for example
by eliminating unused variables. Analysis passes collect information about the
programs and pass it on to succeeding passes. This additional information is used to
make succeeding optimization passes more effective. [4]
An overview of the passes run by GHC 8.92de9e and GHC 9.ef9dbc is shown in

Table 5.1.

Notation A grammar for a subset of the System FC language, which the theory
behind Core is based on, is provided in Figure 2.1. System FC was presented by
Sulzmann et al. in [1]. It is an extension of the second-order lambda calculus (see
for example [7, Sec. 1]), which introduces polymorphism via type abstractions. The
grammar we provide is derived from the syntax presented by Eisenberg in [8], in
which he explains some aspects of how System FC is implemented in GHC. We will
use this syntax to describe high-level concepts. We will use a monospaced font with
an ASCII-based character set when we discuss details of source code, GHC output
or CoreDiff output.

Programs We consider a Core program to simply be a list of bindings, even though
bindings can also be grouped into recursive block. This simplifies some aspects of
our implementation. Some of these bindings are marked as exported, i.e. importable
from other modules. These usually coincide with user-defined functions and types.
Exported binder have unambiguous names.

Binders and variables We refer to the elements of the set Var as binders when
they occur in a binding site, such as a lambda function or a let expression and as
variables when they occur as a variable occurrence.

2.2. Binder problems
Using the flag -dverbose-core2core above, we let GHC print out the result of all
Core-to-Core passes. The first of interest to us is titled Desugar (after optimization).
Consider the following snippet from that pass’ difference:
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2.2. BINDER PROBLEMS

P ∈ Prog ::= B1; ...;Bn Program
B ∈ Bind ::= b = e Binding

x, b, bi ∈ Var Binder
K ∈ DataCon Data constructor
T ∈ TyCon Type constructor

e, f, ei ∈ Exp ::= Expression
| x Variable occurrence
| λb. e Term abstraction
| Λb. e Type abstraction
| e e Term application
| e @τ Type application
| let b = e in f Let expression
| letrec bi = ei

i in e Recursive let expression
| case e of b { pi → ei

i } Case expression
pi ∈ Pat ::= Case pattern

| K bi
i Data constructor

| ␣ Wildcard
τ, τi ∈ Typ ::= Type

| b Type variable occurrence
| ∀b. τ Type polymorphism
| τ → τ Function type
| τ τ Type application
| T τi

i Type constructor application

Figure 2.1.: Expressions and types. Loosely follows the syntax provided in [1].
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2.2. BINDER PROBLEMS

(modify'
@Data.Functor.Identity.Identity
@Int
Data.Functor.Identity.$fMonadIdentity
(let {

- ds_dM0 :: Int
+ ds_dJI :: Int
- ds_dM0 = GHC.Types.I# 1# } in
- \ (ds_dLZ :: Int) -> + @Int GHC.Num.$fNumInt ds_dLZ ds_dM0))
+ ds_dJI = GHC.Types.I# 1# } in
+ \ (ds_dJH :: Int) -> + @Int GHC.Num.$fNumInt ds_dJH ds_dJI))

Both versions of GHC essentially generate the same code. The content of the shown
let expression is the same except for the binders’s name. This happens because GHC
assigns a special identifier to each binder, called its unique.

In some cases, names alone are not enough to disambiguate between binders. This
is why each binder in Core is also given a “unique” identifier, simply referred to as
its unique. Uniques are used for fast comparison of various data structures with an
identity in GHC. The relation of a binder and its attached unique is only guaranteed
to be valid within a single invocation of GHC. Uniques are never part of any compiler
output except for debugging. [9]
We usually have to assume that two different versions of GHC assign different

uniques to binders. This obscures actual differences in the programs.

2.2.1. The current solution
The GHC User’s Guide describes the current solution to this problem in its docu-
mentation for the command-line flag -dsuppress-uniques:

“Suppress the printing of uniques. This may make the printout ambiguous
(e.g. unclear where an occurrence of ‘x’ is bound), but it makes the output
of two compiler runs have many fewer gratuitous differences, so you can
realistically apply diff. Once diff has shown you where to look, you
can try again without -dsuppress-uniques.” [10, Suppressing unwanted
information]

This works for the example above, but the documentation already states that it is
not completely satisfactory to simply suppress uniques completely. Consider this
snippet from the difference of the next pass, the initial Simplifier run:

[LclId,
Arity=1,

+ Str=<L,U>b,
+ Cpr=b,
Unf=...]

13



2.2. BINDER PROBLEMS

-a'_sNw
- = \ (s1_aN0 :: Int) ->
- case s1_aN0 of { GHC.Types.I# x_aNg ->
- a'_sNw (GHC.Types.I# (GHC.Prim.+# x_aNg 1#))
+a'_sLe
+ = \ (eta2_aKI :: Int) ->
+ case eta2_aKI of { GHC.Types.I# x_aKY ->
+ a'_sLe (GHC.Types.I# (GHC.Prim.+# x_aKY 1#))

}

-m = a'_sNw
+m = a'_sLe

Here, both versions of GHC have drastically simplified the body of m and moved it
into a new binding a'. These differ not only in the variables’ uniques, but also in
their names: GHC 8.92de9e calls the parameter of the newly introduced abstraction
term s1, GHC 9.ef9dbc calls it eta2. When we compare this snippet again using
-dsuppress-uniques, two lines are still marked as different even though, for our
purposes, they are not.

A difference that is actually important to us is that GHC 9.ef9dbc adds the fields
Str=<L,U>b and Cpr=b to the metadata of a', because they will influence the way
succeeding optimization passes behave.
We would like our tool to mark the whole snippet, except for the metadata, as

equivalent. Specifically, we are looking for a solution that makes terms equal where
they are α-equivalent. To achieve this, we consider two alternative approaches which
we will outline in the next two sections.

2.2.2. De Bruijn index
The namefree form for lambda terms introduced by de Bruijn in [11] removes the
need for variables to have names. In de Bruijn’s namefree form, a variable occurrence
specifies its binding site by a positive integer. This integer indicates the distance of
an occurrence to its binding λ. Consider for example the S combinator, which can
be written in an infinite number of α-equivalent ways:

S = λx. λy. λz. x z (y z)
=α λa. λb. λc. a c (b c)
=α λs. λk. λi. s i (k i)
=α ...

Its equivalent single namefree form is:

S = λλλ 3 1 (2 1)

A conversion into namefree form hides any differences in binder names, i.e. makes
α-equivalent terms equal.

