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Abstract We present two new results in machine-checked formalizations of pro-
gramming languages. 1. Probabilistic Noninterference is a central notion in software
security analysis. We present the first Isabelle formalization of low-security obser-
vational determinism (“LSOD”), together with a proof that LSOD implies proba-
bilistic noninterference. The formalization of LSOD uses a flow-sensitive definition
of low-equivalent traces, which drastically improves precision. 2. We present the
first full and machine-checked proof that Launchbury’s well-known semantics of
the lazy lambda-calculus is correct as well as adequate. The proof catches a bug in
Launchbury’s original proof, which was open for many years.
Both results continue the work of the “Quis Custodiet” project at KIT, which aims at
machine-checked soundness proofs for complex properties of languages, compilers,
and program analysis. We thus include a short overview of earlier “Quis Custodiet”
results.

1 Introduction

“Quis custodiet ipsos custodes?”1 is the motto of a long-standing project at KIT
and TUM, where Isabelle is used to verify complex properties of programming lan-
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guages, compilers, and program analysis methods. At KIT, “Quis Custodiet” pro-
vided the following major results:

• The semantics of multiple inheritance in C++ was formalized in Isabelle, and
type safety was proven [36, 33];

• Program dependence graphs were formalized in Isabelle, and PDG-based infor-
mation flow control – a specific form of software security analysis – was proven
to be sound [35, 34];

• The Java memory model was completely formalized in Isabelle, and sequential
consistency was proven; this project included a full semantics for threads and a
verified Java compiler [19, 18, 17];

• A new code optimization for Haskell, called call arity, was implemented, proven
correct and integrated into the GHC [3, 5, 4].

All together, the “Quis Custodiet” project at KIT produced over 100000 lines of
Isabelle code, distributed over 14 AFP publications.

In this contribution, we present two new results in the “Quis Custodiet” project:

1. Probabilistic Noninterference (PN) is a central notion in software security. In
particular, information flow control (IFC) algorithms check program code for
confidentiality and integrity leaks, and guarantee noninterference. We present
a formalization of the well-known low-security observational determinism IFC
criterion (“LSOD”), which is flow-sensitive and thus much more precise than
previous approaches. We provide an Isabelle proof that our flow-sensitive
LSOD implies PN.

2. We present the first full and machine-checked proof that Launchbury’s well-
known semantics of the lazy λ -calculus is correct as well as adequate. In partic-
ular, Launchbury’s original adequacy proof had a bug, which could not be fixed
for many years. Using Isabelle, a new proof approach was discovered, which
allowed a machine-checked adequacy proof.

Together with our earlier work, we can thus answer the original question“Quis cus-
todiet ipsos custodes?” by stating: “Illi Isabellistes se custodes egregios praesta-
bant!”.2

2 Providing Software Security Guarantees: Isabelle Soundness
Proofs for Noninterference

2.1 Background

“Quis Custodiet” was originally founded with the goal to provide machine-checked
soundness proofs for certain software security analysis algorithms, in particular al-
gorithms for information flow control (IFC). IFC analyses program code, and checks

2 We leave the translation as an exercise to the reader.
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it for confidentiality (“no secret values can leak to public ports”) and integrity (“crit-
ical computations cannot be manipulated from outside”). A sound IFC guarantees
that all potential leaks are discovered, while a precise IFC does not cause false
alarms.3 To prove soundness of an IFC analysis, the notion of noninterference is
essential [25]. In particular, for multi-threaded programs subtle leaks resulting from
scheduling and nondeterminism must be found resp. prohibited, which requires that
IFC guarantees probabilistic noninterference (PN) [26].

Many authors investigated properties and variations of PN definitions, and some
built IFC tools that check program code for confidentiality leaks based on PN. At
KIT, Snelting et al. developed the JOANA system, which can handle full Java with
unlimited threads, scales to 250 kLOC, guarantees PN, produces few false alarms,
has a nice GUI, and is open source [12]. JOANA achieves scalability and precision
by using sophisticated program analysis technology, such as program dependence
graphs (PDGs), points-to analysis, exception analysis, and may-happen-in-parallel
analysis. In particular, the analysis is flow-sensitive, context-sensitive, and object-
sensitive, which drastically improves precision [13]. JOANA was successfully used
to guarantee confidentiality of an experimental e-voting system [15], and to analyse
the full source of the HSQLDB database [11].

