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Abstract.
We present a new algorithm, together with a full soundness proof, which guarantees probabilistic noninterference (PN) for

concurrent programs. The algorithm follows the “low-deterministic security” (LSOD) approach, but for the first time allows
general low-nondeterminism as long as PN is not violated.

The algorithm is based on the earlier observation by Giffhorn and Snelting that low-nondeterminism is secure as long as it
is not influenced by high events [1]. It uses a new system of classification flow equations in multi-threaded programs, together
with inter-thread / interprocedural dominators. Compared to LSOD and even [1], precision is boosted and false alarms are
minimized. We explain details of the new algorithm and its soundness proof.

The algorithm is integrated into the JOANA software security tool, and can handle full Java with arbitrary threads. We apply
JOANA to a multi-threaded e-voting system, and show how the algorithm eliminates false alarms. We thus demonstrate that
low-deterministic security is a highly precise and practically mature software security analysis method.
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1. Introduction

Information flow control (IFC) analyses a program’s source or byte code for security leaks, namely
violations of confidentiality and integrity. IFC algorithms usually check some form of noninterference
[3]. Sound IFC algorithms guarantee to find all leaks, while precise algorithms generate no false alarms.
Unfortunately, perfect precision and soundness cannot be achieved together: the famous Rice theorem
states that such perfect program analysis is undecideable. Thus many algorithms and definitional varia-
tions for noninterference have been proposed, which vary in precision, scalability, language restrictions,
necessary annotations, and other factors.

Concurrent or multi-threaded programs introduce new threats to security, as nondeterminism and in-
terleaving can create subtle leaks which are much more difficult to find or prevent than in sequential
programs. For multi-threaded programs, probabilistic noninterference (PN) as introduced in [4–6] is the
established security criterion. One of the oldest and simplest criteria which enforces PN is low-security
observational determinism (LSOD), as introduced by Roscoe [7], and improved by Zdancewic, Huis-
man, and others [8, 9]. For LSOD, a relatively simple static check can be devised; furthermore LSOD
is scheduler independent – which is a big advantage. However Huisman and other researchers found

1A preliminary version of parts of this work appeared in Proc. Principles of Security and Trust (POST ’16) [2]. This work
was partially supported by DFG grants Sn11/12-1/2/3 in the scope of the priority program “Reliably Secure Software Systems”.
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subtle soundness problems in earlier LSOD algorithms (which were mostly related to nonterminating
programs), so Huisman concluded that scheduler-independent PN is not feasible [10]. Worse, LSOD
strictly prohibits any, even secure low-nondeterminism – which makes LSOD unsuitable for practical
purposes.

It is the aim of this article to demonstrate that improvements to LSOD can be devised, which invalidate
these earlier objections. An important step was already provided by Giffhorn [1, 11] who discovered that

(1) an improved definition of low-equivalent traces can solve earlier soundness problems for infinite
traces and nonterminating programs;

(2) flow- and context-sensitive program analysis is the key to a precise and sound LSOD algorithm;
(3) the latter can naturally be implemented through the use of program dependence graphs;
(4) additional support by may-happen-in-parallel analysis, precise points-to analysis and exception

analysis makes LSOD work and scale for full Java;
(5) secure low-nondeterminism can be allowed by relaxing the strict LSOD criterion, while maintain-

ing soundness.

Giffhorn’s algorithm was the first to allow low nondeterminism, while basically maintaning the LSOD
approach. The algorithm was described in detail in [1, 12]; it is integrated into the JOANA IFC tool.2

But Giffhorn’s discovery was just a first step. In this paper, we describe new improvements for LSOD,
which boost precision and reduce false alarms compared to original LSOD and even Giffhorn’s algo-
rithm. We first recapitulate technical properties of PN and LSOD. We then explain the new relaxed
LSOD (RLSOD)3 criterion in detail. It is based on the notion of dominance in threaded control flow
graphs, and on fixpoint iteration in program dependence graphs.

The main contribution of this article, as compared to the preceding conference version [2], is a full
soundness proof, which in turn led to an even more general formulation of the RLSOD criterion. RLSOD
was recently integrated into JOANA. We present a case study, namely a prototypical e-voting system
with multiple threads, as well as performance and scalability measurements.

Our work builds heavily on our earlier contributions [1, 12], but the current article is aimed to be
self-contained. We begin with an overview of the RLSOD framework and its attacker model.

2. The RLSOD framework and its assumptions

2.1. Language Assumptions

The RLSOD approach is based on Program Dependence Graphs (PDGs, see section 4.1 for details) and
thus can be used with any imperative or object-oriented language for which a PDG can be constructed.
PDGs are naturally flow- and context-sensitive, thus improving precision (see below). PDG construction
must be sound and will then fulfill the assumptions of the slicing theorem (sec. 4.1); sound PDGs have
been constructed for C, full Java (see [12]), and many other languages. Thus there are no restrictions on
language or control flow. In the current paper, we assume a simple imperative language with procedures

2see joana.ipd.kit.edu. JOANA can analyse full Java with arbitrary threads, and was applied in various projects
[13–16]. Usage of JOANA is described in [17].

3Giffhorn’s original criterion was called RLSOD in [1, 2, 18], and the new criterion was called iRLSOD in [2]. In this
article, the iRLSOD criterion and its improvements are called RLSOD, while Giffhorn’s original criterion is called “Giffhorn’s
algorithm”.
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1 void main():
2 read(H);
3 if (H < 1234)
4 print(0);
5 L = H;
6 print(L);

1 void main():
2 fork thread_1();
3 fork thread_2();
4 void thread_1():
5 read(L);
6 print(L);
7 void thread_2():
8 read(H);
9 L = H;

1 void main():
2 fork thread_1();
3 fork thread_2();
4 void thread_1():
5 longCmd();
6 print("J");
7 void thread_2():
8 read(H);
9 while (H != 0)

10 H−−;
11 print("CS");

Fig. 1. Some leaks. Left: explicit and implicit, middle: possibilistic, right: probabilistic. For simplicity, we assume that
read(L) reads low variable L from a low input channel; print(H) prints high variable H to a high output channel. Note
that reads of high variables are classified high, and prints of low variables are classified low.

and threads; a formal PDG construction for this language, together with a machine-checked soundness
proof was provided in [19]. We would however like to point out some additional assumptions for multi-
threaded programs.

We assume that statements resp. byte codes are deterministic, and that non-determinism can only arise
from scheduling choices. In particular, for a given statement, results and chosen branch (for conditionals)
only depend on values read by the statement. The program can read input via input statements and
produce output via output statements. At the beginning of execution, the START statement is the only
statement that can be scheduled.4 After executing a statement, its dynamic control flow successors can
be scheduled (i.e. for conditionals, the first statement from the chosen branch; for forks the intra-thread
successor and the first statement of the forked thread).

We therefore assume – like most other authors, e.g. [5, 20] – interleaving semantics. Under the Java
Memory Model, the compiler may, e.g. through reordering, in rare cases produce code which is not
consistent with interleaving semantics. Allowing such behavior limits static analysis considerably, so
most authors ignore this possibility.

We also assume that the program always terminates. Possibly non-terminating programs, e.g. truly
interactive programs, lead to the problem of termination leaks [21]. Subtleties regarding nontermination
are discussed in section 4.2. Since we assume terminating programs, we can ignore those problems.

2.2. Scheduler Assumptions

RLSOD requires that the scheduler is truly probabilistic. This means that for two statements c1 and
c2 that can be scheduled, the relative probability to be scheduled next is independent of other possibly
running threads, current program state, or the execution up to this point. It might however depend on the
statements c1 and c2 themselves.5 The necessity of this assumption was stressed by various authors, e.g.
[5, 22]. To illustrate it, we assume a standard low/high classification for program variables (see section
3 for details). A malicious scheduler can then easily read high values to construct an explicit flow by
scheduling, as in

4JOANA can also handle the Android Life cycle, see [13].
5Note that this is less restrictive than a uniform scheduler, where that relative probability is always 1. A truly probabilistic

scheduler on the other hand can assign priorities to statements, e.g. increase the priorities for all statements of a specific
(syntactic) thread.
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1 void thread1():
2 if (H) {
3 skip;};
4 fork thread2();
5 print(17);
6
7 void thread2():
8 print(42);

Fig. 2. Deterministic round-robin scheduling may leak.

{H=0;||H=1;} {L=0;||L=1;} :
the scheduler can leak H by scheduling the L assignments after reading H, such that the first visible L
assignment represents H.

Even if the scheduler is not malicious, but follows a deterministic strategy which is known to the
attacker, leaks can result. As an example, consider Figure 2. Assume deterministic round robin schedul-
ing which executes 3 basic statements per time slice. Then for H=1 statements 2,3,4,9,5 are executed,
while for H=0, statements 2,4,5,9 are executed. Thus the attacker can observe the public event sequence
9→5 resp. 5→9, leaking H. However under the assumption of truly probabilistic scheduling, Figure 2 is
probabilistic noninterferent.

Thus allowing round robin schedulers severely restricts secure programs. This phenomenon has been
observed by earlier authors (see section 9 for details). RLSOD accepts the example in Figure 2 as secure
and therefore is not sound when used with round robin. Probabilistic scheduling is the price to pay for
RLSOD’s much better precision and freedom from program restrictions. We believe that in practice,
scheduler restrictions are more acceptable than program restrictions or false alarms.

2.3. Attacker Model

The traditional sequential attacker model assumes that the attacker can see the low part of both the
initial state and the final state. Additionally, a static classification of all program variables is assumed.
This means the attacker can see one part of the memory, but cannot see the other. For programming lan-
guages like C or Java, which include local variables and thus use an activation record stack, this implies
that the memory addresses the attacker can observe change during execution. We therefore believe that
this attacker model is unrealistic. Thus we assume that the attacker cannot see any internal memory of
the program, and instead can only see low external input or low output events. The engineer has to pro-
vide information about the set of input and output statements and their classification. We further assume
that the attacker might see multiple runs with the same input. For multi-threaded (nondeterministic) pro-
grams, where the probability of attacker-observable behaviors depends on the secret, the attacker might
infer something about the secret by counting the different low-observable behaviors. This motivates the
use of probabilistic noninterference.

