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Abstract. The Incredible Proof Machine is an easy and fun to use
program to conduct formal proofs. It employs a novel, intuitive proof
representation based on port graphs, which is akin to, but even more
natural than, natural deduction. In particular, we describe a way to
determine the scope of local assumptions and variables implicitly. Our
practical classroom experience backs these claims.

1 Introduction

How can we introduce high-school students to the wonderful world of formal logic
and theorem proving?

Manual proofs on paper are tedious and not very rewarding: The students
have to learn the syntax first, and whatever they produced, they would have to
show it to a teacher or tutor before they knew if it was right or wrong.

Interactive theorem provers can amend some of these problems: These com-
puter programs give immediate feedback about whether a proof is faulty or
correct, allow free exploration and can be somewhat addictive – they have been
called “the world’s geekiest computer game” for a reason. Nevertheless, the stu-
dents still have to learn the syntax first, and beginners without any background
in either logic or programming, initially face a motivationally barren phase.

Therefore we built an interactive theorem prover that allows the students to
start conducting proofs immediately and without learning syntax first. With The
Incredible Proof Machine (http://incredible.pm/) the student just drags blocks –
which represent assumptions, proof rules and conclusions – onto a canvas and
wires them up, using only the mouse or a touch interface. A unification-based
algorithm infers the propositions to label the connections with. Once everything
is connected properly, such a graph constitutes a rigorous, formal proof.

If one thinks of assumptions as sources of propositions, conclusions as con-
sumers of propositions, and proof rules as little machines that transform propo-
sitions to other propositions, then the connections become conveyor belts that
transport truth. This not only justifies the name of the software, but is – in
our opinion – a very natural representation of how the human mind approaches
proving.

Another way of thinking about the Incredible Proof Machine is that it is the
result of taking a graphical programming language (e.g. LabView’s G [8]) and
mangling it through the Curry–Howard correspondence.

http://incredible.pm/


The contributions of this paper are:
– We introduce a visual and natural representation of proofs as graph, which

is generic in the set of proof rules. In contrast to previous approaches, it
supports locally scoped variables and hence predicate logics.

– We infer the scope of local assumptions and variables implicitly from the graph
structure, using post-dominators, instead of expecting an explicit declaration.
This is a novel way to implement the usual freshness side-conditions.

– We give a formal description of such graphs, define when such a graph
constitutes a valid formal proof, and sketch its relation to conventional
natural deduction.

– The Incredible Proof Machine provides an intuitive and beginner-friendly way
to learn about logic and theorem proving. We describe its interface design
and its implementation.

– We report on our practical experience with the tool, including the results of
a standard usability questionnaire.

2 Proof graphs

We begin with a user-level introduction to graphical proofs, as they are used in
the Incredible Proof Machine. We put the focus on motivating and explaining the
elements of such a proof and giving an intuition about them and defer a rigorous
treatment to the subsequent section.

2.1 Conclusion and assumption

What is the intuitive essence of a proof? We assume certain propositions to be
true. From these assumption, we conclude that further propositions are true,
using the rules of the logic at hand. Eventually we construct a proposition that
matches what we want to prove, i.e. the conclusion. In the simplest case, the
conclusion is among the assumptions, and the proof is trivial.

A AA

Fig. 1. A very trivial proof

If we depict such a proof, the picture in Fig. 1 might come up: A block
representing the assumption, a second block representing the conclusion, and
a line between them to draw the connection. Both blocks are labelled with the
proposition they provide resp. expect, namely A, and the line is also labelled
with the proposition. This is a valid proof, and the conclusion turns green.

It is worth pointing out that in these proof graphs, the train of thought runs
from left to right. Hence, assumptions have ports (the little grey circles where
connections can be attached to) on their right, and conclusions on their left. Such
outgoing and incoming ports also have different shapes. The system does not
allow connections between two outgoing or two incoming ports.
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Fig. 2. A very wrong proof

A

Fig. 3. A very incomplete proof

A wrong proof is shown in Fig. 2, where the proposition of the assumption
(B) differs from the proposition of the conclusion (A). Thus, these blocks cannot
legally be connected, the false connection is red, and a scary symbol explains the
problem. Needless to say, the conclusion is not green.

Similarly, the conclusion in Fig. 3 is not green, as the proof is incomplete.
This is indicated by a red port. In general, anything red indicates that the proof
is either incomplete or wrong.

2.2 Rule blocks

To conduct more than just trivial proofs, we need more blocks. These correspond
to the inference rule of the underlying logic. Figure 4 shows some typical proof
blocks and the corresponding natural deduction rule(s) in conventional inference
rule format (antecedents above, consequent below the line).