14



2.3. PAIRING PROGRAM BINDINGS

2.2.3. Nominal techniques
In [2], Gabbay and Pitts explain how the permutation model of set theory can be
used to abstractly describe data types that support name abstraction modulo binder
renaming. Their approach represents a straightforward alternative to higher-order
abstract syntax (HOAS). Such “nominal” approaches are distinguished in that they
use permutative variable renaming instead of substitution. For a λ-term M and a′, a
from the set of possible binders, they define:

“(a′ a) ·M , the transposition of all occurrences (be they free, bound, or
binding) of a and a′ in M .” [2, Def. 2.1]

For example, (a b) · a. b = b. a.
Urban et al. use this technique in [12] to define a “second-order” unification

algorithm for terms involving binding operations. In [12, Fig. 2], they define a
relation ≈, which can be used to test terms for α-equivalence. For abstraction terms,
≈ is defined as such:

∇ ` t ≈ t′

∇ ` a. t ≈ a. t′
a 6= a′ ∇ ` t ≈ (a a′) · t′ ∇ ` a # t′

∇ ` a. t ≈ a′. t′

The second rule reads: In the case that a and a′ are not equal, the two abstraction
terms a. t and a′. t′ are α-equivalent if you can swap each occurrence of a and a′ in t′
to make it α-equivalent to t and a does not occur freely in t′.

We used some of those concepts presented in [2] and [12] to develop a transformation
that assimilates Core terms respective their binders by making them α-equivalent
where possible in Section 3.2.2.

2.3. Pairing program bindings
In order to avoid bindings overlapping in our comparison, we will first need to find
pairs of corresponding bindings from our input programs. Consider this snippet from
the difference of the first Float out passes:
-a'_sNw [Occ=LoopBreaker]
+lvl_sLm
+ = (x_aKY :: GHC.Prim.Int#) ->
+ a'_sLe (GHC.Types.I# (GHC.Prim.+# x_aKY 1#))
+a'_sLe [Occ=LoopBreaker]
-a'_sNw
- = \ (s1_aN0 :: Int) ->
- case s1_aN0 of { GHC.Types.I# x_aNg ->
- a'_sNw (GHC.Types.I# (GHC.Prim.+# x_aNg 1#))
- }
+a'_sLe
+ = \ (eta2_aKI :: Int) ->
+ case eta2_aKI of { GHC.Types.I# x_aKY -> lvl_sLm x_aKY }

15



2.4. DIFFERENCING ALGORITHMS

This is the first pass we considered so far where the two versions of GHC produce
programs of different structure. We can observe that GHC 9.ef9dbc moved a part of
a' into another binding lvl. GHC 8.92de9e does not apply this transformation.
Because we applied diff to the whole program, this difference is obscured by

formatting artifacts: The first line, a'_sNw [Occ=LoopBreaker] is a part of a'_sNw’s
signature and should therefore be listed next to its binding. We can reduce such
confusing artifacts by applying diff to corresponding top level bindings instead of
whole programs. We develop an algorithm that finds pairs of corresponding top level
bindings in two Core programs in Section 3.1.

2.4. Differencing algorithms
So far, we have been using diff to compare Core programs. diff finds a minimal list
of changes that transform one file into the other. We refer to this approach as textual
differencing. Textual differencing was first considered from a theoretical viewpoint by
Hunt and MacIlroy in [13]. Its approach is universally applicable across programming
languages as it is based on the textual representation of code. Furthermore, it is
intuitive for developers, since they are used to working with code in textual form.

2.4.1. Textual differencing
A downside of textual differencing is that it does not consider the underlying structure
of the given programs. Reconsider the previous example:

-a'_sNw [Occ=LoopBreaker]
+lvl_sLm
+ = (x_aKY :: GHC.Prim.Int#) ->
+ a'_sLe (GHC.Types.I# (GHC.Prim.+# x_aKY 1#))
+a'_sLe [Occ=LoopBreaker]
-a'_sNw
- = \ (s1_aN0 :: Int) ->
- case s1_aN0 of { GHC.Types.I# x_aNg ->
- a'_sNw (GHC.Types.I# (GHC.Prim.+# x_aNg 1#))
- }
+a'_sLe
+ = \ (eta2_aKI :: Int) ->
+ case eta2_aKI of { GHC.Types.I# x_aKY -> lvl_sLm x_aKY }

We have already discussed that the first line belongs with a'_sNw’s definition. We
will solve this by recognizing the program structure by comparing corresponding
bindings instead of whole programs.
Textual differencing does not recognize that certain differences stem purely from

output formatting. In a'_sNw, the case expression’s closing brace gets its own line.
In a'_sLe, the whole case expression is printed on a single line. The actual difference
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2.4. DIFFERENCING ALGORITHMS

here only lies in the right-hand side of the single alternative appearing in this case
expression.

2.4.2. Tree-based differencing
To avoid finding such non-differences, we consider the tree-based differencing algorithm
presented by Miraldo and Swierstra in [3]. This algorithm does not generate a list of
insertions and deletions as textual differencing algorithms do. Instead, it finds the
“spine”, i.e. the common constructors, of the left tree and the right tree. In places
where the trees disagree, it leaves holes representing the changes by a pair of trees
from the left and right tree respectively.
We will explain their algorithm with an example they give in [3, Sec. 2]. Their

algorithm is data type generic, but for illustration their example uses a specific
instance for 2-3-trees:

data Tree23 = Leaf
| Node2 Tree23 Tree23
| Node3 Tree23 Tree23 Tree23

data Tree23C h = LeafC
| Node2C Tree23C Tree23C
| Node3C Tree23C Tree23C Tree23C
| Hole h

The data type Tree23 represents a 2-3-tree. The data type Tree23C h is used to
represent 2-3-trees with different kinds of holes of type h.
Our example trees are

x = Node2 r (Node2 s t)
y = Node2 r (Node2 t t)

where r, s and t are any 2-3-trees.
Their algorithm works in three steps:

Computing changes A change is a pair of Tree23C Int, where common subtrees
of the left and right side are identified by integers. The left side of a change is called
the deletion context; the right side is called the insertion context. In our case, the
common subtrees of x and y are r and t:

change x y =
( Node2C (Hole 0) (Node2C s (Hole 1))
, Node2C (Hole 0) (Node2C (Hole 0) (Hole 1))
)

This minimizes redundancy in the data structure representing the resulting patch.
Given just x and this change, we can now already reconstruct y.
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Identifying the spine The algorithm finds the constructors appearing in the same
place on both sides of the change. This reduces redundancy further. For example,
the two Node2C constructors are redundant in the change above. The spine is also
called the greatest common prefix (GCP). In order to represent it, we use the type
Tree23C (Tree23C Int, Tree23C Int), i.e. a 2-3-tree with holes that contain
changes:

gcp $ change x y =
Node2C

(Hole (Hole 0, Hole 0))
(Node2C
(Hole (s , Hole 1))
(Hole (Hole 1, Hole 1)))

Closing contexts In our example above, there is a change (s, Hole 1) where the
hole in the insertion context does not appear in the corresponding deletion context.
Such changes are called open. The last step of the algorithm closes any open subtrees
of the spine:

diff x y = closure $ gcp $ change x y =
Node2C

(Hole (Hole 0, Hole 0))
(Hole
( Node2C s (Hole 1)
, Node2C (Hole 1) (Hole 1)
))

This makes it easier to apply patches.
In Section 3.3, we discuss which parts of the algorithm we chose to adopt.