2.4. The role of flow- and context-sensitivity

PDGs have been chosen as the basis for JOANA and RLSOD because PDGs are automatically flow-
and context-sensitive. That is, they respect statement order, and respect call sites of procedures. In con-
trast, most security type systems are flow insensitive, and even the flow-sensitive type system in [23] is
not context-sensitive. Thus statement order is ignored, and all call sites of a procedure are merged; this
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heavily reduces precision and increases false alarms (see [12, 24] for a more detailed discussion; section
9 presents additional examples). In the current paper, all definitions and proofs assume flow-sensitivity;
this explains why some definitions differ from their “classical” version.

But note that there is a price to pay for flow- and context-sensitivity: RLSOD is not compositional.
That is, RLSOD always needs the complete source or byte code. In practice however, stubs for missing
functions can be used, which “simulates” compositionality (see case study in section 7). Composition-
ality is discussed in more detail in section 9.

3. Noninterference and LSOD

IFC guarantees that no violations of confidentiality or integrity may occur. For confidentiality, program
variables are classified as “high” (H, secret) or “low” (L, public), and it is assumed that an attacker can
see low values, but cannot see any high value.6

Figure 1 presents small but typical confidentiality leaks. As usual, variable H is “High” (secret), L is
“Low” (public). Explicit leaks arise if (parts of) high values are copied (indirectly) to low output. Implicit
leaks arise if a high value can change control flow, which can change low behaviour (see Figure 1 left).
Possibilistic leaks in concurrent programs arise if a certain interleaving produces an explicit or implicit
leak; in Fig. 1 middle, interleaving order 5, 8, 9, 6 causes an explicit leak. Probabilistic leaks arise if the
probability of low output is influenced by high values; in Fig. 1 right, H is never copied to L, but if the
value of H is large, probability is higher that “JCS” is printed instead of “CSJ”. Thus when the program
is run multiple times, by observing the distribution of results, the attacker can obtain information about
the secret, namely estimations of the value of H.

3.1. Sequential Noninterference

Before we formalize RLSOD, let us repeat the classical definition of sequential noninterference. The
classic definition assumes that a global and static classification cl(v) of all program variables v as secret
(H) or public (L) is given. It therefore assumes that the whole memory is divided into a part the attacker
can observe and a part hidden from the attacker. Note that flow-sensitive IFC such as RLSOD does not
use a static, global classification of variables; this will be explained in section 4.1 (Definition 9).

Definition 1 (Sequential noninterference). Let P be a program. Let s, s′ be initial program states, let
[[P]](s), [[P]](s′) be the final states after executing P in state s resp. s′. Noninterference holds iff

s ∼L s′ =⇒ [[P]](s) ∼L [[P]](s′).

The relation s ∼L s′ means that two states are low-equivalent, that is, coincide on low variables:
∀v : cl(v) = L =⇒ s(v) = s′(v). Classically, program input is assumed to be part of the initial states
s, s′, and program output is assumed to be part of the final states; the definition can be generalized to
work with explicit input and output streams.

6A more detailed discussion of IFC attacker models can be found in e.g. [1]. Note that JOANA allows arbitrary lattices of
security classifications, not just the simple ⊥ = L 6 H = > lattice. Note also that integrity is dual to confidentiality, but will
not be discussed here. JOANA can handle both.
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3.2. Probabilistic Noninterference

In multi-threaded programs, fine-grained interleaving effects must be accounted for, thus traces are
used instead of states. Through loops or recursion, a statement might be executed multiple times within
a trace. To distinguish those, we use the concept of operations as in [11]. A trace is a sequence of events
t = (s1, o1, s2), (s2, o2, s3), . . . , (sν, oν, sν+1), . . ., where the oν are operations (i.e. dynamically executed
program statements cν; we write stmt(oν) = cν). Operations are unique within a trace. sν, sν+1 are the
states before resp. after executing oν. We write ε for the empty trace. Since we assume programs to be
terminating, all traces are finite.

For PN, the notion of low-equivalent traces is essential. Classically, traces are low equivalent if for
every (sν, oν, sν+1) ∈ t, (s′ν, oν, s

′
ν+1) ∈ t′, it holds that sν ∼L s′ν and sν+1 ∼L s′ν+1. This definition

enforces a rather restrictive lock-step execution of both traces. Later definitions (e.g. [5]) use stutter
equivalence instead of lock-step equivalence; thus allowing one execution to run faster than the other
(“stuttering” means that one trace performs additional operations which do not affect public behaviour).
To formalize PN, we begin with

Definition 2. N denotes the set of all program statements ∈ P , I ⊆ N the input statements (“sources”),
O ⊆ N the output statements (“sinks”), ucl : I ∪ O→ {L,H} the classification of sources and sinks as
provided by the user (“engineer”).

The following definition of low-equivalent traces assumes flow-sensitivity. It is slightly more complex
than the “classical” definition, but increases precision as explained below.

Definition 3. (1) For an operation o, def (o), use(o) are the program variables defined (i.e. assigned)
resp. used in o. For state s and d ⊆ dom(s), s|d is the projection of s onto d.

(2) The low-observable part of an event is defined as

EL((s, o, s′)) =

{
(s|use(o), o, s′|def (o)), if ucl(o) = L
ε, otherwise

(3) The low-observable subtrace of trace t is

LS (t) = map(EL)(filter(λe.EL(e) 6= ε)(t)).

(4) Traces t, t′ are low-equivalent, written t ∼L t′, if LS (t) = LS (t′). Obviously, ∼L is an equivalence
relation. Thus the low-class of t is

[t]L = {t′ | t′ ∼L t}.

Note that the t′ ∈ [t]L cannot be distinguished by an attacker, as all t′ ∈ [t]L have the same low
behaviour. Thus [t]L represents t’s low behaviour. Note also that the flow-sensitive projections s|def (o),
s|use(o) are usually much smaller than a flow-insensitive, statically defined low part of s. This results in
more traces to be low-equivalent without compromising soundness. This subtle observation is another
reason why flow-sensitive IFC is more precise (cmp. [1], sec. 3).

PN is called “probabilistic”, because it essentially depends on the probabilities for certain traces under
certain inputs. Thus we define
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Definition 4. (1) Pi(t) is the probability that a specific trace t is executed under input i.
(2) Pi([t]L) is the probability that some trace t′ ∈ [t]L (i.e. t′ ∼L t) is executed under i.

As [t]L is recursively enumerable, Pi is a discrete probability distribution, hence Pi([t]L) =
∑

t′∈[t]L Pi(t′).
The following PN definition uses explicit input streams instead of initial states. For all inputs the

same initial state is assumed, but it is assumed that all inputs are classified low or high. Traditionally,
input streams i = i1i2 . . ., i′ = i′1i′2 . . . are low equivalent (i ∼L i′) if they coincide on low values:
cl(iν) = L ∧ cl(i′ν) = L =⇒ iν = i′ν. But this definition is not realistic: Suppose there is a race between
a high and a low input statement. Then the classification of the input depends on the race and is no
longer independent of a specific execution. This makes it difficult to properly define low-equivalence of
inputs. Consequently, Giffhorn used a different definition of low-equivalent inputs: instead of one input
stream with input values of varying classification, Giffhorn assumes several input streams with fixed
classification each. This leads to

Definition 5. (1) An input i of a program consists of one input stream per security level; we write il
for the input stream of security level l. An input statement n ∈ I reads (and removes) the first value
from iucl(n).

(2) Inputs are considered low equivalent if their low input streams are equal: i ∼L i′ ⇐⇒ iL = i′L
(3) T (i) is the set of all possible traces of a program P under input i.

Definition 6 (Probabilistic noninterference). Let i, i′ be inputs; let Θ = T (i) ∪ T (i′). PN holds iff

i ∼L i′ =⇒ ∀t ∈ Θ: Pi([t]L) = Pi′([t]L)

That is, if we take any trace t which can be produced by i or i′, the probability that a t′ ∈ [t]L is
executed is the same under i resp. i′. In other words, probability for any public behaviour is independent
from the choice of i or i′ and thus cannot be influenced by secret input.

If t 6∈ T (i), Pi(t) = 0. Using the above sum property of Pi([t]L), the PN condition is thus equivalent to

i ∼L i′ =⇒ ∀t :
∑

t′∈[t]L

Pi(t′) =
∑

t′∈[t]L

Pi′(t′)

Applying this to Figure 1 right, we first observe that all inputs are low equivalent as there is only
high input. For any trace t there are only two possibilities: . . .print("J"). . .print("CS"). . .∈ t,
or . . .print("CS"). . .print("J"). . .∈ t. There are no other low events, hence there are only two
equivalence classes

[t]1L = {t′ | . . .print(”J”) . . .print(”CS”) . . . ∈ t′}
[t]2L = {t′ | . . .print(”CS”) . . .print(”J”) . . . ∈ t′}

Now if i contains a small value, i′ a large value, as discussed earlier Pi([t]1L) 6= Pi′([t]1L) as well as
Pi([t]2L) 6= Pi′([t]2L), hence PN is violated.

In practice, the Pi([t]L) are difficult or impossible to determine. So far, only simple Markov chains
have been used to explicitly determine the Pi for very small programs; where the Markow chain models
the probabilistic state transitions of a program, perhaps together with a specific scheduler [5, 25]. Fortu-
nately, explicit probabilities are not needed for our soundness proofs. As a sanity check, we demonstrate
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that for sequential programs, PN implies sequential noninterference. Note that for sequential (determin-
istic) programs |T (i)| = 1, and for the unique t ∈1 T (i) we have Pi(t) = 1.

Lemma 1. For sequential programs, probabilistic noninterference implies sequential noninterference.

Proof. Let s ∼L s′. For sequential NI, input is part of the initial states, thus i ∼L i′. Now let t ∈
T (i), t′ ∈ T (i′), hence t, t′ ∈ Θ. Due to PN, Pi([t]L) = Pi′([t]L) and Pi([t′]L) = Pi′([t′]L). Due to
sequentiality, Pi([t]L) = Pi(t) = 1 and Pi′([t′]L) = Pi′(t′) = 1. Hence Pi′([t]L) = Pi′([t′]L) = 1. That is,
with probability 1 the trace t′ executed under i′ is low equivalent to t. Thus in particular the final states
in t resp. t′ must be low equivalent. Hence s ∼L s′ implies [[P]](s) ∼L [[P]](s′). �

3.3. Low-deterministic Security

LSOD is the oldest and simplest criterion which enforces PN. LSOD demands that low-equivalent
inputs produce low-equivalent traces. LSOD is scheduler independent and implies PN (see below). It
is intuitively secure: changes in high input can never change low behaviour, because low behaviour is
enforced to be deterministic. This is however a very restrictive requirement and eventually led to popular
scepticism against LSOD.