X Y

X ∧ Y

X ∧ Y

X

X ∧ Y

Y

X → Y X

Y

∧X
Y X∧Y ∧X∧Y X

Y →X→Y
X Y

Fig. 4. Some natural deduction rules and their proof block counterparts

Again, incoming ports (on the left) indicate prerequisites of a rule, while
outgoing ports (on the right) correspond to the conclusions of a rule. In contrast
to usual inference rules, rule blocks can have multiple conclusions, so both
conjunction projection rules are represented by just one block. If only one of the
conclusions is needed, the other outgoing ports would simply be left unconnected.
Unlike unconnected prerequisites, this does in no way invalidate a proof.

The graph in Fig. 5 shows a proof that from A ∧B and A→ B → C we can
conclude C. Note the connection labels, which indicate the proposition that is
“transported” by a connection.

A→(B→C)

A∧B

C→A→(B→C)
→B→C

∧

A
BA∧B

C

Fig. 5. A more complex proof



2.3 Local hypotheses →X Y X→Y

Fig. 6. Implication introduction
Figure 4 shows both the introduction and elim-
ination rule for conjunction, as well as the elim-
ination form for implication (modus ponens) – clearly we are missing a block
that allows us to introduce the implication. Such a block would produce output
labelled A → B if given an input labelled B, where the proof for this B may
make use of A. But that local hypothesis A must not be used elsewhere! This
restriction is hinted at by the shape of the implication introduction block in
Fig. 6, where the dent in the top edge of the block suggests that this block will
encompass a subproof. To support this, the block – colloquially called a “sliding
calliper” – can be horizontally expanded as needed.

The graph in Fig. 7 shows the simplest proof using the calliper: By connecting
the port of the local hypothesis A with the assumption A, we obtain a valid proof
of A→ A.

A→A→ A→AA

Fig. 7. Implication done right

B
→

B

B→Y₂

Fig. 8. Implication done wrong

The graph next to it (Fig. 8) shows an invalid use of the implication intro-
duction block: The hypothesis is not used locally to prove the assumption of
the block, but is instead connected directly to the conclusion of the proof. The
Incredible Proof Machine allows the user to make that connection, but complains
about it by colouring it in red.

In this picture you can see that despite the proof being in an invalid state, the
system determined that the implication produced by this block would have B as
the assumption, and a not yet determined proposition Y2 as the conclusion. The
ability to work with partial and even wrong proofs is an important ingredient to
a non-frustrating user experience.

·∨X X∨Y ∨·Y X∨Y ∨ X
YX∨Y P

P P

Fig. 9. Disjunction introduction and elimination rules

A block can have more than one local hypothesis, with different scoping rules.
An example for that is the elimination block for disjunction, shown in Fig. 9. In
this case, the conclusion of the block (P ) is the same as the local goal on each
side of the block. This seems to be a bit redundant, but is necessary to delimit
the scope of the two local hypotheses, respectively, and to keep the two apart –
after all, using the local hypothesis from one side in the proof of the other side
leads to unsoundness (Fig. 10).



A∨B A∨A∨B A

A
A

Fig. 10. A local hypotheses of the disjunction block used wrongly.

2.4 Predicate logic

So far, the user can only conduct proofs in propositional logic, which is a good
start for beginners, but gets dull eventually. Therefore the Incredible Proof
Machine also supports predicate logic. This opens a whole new can of worms, as
the system has to keep track of the scope of local, fixed variables.

∀P(c) ∀x.P(x) ∀∀x.P(x) P(y)

∃P(y) ∃x.P(x) ∃ P(c)∃x.P(x) Q Q

Fig. 11. Blocks for quantifiers

The additional rules are shown in Fig. 11. The introduction rule for the
existential quantifier (bottom left) and the elimination rule for the universal
quantifier (top right) are straight forward: If one can prove P (y) for some term
y, then ∃x.P (x) holds, and conversely if one has ∀x.P (x), then P (y) holds for
some term y.

At the first glance, it seems strange that the introduction rule for the universal
quantifier (top left) has the same shape as the one for the existential quantifier.
But there is a small difference, visible only from the naming convention: To
obtain ∀x.P (x) the user has to prove P (c) for an (arbitrary but fixed) constant
c.