18



3. Specification & Design
This section gives a broad abstract overview of the concepts we implement in
Chapter 4.

In Section 3.1 we introduce our algorithm for pairing bindings and explain how it
can be used for Core programs and let expressions.
In Section 3.2 we explain our approach to make Core terms α-equivalent where

possible using the nominal techniques outlined in Section 2.2.3.
Finally, in Section 3.3, we show how we adopted parts of the tree-based differencing

algorithm explained in Section 2.4.2 to provide structural differencing in CoreDiff.

3.1. Pairing
We introduce an algorithm that, given two lists of bindings, finds pairs of bindings
which can be assimilated and then compared individually.

This section will build on the example given in Figure 3.1. We compiled Fac.hs
(see Appendix A.3) with GHC 8.92de9e and GHC 9.ef9dbc and compared the set of
top level bindings the first float out steps created. The exported binders, highlighted
in cyan, are trivial to pair as their names only appear once in each program. The
remaining binders have ambiguous names. In order to to pair them, we analyze their
occurrences in bindings whose binders have already been paired.

3.1.1. Trivial pairings
As a baseline, we consider the exported binders of each program. These are trivial
to pair up because their names are guaranteed to be distinct up until the CoreTidy
phase [14]. Additionally, each remaining binder should (transitively) occur in their
bound expressions as they would be useless otherwise.
Figure 3.1 shows exported binders in cyan. The set of exported binder names is

the same for GHC 8.92de9e and GHC 9.ef9dbc (see Section 2.1). Even the order of
the binders is the same. This order is subject to change across compiler versions
because different versions may apply different compiler passes. Especially for bigger
programs, this makes it non-trivial to pair up the remaining, non-exported binders.

3.1.2. Iterative pairing
In order to reliably pair up the remaining binders, we inspect occurrences in pairings
that have already been found.
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lvl_s1w3
lvl_s1w5
lvl_s1w1
fac_rjM
$trModule_s1vT
$trModule_s1vU
$trModule_s1vV
$trModule_s1vW
$trModule_r1vh

lvl_sU6
lvl_sU8
lvl_sU4
fac_rjH
$trModule_sTW
$trModule_sTX
$trModule_sTY
$trModule_sTZ
$trModule_rTm

Figure 3.1.: Top level bindings in the output for the first float out step for Fac.hs,
GHC 8.92de9e (left) and GHC 9.ef9dbc (right). Exported binders are
highlighted in cyan. Arrows indicate an “occurs-in” relationship.

Example for iterative pairing

Consider the bound expressions for $trModule_r1vh and $trModule_rTm which were
trivial to pair because $trModule is an exported binder and therefore appears only
once in each program. First when compiled using GHC 8.92de9e:

$trModule_r1vh =
GHC.Types.Module

$trModule_s1vU $trModule_s1vW

Then using GHC 9.ef9dbc:

$trModule_rTm =
GHC.Types.Module

$trModule_sTX $trModule_sTZ

Their bound expressions both call GHC.Types.Module on some variables. Because
they are top level binders yet to be paired and they occur in the same place on
each side in the exported binding $trModule, we can now pair $trModule_s1vU
with $trModule_sTX and $trModule_s1vW with $trModule_sTZ. Now consider the
bound expressions of the first new pair, again starting with GHC 8.92de9e:

$trModule_s1vU =
GHC.Types.TrNameS $trModule_s1vT

Then, GHC 9.ef9dbc:

$trModule_sTX =
GHC.Types.TrNameS $trModule_sTW

In the same way as before, we can now pair $trModule_s1vT with $trModule_sTW.
In this manner, we can pair up all $trModule-bindings in the given programs. We
found this approach to work remarkably well even for bigger programs.
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Iterative pairing algorithm

We will now generalize this procedure into an iterative algorithm which we will
implement in Section 4.4.
A single iteration step is based on the function

Dis : Exp× Exp→ 2Var×Var

Dis(e, e′) = D

which calculates the set D of disagreeing occurrences of free binders in two expressions
e and e′. Our iteration state is a tuple (P,UL, UR, F ) where

• P ⊆ Bind× Bind is a set of potential pairings of bindings,

• UL ⊆ Bind is the set of remaining unpaired bindings of the left side,

• UR ⊆ Bind is the set of remaining unpaired bindings of the right side,

• F ⊆ Bind× Bind is the set of pairings whose expressions have been considered.

A single step of our iteration is performed by

Step(P,UL, UR, F ) = (P ′ ∪N,U ′L, U ′R, F ∪ {(b = e, b′ = e′)})

where

P = {(b = e, b′ = e′)} ] P ′

D = Dis(e, e′)
N = {(b = e, b′ = e′) | b = e ∈ UL, b′ = e′ ∈ UR, (b, b′) ∈ D}
U ′L = {B | (B, ·) 6∈ N,B ∈ UL}
U ′R = {B | (·, B) 6∈ N,B ∈ UR}

We extract an established, but not yet considered pairing of bindings (b = e, b′ = e′)
from P . Then, we find the set D of disagreeing free occurrences in their bound
expressions. We establish the set N of new pairings to add to P . It contains pairings
of bindings from UL and UR where the binders are in D. Finally, we remove the
bindings that will be added to P from UL and UR and add (b = e, b′ = e′) to our
output set F .
We also define

Iter(P,UA, UB, F ) =
F , P = ∅

Iter(Step(P,UA, UB, F )) , otherwise

which applies Step until P is empty. This function can be used to perform a full
pairing.
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Initial iteration state

There are two ways in which Iter is used: Pairing whole programs and pairing
bindings in recursive let expressions. Depending on the use case, the initial state is
chosen in different ways.

Pairing programs To pair the top level bindings of the programs A and B, we
define

Pairprog(A,B) = Iter(T, UA, UB, ∅)
where T are the trivial pairings described in Section 3.1.1, and UA and UB are the
remaining binders in A and B.

Pairing recursive let expressions To pair the bindings in two recursive let expres-
sions, we can not use the trivial pairings approach. That is because no bindings in
let expressions are exported. Instead, we define

Pairlet(letrec bi = ei
i in e, letrec b′j = e′j

j in e′) = Iter(D, bi = ei
i
, b′j = e′j

j
, ∅)

where D ⊆ Dis(e, e′) are the disagreeing free occurrences of binders bi and b′j in e
and e′.