Definition 7 (Low-security observational determinism). Let i, i′, Θ as above. LSOD holds iff

i ∼L i′ =⇒ ∀t, t′ ∈ Θ: t ∼L t′.

Under LSOD, all traces t for input i are low-equivalent: ∀t′ ∈ T (i) : t′ ∼L t, thus T (i) ⊆ [t]L. If there
is more than one trace for i, then this must result from high-nondeterminism; low behaviour is strictly
deterministic.

Lemma 2. LSOD implies PN.

Proof. Let i ∼L i′, t ∈ Θ. WloG let t ∈ T (i). Due to LSOD, we have T (i) ⊆ [t]L. As Pi(t′) = 0
for t′ /∈ T (i), we have Pi([t]L) =

∑
t′∈[t]L Pi(t′) =

∑
t′∈T(i) Pi(t′) = 1, and likewise Pi′([t]L) = 1, so

Pi([t]L) = Pi′([t]L). �

Zdancewic [8] proposed the first IFC analysis which checks LSOD. His conditions require that

(1) there are no explicit or implicit leaks,
(2) no low observable operation is influenced by a data race,
(3) no two low observable operations can happen in parallel.

The last condition imposes the infamous LSOD restriction, because it explicitly disallows that a sched-
uler produces various interleavings which switch the order of two low statements which may happen in
parallel, and thus would generate low nondeterminism. Besides that, the conditions can be checked by a
static program analysis; Zdancewic used a security type system.

As an example, consider Figure 4. In Figure 4 middle, statements print(L) and L=42 – which are
both classified low – can be executed in parallel, and the scheduler nondeterministically decides which
executes first; resulting in either 42 or 0 to be printed. Thus there is visible low nondeterminism, which
is prohibited by classical LSOD. The program however is definitely secure according to PN, because the
high read can only happen after the race outcome is already decided.
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thread fork
inter-thread dependencecontrol dependence

data dependence

fork thread_1 fork thread_2

thread_2

main

read(H)read(L)

print(L)

thread_1

L= H

thread fork
inter-thread dependence
order conflict

control dependence
data dependence

fork thread_2
L= 0

thread_2

main

L= H

print(L)

L= 42

read(H)

fork thread_1

thread_1

control dependence
thread fork
inter-thread dependence
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data dependence

print(L)

fork thread_2
L= 0

read(H)

thread_2

L= H

main

L= 42

fork thread_1

thread_1

Fig. 3. Left to right: PDGs for Figure 1 middle, and for Figure 4 left and middle.

4. Giffhorn’s Criterion

In this section, we recapitulate PDGs, their application for LSOD, and Giffhorn’s original criterion.
This discussion is necessary in order to understand the new improvements for RLSOD.

4.1. PDGs for IFC

Snelting proposed to use Program Dependence Graphs (PDGs) as a device to check integrity of soft-
ware as early as 1995 [26]. Later the approach was expanded into the JOANA IFC project. It was shown
that PDGs guarantee sequential noninterference [27], and that they provide improved precision as they
are naturally flow- and context-sensitive [12].

In this paper, we just present three PDG examples and some explanations. PDG nodes represent pro-
gram statements or expressions; edges represent data dependencies, control dependencies, inter-thread
data dependencies, or summary dependencies. Figure 3 presents the PDGs for Figure 1 middle, and for
Figure 4 left and middle. The construction of precise PDGs for full languages is absolutely nontrivial
and requires additional information such as points-to analysis, exception analysis, and thread invocation
analysis [12]. We will not discuss PDG details; it is sufficient to know the Slicing Theorem for sequential
programs:

Theorem 1. If there is no PDG path a →∗ b, it is guaranteed that statement a can never influence
statement b. In particular, values computed in a cannot influence values computed in b.

Proof. see [28] �

Thus all statements which might influence a specific program point b are those on backward paths
from this point, the so-called “backward slice” BS (b). In particular, information flow a →∗ b is only
possible if a ∈ BS (b). There are stronger versions of the theorem, which consider only paths which can
indeed be dynamically executed (“realizable” paths); these make a big difference in precision e.g. for
programs with procedures, objects, or threads [12, 29, 30].

As an example, consider Figure 3. The left PDG has a data dependency edge from L=H; to
print(L);, because L is defined in line 9 (Figure 4 left), used in line 10, there is a path in the control
flow graph (CFG) from 9 to 10, and L is not reassigned (“killed”) on the path. Thus there is a PDG path
from read(H); to print(L);, representing an illegal flow from line 7 to line 10 (a simple explicit
leak). In Figure 3 right, there is no path from L=H; to print(L); due to flow sensitivity: no scheduler



10 Snelting et al. / Low-Deterministic Security For Low-Nondeterministic Programs

will ever execute L=H; before print(L);. Hence no path from read(H) to print(L); exists,
and it is guaranteed that the printed value of L is not influenced by the secret H.

In general, the multi-threaded PDG can be used to check whether there are any explicit or implicit
leaks; technically it is required that no high source is in the backward slice of a low sink. This criterion
is enough to guarantee sequential noninterference (see theorem 2). For probabilistic noninterference,
according to the Zdancewic LSOD criterion one must additionally show that public output is not influ-
enced by execution order conflicts such as data races, and that there is no low nondeterminism. This can
again be checked using PDGs and an additional analysis called “May happen in parallel” (MHP); the
latter will uncover potential execution order conflicts or races. Several precise and sound MHP algo-
rithms for full Java are available today (see e.g. [11, 31, 32]). Note that an imprecise MHP analysis will
substantially degrade the precision of (R)LSOD, and cause many false alarms (see [1, 11] for details).

In the following, we will need some definitions related to PDGs. For more details on PDGs, MHP,
flow- context-, object- and time-sensitivity, see [12].

Definition 8. Let G = (N,→) be a PDG, where N consists of program statements and expressions,
and → comprises data dependencies, control dependencies, summary dependencies, and inter-thread
dependencies. The (context-sensitive) backward slice for n ∈ N is defined as

BS (n) = {m | m→∗R n}

where→∗R includes only realizable (i.e. context-, object- and optionally time-sensitive) paths in the PDG.

For PDG-based analyses, the inputs (“sources”) and outputs (“sinks”) are nodes in the PDG, so I,O ⊆
N. The soundness theorem for PDG-based sequential IFC can now be formalized:

Theorem 2. Sequential noninterference holds if
∀n ∈ I, n′ ∈ O : ucl(n′) = L ∧ ucl(n) = H =⇒ n 6∈ BS (n′)

Proof. Snelting’s original proof was in [27]; additional details are given in [12]. �

The user (“engineer”) classifications ucl in the PDG can be propagated to yield a classification cl of
all statements, which provides an alternate way of checking sequential noninterference. This definition
will be expanded later to cover concurrent programs.

Definition 9. (1) The classification cl can be computed from ucl via the flow equation

cl(n) =
⊔

m→n

cl(m)

with additional constraints ∀n ∈ I : ucl(n) 6 cl(n) and ∀n ∈ O : ucl(n) > cl(n).
(2) For an operation o in a trace t, we have stmt(o) ∈ N and define cl(o) = cl(stmt(o)).

Concerning cl it is important to note that PDGs are automatically flow- and context-sensitive, and may
contain a program variable v several times as a PDG node; each occurence of v in N may have a different
classification! Thus there is no global classification of variables, but only the local classification ucl(n)
together with the global flow constraints cl(n) =

⊔
m→n cl(m). The latter can easily be computed by
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1 void main():
2 L = 0;
3 fork thread_1();
4 fork thread_2();
5 void thread_1():
6 L = 42;
7 read(H);
8 void thread_2():
9 L = H;

10 print(L);

1 void main():
2 L = 0;
3 fork thread_1();
4 fork thread_2();
5 void thread_1():
6 L = 42;
7 read(H);
8 void thread_2():
9 print(L);

10 L = H;

1 void main():
2 L = 0;
3 read(H);
4 while (H2>0)
5 {H2−−;}
6 fork thread_1();
7 fork thread_2();
8 void thread_1():
9 L = 42;

10 read(H);
11 void thread_2():
12 print(L);
13 L = H;

Fig. 4. Left: insecure program, obvious explicit leak. Middle: secure program, Giffhorn’s criterion + flow sensitivity avoid false
alarm. Right: only RLSOD avoids false alarm.

a fixpoint iteration on the PDG; which is initialized with the ucl values for source nodes (see [12]). If
fixpoint iteration eventually computes cl(n) > ucl(n) for a sink n, an explicit or implicit leak has been
discovered [12]. JOANA offers additional support to analyse and localize leaks [17, 33].

4.2. LSOD with PDGs

In his 2012 thesis, Giffhorn applied PDGs to PN. He showed that PDGs can naturally be used to check
Zdancewic’s LSOD criteria, and provided a soundness proof as well as an implementation for JOANA
[11]. Giffhorn also found the first optimization relaxing LSOD’s strict low-determinism.

Giffhorn’s motivation was to repair soundness leaks which had been uncovered in some previous
LSOD algorithms. In particular, treatment of nontermination without being overly restrictive or allowing
implicit leaks had proven to be tricky. Giffhorn provided a new definition for low-equivalent traces:

Definition 10. Let t, t′ be two finite or infinite traces. t ∼L t′ iff

(1) if t, t′ are both finite, as usual the low events and low memory parts must coincide (see Definition
3);

(2) if wloG t is finite, t′ is infinite, then this coincidence must hold up to the length of the shorter trace,
and the missing operations in t must be missing due to an infinite loop (and nothing else);

(3) for two infinite traces, this coincidence must hold for all low events, or if low events are missing
in one trace, they must be missing due to an infinite loop.

The formal version of this definition can be found in [1]. It turned out that conditions 2. and 3. not only
avoid previous soundness leaks, but can precisely be characterized by dynamic control dependencies in
traces [1]. Furthermore, the latter can soundly and precisely be statically approximated through PDGs
(which include all control dependencies). Moreover, the static conditions identified by Zdancewic which
guarantee LSOD can naturally be checked by PDGs, and enjoy increased precision due to flow-, context-
and object-sensitivity.

In this paper however, we ignore the issue of termination completely and concentrate on the formal-
ization and improvement of Giffhorn’s LSOD check. We begin with some definitions.