Furthermore, and not visible from the shape of the block, is that this constant
c is available only locally, in the proof of P (c). To enforce this, the Incredible
Proof Machine identifies those proof blocks from where all paths pass through
the universal quantifier introduction block on their way to a conclusion, and only
the free variables of these blocks are allowed to be instantiated by a term that
mentions c. This restriction implements the usual freshness side condition in an
inference rule with explicit contexts:

Γ ` P (c) c does not occur in Γ
Γ ` ∀x.P (x)

Such a local constant is also used in the elimination rule for the existential
quantifier (bottom right), where in order to prove a proposition Q, we may use
that P (c) holds for some constant c, but this constant may only occur in this part
of the proof, and moreover the proposition P (c) is a local hypothesis (Section 2.3)
and may not escape this scope.



∀x.P(x) ∃x.P(x)∃ ∃x.P(x)∀ P(y₄)∀x.P(x)

Fig. 12. A proof that ∀x.P (x) entails ∃x.P (x).

In this formulation of predicate logic, the universe is unspecified, but not
empty. In particular, it is valid to derive ∃x.P (x) from ∀x.P (x) (Fig. 12).

The asymmetry in Fig. 11 is striking, and the question arises why the elim-
ination block for the existential quantifier would not just produce P (c) as its
output, forming a proper dual to the universal quantifier introduction block. This
could work, but it would require the Incredible Proof Machine to intelligently
determine a scope for c; in particular it had to ensure that scopes nest properly.
With some scopes extending backwards (universal quantifier introduction) and
some forwards (existential quantifier elimination), automatically inferring sensible
and predictable scoping becomes tricky, so we chose to use a block shape that
makes the scope explicit. More on scopes in Section 3.2.

2.5 Helper block ✎PP P

Fig. 13. The helper block

With full-scale theorem provers such as Isabelle or
Coq it is quite helpful to break down a proof into
smaller steps and explicitly state intermediate
results. The same holds for the Incredible Proof Machine, and is made possible
using the so-called helper block, shown in Fig. 13. Once placed in the proof area,
the user can click on it and enter a proposition, which is then both assumed and
produced by this block. Logically, this corresponds to a use of the cut rule.

The block is also useful if the desired proposition is not inferred, which can
be the case with partial proofs, especially if quantifiers are involved.

2.6 Custom blocks

After performing a few proofs with the Incredible Proof Machine, the user soon
notices that some patterns appear repeatedly. One such pattern would be a
proof by contradiction, which consists of the three blocks highlighted in Fig. 14:
Tertium non datur, disjunction elimination and ex falso quodlibet. (Note that
the negation of X is expressed as X → ⊥.)

(A→⊥)→⊥ A

∨

A

TND A

⊥ A→
(A→⊥)→⊥

⊥A→⊥

A∨(A→⊥)

Fig. 14. A primitive proof of double negation elimination



⚒P→⊥ P⊥

Fig. 15. A custom block

When the user has selected a part of the
proof this way (by shift-clicking), he can create a
custom block that represents the selected proof
fragment. In this case, the custom block would
look as in Fig. 15, and with that block, which now
directly represents a proof by contradiction, the whole proof is greatly simplified
(Fig. 16). This mechanism corresponds to the lemma command in, say, Isabelle.

(A→⊥)→⊥

A
→(A→⊥)→⊥

⚒A→⊥ ⊥
A

Fig. 16. A shorter proof of double negation elimination

2.7 Custom logics

The rule blocks, and hence the underlying logic, are not baked into the Incredible
Proof Machine, but read from a simple text file. Figure 17 shows the declaration
of the first disjunction introduction block, the implication introduction block and
the universal quantifier introduction block.

rules:
- id: disjI1

desc:
intro: ·∨

free: ["X","Y"]
ports:

in:
type: assumption
proposition: X

out:
type: conclusion
proposition: X∨Y

- id: impI
desc:

intro: →

free: ["X","Y"]
ports:

hyp:
type: local hypothesis
consumedBy: in

proposition: X
in:

type: assumption
proposition: "Y"

out:
type: conclusion
proposition: X→Y

- id: allI
desc:

intro: ∀

free: ["P"]
local: ["c"]
ports:

in1:
type: assumption
proposition: P(c)
scoped: ["c"]

out2:
type: conclusion
proposition: ∀x.P(x)

Fig. 17. Extract of predicate.yaml, where the rule blocks are defined

Each rule needs to have an identifier (id), but may specify a more readable
description (desc), which includes a hint towards what side of the block the



description should be aligned. The next two fields specify which variables in the
following propositions are free, i.e. may be instantiated upon connecting the
blocks, and which are local, i.e. different for each instance of the block.