3.2. Binder assimilation
In Section 2.2, we described problems introduced by the naming of binders in different
versions of GHC. Because different versions of GHC may give binders different uniques
and sometimes even different names, textual comparisons of Core programs often
falsely mark lines as different. To reduce the number of such false positives, we
considered two approaches that make expressions syntactically equal where they are
α-equivalent.

3.2.1. De Bruijn index
In Section 2.2.2, we gave a short example of the namefree expressions introduced by
de Bruijn [11]. For our use case, the first problem with this namefree representation
is that it barely resembles the original terms. While names carry no operational
meaning in Core, they offer readability for humans. This means that after two terms
have been converted into namefree form for comparison, they need to somehow be
converted back into a readable form. Compared to the nominal approach explained
below, we found this reconstruction step to be too awkward to implement.

The second problem is that our comparison needs to support multiple bindings at
the “same” level. For example, consider these terms:

e1 = letrec a = b; b = a in a
e2 = letrec a = b; b = c; c = a in a
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A naive implementation could simply increase the depth from the rightmost to the
leftmost binding. In that case, the similarilites of e1 and e2 are lost:

e′1 = letrec 1; 2 in 2
e′2 = letrec 2; 1; 3 in 3

Other approaches to mitigate this problem were prone to similar subtle bugs.

3.2.2. Nominal approach
The approach we favor is based on the equivalence relation ≈ given by Urban et
al. in [12, p. 480] which we outlined in Section 2.2.3. We adopted the use of binder
permutations typical for nominal algorithms.
Consider again their rule for α-equivalence of abstraction terms [12, Fig. 2]:

a 6= a′ ∇ ` t ≈ (a a′) · t′ ∇ ` a # t′

∇ ` a. t ≈ a′. t′

Our preprocessing step to assimilate binders is built in a very similar way. Given
two terms a and b, we define

Asim(a, b) = c

which creates a third term c that has the structure of b but binder names and uniques
from a where possible. If a and b are α-equivalent, a and c will be syntactically
equivalent except for their metadata. For example,

Asim(λx. t, λx′. t′) = λx.Asim(t, (x x′) · t′).

Given two abstraction terms, we keep the binder x of the left side and exchange any
occurrences of x and x′ in the right side. Asim can be defined along the lines of ≈
for the trivial cases.

Asim assumes that all binders bound in a do not occur freely in b, which is required
by ≈. For raw Core programs, this is not necessarily correct: Uniques, even though
they can be assigned differently in two programs, may overlap. If such an overlap is
detected, we cannot simply rename the free binder in b, as that could change the
program’s semantics. Instead, we can rename the binder’s unique in a. It is trivial
to find a unique id that is used in neither a nor b. If such renaming takes place, the
user should be notified.

Just like with de Bruijn’s namefree form, the difficulty in this approach is to find
a suitable solution for recursive let expressions. In order to solve this, we pair up the
bindings of the let expressions using the function Pairlet defined in Section 3.1.2.

Similar to recursive let expressions are alternatives in case expressions. These can
always be paired trivially, since each alternative has a unique constructor.
We implement Asim in Section 4.5.
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3.3. An alternative differencing algorithm
In this section, we adopt a tree-based differencing algorithm to compare Core terms
not in their textual form, but in their structure. As we remarked in Section 2.4.1,
textual differencing can not distinguish relevant differences in expressions from
superficial formatting artifacts. If we compare the underlying structure instead
of a textual representation, we can avoid such issues. For this purpose, we offer
an alternative differencing algorithm derived from the one given by Miraldo and
Swierstra in [3] outlined in Section 2.4.2.

From their algorithm, we only adopt the second step: Identifying the spine. Using
the full algorithm, represented by the function FullDiff, can be counterproductive
in some cases, for example (changes within terms are denoted as #(· / ·)):

FullDiff(map f primes,map g primes) = #(0 / 0) #(f / g) #(1 / 1)

The algorithm minimizes redundancy in the resulting patch by replacing common
subtrees with numbered holes. For our use case, this obscures important context. It
is much easier to classify the difference in these terms if we keep the surrounding
terms intact:

Spine(map f primes,map g primes) = map #(f / g) primes

This example shows that simply identifying the spine is already enough to generate
usable diffs.
Yet we can improve their usefulness by adding a simple postprocessing step.

Consider the expressions f x and g y. Their spine is a term application; the
mismatched variables on either side become changes:

Spine(f x, g y) = #(f / g) #(x / y)

Since all subterms of this patch are changes, we can merge the changes into a single
change on the next level. We call this transformation Mend, for example:

Mend(#(f / g) #(x / y)) = #(f x / g y)

While the resulting patch contains some redundant function applications, we favor
this form because the result is more readable.
To wrap up, we can define our structural differencing function as

Diff(e, e′) = Mend(Spine(e, e′)).
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4. Implementation
This chapter describes how we extracted Core programs from GHC and implemented
the preprocessing transformations, pairing and differencing algorithms specified in
Chapter 3 for GHC Core in CoreDiff. CoreDiff is written in Haskell, since GHC itself
and the library we use to interact with it are written in Haskell too. We only give a
broad overview and discuss specific challenges we encountered. However, CoreDiff is
open source software; the full source code, including instructions for building it, is
available at https://github.com/pbrinkmeier/corediff 1.

4.1. The big picture
The command for comparing programs using CoreDiff is

$ corediff diff modA.cbor modB.cbor

The entry point for programs is the module Main, which parses command-line
arguments and follows these steps:

1. Import and convert the Core modules into CoreDiff data types (Section 4.2.1,
Section 4.3.2).

2. Pair the bindings of the resulting programs (Section 4.4).

3. Assimilate all paired bindings (Section 4.5).

4. With the command line flag --structural, compare all pairs of bindings
using the tree-based differencing algorithm discussed in Section 3.3. Otherwise,
pretty-print all pairs of bindings and then compare them using diff.

4.2. Exporting Core from GHC
In order to apply our algorithms, we need to extract Core ASTs from GHC. An
evident approach is to let GHC print out a textual version of the Core program and
then parse it into an AST. But this is tedious to implement and prone to break over
time as new features are added to Core. What we went with instead is a library and
GHC plugin called ghc-dump 2.

1Git commit hash at the time of writing: 53335680361058201ca35899420fdd0d0ed238da
2Repository: https://github.com/bgamari/ghc-dump
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4.2. EXPORTING CORE FROM GHC

4.2.1. ghc-dump
ghc-dump is an established tool that uses GHC’s plugin system [15, Compiler Plugins]
to export a Core program after each Core-to-Core pass. It consists of two packages:
ghc-dump-core, which contains a Core AST data type and the plugin itself, and
ghc-dump-util, which contains some utility functions. The plugin is straightforward
to use: The following example invocation compiles T18231.hs with optimizations
enabled (-O2) and exports a Core program after each Core-to-Core pass.