12 Snelting et al. / Low-Deterministic Security For Low-Nondeterministic Programs

Definition 11. (1) We write MHP(n,m) if MHP analysis concludes that n and m may be executed in
parallel. Formally, MHP(n,m) holds if traces t, t′ exist where
t = . . . (sν, oν, sν+1) . . . (sµ, oµ, sµ+1) . . ., t′ = . . . (s′µ, oµ, s

′
µ+1) . . . (s′ν, oν, s

′
ν+1) . . .,

n = stmt(oν), m = stmt(oµ).
(2) lnd(n, n′) ⇐⇒ MHP(n, n′) ∧ ucl(n) = ucl(n′) = L, which denotes that n, n′ are low-nondeter-

ministic;
(3) race(n, n′) ⇐⇒ MHP(n, n′) ∧ ∃v ∈

(
de f (n) ∩ (de f (n′) ∪ use(n′))

)
, which denotes there is a

data race between n, n′ which can influence the value read at n′.
(4) path(n, n′) ⇐⇒ n→∗CFG n′ is a path in the CFG. We will also use path(n, n′) to denote the set of

all nodes n′′ on CFG paths from n to n′.

Then the PDG-based LSOD criterion – a formalization of Zdancewic’s criterion using PDGs – re-
quires:

Definition 12 (Giffhorn’s criterion).

1. ∀n ∈ O, n′ ∈ I : ucl(n) = L ∧ ucl(n′) = H =⇒ n′ 6∈ BS (n),
2. ∀n, n′ ∈ N, n′′ ∈ O : race(n, n′) ∧ ucl(n′′) = L =⇒ n′ 6∈ BS (n′′),
3. ∀n, n′ ∈ I ∪ O : ¬lnd(n, n′).

Theorem 3. Giffhorn’s criterion implies LSOD.

Proof. For proof and implementation details, see [1]. �

Condition 1 is just sequential noninterference (no explicit/implicit leaks, see theorem 2), condition
2 guarantees that no race is in the backward slice of a low sink, and condition 3 prohibits any low
nondeterminism. Note that the race definition7 from definition 11 is asymmetric: Giffhorn discovered
that only two of the three classical race situations (“write-write, write-read, read-write“) are relevant.
The case v ∈ de f (n) ∩ use(n′), n ∈ BS (n′′) can never cause a leak because the value written at n
is independent of the outcome of that race! Thus the example from the top of Figure 5 is considered
secure, whereas a symmetric race definition would have caused a false alarm. Also note that conditions
2 and 3 are not completely disjoint, in particular if ucl(n) = ucl(n′) = ucl(n′′) = L, n ∈ BS (n′′) both
conditions are violated.

Applying Giffhorn’s criterion to Figure 1 right, it discovers a leak according to condition 3, namely
low nondeterminism between lines 6 and 11; which is correct. For the example in Figure 5 bottom,
condition 3 is not violated, but condition 2 is violated. In Figure 4 left, a leak is discovered according to
condition 1, which is also correct (cmp. PDG example above). In Figure 4 middle and right, the explicit
leak has disappeared (thanks to flow-sensitivity), but another leak is discovered by condition 2: we have
race(L = 42;,print(L);) and print(L); ∈ BS (print(L);), which causes a false alarm.

The example motivates Giffhorn’s optimized criterion: low nondeterminism may be allowed, if it can-
not be reached from high events. That is, there must not be a path in the control flow graph from some
n′′, where ucl(n′′) = H, to n or n′, where lnd(n, n′). If there is no path from a high event to the low
nondeterminism, no high statement can ever be executed before the nondeterministic low statements.

7In [11] these races were called “data conflicts”.
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1 void thread1():
2 doSomething();
3 L = 1;
4 X = 3∗L;
5 print(X);

1 void thread_2():
2 H = inputPIN();
3 while (H>0) H−−;
4 H = H+L;

1 void thread1():
2 H = 1;
3 doHigh();
4 H = 42;

1 void thread_2():
2 H = inputPIN();
3 while (H>L) H−−;
4 if (H>41)
5 print(L);

Fig. 5. Races with one node in the backward slice of a low sink. Top: n = ”L = 1”, n′ = ”H = H+ L”, n′′ = ”print(X)”,
n ∈ BS (n′′). Bottom: n = ”H = 42”, n′ = ”H−−”, n′′ = ”print(L)”, n′ ∈ BS (n′′).

Thus the latter can never produce visible behaviour which is influenced by high values. This argument
leads to Giffhorn’s optimized criterion, which replaces condition 3 from definition 12 by

3’. ∀n, n′ ∈ I ∪ O :
(
∃n′′ ∈ I : ucl(n′′) = H ∧(path(n′′, n) ∨ path(n′′, n′))

)
=⇒ ¬lnd(n, n′)

This condition can be rewritten by contraposition to the more practical form

3’. ∀n, n′∈ I ∪ O : lnd(n, n′) =⇒ ∀n′′∈(path(START , n) ∪ path(START , n′)) ∩ I : ucl(n′′) = L

In fact Giffhorn’s optimization works for data races as well: no data race may be in the backward slice
of a low sink, unless it is unreachable by high events. That is, condition 2 can be improved the same way
as condition 3, leading to

2’. ∀n, n′∈N, n′′ ∈ O : race(n, n′)∧cl(n′′) = L∧∃n′′′∈ I : ucl(n′′′) = H∧
(
path(n′′′, n)∨path(n′′′, n′)

)
=⇒ n, n′ 6∈ BS (n′′).

By contraposition, we obtain the more practical form

2’. ∀n, n′ ∈ N, n′′ ∈ O : race(n, n′) ∧ ucl(n′′) = L ∧ n′ ∈ BS (n′′)
=⇒ ∀n′′′ ∈ (path(START , n) ∪ path(START , n′)) ∩ I : ucl(n′′′) = L

Remember that condition 2’ is not symmetrical in n, n′, due to Giffhorn’s simplified race definition.
Figure 1 right violates Giffhorn’s criterion, because one of the low-nondeterministic statements, namely
line 11, can be reached from the high statement in line 8; thus criterion 3’ is violated. Indeed the example
contains a probabilistic leak. Figure 4 middle is secure according to Giffhorn, because the data race
between line 6 resp. 9 can not be reached from any high statement – condition 2 is violated (note that in
this example, n′ = n′′), but 2’ holds. Indeed the program is PN. Figure 4 right is however not covered
by Giffhorn’s criterion, because the initial read(H2) will reach any other statement. But the program
is PN, because H2 does not influence the data race determining the low behavior!

The example shows that Giffhorn’s optimization does indeed reduce false alarms, but it removes only
false alarms on low paths beginning at program start. Anything after the first high statement will usually
be reachable from that statement, and does not profit from rule 3’ resp. 2’. Still Giffhorn’s algorithm
was a big step, as it allowed – for the first time – low nondeterminism, while basically maintaining the
LSOD approach.
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LSOD

Giffhorn

RLSODc

mn

START

... ...

while (H!=0)

print("CS")

print("J")

P1

LSOD

Giffhorn

RLSODc

mn

START

... ...

L = H

L = 42

print(L)

while (H2>0)

P2

Fig. 6. Visualization of LSOD vs. Giffhorn’s criterion vs. RLSOD (condition 3 / 3’ / 3”). CFGs for Figure 1 right resp. Figure
4 right are sketched. n/m produces low nondeterminism, c is the common dominator. LSOD prohibits any low nondeterminism;
Giffhorn allows low nondeterminism which is not reachable by any high events; RLSOD allows low nondeterminism which
may be reached by high events if they are before the common dominator. The marked regions are those affected by low
nondeterminism; inside these regions no high events are allowed. Thus RLSOD is much more precise.

5. RLSOD

In the following, we will generalize conditions 2’ and 3’ to obtain the much more precise RLSOD
criterion.

To motivate the improvement, consider again Figure 1 right (program P1) and Figure 4 right (pro-
gram P2). Both contain race conditions influencing low behavior, P1 through low-nondeterminism and
P2 through a data race. When comparing P1 and P2, a crucial difference comes to mind. In P2 the
troublesome high statement can reach both statements forming the race condition, whereas in P1, the
high statement can reach only one of them. In both programs some loop running time depends on a high
value, but in P2, the subsequent statements are influenced by this “timing leak” in exactly the same way,
while in P1 they are not.

In terms of the PN definition, remember that P1 has only two low classes
[t]1L = {t′ | t′ = . . .print(”J”) . . .print(”CS”) . . .} and
[t]2L ={t′ | t′= . . .print(”CS”) . . .print(”J”) . . .}. Likewise, P2 has two low classes
[t]1L = {t′ | t′ = . . .print(42) . . .} and
[t]2L = {t′ | t′ = . . .print(0) . . .}, depending on the outcome of the data race. The crucial difference
is that for P1, the probability for the two classes under i resp. i′ is not the same (see above), but for P2,
Pi([t]1,2L ) = Pi′([t]

1,2
L ) holds!

Technically, P2 contains a point c which dominates both racing statements n ≡ L = 42; and m ≡
print(L), and all relevant high events always happen before c. Domination means that any control
flow from ST ART to n or m must pass through c. In P2, c is the point immediately before the first fork.
In contrast, P1 has only a trivial common dominator for the low nondeterminism, namely the START
node, and on the path from START to n ≡ print(”J”) there is no high event, while on the path to
m ≡ print(”CS”) there is.

Intuitively, the high inputs can cause strong nondeterministic high behaviour, including stuttering. But
if LSOD conditions 1 + 2 are always satisfied, and if there are no high events in any trace between c
and n resp. m, the effect of the high behaviour is always the same for n and m and thus “factored out”. It
cannot cause a probabilistic leak – the dominator “shields” the low nondeterminism from high influence.
Note that P2 contains an additional high statement m′ ≡ read(H) but that is behind n (no control flow
is possible from m′ to n) and thus cannot influence the n/m nondeterminism.
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5.1. Improving Conditions 2’ and 3’

The above example has demonstrated that low nondeterminism may be reachable by high events with-
out harm, as long as these high events always happen before the common dominator of the nondeter-
ministic low statements. This observation will be even more important if dynamically created threads
are allowed (as in JOANA, cmp. Section 7). We will now provide precise definitions for this idea.

Definition 13 (Common dynamic ancestor). Let n,m, c ∈ N be statements.

(1) c is a dominator for n, written c dom n, if c occurs on every CFG path from START to n.
(2) c is a common dominator for n,m, written c cdom (n,m), if c dom n ∧ c dom m.
(3) c is a common dynamic ancestor for n,m, written c cda (n,m), if

c cdom (n,m) ∧ ¬MHP(c, n) ∧ ¬MHP(c,m).
(4) If c cda (n,m) and ∀c′ cda (n,m) : c′ dom c, then c is called an immediate common dynamic

ancestor.