Then the list of ports is indexed by an arbitrary identifier (in, out, . . . ).
A port has a type, which is assumption, conclusion or local hypothesis. In
the latter case, this port may only be used towards proving the port specified
in the consumedBy field. Every port specifies the proposition that is produced
resp. expected by this block. A local constant (such as the c in rule allI) is
usually scoped by a port of type assumption (see Sections 2.4 and 3.2).

It is simple to experiment with completely different logics, without changing
the code. For example, we have implemented a Hilbert-style system for propo-
sitional logic (one rule block for modus ponens and three rules blocks for the
axioms) and the typing derivations of the simply typed lambda calculus.

A similar file specifies the pre-defined tasks, which can be grouped into sessions,
and each session can use a different logic, or – for an educational progression
between the sessions – can show only a subset of a logic’s rules.

Naturally, none of these files are user-visible. They would, however, provide
the mechanism by which an educator who wants to use the Incredible Proof
Machine in his course, simply by editing the rules and tasks therein as desired.

3 Theory

The previous section has (intentionally) only scratched the surface of the Incredible
Proof Machine, and avoided some more fundamental questions such as: What
precisely makes up a proof graph (and what is just cosmetic frill)? When is it
valid? And what does it actually prove?

These questions are answered in this section with some level of formalism. In
particularly, we define when the shape of a proof graph is valid (e.g. no cycles,
local hypotheses wired up correctly) and when scoped variables are used correctly.
While we use the language of port graphs as introduced in [2], the notion of a
well-shaped graph is a new contribution.

3.1 Port graphs

In contrast to those in [2], our port graphs are directed.

Definition 1 (Port graph signature). A (directed) port graph signature ∇
over a set N of node names and a set P of port names consists of the two
functions →∇ : N → 2P and ∇→ : N → 2P , which associate to a node name the
names of its incoming resp. outgoing ports.

Definition 2 (Port graph). A (directed) port graph G over a signature ∇ is
a tuple (V, n,E) consisting of
– a set V of vertices,
– a function n : V → N to associate a node to each vertex and



– a multiset E ⊆ (V × P) × (V × P) of edges such that for every edge
(v1, p1)—(v2, p2) ∈ E we have p1 ∈ ∇→(n(v1)) and p2 ∈ →∇(n(v2)).

The notation s— t used for an edge is just syntax for the tuple (s, t).

We need a number of graph-theoretic definitions.

Definition 3 (Path). A path in G is a sequence of edges (v1, p
′
1)—(v2, p2),

(v2, p
′
2)—(v3, p3), . . . , (vn−1, p′n−1)—(vn, pn) ∈ E. The path begins in (v1, p

′
1)

(or just v1) and ends in (vn, pn) (or just vn).

Definition 4 (Terminal node, pruned graph). A node n ∈ N is called a
terminal node, if ∇→(n) = {}, and a vertex v ∈ V is called a terminal vertex if
n(v) is a terminal node. A graph is called pruned if every vertex v is either a
terminal vertex, or there is a path from v to a terminal vertex.

3.2 Scopes

The key idea to support both local assumptions and scoped variables is that the
scope of a local proof can be implicitly inferred from the shape of the graph.

It is desirable to have as large as possible scopes, so that as many proof graphs
as possible are well-scoped. On the other hand, the scopes must be small enough
to still be valid. This motivates

Definition 5 (Scope). In a port graph G = (V, n,E), the scope of an incoming
port (v, p) with p ∈ →∇(n(v)) is the set S(v, p) ⊆ V of vertices post-dominated
by the port. More precisely: v′ ∈ S(v, p) iff v′ is not a terminal vertex and every
path that begins in v′ and ends in a terminal vertex passes through (v, p).

As an indication that this is a sensible definition, we show that the scopes nest
the way one would expect them to. We restrict this to pruned graphs; pruning a
graph removes only unused and hence irrelevant parts of the proof.

Lemma 1 (Scopes nest). Let G = (V, n,E) be a pruned graph. For any two
(v1, p1) and (v2, p2) with vi ∈ V and pi ∈ →∇(n(vi)) (i = 1, 2), we have S(v1, p1) ⊆
S(v2, p2) or S(v2, p2) ⊆ S(v1, p1) or S(v1, p1) ∩ S(v2, p2) = {}.

Proof. We show that S(v1, p1) ∩ S(v2, p2) 6= {} implies S(v1, p1) ⊆ S(v2, p2) or
S(v2, p2) ⊆ S(v1, p1).

Let v ∈ S(v1, p1) ∩ S(v2, p2). The vertex v is not terminal, so there is a path
from v to a terminal node, and it necessarily passes through (v1, p1) and (v2, p2).
W.l.o.g. assume (v1, p1) occurs before (v2, p2) on that path. Then all paths from
(v1, p1) to a terminal node go through (v2, p2), as otherwise we could construct a
path from v to a terminal node that does not go through (v2, p2).