$ ls
T18231.hs
$ ghc -O2 T18231.hs -fplugin GhcDump.Plugin
[1 of 1] Compiling T18231 ( T18231.hs, T18231.o )
Linking T18231 ...
$ ls
T18231.hi T18231.hs T18231.o T18231.pass-0000.cbor T18231.pass-0001.cbor
...
T18231.pass-0020.cbor T18231.pass-0021.cbor T18231.pass-0022.cbor

In addition to the usual interface .hi and object .o files, this invocation, using
the plugin GhcDump.Plugin, also creates a .cbor file after each pass. These files
contain Core ASTs that are serialized using the Concise Binary Object Representation
(CBOR) format [16].

In order to use these files, we do not need to concern ourselves with parsing the
CBOR format. The package ghc-dump-util provides the function GhcDump.Util.readDump,
which we can use to directly read them into according data types.

import GhcDump.Ast (Module)
import GhcDump.Util (readDump)

main = do
mod <- readDump "path/to/mod.cbor" :: IO Module
...

A specific goal of ghc-dump is to provide a consistent representation of Core ASTs
across a multitude of GHC versions, starting with GHC 7.10 (released in April 2015).
For this reason, the module GhcDump.Ast from the package ghc-dump-core defines
its own set of data types for Core ASTs. This suits our use case of comparing Core
ASTs generated by different versions of GHC.

4.2.2. Extending ghc-dump
As we remarked above, ghc-dump defines its own set of data types to represent Core
ASTs. A downside is that these types miss some features of the ones defined by GHC
itself. Specifically, in order for us to use ghc-dump in a meaningful way, we needed:
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• Support for GHC 8.10 and later,

• binder metadata concerning whether a binder is exported, which is important
to find trivial pairings and

• binder CPR information.

Since ghc-dump is open source software, we were able to fork the repository 3 and
implement those features ourselves.

4.3. Data types
The central data structure of a Core AST is the expression. It contains binders in
binding sites or as variable occurrences. Those binders have types. Expressions also
contain bindings (in let expressions) and alternatives (in case expressions).

4.3.1. Data types in CoreDiff
In the module GhcDump.Ast, these data structures are implemented by the types
Expr, Binder, Type, (Binder, Expr) and Alt.

In CoreDiff, we chose to replicate and extend these data types. There are several
reasons why we did so.

The first one is a software engineering aspect. While it leads to code duplication,
providing our own data types decouples the implementation of our algorithms from
the import mechanism. If, someday, we will find an alternative to ghc-dump or decide
to write a parser for GHC output ourselves, we can simply swap out the import and
conversion functions.
Secondly, common type classes such as Eq and Ord are already implemented for

the types in GhcDump.Ast. Haskell does not let you override these instances for
consistency reasons. Having to bypass these restrictions would without a doubt have
led to some hacky, hard to maintain code.
The third and perhaps most important reason is that, in order to implement the

structural differencing algorithm from Section 2.4.2, we need to define an according
type that supports change-shaped holes for each of our data types (similar to Tree23
and Tree23C in Section 2.4.2). This means we would have had to replicate the data
types from GhcDump.Ast regardless.

4.3.2. An extensible AST
Our AST data types are going to be used in two roles: For simple terms without
additional constructors, or as the spines of patches generated by the Spine function.
In order to avoid code duplication, we employed the approach presented by Najd
and Jones in [17]. They provide a way to write extensible data types by making

3Repository: https://github.com/pbrinkmeier/ghc-dump
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them polymorphic over a variant of the data type. This approach lets us define
the data structures for our Core ASTs once and use them in both roles. Common
functionality such as pretty-printing can also be defined for both roles at the same
time.
For example, consider our data type XExpr for expressions listed in Figure 4.1.

This data type represents the expressions defined in Figure 2.1. An XExpr can be
either one of two variants: The undecorated variant, XExpr UD, represents expression
terms only. In this variant, the XXExpr extension constructor cannot be instantiated.
That is because we chose the extension for undecorated expressions to be of type
Void, which cannot be instantiated. For the second variant, XExpr Diff, which
represents the spine of a structural patch for expressions, we chose the extension to
be of type Change (XExpr UD), i.e. a pair of expression terms. This means that
this type can be an expression, or, additionally, a change of expressions.

We assign extension types to variants using the type family XExprExtension. A
type family is a function on the type level – it maps types to other types. In this case,
it maps a variant type to its extension type for expressions. Each of the other types
referenced in XExpr has a similar type family to select its extension. This way, we
can choose the extension Change (XBinder UD) for XBinder Diff, the extension
Change (XType UD) for XType Diff and so forth.
Finally, we added the shorthand type alias ForAllExtensions for writing signa-

tures for functions that work with extensions. For example, to write our own instance
of Eq for an XExpr a, we would have to declare the following instance

instance ( Eq (XExprExt a), Eq (XBinderExt a), Eq (XBindingExt a)
, Eq (XAltExt a), Eq (XTypeExt a)) => Eq (XExpr a) where

...

because comparing the subterms of expressions demands that their extensions are
comparable too. With our shorthand, we can simply write

instance ForAllExtensions Eq a => Eq (XExpr a) where
...

which is a great improvement. This technique is discussed in detail in [17, Sec. 3.7].

4.3.3. Pretty-printing terms and spines
To demonstrate how these data structures can be used, we show how we implemented
pretty-printing for expressions and expression spines. For pretty-printing itself, we
used the package ansi-wl-pprint 4. It is based on [18] by Wadler, who describes a
set of combinators for functional pretty-printing.

We begin by defining a data type for pretty-printing options and a typeclass that
allows us to write overloaded pprWithOpts functions:

4Hackage: https://hackage.haskell.org/package/ansi-wl-pprint
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{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeFamilies #-}

import Data.Kind (Constraint)
import Data.Void

data Variant = UD | Diff

newtype Change a = Change (a, a)

data XExpr (a :: Variant)
= XVar (XBinder a)
| XVarGlobal ExternalName'
| XLit Lit
| XApp (XExpr a) (XExpr a)
| XTyLam (XBinder a) (XExpr a)
| XLam (XBinder a) (XExpr a)
| XLet [XBinding a] (XExpr a)
| XCase (XExpr a) (XBinder a) [XAlt a]
| XType (XType a)
| XCoercion
| XXExpr (XExprExt a)

-- XBinding, XBinder, XType, XAlt

type family XExprExt a where
XExprExt UD = Void
XExprExt Diff = Change (XExpr UD)

-- XBindingExt, XBinderExt, XTypeExt, XAltExt

type ForAllExtensions (constr :: * -> Constraint) a =
( constr (XExprExt a)
, constr (XBindingExt a)
, constr (XBinderExt a)
, constr (XTypeExt a)
, constr (XAltExt a)
)

Figure 4.1.: Extensible Core expression data type. Excerpt from CoreDiff.XAst.
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import Control.Monad.Trans.Reader

data PprOpts = PprOpts { pprOptsDisplayUniques :: Bool, ... }

pprOptsDefault = PprOpts True ...

class PprWithOpts a where
pprWithOpts :: a -> Reader PprOpts Doc

The pprWithOpts function maps terms to documents under some read-only context
of type PprOpts. By using the Reader monad 5, we rid ourselves of the need to pass
around this context explicitly every time we pretty-print a sub-term.
We can now simply write an instance of PprWithOpts for each of our types to

implement pretty-printing for terms and extensions at the same time.