Efficient algorithms for computing dominators can be found in many compiler textbooks. They can be
extended to calculate common dynamic ancestors. The stricter definition of common dynamic ancestors
compared to common dominators is needed to deal with the possibility that the same thread can be
spawned several times, as e.g. in our case study (chapter 7). Note that ST ART itself is a (trivial) common
dynamic ancestor for every n,m. RLSOD works with any common dynamic ancestor. We thus assume
a function cda which for every statement pair returns a common dynamic ancestor, and write c =
cda(n,m). Note that the implementation of cda may depend on the precision requirements, but once a
specific cda is fixed, c depends solely on n and m. Straightforward implementation of the RLSOD idea
leads to the following rules, replacing rules 3’ and 2’ from Giffhorn’s optimized criterion:

3”. ∀n, n′ : lnd(n, n′) ∧ c = cda(n, n′) =⇒ ∀n′′ ∈ (path(c, n) ∪ path(c, n′)) ∩ I : ucl(n′′) = L
2”. ∀n, n′ ∈ N, n′′ ∈ O : race(n, n′) ∧ c = cda(n, n′) ∧ ucl(n′′) = L ∧ n′ ∈ BS (n′′)

=⇒ ∀n′′′ ∈ (path(c, n) ∪ path(c, n′)) ∩ I : ucl(n′′′) = L

These conditions are most precise (generate the least false alarms) if cda returns the immediate common
dynamic ancestor, because in this case it demands that cl(n′′) = L for the smallest set of nodes “behind”
the common ancestor.8 Figure 6 illustrates the RLSOD definition (condition 3”). Note that Giffhorn’s
optimized criterion trivially fulfils conditions 2” and 3”, where cda always returns START . In [2], we
provided a soundness proof for the case of just one low-nondeterminism. However, as the next section
will show, in the case of multiple low-nondeterministic statements those rules are not sound.

5.2. Classification Revisited

Consider the program in Figure 7 middle/right. This example contains a probabilistic leak as follows.
H influences the running time of the first while loop, hence H influences whether line 10 or line 18
is performed first. The value of tmp2 influences the running time of the second loop, hence it also
influences whether L1 or L2 is printed first. Thus H indirectly influences the execution order of the final
print statements. Indeed the program does not fulfill Giffhorn’s criterion, as the print statements can be

8Note that in programs with procedures and threads, immediate dynamic ancestors may not be unique due to context-
sensitivity [34].



16 Snelting et al. / Low-Deterministic Security For Low-Nondeterministic Programs

1 void thread1():
2 tmp = 1;
3 if (H) {
4 tmp = 100;
5 }
6 fork thread2();
7 while (tmp > 0) {
8 tmp = tmp − 1;
9 }

10 tmp2 = 1;
11 fork thread3();
12 while (tmp2 > 0) {
13 tmp2 = tmp2 − 1;
14 }
15 print(L1);

16 void thread2():
17 tmp2 = 100;
18
19 void thread3():
20 print(L2);

Fig. 7. A leak which goes undiscovered if classification of statements is incomplete.

reached from the high statement in line 3 (middle). Applying 3”, the common dynamic ancestor for the
two print statements is line 10. But the only input statement is line 3, which is before the cda.

The classification of line 10 is thus crucial. If we had cl(10) = H, then this classification propagates
in the PDG (due to the flow equation cl(n) =

⊔
m→n cl(m)) and lines 12/13 are classified high. RLSOD

is violated, and the probabilistic leak discovered.
Hence we use the flow equation to calculate the classification propagation from line 3 to line 10,

and then 12/13. Only line 3 is explicitly high and only lines 4, 7, 8 are PDG-reachable from 3. Thus
cl(10) = L. Hence RLSOD would be satisfied because 3,4,7,8 are before the common dominator. The
leak would go undiscovered! The problem is that rules 2” and 3” are not applied recursively. To capture
the effect of recursive influence through nondeterminism, the flow equations must be extended.

In general, the rule is as follows. The standard flow equation cl(n) =
⊔

m→n cl(m) expresses the fact
that if a high value can reach a PDG node m upon which n is dependent, then the high value can also
reach n. Likewise, if there is low nondeterminism with MHP(n,m), and cda(n,m) = c, and the path
c→∗CFG n violates RLSOD – that is, it contains high statements – then the high value can reach n. Thus
cl(n) = H must be enforced. This rule must be applied recursively until a fixpoint is reached.

Definition 14 (Classification in PDGs). A PDG G = (N,→) is classified correctly, if

(a) ∀n ∈ N : cl(n) >
⊔

m→n cl(m),
(b) ∀n,m ∈ N : MHP(n,m) ∧ c = cda(n,m) ∧∃c′ ∈ path(c, n), cl(c′) = H =⇒ cl(n) = H.
(c) ∀n ∈ I : ucl(n) = cl(n) and ∀n ∈ O : ucl(n) > cl(n).

In condition (a), > must be used because (b) can push cl(n) higher than
⊔

m→n cl(m). Condition (b)
can be rewritten as MHP(n,m) ∧ c = cda(n,m) =⇒ cl(n) >

⊔
c′∈path(c,n) cl(c′); making it formally

similar to (a).9 Note the asymmetry in condition (c): Treating a public input value as secret is sound, thus
one might want to use ∀n ∈ I : ucl(n) 6 cl(n) in that condition. However, we assume that the attacker
can observe when low input statements are executed. Thus, whether they are executed must not depend
on H values, so ∀n ∈ I : ucl(n) > cl(n) must be enforced as well.

9This formulation is used by JOANA; it also has the advantage that RLSOD can be used for an arbitrary security lattice. Note
that our current soundness proof works only with the L/H lattice.
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For a sequential program, MHP is always false, so only rules (a) and (c) remain. But (a)+(c) is equiva-
lent to definition 9, the calculation of sequential noninterference. In Figure 7 middle/right, definition 14
enforces line 10 to be classified high, as we have cda(10, 18) = 6, and on the path from 6 to 10, lines 7
and 8 are high.

Now, classification rules (a), (b) and (c) could be combined with 1”, 2” and 3” to yield a sound
RLSOD criterion. But surprisingly it turns out that this is not necessary – section 6 will demonstrate
that classifiability according to definition 14 already implies PN! In fact, 1”, 2” and 3” are necessary
conditions for classifiability:

Theorem 4. If the program can be classified according to definition 14, then the RLSOD conditions 1”,
2”, 3” hold.

Proof. Assume that (a), (b), (c) hold, but one of the rules 1”, 2”, 3” is violated. We therefore have 3
cases:

(1) 1” is violated: Since an H source n is in the backward slice of an L sink n′, with classification rule
(c) we have cl(n) = H, cl(n′) = L and n→∗ n′. But then repeated application of rule (a) demands
cl(n′) = H, which is a contradiction.

(2) 3” is violated: For the two lnd statements n and n′ we have cl(n) = cl(n′) = L by rule (c). But
then we have a statement n′′ with cl(n′′) = H on the control flow path from c := cda(n, n′) to n or
to n′. Without loss of generality we assume that n′′ lies on the path from c to n. But then rule (b)
demands cl(n) = H, contradicting cl(n) = L.

(3) 2” is violated: We have cl(n′′) = L by rule (c), and by rule (a) we have cl(n′) = L since n′ ∈
BS (n′′). Since we also have race(n, n′), n must write the same variable that n′ reads or writes, and
thus we have n ∈ BS (n′) and cl(n) = L as well. Then we can apply the same argument to n and
n′ as in the previous case.

�

Henceforth, we will subsume definition 14 under the notion of RLSOD. To actually use it as a PN
checker, it uses a fixpoint iteration similar to the sequential one (definition 9, see also [12, 33]).

6. The General Soundness Proof

In the conference paper preceding this article [2], a soundness proof was provided for the special case
that there is just one occurrence of low-nondeterminism (i.e. |{(n, n′) | lnd(n, n′) ∨ race(n, n′)}| 6 1).
The full proof posed more difficulties than expected, but eventually led to a simpler formulation of the
RLSOD criterion, namely in form of Definition 14. We thus omit the proof of the special case (see [2],
sec. 4.3), but will in this section describe the full soundness proof, based on Definition 14. As in [2], the
proof relies on the notion of conditional probability for traces.

Definition 15. Let t1 · · · be the set of traces beginning with prefix t1, so that Pi(t1 · · · ) =
∑

t=t1·t2 Pi(t)
is the probability that execution under input i begins with t1. For a set T of traces let T · · · = ⋃t∈T t · · · .
We denote with Pi(t2 | t1) the conditional probability that after t1, execution continues with t2; we have

Pi(t2 | t1) = Pi(t1 · t2)/Pi(t1 · · · )
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This notion extends to sets of traces:

Pi(T ′ | T ) = Pi(T · T ′)/Pi(T · · · ) =
∑

t∈T ·T ′
Pi(t)/

∑
t∈T ···

Pi(t)

In the following it will always hold that T (i) ∩ T · · · 6= ∅, hence
∑

t∈T ··· Pi(t) 6= 0.

The following soundness theorem and its derivation will of course be based on Definition 3 (low- equiv-
alent traces), but in the proofs we will also need a variant of this definition as an auxiliary construction:
We define Ecl((s, o, s′)), t ∼cl t′ and [t]cl exactly as EL((s, o, s′)), t ∼L t′ and [t]L (see Definition 3),
except that in the definition ucl is replaced by cl. We omit a repetition of the definition details, as Ecl,
∼cl and []cl are only used in the proofs and do not appear in the soundness theorem itself.

Lemma 3. (1) [t1]cl[t2]cl = [t1t2]cl

(2) Pi([t]cl) = Pi([ε]cl | [t]cl) · Pi([t]cl · · · | [ε]cl)

(3) Pi([t1t2]cl · · · | [ε]cl) = Pi([t2]cl · · · | [t1]cl) · Pi([t1]cl · · · | [ε]cl)

Proof. (1) We have LS cl(t · t′) = LS cl(t) · LS cl(t′) from Definition 3 for all t, t′ since LS cl is a
composition of map and f ilter. With the definition of ∼cl, this implies [t1]cl[t2]cl = [t1t2]cl.

(2) Pi([ε]cl | [t]cl) · Pi([t]cl · · · | [ε]cl) = Pi([ε]cl[t]cl)/Pi([t]cl · · · ) · Pi([t]cl · · · )/Pi([ε]cl · · · )
= Pi([ε]cl[t]cl)/Pi([ε]cl · · · ) = Pi([t]cl),
using equation 1 and the fact that all traces begin with ε ∈ [ε]cl, so Pi([ε]cl · · · ) = 1.