Now consider a v′ ∈ S(v1, p1). All paths to a terminal node go through (v1, p1),
and hence also through (v2, p2), and we obtain S(v1, p1) ⊆ S(v2, p2).



3.3 Graph shapes

The above definition of scopes allows us to say how a local hypothesis needs to
be wired up. We also need a relaxed definition of acyclicity.

Definition 6 (Local hypothesis). A local hypothesis specification for a graph
signature ∇ is a partial function hn : P ⇀ P for every n ∈ N such that hn(p) = p′

implies p ∈ ∇→(n) and p′ ∈ →∇(n). In that case, p is a local hypothesis of n and
p′ defines its scope.

Definition 7 (Well-scoped graph). A port graph G = (V, n,E) with a local
hypothesis specification h is well-scoped if for every edge (v1, p1)—(v2, p2) where
hn(v1)(p1) = p′ we have (v2, p2) = (v1, p

′) or v2 ∈ S(v1, p′).

Definition 8 (Acyclic graph). A port graph G = (V, n,E) with a local hy-
pothesis specification h is acyclic if there is no path connecting a node to itself,
disregarding paths that pass by some local hypothesis, i.e. where there is a (v, p)
on the path with p ∈ domhn(v).

Definition 9 (Saturated graph). A port graph G = (V, n,E) is saturated if
every (v, p) with p ∈ →∇(n(v)) is incident to an edge.

To summarise when a graph is in a good shape to form a proof, we give

Definition 10 (Well-shaped graph). A port graph G is well-shaped if it is
well-scoped, acyclic and saturated.

3.4 Propositions

So far we have described the shape of the graphs; it is about time to give them
meaning in terms of logical formulas. We start with propositional logic (no binders
and no scoped variables) first.

Definition 11 (Formulas). Let X be a set of variables, and FX a set of for-
mulas with variables in X.

Definition 12 (Labelled signature). A port graph signature ∇ is labelled by
formulas l : N ×P → FX .

For two vertices v1, v2 with the same node name, the free variables of the
formulas need to be distinct. So in the context of a specific graph, we annotate
the variables with the vertex they originate from:

l′ : V × P → FX×V
l′(v, p) = l(n(v), p)[xv/x | x ∈ X ]

We use the subscript syntax xv to denote the tuple (x, v).
The Incredible Proof Machine employs a unification algorithm to make sure

the formulas expected on either side of an edge match, if possible. Here, we
abstract over this and simply require a unifying substitution, which we model as
a function.



Definition 13 (Instantiation). An instantiation for a port graph G with a
labelled signature is, for every vertex v ∈ N , a function θv : FX×N → FX×N .

Definition 14 (Solution). An instantiation θ for a port graph G with a la-
belled signature is a solution if for every edge (v1, p1)—(v2, p2) ∈ E we have
θv1(l

′(v1, p1)) = θv2(l
′(v2, p2)).

Definition 15 (Proof graph). A proof graph is a well-shaped port graph with
a solution.

3.5 Scoped variables

To support binders and scoped variables, we need to define which variables
are scoped (a property of the signature), and then ensure that the scopes are
adhered to (a property of the graph). For the latter we need – a bit vaguely, to
stay abstract in the concrete structure of terms – the notion of the range of an
instantiation, ran θi ⊆ X ×N , which is the set of free variables of the formulas
that the substitution substitutes for.

Definition 16 (Scoped variables). A port graph signature ∇ can be annotated
with variable scopes by a partial function sn : X ⇀ P, for every n ∈ N , where
sn(x) = p implies p ∈ →∇(n).

Definition 17 (Well-scoped instantiation). An instantiation θ for a port
graph G with a labelled signature and scoped variables is well-scoped if for every
scoped variable x, i.e. sn(v)(x) = p for some vertex v ∈ V , x ∈ ran θv′ implies
that v′ ∈ S(v, p).

In the presence of scoped variables, we extend Definition 15 to

Definition 18 (Proof graph). A proof graph is a well-shaped port graph with
a well-scoped solution.