4.4. Pairing algorithm
In order to assimilate bound expressions and to compare programs binding by binding,
we need to pair up the bindings of the given programs.

4.4.1. Trivial pairings
In Section 3.1.1 we remarked that exported top level bindings are trivial to pair
because their names are unambiguous. In fact, there is an exception to this: If a
Haskell program has an exported binding main, its corresponding Core program has
two exported bindings with the name main. The user-defined one gets assigned a
unique like any other binding. The second main will always have the special unique
01D. main_01D wraps the user-defined main in a call to GHC.TopHandler.runMainIO
6. This function catches global exceptions and flushes the standard streams before
exiting.
Initially, this confused the trivial pairings function; after all, it assumes that

exported bindings never share a name. In its current implementation triv in
CoreDiff.Pairing, we explicitly pair main_01D bindings before we apply it.

4.4.2. Iterative pairing
In Section 3.1.2 we described an iterative approach that inspects disagreeing variable
occurrences in already established pairings to find more of the latter. We implement
this algorithm in CoreDiff.Pairing. To keep track of its state, we define a data
type

5From the transformers package: https://hackage.haskell.org/package/transformers-0.
5.6.2/docs/Control-Monad-Trans-Reader.html#t:Reader

6See https://hackage.haskell.org/package/base-4.14.0.0/docs/GHC-TopHandler.html#
v:runMainIO
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data PairingS = PairingS
{ toPair :: Seq (XBinding UD, XBinding UD)
, unpairedLeft :: Map (XBinder UD) (XBinding UD)
, unpairedRight :: Map (XBinder UD) (XBinding UD)
, paired :: [(XBinding UD, XBinding UD)]
}

which stands for “pairing state” but can also be read as “pairings”, which is nice.
For the fields of PairingS, we chose data types that support specific operations
we need in the implementation of Step from Section 3.1.2. The Seq type from
Data.Sequence supports queue-like operations. We use these to pop the next binding
from the front end and push new bindings to the back end. We use the Map type
from Data.Map to index unpaired bindings by their binders, since we always refer to
those by their binders. For these, it is important to know that equality of binders is
implemented purely as the equality of their uniques:

instance ForAllExtensions Eq a => Eq (XBinder a) where
binder == binder' = xBinderId binder == xBinderId binder'

For the output set we simply used a list, because this field does not need to support
any operations but pushing values to one end.

Step is implemented by step in CoreDiff.Pairing:

step :: PairingS -> PairingS
step (PairingS pq unpairedL unpairedR paired) =

let
(bind@(XBinding _ e), bind'@(XBinding _ e')) :<| pq' = pq
disagreeing = disExpr e e'
newPairings = catMaybes $ map bothUnpaired disagreeing
bothUnpaired (binder, binder') =

case (unpairedL Map.!? binder, unpairedR Map.!? binder') of
(Just b, Just b') -> Just (b, b')
_ -> Nothing

(newPairingBindersL, newPairingBindersR) =
deconPairings newPairings

As a first step, we pattern-match on pq using :<| to retrieve the first pairing to
consider. In this pairing’s expressions, we find every pair of disagreeing free binders
using disExpr. If both binders are also unpaired in our iteration state, we add their
bindings to newPairings. Finally, we extract the binders of these new pairings into
the lists newPairingBindersL and newPairingBindersR using the helper function
deconPairings.

in PairingS
(pq' >< Seq.fromList newPairings)
(unpairedL `Map.withoutKeys` Set.fromList newPairingBindersL)
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(unpairedR `Map.withoutKeys` Set.fromList newPairingBindersR)
((bind, bind') : paired)

In the new state, the queue of pairings is now extended by newPairings. We mark
their binders as paired by removing them from the unpaired maps. We add the
bindings we just considered to the list of established pairings.

Iter and Dis from Section 3.1.2 are rather trivial to implement. Their signatures
are:

iter :: PairingS -> PairingS
disExpr :: XExpr UD -> XExpr UD -> [(XBinder UD, XBinder UD)]

iter applies step until toPair is empty. disExpr finds a list of disagreeing free
binders for two expressions.

4.5. Binder assimilation
To reduce superficial differences in terms, we use a nominal binder assimilation
algorithm presented in Section 3.2.2 to make them syntactically equivalent where they
are α-equivalent. What makes this approach “nominal” is that we use permutation
of binders instead of substitution. In our implementation, we permute only their
names and unique identifiers instead of the binders themselves. This allows us to
observe differences in the metadata of α-equivalent terms.
In Section 3.2.2, we defined Asim(a, b) = c to mean that c is a term that has b’s

structure but a’s binders. In order to implement Asim, we define the overloaded
function assimilate:

class Asim a where
assimilate :: a -> a -> Reader Permutations a

Its signature already gives away that this function is not a direct implementation of
Asim. Recall that

Asim(λa. t, λa′. t′) = λa.Asim(t, (a a′) · t′).

Implementing this definition directly would result in traversing t′ twice – once to
apply (a a′) and a second time to assimilate the result and t. Instead of applying
permutations right when we find them, we collect a list of permutations and apply
them in order when needed.
In order to apply permutations to terms, we define the overloaded function

applyPerm:

class Perm a where
applyPerm :: a -> Reader Permutation a

along with a helper data type and functions:

32



4.5. BINDER ASSIMILATION

-- in CoreDiff.XAst:
data XBinderUniqueName = XBinderUniqueName T.Text Unique

deriving (Eq)
xBinderUniqueName :: XBinder UD -> XBinderUniqueName
xBinderSetUniqueName :: XBinderUniqueName -> XBinder UD -> XBinder UD

-- in CoreDiff.Assimilate:
data Permutations = [(XBinderUniqueName, XBinderUniqueName)]
mkPerm :: XBinder UD -> XBinder UD -> (XBinderUniqueName, XBinderUniqueName)

applyPerm uses the Reader monad as well, which makes it easier to use within
assimilate. The central instance of Perm is the one for XBinder UD, which im-
plements the permutation defined in [2, Sec. 3]. This instance applies the list of
permutations to a binder from left to right and applies it to the binder’s type or kind,
depending on whether it binds an expression or a type. Note that in assimilate,
we add new permutations at the end of the permutation list so that they are in fact
applied last.