JOANA can handle unlimited threads and provides a new algorithm for PN. This
“RLSOD” algorithm is more precise than competing methods, while avoiding lim-
itations or soundness bugs of previous algorithms [7, 10, 1]. RLSOD is based on
the classical “low-security observational determinism” (LSOD) approach, but, for
the first time, allows secure low-nondeterminism. RLSOD again exploits modern
program analysis, thus being much more precise than LSOD [1].

In the scope of “Quis Custodiet”, PDGs and the PDG-based sequential noninter-
ference were formalised in Isabelle, and a machine-checked soundness proof was
provided [35]. For PN however, noninterference and its analysis are more demand-
ing. While soundness proofs for PN checkers based on security type systems have
successfully been provided [22, 26], the PDG-based approach is, due to its flow- and
context-sensitivity, much more complex to formalize. A machine-checked sound-
ness proof for RLSOD has just begun. As a first step, the next sections describe the
Isabelle formalization of flow-sensitive LSOD and its PN guarantee. To keep this
article self-contained, we begin with a summary of technical PN properties.

2.2 Technical Basics

IFC guarantees that no violations of confidentiality or integrity may occur. For con-
fidentiality, all values in input, output, or program states are classified as “high”

3 Note that “100% soundness + 100% precision” cannot be achieved simultaneously: the famous
Rice Theorem states that such perfect program analysis is undecidable.
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1 vo id main ( ) :
2 r e a d (H ) ;
3 i f (H < 1234)
4 p r i n t ( 0 ) ;
5 L = H;
6 p r i n t ( L ) ;

1 vo id main ( ) :
2 f o r k t h r e a d 1 ( ) ;
3 f o r k t h r e a d 2 ( ) ;
4 vo id t h r e a d 1 ( ) :
5 r e a d ( L ) ;
6 p r i n t ( L ) ;
7 vo id t h r e a d 2 ( ) :
8 r e a d (H ) ;
9 L = H;

1 vo id main ( ) :
2 f o r k t h r e a d 1 ( ) ;
3 f o r k t h r e a d 2 ( ) ;
4 vo id t h r e a d 1 ( ) :
5 longCmd ( ) ;
6 p r i n t ( ”AR” ) ;
7 vo id t h r e a d 2 ( ) :
8 r e a d (H ) ;
9 w h i l e (H != 0)

10 H−−;
11 p r i n t ( ”ND” ) ;

Fig. 1 Some leaks. Left: explicit and implicit, middle: possibilistic, right: probabilistic. For sim-
plicity, we assume that read(L) reads low variable L from a low input channel; print(H)
prints high variable H to a high output channel.

(secret) or “low” (public), and it is assumed that an attacker can read all low values,
but cannot see any high value.4

Figure 1 presents small but typical confidentiality leaks. As usual, variable H is
“High” (secret), L is “Low” (public). Explicit leaks arise if (parts of) high values
are copied (indirectly) to low output. Implicit leaks arise if a high value can change
control flow, which can change low behaviour (see Fig. 1 left). Possibilistic leaks in
concurrent programs arise if a certain interleaving produces an explicit or implicit
leak; in Fig. 1 middle, interleaving order 5, 8, 9, 6 causes an explicit leak. Proba-
bilistic leaks arise if the probability of low output is influenced by high values. For
example in Fig. 1 right, there are no explicit or implicit leaks; but if the value of H
is large, probability is higher that “ARND” is printed instead of “NDAR”. Thus the
attacker may gather information about H from public output.