(3) Pi([t2 · · · ]cl | [t1]cl) · Pi([t1 · · · ]cl | [ε]cl) = Pi([t1]cl[t2]cl · · · )/Pi([t1]cl · · · ) · Pi([t1]cl · · · )/Pi([ε]cl)
= Pi([t1]cl[t2]cl · · · )/Pi([ε]cl) = Pi([t1]cl[t2]cl · · · | [ε]cl) = Pi([t1t2]cl · · · | [ε]cl)
�

For the following theorems, let op(c) denote the operation of an event c, i.e. for c = (s, o, s′), we have
op(c) = o. For convenience, we first prove the following lemmas:

Lemma 4. Let P be a terminating program. Assume that classification rules (a) and (c) according to
Definition 14 hold. Let t1 · c · t2 ∈ T (i) and t′1 · c′ · t′2 ∈ T (i′) with op(c) = op(c′), cl(op(c)) = L,
t1 ∼cl t′1 and i ∼L i′.

Then Ecl(c) = Ecl(c′).

Proof. Let o := op(c) = op(c′). If o reads input, we have stmt(o) ∈ I, and ucl(stmt(o)) =
cl(stmt(o)) = L by rule (c), and it therefore reads from the low input stream. From rule (c) we also
have that all other operations that have read from this stream before are classified as low, and thus show
up in cl-low-observable subtraces. This means the same reads must have happened before c and c′, and
so c and c′ read the same values from input.

If o reads values from memory, o is data dependent on the operations that wrote those values, so those
must be classified as L by classification rule (a). But then those show up in a cl-low-observable subtrace,
and since t1 ∼cl t′1, the same of those operations must have happened for t1 and t′1, and they wrote the
same values in the same order. Therefore, c and c′ read the same values. Since statements themselves
are deterministic, the values written by c and c′ are equal as well. Thus we have Ecl(c) = Ecl(c′). �
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Lemma 5. Let P be a program that always terminates and let classification rule (a) according to Defi-
nition 14 hold. Let t = t1 · c · t2 be a possible trace for P and cl(c) = L. Let t′ = t′1 · t′2 with t′1 ∼cl t1
also be a possible trace.

Then op(c) must occur on t′2.

Proof. Since operations are unique in a trace, t1 cannot contain op(c), and neither can t′1 since cl(c) = L.
Thus, it suffices to show that op(c) is executed on t′1·t′2. This is trivially fulfilled for the starting operation.
Else, let p be the operation that directly controls whether op(c) is executed. We have stmt(c) = stmt(p)
or stmt(c) is control dependent on stmt(p). With classification rule (a), we have cl(p) = L. Since
t′1 ∼cl t1, p was executed on t′1 as well and has read the same values as on t1. Therefore, it chooses the
same branch, so op(c) must occur on t′1 · t′2 as well. �

We now show that if a program’s PDG can be classified correctly, then for a cl-low-class, the proba-
bility of observing it does not differ between low-equivalent inputs:

Theorem 5. Let P be a program that always terminates and ucl a user annotation for P . Let cl be a
correct classification of its PDG according to Definition 14.

Now let i, i′ be two inputs with i ∼L i′, let t be a trace. Then

Pi([t]cl) = Pi′([t]cl).

Proof. We will prove the equation by contradiction. So, let us assume Pi([t]cl) 6= Pi′([t]cl).
Let t = c1 · c2 · · · cn be the decomposition of t into single events. With the calculation rules from

Lemma 3, applying rule 2 and then repeatedly applying rule 3, we get

Pi([t]cl) = (

n∏
j=1

Pi([c j]cl · · · | [c1 · . . . · c j−1]cl)) · Pi([ε]cl | [t]cl),

and the same for i′. Since the left sides for i and i′ are not equal, the same must hold for at least one
factor. Furthermore, we have

Pi([ε]cl | [t]cl) = Pi′([ε]cl | [t]cl)

by the following argument: If not both sides are 1, there is a low event that is possible after a trace in [t]cl.
From Lemma 5 we then have that this event occurs on every trace t′ ∼cl t, making both probabilities 0.

Thus, there is a j that the factor

P([c j]cl · · · | [c1 · · · c j−1]cl)

is different for i and i′. Let t1 = c1 · · · c j−1 and c = c j. Then we have

Pi([c]cl · · · | [t1]cl) 6= Pi′([c]cl · · · | [t1]cl).

In the following, we will focus on these two conditional probabilities, so we can assume that the trace
that has happened until that point is cl-low-equivalent to t1.
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Without loss of generality we assume

Pi([c]cl · · · | [t1]cl) > Pi′([c]cl · · · | [t1]cl)

(switch i and i′ if necessary). op(c) gets executed for i since the former probability is greater than zero,
and we have cl(c) = L because else both probabilities would be equal to 1. With Lemma 5 we have that
op(c) will be executed in every trace in [t1]cl · · · .

Since the remaining trace must execute op(c) given an execution in [t1]cl has happened, its cl-low-
observable part cannot be empty. The conditional probabilities for the different cl-low-observable parts
of low events given [t1]cl must add up to 1 for i and i′, but we have

Pi([c]cl · · · | [t1]cl) > Pi′([c]cl · · · | [t1]cl).

Thus, there is a c′ with Ecl(c) 6= Ecl(c′) such that

Pi([c′]cl · · · | [t1]cl) < Pi′([c′]cl · · · | [t1]cl).

Analogously to above, op(c′) must happen after each trace in [t1]cl.
If op(c) = op(c′), with Lemma 4 we get Ecl(c) = Ecl(c′), contradicting Ecl(c) 6= Ecl(c′). Thus

op(c) 6= op(c′). Let o := op(c) and o′ := op(c′). o and o′ must be executed after a trace in [t1]cl has
been executed. In fact, o can be executed directly after it (at least for input i) and since o 6= o′, o′ must
then happen after o. Analogously, o can happen after o′. This makes s := stmt(o) and s′ := stmt(o′)
an MHP-pair. Let d := cda(s, s′). Then by classification rule (b) with n = s,m = s′ all nodes in
path(d, s) are classified as L. o can be scheduled for input i, so the CFG predecessors of s that were
already executed allow o to be executed next. Those are in path(d, s) since otherwise we would have
d = s, which is impossible because with MHP(s, s′) we have MHP(d, s′), a contradiction to Definition
13. Thus, they are cl-low-observable and therefore have happened for any trace t′1 ∼cl t1 as well. Thus,
o can be scheduled for every such trace t′1, regardless of i or i′. The same argument shows that o′ can be
scheduled after every such t′1. From Lemma 4 we also have that the only possible cl-low-observable part
of the event for o is Ecl(c), so

Pi([c]cl · · · |[t1]cl) = Pi([o]cl · · · |[t1]cl)

and

P′i([c]cl · · · |[t1]cl) = P′i([o]cl · · · |[t1]cl)

(we use [o]cl here as a shorthand for
⋃

op(c)=o[c]cl). The same holds for o′ and c′. If we go from i to i′, the
probability of scheduling o gets smaller but the probability of scheduling o′ gets greater. Therefore, the
relative scheduling probabilities do not stay the same, even though for both inputs, both operations can
be scheduled. This contradicts the assumption of a truly probabilistic scheduler. �

We now can prove that the conditions of the previous theorem guarantee PN.
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Corollary 1. Let P be a terminating program and ucl a user annotation for P . Let cl be a correct
classification of its PDG according to Definition 14.

Now let i ∼L i′ according to Definition 5, let t ∈ Θ. Then

Pi([t]L) = Pi′([t]L).

Proof. Classification rule (c) ensures that all sources and sinks n with ucl(n) = L also fulfill cl(n) = L.
Thus, for all traces t1, t2 we have t1 ∼cl t2 =⇒ t1 ∼L t2. Therefore, we can write [t]L as disjoint union
of all [t′]cl ⊆ [t]L. With the probability formula for disjoint unions we have

Pi([t]L) =
∑

[t′]cl⊆[t]L

Pi([t′]cl),

and the same for i′. By applying Theorem 5, we get Pi([t′]cl) = Pi′([t′]cl) for all [t′]cl. Thus,

Pi([t]L) =
∑

[t′]cl⊆[t]L

Pi([t′]cl) =
∑

[t′]cl⊆[t]L

Pi′([t′]cl) = Pi′([t]L)

�

7. Case Study: E-Voting

We will now apply RLSOD to an experimental e-voting system developed in collaboration with
R. Küsters et al. This system aims at a provably secure e-voting software that uses cryptography to en-
sure computational indistinguishability. To prove computational indistinguishability, the cryptographic
functions are replaced with an “ideal variant”: The encryption creates a random number as encrypted
message and remembers the connection of this message and the key to the plaintext. The decryption
can then get the plaintext back by providing the key and the encrypted text.10 It is then checked by IFC
that no flow exists between plain text, secret key and encrypted message; that is, probabilistic nonin-
terference holds for the e-voting system with ideal crypto implementation. By a theorem of Küsters,
noninterference of the ideal variant implies computational indistinguishability for the system with real
encryption [14, 15].

The example uses a multithreaded client-server architecture to send encrypted messages over the net-
work. It consists of 550 LoC with 16 classes. The interprocedural control flow is sketched in Figure 8;
Figure 9 contains relevant parts of the code. The main thread starts in class Setup in line 2ff: First it
initializes encryption by generating a private and public key, then it spawns a single Server thread be-
fore entering of the main loop. Inside the main loop it reads a secret message from the input and spawns
a Client that takes care of the secure message transfer: The client encrypts the given message and
subsequently sends it via the network to the server. Note that there are multiple instances of the client
thread as a new one is started in each iteration.

There are two sources of secret (high) information: (1) the value of the parameter secret_bit
(line 2) that decides about the content of the message; and (2) the private key of the encryption (line 30).

10Note that due to this construction, at the encryption site there is no flow from the plaintext or key to the encrypted message.
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Fig. 8. CFG structure of the multithreaded server-client based message transfer.

Both are marked for JOANA with a @Source annotation, signalling an input statement (with a default
security level of H). By Definition 14, (2) propagates to lines 39, 41, 5, and 9 which are also classified
High. Likewise, (1) propagates to lines 19 and 22, which are thus High as well.