3.6 Example

After this flood of definitions, let us give a complete and comprehensive example.
To prove that ∃x.(P(x) ∧Q(x)) entails ∃x.P(x) (where the bold P indicates

a constant, not a variable in the sense of X ), we would use node names N =
{a, c, exE, conjE, exI} and port names P = {in, out, in2, out2}. The (labelled
and scoped) signature is given by

→∇(a) = {} ∇→(a) = {out}
→∇(c) = {in} ∇→(a) = {}

→∇(exE) = {in, in2} ∇→(exE) = {out, out2}
→∇(conJ) = {in} ∇→(conjE) = {out, out2}
→∇(exI) = {in} ∇→(exI) = {out}



∃x.P(x)∧Q(x)

∃x.P(x)∃

∃x.P(x)∧Q(x)
∧

∃P(c₃)
∃x.P(x)P(c₃)∧Q(c₃)

∃x.P(x)

Fig. 18. A comprehensive example

l(a, out) = ∃x.(P(x) ∧Q(x)) l(c, in) = ∃x.P(x)

l(exE, in) = ∃x.P (x) l(exE, out) = P (c)

l(exE, in2) = Q l(exE, out2) = Q

l(conjE, in) = X ∧ Y l(conjE, out) = X

l(conjE, out2) = Y

l(exI, in) = P (y) l(exI, out) = ∃x.P (x)

hexE(out) = in2 sexE(c) = in2.

A well-shaped proof graph for this signature – also shown in Fig. 18 – is given
by N = {1..5}, n(1) = a, n(2) = c, n(3) = exE, n(4) = conjE, n(5) = exI and

E = {(1, out)—(3, in), (3, out)—(4, in),

(4, out)—(5, in), (5, out)—(3, in2), (3, out2)—(2, in)}.

A solution for this graph is given by these higher-order substitutions:

θ3 = [(λx.P(x) ∧Q(x))/P3, ∃x.P(x)/Q3]

θ4 = [P(c3)/X4, Q(c3)/Y4]

θ5 = [(λx.P(x))/P5, c3/y5]

Note that this is well-scoped: We have c3 ∈ ran θi only for i ∈ S(3, in2) = {4, 5}.

3.7 Proof Conclusions

In order to relate a proof graph with a proof in a given logic, we assume a
partition of the nodes N into assumptions NA, conclusions NC and rules NR,
where NA contains only assumptions (no input and precisely one output) and NC

only conclusions (no output and precisely one input). For a vertex v ∈ V with
n(v) ∈ NA ∪NC let l′(v) = l′(v, p) where p is the single outgoing resp. incoming
port of n(v).



If we assume that the nodes in NR faithfully implement the inference rules of
a natural deduction-style implementation of a given logic, we can state

Theorem 1 (Soundness and Completeness). The existence of a proof graph,
with a vertex for every conclusion (NC ⊆ n(V )), implies that from the set of
formulas {l′(v) | n(v) ∈ NA}, all formulas in {l′(n) | n(v) ∈ NC} are derivable
by natural deduction, and vice versa.

A mechanized proof of this theorem, built using the interactive theorem prover
Isabelle, can be found in the Archive of Formal Proofs [6].

The Incredible Proof Machin

Current task:

∃x.P(x)∧Q(x)

∃x.P(x)

Logics blocks:

Helper blocks:

Custom blocks:

Developers tools

Example tasks:

exall2allex

Start empty proof

ℹ 🔄

🔄

∀P(c) ∀x.P(x)

∀∀x.P(x) P(y)

∃P(y) ∃x.P(x)

∃
P(c)

∃x.P(x)
Q

Q

∧
X
Y

X∧Y

∧X∧Y
X
Y

→
X Y

X→Y

→
X→Y

X
Y

·∨X X∨Y

∨·Y X∨Y

∨
X
Y

X∨Y
P
P

P

⊥⊥ P

TND P∨(P→⊥)

✎PP P

⚒
P→⊥

P
⊥

e

∃x.P(x)∧Q(x)

∃x.P(x)∃

∃x.P(x)∧Q(x)

∧
∃

P(c₃)

∃x.P(x)
P(c₃)∧Q(c₃)

∃x.P(x)

What do you want to prove today?

Session 1

A
────────────

A

Add

Session 2

A
────────────

A

Add

A

A

A B

A

A B

B A

A B

A∧B

A

A∧A

A∧B

A

A∧B

A B

A∧B

A∧B

A∧B

B∧A

(A∧B)∧C

A B C

(A∧B)∧C

A∧C

(A∧B)∧C

A∧(B∧C)

A A→B

B

A A→A

A

A A→B B→C

C

A A→B A→C C→D
B→D

D

A→C B→C

A∧B→C

A→B A→(B→C)

A→C

B

A→B

(A→B)∧(B→A) A→C

B→C

A∧B→C

A→(B→C)

A→(B→C)

A∧B→C

(A→B)∧(A→C)

A→B∧C

A

A

A

B

A

A

A

A B

A→(B→C) A∧B

C

The Incredible Proof Machin

Current task:

∃x.P(x)∧Q(x)

∃x.P(x)

Logics blocks:

Helper blocks:

Custom blocks:

Developers tools

Example tasks:

exall2allex
switch task...