The simplest (sequential) noninterference definition assumes that a global and
static classification cl(v) of all program variables v as secret (H) or public (L) is
given. The attacker can only see public variables and values. Noninterference then
requires that for any two initial state with identical L variables, but perhaps varying
H variables, the final states also coincide on L variables. Thus an attacker cannot
learn anything about H variables, and confidentiality is guaranteed.5

Technically, the simplest form of (sequential) noninterference is defined as fol-
lows. Let P be a program. Let s,s′ be initial program states, let [[P]](s), [[P]](s′)
be the final states after executing P in state s and s′, resp. Noninterference holds iff

s∼L s′ =⇒ [[P]](s)∼L [[P]](s′) .

4 A more detailed discussion of IFC attacker models can be found in, e.g., [10]. Note that JOANA
allows arbitrary lattices of security classifications, not just the simple⊥= L≤H => lattice. Note
also that integrity is dual to confidentiality, but will not be discussed here; JOANA can handle both.
5 Note that noninterference covers security only on the program level, it does not cover side channel
attacks, compromised hardware, etc. The latter must be handled by other security techniques.
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The relation s∼L s′ means that two states are low-equivalent, that is, coincide on
low variables: cl(v) = L =⇒ s(v) = s′(v). Program input is assumed to be part of
the initial states s,s′, and program output is assumed to be part of the final states
(“batch-mode behaviour”).

In multi-threaded programs, fine-grained interleaving effects must be accounted
for, thus traces are used instead of states. A trace is a (possibly infinite) sequence of
events t = (s0,o0,s1),(s1,o1,s2), . . . ,(sν ,oν ,sν+1), . . ., where the oν are operations
(i.e. dynamically executed program statements), and sν resp. sν+1 are the program
states before resp. after execution of oν .

For PN, the notion of low-equivalent traces is essential. In the simplest defini-
tion, traces t, t ′ are low-equivalent if for all low-observable events (sν ,oν ,sν+1)∈ t,
(s′ν ,o

′
ν ,s
′
ν+1) ∈ t ′ it holds that sν ∼L s′ν , oν = o′ν , and sν+1 ∼L s′

ν+1. For low-
equivalent traces, we write t ∼L t ′. Obviously, ∼L is an equivalence relation, and
the low-class of t is [t]L = {t ′ | t ′ ∼L t}. Note that the t ′ ∈ [t]L cannot be distin-
guished by an attacker, as all t ′ ∈ [t]L have the same public behaviour. Thus [t]L
represents t’s low behaviour.

PN is called “probabilistic” because it essentially depends on the probabilities
for certain traces under certain inputs. Probabilistic behaviour is caused by program
nondeterminism (e.g., races), scheduler behaviour, interleaving, and other factors.
We write Pi(T ) for the probability that a trace t ∈ T is executed under input i. Thus,
Pi([t]L) is the probability that some trace t ′ ∼L t is executed under i. In practice, the
Pi([t]L) are very difficult or impossible to determine – fortunately, for our soundness
proof explicit probabilities are not required.

The following PN definition uses explicit input streams instead of initial states.
For both inputs the same initial state is assumed. Inputs consist of a low and a high
stream of values. Inputs are low-equivalent (i∼L i′) if their low streams are equal.

Now let i and i′ be inputs; let T (i) be the set of all possible traces of program
P for input i. Obviously, we have Pi(T (i)) = 1. In the following definition, we use
Pi([t]L ∩T (i)) instead of Pi([t]L). Note that [t]L \T (i) is a subset of all impossible
traces, which is a null set for Pi. Let Θ = T (i)∪T (i′). PN holds iff

i∼L i′ =⇒ ∀t ∈Θ : [t]L∩T (i) is measurable for Pi

∧ [t]L∩T (i′) is measurable for Pi′

∧ Pi([t]L∩T (i)) = Pi′([t]L∩T (i′)) .

That is, if we take any trace t which can be produced by i or i′, the probability
that a t ′ ∈ [t]L is executed is the same under i resp. i′. In other words, probability for
any public behaviour is independent from the choice of i or i′ and thus cannot
be influenced by secret input. Note that for the equality of probabilities to have a
meaning, both sets must be measurable. It is easy to prove that PN implies sequential
noninterference, as the proof is independent of specific Pi (see [7, 1]).