As information sent over network is visible to the attacker, calls to the method sendMessage
(line 57f) are marked as a low @Sink, signalling an output statement (with a default security level of L).
JOANA was started in “Giffhorn” mode, and – analysing the “ideal variant” – immediately guarantees
that there are no explicit or implicit leaks. However the example contains two potential probabilistic
leaks, which are both discovered by JOANA using Giffhorn’s criterion; one is later uncovered by RL-
SOD to be a false alarm.

To understand the first leak in detail, remember that this e-voting code spawns new threads in a loop.
This will cause low-nondeterminism because the running times for the individual threads may vary
and thus their relative execution order depends on scheduling. This low-nondeterminism is (context-
sensitively) reachable from the high private-key initialization in line 39, hence criterion 2’/3’ will cause
an alarm. Technically, we have MHP(57, 57) ∧ ucl(57) = L; that is, line 57 is low-nondeterministic
with itself (because the same thread is spawned several times). Furthermore, S T ART →∗CFG 39 →∗CFG
57 ∧ ucl(39) = H. Thus criterion 3’ is violated: Giffhorn’s criterion (as well as classical LSOD) thinks

there is a probabilistic leak.
Now let us apply RLSOD to this leak. The common dynamic ancestor for all the low-nondeterministic

message sends in line 57 is located just before the loop header: 11 = cda(57, 57).11 Now it turns out that
the initialisation of private keys lies before this common dynamic ancestor: lines 30, 39, 41, 5, 8, and 9
context-sensitively dominate line 11, and cannot happen parallel to it. Thus by RLSOD criterion 3”, this
potential leak is uncovered to be a false alarm: the private key initialisation is in fact secure!

11Note that we indeed need cda instead of cdom here, such that the static cda lies before all dynamically possible spawns.
JOANA handles such situations correctly, as well as handling interprocedural, context-sensitive dynamic ancestors.
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1 public class Setup {
2 public static void setup(@Source boolean secret_bit) {
3 // HIGH input
4 // Public−key encryption for Server
5 Decryptor serverDec = new Decryptor();
6 Encryptor serverEnc = serverDec.getEncryptor();
7 // Creating the server
8 Server server = new Server(serverDec, PORT);
9 new Thread(server).start();

10 // The adversary decides how many clients we create
11 while (Environment.untrustedInput() != 0) {
12 // determine the value the client encrypts:
13 // the adversary gives two values
14 byte[] msg1 = Environment.untrustedInputMessage();
15 byte[] msg2 = Environment.untrustedInputMessage();
16 if (msg1.length != msg2.length) { break; }
17 byte[] msg = new byte[msg1.length];
18 for(int i = 0; i < msg1.length; ++i)
19 msg[i] = (secret_bit ? msg1[i] : msg2[i]);
20 // spawn new client thread
21 Client client = new Client(serverEnc, msg, HOST, PORT);
22 new Thread(client).start();
23 }
24 }
25 }
26
27 public class KeyPair {
28 public byte[] publicKey;
29 @Source
30 public byte[] privateKey; // HIGH value
31 }
32
33 public final class Decryptor {
34 private byte[] privKey;
35 private byte[] publKey;
36 private MessagePairList log = new MessagePairList();
37 public Decryptor() {
38 // initialize public and secret (HIGH) keys
39 KeyPair keypair = CryptoLib.pke_generateKeyPair();
40 publKey = copyOf(keypair.publicKey);
41 privKey = copyOf(keypair.privateKey);
42 }
43 ...
44 }
45
46 public class Client implements Runnable {
47 private byte[] msg; private Encryptor enc;
48 private String hostname; private int port;
49 ...
50 @Override
51 public void run() {
52 // encrypt
53 byte[] msg_enc = enc.encrypt(msg);
54
55 // send
56 long socketID = Network.openConnection(hostname, port);
57 Network.sendMessage(socketID, msg_enc);
58 Network.closeConnection(socketID);
59 }
60 }
61
62 public class Network {
63 @Sink // LOW output
64 public static void sendMessage(long socketID, byte[] msg) throws NetworkError {
65 ...
66 }
67 ...
68 }

Fig. 9. Relevant parts of the multithreaded encrypted message passing system with security annotations for JOANA.
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Fig. 10. JOANA analysing the e-voting source code

The second potential probabilistic leak comes from the potential high influence by secret_bit in
line 19 to the low-nondeterministic message sends in line 63. Technically, we have the PDG High chain
2 → 19 → 21 → 53 → 57, but 57 is manually classified Low. However this second leak candidate is
not eliminated by RLSOD, and indeed is a probabilistic leak: since the encrypt run time may depend
on the message, the scheduler will statistically generate a specific “average” order of message send
executions (remember the scheduler must be probabilistic). An attacker can thus watch this execution
order, and deduce information about the secret messages. Technically, this subtle leak is discovered
by RLSOD because the high operation which accesses the secret bit lies behind the common dynamic
ancestor, but before the low-nondeterminism:

11 = cda(57, 57)→∗CFG 19→∗CFG 57.
JOANA must and will report this probabilistic leak. The engineer might however decide that the leak

is not dangerous. If the engineer can guarantee that the encrypt run time does not depend on msg, the
leak may be ignored.

JOANA detects both potential probabilistic leaks in about 5 seconds on a standard PC (including PDG
construction). A JOANA screenshot showing the analysis of the e-voting source code is given in Figure
10; more details on the JOANA GUI can be found in [17]. After JOANA is set to RLSOD, one of the
leaks disappears as described above. We consider the e-voting example a rather spectacular example
how RLSOD improves precision. Note however that a systematic evaluation of RLSOD precision has
not yet been tackled, as it is difficult to find realistic example programs with probabilistic leaks.
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#BC Instr. PDG time PDG time O-S
wallet 116 504 924
clientserver 601 204 298
battleship 937 408 1,078
corporatecard 1,186 427 821
safeappplet 1,295 376 1,332
hybrid 1,479 454 729
cloudstorage 1,972 563 1,030
j2mesafe 5,519 3,937 –
purse 10,807 6,004 13,165
barcode 11,406 1,307 –
onetimepass 13,034 48,729 –
bexplore 14,041 21,538 –
keepass 16,427 9,495 –
freecs 49,396 1,301,072 –
hsqldb 126,860 4,129,274 –

Table 1
PDG construction times (in milliseconds) for benchmark programs

8. Evaluation

Table 1 presents PDG construction times for various programs.12 These times are taken from a recent
JOANA scalability study provided by J. Graf in [33]. All measurements took place on a machine with a
Core i7 processor, 32GB RAM, with Java 8 64-Bit. For the 15 benchmark programs, program size in byte
code instructions is given (without library functions), as well as PDG construction time in milliseconds.
“PDG time O-S” is PDG construction time with object-sensitive points-to analysis; this variant is more
expensive but much more precise. The largest program is “hsqldb” with 126860 byte code instructions,
which corresponds to about 65kLOC source code.

[33] provides additional data on PDG size, summary edges, impact of points-to analysis details, and
more. RLSOD time is not included in the PDG construction times. One observes that runtimes are
strongly nonlinear, but moderate (1-2 hours/50kLOC). Memory is the limiting factor (7 of the programs
cannot be analysed using object-sensitive points-to with 32GB). Note that JOANA offers many analysis
options, in particular choices for MHP and points-to precision [17].

Table 2 shows the runtimes of LSOD, Giffhorn’s criterion and RLSOD for a subset of the programs in
table 1, “BarrierBench” from the Java Grande Benchmark and the e-voting program from section 7; on
the same machine configuration as above. PDG construction time is not included. PDGs were built with
object graphs and instance-based points-to precision (cmp. [33]). For each n = 1, 5, 10 we selected n
sources and n sinks randomly from the PDG nodes. For each program, criterion and n we performed 10
measurements. The table shows the average runtime in milliseconds. For the top four programs, we used
a more precise and more expensive MHP analysis. Since it does not scale for the last two programs, we
used a simple MHP analysis there. Note that this choice only affects precision, not soundness. For the
small programs, all (R)LSOD times are less than 100 msec; for the largest program (R)LSOD times are
below 2 min. Interestingly, for the largest program and n > 1, “Giffhorn” is a little faster than LSOD, and
RLSOD is 4 times faster. The reason is that both the LSOD and Giffhorn implementations use multiple

12Links to all benchmark programs can be found at https://pp.ipd.kit.edu/projects/joana/rlsod-jcs.php.
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Program #BC Instr. LSOD Giffhorn RLSOD
1 5 10 1 5 10 1 5 10

barrierbench 416 38 31 32 38 31 34 93 63 55
battleship 937 11 17 24 13 17 21 25 17 14
evoting 1,106 13 9 11 13 10 12 37 23 21
barcode 11,406 20 21 25 25 23 28 58 37 36
freecs 49,396 23,945 34,502 50,427 23,622 32,072 45,160 54,280 53,042 56,111
hsqldb 126,860 16,427 70,740 133,777 17,288 62,581 119,767 31,885 30,333 30,333

Table 2
Performance of LSOD, Giffhorn’s criterion and RLSOD with different numbers of sources/sinks (in milliseconds)

backward slices according to definition 12 resp. conditions 2’ / 3’, while RLSOD is based on definition
14 and needs no backward slices. This also explains why RLSOD does not really depend on n.

9. Related Work

Zdancewic’s work [8] was the starting point for us, once Giffhorn discovered that the Zdancewic
LSOD criteria can naturally be checked using PDGs. Zdancewic uses an interesting definition of low-
equivalent traces: low equivalence is not demanded for traces, but only for every subtrace for every low
variable (“location traces”). This renders more traces low-equivalent and thus increases precision. But
location traces act contrary to flow-sensitivity (relative order of variable accesses is lost), and according
to our experience flow-sensitivity is essential.

While strict LSOD guarantees probabilistic non-interference for any scheduler, it is too strict for multi-
threaded programs. RLSOD considerably improves the precision of LSOD, while giving up on full
scheduler independence (by restricting RLSOD to truly probabilistic schedulers). This same tradeoff
has been proposed by earlier authors. Smith [5] improves on PN based on probabilistic bisimulation,
where the latter forbids the execution time of any thread to depend on secret input. Just as in our work, a
probabilistic scheduler is assumed; the probability of any execution step is given by a markov chain. A
secure program requires that the probability to go from one low-equivalence class of states A to another
(after possibly remaining, or stuttering in A for some time) is independent of the specific state a ∈ A. This
approach is called weak probabilistic bisimulation, and allows the execution time of threads to depend
on secret input, as long as it is not made observable by writing to public variables. The authors present
a static check in form of a type system, and discuss an extension for thread creation. If the execution
time up to the current point depends on secret input, their criterion allows to spawn new threads only if
they do not alter public variables. In comparison, our c cda (n,m) based check does allow two public
operations to happen in parallel in newly spawned threads, even if the execution time up to c (i.e.: a point
at which at most one of the two threads involved existed) depends on secret input.