There is also a trivial instance Perm (XExpr UD) which applies the permutations
to each binder and recurses into all subterms.

33





5. Evaluation
In this chapter, we will demonstrate our implementation by repeating the example
from Chapter 2 using CoreDiff instead of diff. Thereafter we compare CoreDiff and
diff in terms of how many differences they found in the GHC invocations of three
example modules.

5.1. Example: T18231.hs
In this section, we will do the same comparison as in Chapter 2, this time using
CoreDiff instead of diff.
For the first pass, Desugar (after optimization), CoreDiff outputs:

m_rm7 and m_rm0 are equivalent
$trModule_rP0 and $trModule_rMB are equivalent

We can see that after assimilating the binders in these bindings, they are equal.
For the second pass, the initial Simplifier run, CoreDiff outputs:

$trModule_sQf and $trModule_sNX are equivalent
$trModule_sQd and $trModule_sNV are equivalent
--- a'_sRd
+++ a'_sOV
@@ -1,6 +1,8 @@
[LclId,
Arity=1,

- Occ=Strong Loopbrk]
+ Occ=Strong Loopbrk,
+ Str=<L,U>b,
+ Cpr=b]
a'_sRd ::

Int -> (Identity ((,) () Int))
a'_sRd =

$trModule_sQg and $trModule_sNY are equivalent
$trModule_sQe and $trModule_sNW are equivalent
--- m_rm7
+++ m_rm0
@@ -1,5 +1,7 @@
[LclIdX,
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Arity=1,
- Occ=Many]
+ Occ=Many,
+ Str=<L,U>b,
+ Cpr=b]
m_rm7 :: State Int ()
m_rm7 = a'_sRd

$trModule_sP0 and $trModule_sMB are equivalent

Here, we can see that all $trModule bindings have been paired correctly. In m and
a', no differences are found except for their attached metadata.

For the next pass, the first Float out pass, we omit m and the $trModule bindings.
The part of CoreDiff’s output relevant to us is the following:

--- a'_sRd
+++ a'_sOV
@@ -1,13 +1,12 @@
[LclId,
Arity=1,

- Occ=Strong Loopbrk]
+ Occ=Strong Loopbrk,
+ Str=<L,U>b,
+ Cpr=b]
a'_sRd ::

Int -> (Identity ((,) () Int))
a'_sRd =

\ s1_aQH ->
case s1_aQH of wild_aQW {

- I# x_aQX ->
- a'_sRd
- (GHC.Types.I#
- (GHC.Prim.+# x_aQX 1#))
+ I# x_aQX -> lvl_sP3 x_aQX

}
--- No match
+++ lvl_sP3
@@ -0,0 +1,12 @@
+[LclId,
+ Arity=1,
+ Occ=Many,
+ Str=<L,U>b,
+ Cpr=b]
+lvl_sP3 ::
+ Int# -> (Identity ((,) () Int))
+lvl_sP3 =
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+ \ x_aOF ->
+ a'_sRd
+ (GHC.Types.I#
+ (GHC.Prim.+# x_aOF 1#))

Compared to the diff output from Section 2.3, it is much clearer that a new binding
has been introduced: Because lvl could not be paired with a binding in the module
generated by GHC 8.92de9e, each of its lines are marked as insertions. In a', we
can observe that not only its metadata changed, but also the right-hand side of the
case expression’s alternative. There are no interleaved lines because bindings are
compared individually.

5.2. Comparing diff and CoreDiff
In order to get a broader sense of how CoreDiff and diff compare, we used them
to find the differences in the invocations of different GHC versions. Three modules
were used as examples.

5.2.1. Methodology
For our comparison, we compiled each example file using different compilers and
different compiler options.

Compiler versions

We chose the same compiler versions as in the previous chapters: GHC 8.92de9e is a
GHC HEAD checkout from June 2020 1. GHC 9.ef0dbc is the latest commit from
GHC merge request !4207 from October 2020 2. We chose these versions because the
merge request in question gives several typical examples of CoreDiff’s use case.

Tested modules

In order to find suitable testcases, we looked through merge request !4207. We used
module T18231.hs (listed in Appendix A.1), which we already used in previous
sections, and module T13031.hs (listed in Appendix A.2), which also compiles
differently on the given GHC versions.

Additionally, we consider another module Fac.hs (listed in Appendix A.3), which
simply contains a faculty function. This module is used to showcase CoreDiff’s
behavior for compilations that behave similarly for both GHC versions.

Comparison methods

We use three methods to compare Core programs:
1Git commit hash: 92de9e25aa1a6f7aa73154868521bcf4f0dc9d1e
2Git commit hash: ef9dbc8f403194d4422a551bf6874c6d532f92bd
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Textual difference with uniques The first comparison invokes GHC with a selec-
tion of options that suppress some unwanted information:

$ ghc -O2 <module> \
-dverbose-core2core -dsuppress-unfoldings \
-dsuppress-ticks -dsuppress-coercions

We chose these options because unfoldings, ticks and coercions are not handled by
CoreDiff either. The flag -dverbose-core2core makes GHC print the result of each
Core-to-Core pass. We save the output of each pass into a single file and compare
them using:

$ diff -u --color=always file1.txt file2.txt

Textual difference without uniques The second comparison also uses diff, but
adds -dsuppress-uniques to the list of GHC options to suppress the output of
uniques. We chose this comparison because it is an established approach to solve
the same problems CoreDiff does.

CoreDiff Finally, we compare the programs using CoreDiff. To compare two passes
exported by ghc-dump using CoreDiff, we invoke:

$ corediff diff file1.cbor file2.cbor

The files exported by ghc-dump are simply numbered in the order of their passes.
Table 5.1 lists the passes and their file’s number for invocations of GHC 8.92de9e
and GHC 9.ef9dbc with the flag -O2.

Metric

In order to find the differences between these configurations, we compare the number
of differences they find for each compilation pass of a given file. We do so by adding
up the number of insertions and deletions a certain invocation of diff or CoreDiff
finds.

5.2.2. Results
Table 5.2 shows for each Core-to-Core pass, how many differences between GHC
versions each combination of test module and comparison method found. We can
see that hiding uniques already reduces the number of differences found significantly.