Applying this to Fig. 1 right, we first observe that all inputs are low-equivalent
as there is only high input. For any t ∈Θ there are only two possibilities:
. . .print("AR"). . .print("ND"). . .∈ t or
. . .print("ND"). . .print("AR"). . .∈ t.
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Thus, there are only two equivalence classes
[t]1L = {t ′ | . . .print(”AR”) . . . print(”ND”) . . . ∈ t ′} and
[t]2L = {t ′ | . . .print(”ND”) . . .print(”AR”) . . . ∈ t ′}.
Now if i contains a small value and i′ a large value, as discussed earlier we have
Pi([t]1L) 6= Pi′([t]1L) as well as Pi([t]2L) 6= Pi′([t]2L), hence PN is violated.

LSOD is the oldest and simplest criterion which enforces PN. LSOD is indepen-
dent from specific Pi, and thus independent of specific scheduler behaviour. This
attractive feature made us choose LSOD as a starting point for JOANA’s PN. LSOD
demands that low-equivalent inputs produce low-equivalent traces. It is intuitively
secure: changes in high input can never change low behaviour, because low be-
haviour is enforced to be deterministic. This is however a very restrictive require-
ment. To address this, RLSOD, as used in JOANA, relaxed this restriction and led
to a powerful and precise analysis [7, 1].

Technically, let i, i′ be inputs, Θ as above. LSOD holds iff

i∼L i′ =⇒ ∀t, t ′ ∈Θ : t ∼L t ′ .

Under LSOD, all traces t for input i are low-equivalent: T (i) ⊆ [t]L, because
∀t ′ ∈ T (i) : t ′ ∼L t. If there is more than one trace for i, then this must result from
high-nondeterminism; low behaviour is strictly deterministic.

Lemma 1. LSOD implies PN.

Proof. Let i∼L i′, t ∈Θ . W.l.o.g. let t ∈ T (i).
Due to LSOD, we have T (i) ⊆ [t]L and thus [t]L ∩T (i) = T (i). As Pi(T (i))=1,

the set [t]L∩T (i) is measurable. Therefore, we have

Pi([t]L∩T (i)) = Pi(T (i)) = 1.

Likewise, the set [t]L ∩ T (i′) is measurable and Pi′([t]L ∩ T (i′)) = 1, so we have
Pi([t]L∩T (i)) = Pi′([t]L∩T (i′)). ut

The proof makes obvious that LSOD does not care for specific Pi – which is both its
strength (scheduler independence) and its weakness (lack of precision).

2.3 Giffhorn’s Flow Sensitive LSOD

The above simple definition for ∼L is extremely restrictive and causes many false
alarms. Not only does it require an unrealistic “lock-step” execution of both traces,
it is also based on a static H/L classification of program variables, which is neither
flow- nor context- nor object-sensitive.

Using security type systems, more refined definitions of ∼L have been investi-
gated (see, e.g., [26, 37, 24]). In 2012, Giffhorn discovered that PDGs can be used
to define low-equivalent traces in such a way that a) lock-step execution is not nec-
essary; b) infinite traces are covered, and soundness problems of earlier approaches
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to infinite traces are avoided; c) PN checking is flow-, context- and object-sensitive.
This insight fits nicely with JOANA’s PDG-based IFC. In the following, we sketch
Giffhorn’s approach; more details and explanations can be found in [10].