ℹ 🔄

🔄

∀P(c) ∀x.P(x)

∀∀x.P(x) P(y)

∃P(y) ∃x.P(x)

∃
P(c)

∃x.P(x)
Q

Q

∧
X
Y

X∧Y

∧X∧Y
X
Y

→
X Y

X→Y

→
X→Y

X
Y

·∨X X∨Y

∨·Y X∨Y

∨
X
Y

X∨Y
P
P

P

⊥⊥ P

TND P∨(P→⊥)

✎PP P

⚒
P→⊥

P
⊥

e

∃x.P(x)∧Q(x)

∃x.P(x)∃

∃x.P(x)∧Q(x)

∧
∃

P(c₃)

∃x.P(x)
P(c₃)∧Q(c₃)

∃x.P(x)

↶ ↷ + − 1:1 Fit ⤓

Fig. 19. The Incredible Proof Machine, task selection and proving

4 Implementation

The Incredible Proof Machine is based on web technologies (HTML, JavaScript,
SVG) and runs completely in the web browser. Once it is loaded, no further
internet connection is required – this was useful when the workshop WiFi turned
out to be unreliable. This also simplifies hosting customised versions. It adjusts
to the browser’s configured language, currently supporting English and German.

The logical core is implemented in Haskell, which we compile to JavaScript
using GHCJS. It uses the unbound library [16] to handle local names, and a
translation of Nipkow’s higher-order pattern unification algorithm [13]. There is
little in the way of a LCF-style trusted core, and the system can easily be tricked
from the browser’s JavaScript console.

The Incredible Proof Machine greets its users with a list of tasks to prove
(Fig. 19, left). Attempted tasks are highlighted yellowishly; completed tasks in
green. The main working view (Fig. 19, right) consist of a left pane, listing the
current task and the various blocks which can be dragged onto the main pane.
The interface supports undo/redo, zooming and can save the proof as an SVG
graphic.

The system continuously checks and annotates the proof, even in the pres-
ence of errors, supporting an incremental work flow. This currently happens
synchronously and it gets a little sluggish with larger proofs.



Custom blocks are also listed in the left pane, where they can be created and
deleted. The overview page allows users to quickly define new tasks.

Custom blocks, new tasks and the state of all proofs are stored in the browser
(by way of Web Storage), so a returning user can continue where he left.

An educator would customise the Incredible Proof Machine by adjusting the
files that contain the logic definition (Section 2.7) and the tasks.

All code is liberally licensed Free Software, and contributions at http://
github.com/nomeata/incredible are welcome.

5 Evaluation

The Incredible Proof Machine has been used in practice, and our experience
shows that it does indeed achieve the desired goal of providing an entertaining
low barrier entry to logic and formal proofs.

5.1 Classroom experience

Development of the Incredible Proof Machine was initiated when the author was
given the possibility to hold a four day workshop with high school students to
a topic of his choosing. The audience consisted of 13 students ages 13 to 20,
all receiving a scholarship by the START-Stiftung for motivated students with
migration background. Prior knowledge in logic, proofs or programming was not
expected, and in most cases, not present.

Within the 14 hours spent exclusively working with the Incredible Proof
Machine, the class covered the propositional content; two very apt students
worked quicker and managed most of the predicate proofs as well.

After a very quick introduction to the user interface, the procedure was to
let the students explore the next session, which was unlocked using a password
we gave them to keep everyone on the same page, on their own. They should
experiment and come up with their own mental picture of the next logical
connective, before we eventually discussed it together, explained the new content,
and handed out a short text for later reference.

We evaluated the user experience using a standardised usability questionnaire
(UEQ, [9]). The students answered 26 multiple-choice questions, which are in-
tegrated into a score in six categories. The evaluation tool compares the score
against those of 163 product evaluations. It confirms an overall positive user
experience, with the Incredible Proof Machine placed in the top quartile in the
categories Attractiveness, Dependability and Novelty and beating the averages in
Perspicuity, Efficiency and Novelty. Additional free-form feedback also confirmed
that most students enjoyed the course – some greatly – and that some found the
difficulty level rather high.