T18231

Figure 5.1 shows how many differences each comparison method found for the Core-
to-Core passes of T18231.hs. The graphs for the two textual comparisons have a
very similar shape. The graph for CoreDiff differs drastically in three passes: The two
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Short Core-to-Core pass GHC 8.92de9e GHC 9.ef9dbc
DS Desugar 0000 0000
SI Simplifier/initial 0001 0001
SP Specialise 0002 0002
FO Float out 0003 0003
– Simplifier/main2 0004 0004
– Simplifier/main1 0005 0005
SM Simplifier/main0 0006 0006
FI Float in 0007 0007
CA Called arity analysis 0008 0008
SA Simplifier/post-call-arity 0009 0009
DA Demand analysis 0010 0010
CP Constructed Product Result analysis 0011 0011
WW Worker Wrapper binds 0012 0012
SW Simplifier/post-worker-wrapper 0013 0013
EX Exitification transformation 0014 0014
FO Float out 0015 0015
CS Common sub-expression 0016 0016
FI Float inwards 0017 0017
– Simplifier/final – 0018
LC Liberate case 0018 0019
SL Simplifier/post-liberate-case 0019 0020
SC SpecConstr 0020 0021
– Simplifier/post-spec-constr – 0022
CS Common sub-expression 0021 0023
– Simplifier/final 0022 –
– Simplifier/post-final-cse – 0024
DA Demand analysis 0023 0025

Table 5.1.: File numbers for -O2 Core-to-Core passes exported by ghc-dump for
GHC 8.92de9e and GHC 9.ef9dbc. GHC 9.ef9dbc applies two more
passes and applies its “Simplifier/final phase” earlier. The shorthands
are used as labels for the diagrams below.
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Figure 5.1.: Differences found in T18231.hs

“Float out” (FO) passes and the “Liberate case” (LC) pass. The spike of differences
found by the textual comparisons is because this pass adds metadata to bindings
that is not exported by ghc-dump and consequently not considered by CoreDiff. The
reason for the contrast in the float out passes stems from the fact that CoreDiff marks
each line of an unpaired binding as a difference, while the textual comparisons may
interleave it with the rest of the program and find “similarities”, e.g. in metadata or
formatting.
For the remaining passes, CoreDiff consistently finds fewer differences than the

diff comparison without uniques. There are two reasons for this: Firstly, CoreDiff
assimilates not only uniques, but also binder names; see for example Section 2.2.1.
Secondly, there is some metadata that is not exported by ghc-dump and therefore
not considered by CoreDiff. These differences are found in the raw GHC output but
not by CoreDiff.

T13031

Figure 5.2 shows how many differences each comparison method found for the Core-
to-Core passes of T13031.hs. We can see that for this module, CoreDiff’s results
are closer to the diff comparison with uniques. The cause is the initial simplifier
(SI) step: In this step, the two versions of GHC give the binding f different numbers
of arguments:
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Figure 5.2.: Differences found in T13031.hs

f_r3P =
- \ ds_dy1 ->
+ \ ds_dy1 eta_B0 eta_B1 ->

Because of this change in f’s structure, CoreDiff does attempt to pair the binders
within it. This is noticeable especially in the first Float out step, where terms of
f are moved into global bindings by both versions of GHC. While diff without
uniques matches them because they appear in the same order, CoreDiff marks all
their lines as differences.

Fac

To conclude, we present an example of a compilation that proceeds almost exactly
the same in GHC 8.92de9e and GHC 9.ef0dbc. Even though this example is very
simple, GHC creates three new top level bindings in the first float out step, all of
which are correctly paired and deemed equivalent by CoreDiff.

As we can see in Figure 5.3, CoreDiff finds no differences for most passes from
Fac.hs’s compilation, with two exceptions: In the first demand analysis (DA) pass,
there is a change in a binder’s strictness signature, which is marked as a difference
by CoreDiff. In the first common sub-expression (CS) pass, both versions generate a
top level binding that does not transitively occur in any exported binding. Therefore,
CoreDiff marks both bindings as differences.
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Figure 5.3.: Differences found in Fac.hs
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6. Conclusion
In this thesis, we developed a comparison tool for GHC Core programs that improves
upon purely textual differencing. In Chapter 2, we laid out an exemplary use case
and the challenges it provided. In Chapter 3, we gave a broad theoretical overview
of the meat of our implementation, which we described in more detail in Chapter 4.
We evaluated our implementation by comparing it to the established approach in
Chapter 5.
Our results for T18231.hs and Fac.hs show that CoreDiff works well for Core

programs that are very similar: α-equivalent parts of programs are reported as such
while changes in metadata and structure are emphasized.

However, this emphasis on structural differences makes CoreDiff unfit for comparing
Core programs that do not share the same structure. This was illustrated by example
of T13031.hs, in which the binding f was compiled differently by the two tested
versions of GHC.

This means that CoreDiff is suitable for the use case described in Chapter 2:
Finding the first Core-to-Core pass during a compilation that produces different
results for two given versions of GHC.

6.1. Future Work
This thesis provides a basic framework for comparing Core programs, particularly
the pairing of bindings (see Section 3.1) and binder assimilation (see Section 3.2).
There are multiple opportunities to improve CoreDiff’s results by improving these
procedures.

6.1.1. Fuzzy structural matching
Some terms generated by different versions of GHC are structured in similar but
not quite equal ways. So far, CoreDiff considers these to be completely different
from one another. For example, in T13031.hs we encountered a function that was
given a different number of parameters by the two versions of GHC we compiled it
with. This led to CoreDiff not finding pairings for top level bindings used in its body.
As possible solution could be to consider curried functions as functions of multiple
parameters and pairing their parameters by inspecting their bodies’ disagreeing free
variables. There are similar opportunities for non-exact structural matching that
can be explored.
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6.1.2. Pairing algorithm
If two versions of GHC float out terms of a program in different ways, CoreDiff
is unable to pair these floated out bindings and consequently does not compare
them. This could be solved by inlining non-exported bindings in such a way that the
resulting terms have similar structures on both sides.
Another approach we implemented in an earlier version of CoreDiff but did not

pursue much further is to offer an interactive shell where pairings can be entered
manually. This could be handy for bigger programs where the current pairing
algorithm is insufficient.

6.1.3. Tree-based differencing output
In Section 3.3, we derived a basic tree-based differencing algorithm from the one
given in [3]. CoreDiff uses this algorithm to show differences in Core terms by
pretty-printing their spine. This output is unfamiliar compared to the output of
diff, which deterred us from considering it a viable alternative. Perhaps this could
be solved by transforming the spine into a more familiar output format.
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A. Appendix

A.1. T18231.hs
From the GHC test suite: simplCore/should_compile/T18231.hs.

module T18231 where

import Control.Monad (forever)
import Control.Monad.Trans.State.Strict

m :: State Int ()
m = forever $ modify' (+1)

A.2. T13031.hs
From the GHC test suite: stranal/should_compile/T13031.hs.

{-# LANGUAGE MagicHash #-}

module Foo( f ) where
import GHC.Prim

f True = raise# True
f False = \p q -> raise# False

A.3. Fac.hs
module Fac where

fac 0 = 1
fac n = n * fac (n-1)
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