Giffhorn observed that due to flow sensitivity, the same variable or memory cell
can have different classifications at different program points resp. corresponding
trace operations (because it has multiple occurrences in the PDG) without compro-
mising soundness.6 For a low event (s,o,s′), its (flow-sensitive!) low projection is
(s |use(o),o,s′ |de f (o)), where s |use/de f (o) denotes the restriction of s to the variables
read and written in operation o, resp.7 Giffhorn allows infinite traces and defines
low-equivalent traces as follows:

Let t, t ′ be two traces. Let tL, t ′L be their low-observable behaviours, which are
obtained by deleting high events and using the low projections for low events. Let
tL[n] be the n-th event in the low-observable behaviour of t, kt = |tL|,kt ′ = |t ′L|. Then
t ∼L t ′ iff

1. ∀0≤ i < min(kt ,kt ′) : tL[i] = t ′L[i], and
2. if kt 6= kt ′ , and w.l.o.g. kt > kt ′ , then t ′ is infinite and ∀kt ′ ≤ j < kt : t ′ infinitely

delays an operation o ∈ DCD(op(tL[ j])), where op(e) is the operation of event
e.

The latter condition is new and makes sure that operations op(tL[ j]) missing in
the shorter low-observable trace t ′L can only be missing due to nontermination before
o, where o is transitively dynamically control dependent (DCD) on op(tL[ j]). [10]
explains a) that this subtle definition avoids soundness problems known from earlier
definitions of low-equivalent infinite traces; b) that dynamic control dependence
can be soundly and precisely approximated through PDGs. Giffhorn thus provides
a static, PDG-based criterion which guarantees LSOD and thus PN. We will not go
into the details of the static criterion and its soundness proof (see [10, 9]). Instead
we now present an Isabelle proof that LSOD based on Giffhorn’s∼L guarantees PN.

2.4 Giffhorn’s LSOD in Isabelle

The Isabelle formalization of Giffhorn’s approach starts with definitions and lem-
mas about traces, postdominance, and dynamic control dependency (DCD). In fact,
all events in a trace can be uniquely determined by their chain of dynamic control
predecessors, which is expressed by a series of lemmas. Note there are no con-
crete definitions for dynamic control dependency and postdomination, but just min-
imal requirements, which can be instantiated in various ways. Next, low observable
events and low-equivalence of traces are defined. Giffhorn’s crucial innovation, the
condition “t ′ infinitely delays o ∈ DCD(o j)” reads as follows:

definition infinite-delay :: ′trace⇒ ′stmt operation⇒ bool (- id -)

6 Note that in JOANA only input and output must be classified, all other classifications are com-
puted automatically by a fixpoint operation [13].
7 This flow-sensitive definition increases precision, see [10].
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where T id o ′≡ ¬ o ′∈t T ∧ (∃o ′′. in-same-branch o ′ o ′′∧ o ′′∈t T)
where in-same-branch uses DCD chains to check if o′,o′′ are in the same branch,
caused by some branching point b (e.g., a dynamic IF statement). If so, but o′ /∈t T ,
then U infinitely delays o′ due to nontermination between b and o′ [10].

Low-equivalency ≈low follows Giffhorn’s original definition (see [10], defini-
tion 6). The final LSOD definition reads

locale LSOD =
...

fixes input-low-eq :: ′input⇒ ′input⇒ bool (infix ∼L 50)
and possible-traces :: ′input⇒ ′trace set (T ′(- ′))

definition Θ i i ′≡ T(i) ∪ T(i ′)
definition LSOD
≡ ∀ i i ′. i ∼L i ′−→ (∀ t ∈Θ i i ′. ∀ t ′∈Θ i i ′. t ≈low t ′)

Note that input-low-eq is a parameter of locale LSOD and can again be instan-
tiated in various ways. To prove that Giffhorn’s LSOD implies PN, we originally
planned to use the formalization of PN in Isabelle as described by Popescu and
Nipkow [23]. Unfortunately, this work assumes that ≈low is an equivalence rela-
tion, while Giffhorn’s ≈low is not transitive (more precisely, it is transitive only in
the finite case). Therefore, we defined our own notion of PN in Isabelle using the
HOL-Probability library [14].