Approaches for PN based on type systems benefit from compositionality, a good study of which is
given in [22]. Again, a probabilistic scheduler is assumed. Scheduler-independent approaches can be
found in, e.g., [20, 35]. The authors each identify a natural class of “robust” resp. “noninterfering”
schedulers, which include uniform and round-robin schedulers. They show that programs which satisfy
specific possibilistic notions of bisimilarity (“FSI-security” resp. “possibilistically noninterferent”) re-
main probabilistically secure when run under such schedulers. Since programs like Figure 7 left are not
probabilistically secure under a round-robin scheduler, their possibilistic notion of bisimilarity require
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ASS
dom (exp) v dom (var)

` var := exp : (dom (var) , L)
SKIP

` skip : (H, L)

IF
` com1 : (ass, stp) ` com2 : (ass, stp) dom (exp) v ass

` if exp then com1 else com2 : (ass, stp t dom (exp))
SPAWN

∀i ∈ {0, . . . , k − 1} . ` comi : (ass, stpi)

` spawn [com0, . . . , comk−1] : (ass, L)

WHILE
` com : (ass, stp) stp t dom (exp) v ass

` while exp do com : (ass, stp t dom (exp))
SUB

` com :
(
ass′, stp′

)
ass v ass′ stp′ v stp

` com : (ass, stp)

SEQ
` com1 : (ass1, stp1) ` com2 : (ass2, stp2) stp1 v ass2

` com1; com2 : (ass1 u ass2, stp1 t stp2)

Fig. 11. Security Type System FSI [20]

1 void main():
2 H := Hin;
3 if (H < 1234)
4 Lout := Lout + "0";
5 L := H;
6 Lout := Lout + str(L);

1 H := Hin;
2 if (H) {
3 skip };
4 spawn [
5 Lout := Lout + "17",
9 Lout := Lout + "42"

10 ]

Fig. 12. FSI-Variants of Figure 1, left, and of Figure 7, left

“lock-step” execution at least for threads with low-observable behaviour. Compared to RLSOD this is
more restrictive for programs, but less restrictive on scheduling.

A completely different approach to noninterference and PN is the use of program logics and verifica-
tion. For example the KeY system [36] has been used to verify noninterference and other nonfunctional
security properties; KeY was also applied to Küster’s e-voting system (cmp. chapter 7) [37]. Recently,
relational program logics have been proposed which allow to express probabilistic properties of pro-
grams, including PN [38]. Such verification systems are very powerful and allow to verify properties
beyond PN, but are never automatic such as RLSOD and JOANA. We are thus exploring the combina-
tion KeY + JOANA: JOANA can, due to a programming interface, export relevant analysis results, such
as points-to relations, PDG reachability, PN guarantees, or leak localizations. KeY can use JOANA as a
black box to considerably simplify security verification [39].

9.1. Detailed Comparison with Type-System Based Analysis for FSI

In Figure 11, the type system for FSI-Security from [20] for a concurrent WHILE language is re-
peated verbatim. FSI-Security implies S-Security for all robust schedulers S. Both these notions re-
quire an explicit global classification dom of all variables, implying a classification for all expressions.
The attacker is assumed to observe the initial and final values of low variables. Intuitively, a judgment
` com : (ass, stp) means that com is secure, with a running time influenced only by input of level stp
or lower, and observable effects (specifically: writes to variables) only of level ass or higher.

The observational model in our work differs slightly: we assume the attacker to observe not the final
value of low variables, but instead the values of variables at observable nodes, i.e.: nodes n with ucl(n) =
L. The two FSI programs corresponding to Figure 1, left, and to Figure 7, left are shown in Figure 12,
assuming dom (Hin) = H, dom (Lout) = L.
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Comparing RLSOD with FSI, consider the example in Figure 12, left; which contains simple explicit
and implicit leaks. RLSOD requires cl(2) v cl(3) v cl(4) via the PDG path 2→ 3→ 4 and requirement
(a) in Definition 14, violating H = ucl(2) = cl(2), L = ucl(4) w cl(4) (via requirement (c)); and the
leak is exposed. Likewise, FSI requires

dom (H)
IF
v ass4, violating H = dom (Hin)

ASS
v dom (H), ass4

ASS,SUB
v dom (Lout) = L.

where comi is the statement at line i, and assi, stpi are the security levels in judgements ` comi :
(assi, stpi) appearing in candidate derivation trees for the hypothesis ` main : (ass, stp). assk1,...,kn ,
stpk1,...,kn are the security levels in judgements ` comk1,...,kn : (assk1,...,kn , stpk1,...,kn) for sequentially
composed statements comk1,...,kn = (. . . (comk1 ; comk2) ; . . . comkn). Thus FSI discovers the same leak.

But FSI does not use the “dominator trick”. To see the effect, consider Figure 12, right, which is secure

w.r.t. a probabilistic scheduler, but FSI-insecure as follows: Aside from H = dom (Hin)
ASS
v dom (H),

we have dom (H)
IF
v stp2, and also ass5

ASS,SUB
v dom (Lout) = L. But attempting to derive a type for

com2,4 = com2; spawn [Lout := Lout + "17", . . .] via rule SEQ requires stp2 v ass4
SPAWN,SUB
v ass5.

The latter is a contradiction, thus FSI is violated.
RLSOD, however, correctly classifies the corresponding program from Figure 7 left secure w.r.t. a

probabilistic scheduler, as witnessed by the classification

line 2 3 4 5 9
cl H H L L L

Specifically, this classification does not violate requirement (b) of Definition 14, since 4 cda (5, 9), but
for all nodes c′ on paths 4→ 5, 4→ 9 we have cl(c′) = L. The dominator avoids a false alarm.

9.2. Comparison with Syntactic Criteria for Resumption Based Noninterference

In [22], the authors assume a uniform scheduler, and describe a lattice of security properties (Figure
13) ordered by implication, the weakest of which being 01-bisimilarity (≈01). 01-bisimilarity is not com-
positional w.r.t. every syntactic construct of the source language considered. Nevertheless, the authors
derive syntactic criteria that, whenever a given construct is not compositional w.r.t. the security property,
defer to a stronger property which is compositional w.r.t. this construct.

Instead of spawn [com0, . . . , comk−1] or fork, their language assumes a parallel composition statement
par [com0, . . . , comk−1]. For a direct comparison, the program corresponding to Figure 7 left is shown in
Figure 13. Each line is annotated with its strongest security properties holding. For example, read(H)
is self-isomorphic (siso): if started in low-indistinguishable states (and: given low-indistinguishable in-
puts), executions take the same branches with the same probabilities. It also is discreet (discr): during
the computation, the states stay low-indistinguishable from the initial state, and no low output is made.
Using the syntactic criteria, we can conclude that read(H); if (H) {skip} is discr (but not: siso).
Unfortunately, the syntactic criteria of [22] do not allow us to conclude that sequential composition of a
discr and a siso command (like the par []-Statement) are ≈01, and hence produce a false alarm.

9.3. Compositionality

Compositionality is a useful property, but can be achieved only at the price of either losing precision,
or losing automatic analysis. Let us explain this in more detail.
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1 read(H); siso, discr
2 if (H) {skip}; discr
3 par [
4 print(17), siso
5 print(42) siso
6 ]; siso

Fig. 13. Resumption Based Security: Security Properties[22], and the Program corresponding to Figure 7, left

1 void main():
2 read(H);
3 T = H;
4
5 L = T;
6 print(L);

1 void main():
2 read(H);
3 T = H;
4 ...
5 T = 0;
6 print(T);

1 void main():
2 read(H);
3 if (H > 0) {
4 H−−;
5 }
6 print(0);

Fig. 14. Typical problems of compositional analyses.

Typically, type systems are compositional because they use static classification. For example, in figure
14 left, the first two lines alone are secure, as well as the last two. A compositional IFC with static
classification will discover the simple leak in this code piece once both fragments are composed, because
there are conflicting (static) classifications for T. Unfortunately, static classification is very unprecise.
In particular, it is not flow sensitive and will produce a false alarm for the program in figure 14 middle:
since the high value is overwritten in line 4, the program always outputs 0 and is secure. Note that there
might be many more statements between the two writes to T (cmp. [12]).

For concurrent programs, compositionality is even more problematic. Consider the program in figure
14 right: it is sequential and always prints 0, and therefore fulfills PN for every scheduler. If this program
is composed in parallel with the secure program print(1);, it however contains a probabilistic leak
similar to figure 1 right. Therefore, a typical compositional analysis (e.g. [5, 20] ) will reject the isolated
code piece in figure 14 right, because it conservatively assumes that it can be composed with arbitrary
(unknown) threads. RLSOD in contrast is a whole-program analysis, and uses MHP information to
exactly infer possible concurrency (cmp. section 4.1). Thus it considers the isolated code piece secure –
which it is. It should be noted that compromises between the two extreme positions “fully compositional”
vs. “whole-program” have been attempted, e.g. [40, 41].

Program logics as discussed above are also compositional, typically because they use Hoare triples.
In contrast to type systems and RLSOD, program logics for PN can be made arbitrarily precise. But
the price is high: program logics and verification are never fully automatic, and in practice require high
manual effort for specification and verification. We thus believe that in practice, RLSOD is a good
compromise: it is fully automatic yet very precise, and compositionality can be simulated by stubs.

10. Conclusion

We described a new algorithm for probabilistic noninterference, named RLSOD, which allows secure
low-nondeterminism, while basically maintaining the low-deterministic security (LSOD) approach. RL-
SOD benefits from flow- and context-sensitive program analysis methods such as PDGs, points-to anal-
ysis, and dominators in multi-threaded programs. It turns out that RLSOD heavily reduces false alarms
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compared to LSOD, while a full soundness proof could be achieved. An Isabelle formalization of the
soundness proof has already begun.

RLSOD is integrated into the JOANA IFC tool. JOANA can handle full Java with arbitrary threads,
while being sound and scaling to 200k LOC. The decision to base PN in JOANA on low-deterministic
security was made at a time when mainstream IFC research considered LSOD too restrictive. In the
current paper we have shown that flow- and context-sensitive analysis, together with new techniques for
allowing secure low-nondeterminism, has rehabilitated the LSOD idea.
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