We have since used the Incredible Proof Machine two further times as a 90
minute taster course addressing high-school students interested in the mathemat-
ics and computer science courses at our university.

http://github.com/nomeata/incredible
http://github.com/nomeata/incredible


5.2 Online reception

The Incredible Proof Machine is free to use online, and “random people from the
internet” have played with it. While we cannot provide representative data on
how it was perceived, roughly two hundreds posts on online fora (Twitter, Reddit,
Hacker News)1 are an encouraging indication. Users proudly posted screenshots
of their solutions, called the Incredible Proof Machine “addictive” and one even
reported that his 11-year old daughter wants to play with it again.

A German science podcast ran a 3-hour feature presenting the Incredible
Proof Machine. [5]

6 Future Directions

We plan to continue developing the Incredible Proof Machine into a versatile and
accessible tool to teach formal logic and rigorous proving. For that we want to
make it easier to use, more educational and more powerful.

To improve usability, we envision a better visualisation of the inferred scopes,
to ease proofs in predicate logic.

To make it more educational, we plan to add an interactive tutorial mode
targeting self-learners. A simultaneous translation of the proof graph in to a
(maybe bumpy) natural language proof, with a way to explore how the respective
components correspond, will also greatly improve the learning experience.

A powerful, yet missing, feature is the ability to abstract not only over proofs
(lemmas), but also over terms (definitions). Inspired by ML’s sealing of abstract
types [12], we’d make, for a given proof, a given definition (such as ¬A := A→ ⊥)
either transparent or abstract. This would encourage and teach a more disciplined
approach to abstraction than if a definition could be unfolded locally whenever
convenient.

Proof graphs might be worthwhile to use also in full interactive theorem
provers: Consider a local proof with intermediate results in a typical Isar proof.
It would be quite natural to free the user from having to place them into a linear
order, to give names and to refer to these names when he could just draw lines!
The statefulness of Isabelle code (e.g. attribute changes, simplifier setup, etc.)
pose some interesting challenges in implementing this idea.

7 Related Work

Given how intuitive it appears to us to write proofs as graphs, we were surprised
to find little prior work on that. Closest to our approach is [1], which identified
(undirected) port graphs as defined in [2] as the right language to formulate these

1 https://twitter.com/nomeata/status/647056837062324224, https://reddit.com/mbtk2,
https://reddit.com/3m7li1, https://news.ycombinator.com/item?id=10276160, https://
twitter.com/d christiansen/status/647117704764256260, https://twitter.com/mjdominus/
status/675673521255788544, https://twitter.com/IlanGodik/status/716258636566290432

https://twitter.com/nomeata/status/647056837062324224
https://reddit.com/mbtk2
https://reddit.com/3m7li1
https://news.ycombinator.com/item?id=10276160
https://twitter.com/d_christiansen/status/647117704764256260
https://twitter.com/d_christiansen/status/647117704764256260
https://twitter.com/mjdominus/status/675673521255788544
https://twitter.com/mjdominus/status/675673521255788544
https://twitter.com/IlanGodik/status/716258636566290432


ideas in, and covers intuitionistic propositional logic. We develop their approach
further by deducing scopes from the graph structure and by supporting predicate
logic as well, and we believe that directed port graphs, as used in this work, are
more suitable to represent proofs.

The inner workings of the Incredible Proof Machine, as well as our implemen-
tation of predicate logic, were obviously influenced by Isabelle’s [14].

We looked into existing graphical and/or educational approaches to formal
logic. We particularly like Domino on Acid [4], which represents proofs as domino
pieces. It provides a very game-like experience, but is limited to propositional
proofs with → and ⊥ only. The graphical interactive tools Polymorphic Blocks
[10] and Clickable Proofs [15] support all the usual propositional connectives, but
none of these, though, support predicate logic.

There is a greater variety in tools that allow mouse-based editing of more
textual proof representations. Examples are Logitext [17], which sports a slick
interface and provides a high assurance due to the Coq [7] back end, and KeY
[3], a practical system for program verification. Easyprove [11] sticks out as it
allows the user to click their way to proper, though clumsy, English proofs. With
all these tools the user usually loses a part of his proof when he needs to change a
step done earlier, while the Incredible Proof Machine allows him to edit anything
at any time, and broken or partial proof fragments can stay around.

8 Conclusions

We lowered the entry barrier to formal logic and theorem proving by offering
an intuitive graphical interface to conduct proofs. We have used our program
in practice and found that this approach works: Young students with no prior
knowledge can work with the tool, and actually enjoy the puzzle-like experience.

We therefore conclude that the non-linear, graphical proof representation,
as presented in this work, has advantages over more conventional text-based
approach in learning logic.
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