We define PN in an abstract setting (independent of LSOD), that gets instantiated
later. In this setting we assume the existence of probability spaces Pi and sets of
possible traces T (i) for each input i such that Pi(T (i)) = 1. As before, the definition
is parametric in input-low-eq, and this time also in the low relation between traces.

locale Probabilistic-Noninterference =
fixes input-prob :: ′input⇒ ′trace measure (P-)
and input-low-eq :: ′input⇒ ′input⇒ bool (infix ∼L 50)
and low-rel :: ′trace⇒ ′trace⇒ bool (infix ≈low 50)
and possible-traces :: ′input⇒ ′trace set (T ′(- ′))
assumes prob-space: prob-space Pi
and prob-T: Pi T(i) = 1

The PN definition then reads
definition PN ≡ ∀ i i ′. i ∼L i ′

−→ (∀ t ∈Θ i i ′.
{t ′∈ T(i). t ≈low t ′} ∈ sets Pi ∧
{t ′∈ T(i ′). t ≈low t ′} ∈ sets Pi ′ ∧
Pi {t ′∈ T(i). t ≈low t ′} = Pi ′ {t ′∈ T(i ′). t ≈low t ′})

where sets Pi denotes the set of measurable sets of Pi.
Connecting the abstract PN definition to LSOD is straightforward by equating

the possible traces of both formalizations and instantiating low-rel with Giffhorn’s
low-equivalency. The proof of the soundness theorem
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theorem LSOD-implies-PN: assumes LSOD shows PN

follows the handwritten proof in Lemma 1 (we would like to point out that Isabelle’s
Sledgehammer tool was quite helpful in finding the right lemmas from the probabil-
ity library). The reader should keep in mind that this soundness theorem is only the
first step for an RLSOD soundness proof in Isabelle. For a manual proof of RLSOD
soundness, see [1].

To justify the assumptions made by the abstract settings above, we adopted
Popescu and Nipkow’s [23] construction of the trace space using a discrete time
markov chain (see [14]) and instantiated input-prob of our locale Probabilistic-Non-
interference with the resulting trace space8.

Further, we formalized multi-threaded CFGs as a set of CFGs (as presented by
Wasserrab [33]) extended with fork edges9, for which we defined a multithreaded
small-steps semantics. The state is modelled as a tuple consisting of the memory
and for each thread a list of the executed edges – that implies, that there is no thread
local memory. We then define the semantics to be the intra-thread semantics (that
is annotated to the edges, see [33]) on each thread, spawning new threads for each
fork edge.

As there are only finitely many threads in each state, we can compute a discrete
probability distribution for the successor states of a given state and use that as the
transition distribution (see [14]) for our discrete time markov chain. For that we
used pmf-of-multiset on the multi-set of possible successor states, thus modelling a
uniform scheduler.

In addition to the trace semantics of the discrete time markov chain we defined
a second trace semantics using possibly infinite lists (type ′a llist) and traditional
interleaving of threads to model finite and infinite executions explicitly. We then
proved the two semantics to be equivalent10.

We instantiated the multi-threaded CFGs with two simple multi-threaded toy lan-
guages, a structured while language, and a goto language, both extended with a fork
operation.

The complete formalization of flow-sensitive LSOD and PN, including parallel
CFGs, dominance, dynamic dependences, and the toy languages comprises about
10 kLOC of Isabelle text11.

3 An Old Proof Completed, Finally

Formal semantics provide the underpinning for proofs in language-based security,
as without them, many theorems cannot even be stated, let alone be proved in a rig-

8 In contrast to Popescu and Nipkow, our traces include the initial state.
9 We currently don’t support any form of synchronization primitives such as join/wait.
10 Note that in the case of finite traces, the discrete time markov chain remains in the finished state
forever.
11 The complete formalization can be found at http://pp.ipd.kit.edu/git/LSOD/.
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Γ : ńx.e ⇓ Γ : ńx.e
LAM

Γ : e ⇓ ∆ : ńy.e′ ∆ : e′[y :=x] ⇓Θ : v
Γ : e x ⇓Θ : v

APP

Γ : e ⇓ ∆ : v
x 7→ e,Γ : x ⇓ x 7→ v,∆ : v

VAR
dom∆ ∩ fv(Γ ) = {} ∆ ,Γ : e ⇓Θ : v

Γ : let ∆ in e ⇓Θ : v
LET

Fig. 2 Launchbury’s natural semantics for Lazy Evaluation

orous, machine-checked manner. All (standard) semantics describe mathematically
what a program does, but they vary in style (e.g., operational big-step semantics
vs. denotational semantics) and in detail (i.e. which details of the actual program
execution are modelled and which are abstracted over).

Launchbury’s seminal paper “A Natural Semantics for Lazy Evaluation” [16]
introduces two such semantics for a lambda calculus with lazy evaluation:

1. An operational semantics where the relation Γ : e ⇓ ∆ : v indicates that the ex-
pression e, evaluated within the heap Γ , evaluates to the value v while changing
the heap to ∆ , where a heap is modeled as a partial map from variable names to
expressions. The relation is inductively defined by the rules in Fig. 2.
Because the shape of the heap is explicit in this formulation, the semantics
allows us to represent expressions as graphs instead of trees, and thus express
sharing, lazy evaluation and memory usage. This is indeed relevant for an IFC
analysis of functional programming languages with lazy evaluation, as sharing
can cause hidden channels [8].

2. A denotational semantics JeK which translates an expression e into a mathe-
matical object (an element of a cpo, to be precise) that captures its functional
behaviour. This semantics is more abstract than the operational, as it does not
model the evolution of the heap.

In order to prove that the operational semantics makes sense, and to allow trans-
ferring results from one semantics to the other, they are connected by two theorems:
Correctness states that given Γ : e ⇓ ∆ : v, the denotational semantics assigns the
same meaning to let Γ in e and let ∆ in v. Adequacy states that every program that
has a meaning under the denotational semantics (i.e. JeK 6=⊥) also evaluates in the
operational semantics.

3.1 A Sketchy History

Launchbury’s paper comes with a detailed proof of correctness, which translates
nicely into an Isabelle proof. For the proof of adequacy, the story is not quite so
simple.
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Γ : e ⇓ ∆ : ńy.e′ y 7→ x,∆ : e′ ⇓Θ : v
Γ : e x ⇓Θ : v

APP’
x 7→ e,Γ : e ⇓ ∆ : v
x 7→ e,Γ : x ⇓ ∆ : v

VAR’

Fig. 3 Launchbury’s alternative natural semantics

In his paper, Launchbury outlines an adequacy proof via two intermediate se-
mantics:

1. He introduces the variant ANS of his operational semantics which differs in
three aspects (Fig. 3):

a. In the rule for function application (ńy.e) x, instead of substituting x for y
in e, the binding y 7→ x, called an indirection, is added to the heap.

b. In the rule for evaluating a variable x, the original semantics removes the
binding for x 7→ e from the heap until e is evaluated. This models the black-
holing technique that is employed by language implementations such as
the Haskell compiler GHC in order to detect some forms of divergence. It
also allows the garbage collector to free unused memory in a more timely
manner [20]. The alternative operational semantics does not perform black-
holing.

c. Also in the rule for evaluating a variable x that is bound to e, after evaluating
e to v, the original semantics binds x to v, so that further uses of x will not
recalculate this value. This updating is essential to lazy evaluation, and dif-
ferentiates it from the call-by-name evaluation strategy, where e would be
re-evaluated for every use of x. Again, the alternative operational semantics
omits this step.

The intention is that these changes make ANS behave more similarly to the
denotational semantics and thus simplify the adequacy proof.

2. He introduces a variant of the denotational semantics N JeK, dubbed the re-
sourced denotational semantics, which expects as an additional parameter an
element of C := N∪ω , and decreases this argument in every recursive call.
When the argument is ω , this does not actually limit the number of recursive
calls, and the semantics coincide to the regular denotational semantics.
If the argument is a natural number, the semantics might run out of steam before
it fully calculates the meaning of the given expression.

Launchbury’s adequacy proof sketch then proceeds with little more detail than the
following list:
1. If JeK 6=⊥, then, because the semantics coincide, we have N JeK ω 6=⊥.
2. Because the resourced denotational semantics are continuous, there is an n ∈ N

such that N JeK n 6=⊥.
3. From that we can show that in the alternative operational semantics, there exist

∆ and v such that {} : e ⇓ ∆ : v. The step is performed by induction on n, and
justifies the introduction of the resourced denotational semantics.
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4. Finally, because the two operational semantics obviously only differ in the
shape of the heap, but otherwise reduce the same expressions, we also have
such a derivation in the original operational semantics.

Given the impact of the paper as the default big-step operational semantics for
lazy evaluation, it is not surprising that there are later attempts to work out the details
of this proof sketch. These turned up a few hurdles.

The first hurdle is that it does not make sense to state the coincidence of the
denotational semantics as JeK = N JeK ω , since these semantics map into different
cpos. The regular denotational semantics maps into the cpo D defined by the domain
equation

D = [D→ D]⊥

where every element is either⊥ or a continuous function from D to D. The resourced
denotational semantics map into the cpo E defined by the domain equation

E = [(C→ E)→ (C→ E)]⊥ .

This problem was first discovered by Sánchez-Gil et al., and just fixing this step, by
defining a suitable similarity relation between these cpos, was a notable contribution
on its own [27].

The same group also attempted to complete the other steps of Launchbury’s proof
sketch, in particular step 4. They broke it down into two smaller steps, and start-
ing from the alternative semantics, they proved that removing indirections from the
semantics does indeed yield an equivalent semantics [29]. But to this date, the re-
maining step resists rigorous proving, as Sánchez-Gil et al. report [28]. It seems that
without blackholing and updates, the difference in heap evolution are too manyfold
and intricate to be captured with a sufficiently elegant and handleable relation.

3.2 Denotational Blackholing

Considering the difficulties of following Launchbury’s proof sketch directly, we re-
visited some of his steps. If it is so hard to relate the two operational semantics,
maybe it works better to work just with the original operational semantics, and try
to bridge the apparent mismatch between the operational semantics and the denota-
tional semantics on the denotational side?

The first of the differences listed on page 11 – substitution vs. indirection – can
be readily bridged by a substitution lemma (JeKρ(y 7→ρ x) = Je[y :=x]Kρ ), which is
needed anyways in the correctness proof.

The third of the listed differences – whether updating is performed or not – is
even easier to fix, as it does not affect the adequacy proof at all. In an adequacy
proof we need to produce evidence for the assumptions of the corresponding natu-
ral semantics inference rule, which is then, in the last step, applied to produce the
desired judgement. The removal of updates only changes the conclusion of the rule,
so the adequacy proof is unchanged. There is an indirect effect, as in the adequacy
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proof we use the corresponding correctness result, and the correctness proof needs
to address updates.

The remaining difference is the tricky one: how can we deal with blackholing
in the adequacy proof? As during the evaluation of a (possibly recursive) vari-
able binding the binding itself is removed from the heap, the denotation of the
whole configuration changes. This is a problem, as there is no hope of proving
N JeKN {{x 7→e,Γ }} = N JeKN {{Γ }}.

But what we could hope for is the following statement, which indicates that if
a recursive expression has a denotation, then the expression has some (likely less
defined) denotation even when all recursive calls are ⊥:

N JeKN {{x 7→e,Γ }}n 6=⊥ =⇒ N JeKN {{Γ }}n 6=⊥

This lemma follows from the following, also quite natural proposition, which ex-
presses that if we allow the resourced semantics function to take at most n+1 steps,
then the environment only matters in so far as at most n steps are passed to it:

N JeKσ |(n+1) = N JeK(σ |n)|(n+1)

It turned out, however, that the resourced denotational semantics as introduced by
Launchbury does not fulfill this property! By carefully capping the number of steps
passed in the function equation for lambda expressions, we could fix this, and indeed
prove adequacy of the resourced denotational semantics.

3.3 Gaining Assurance

These systems and proofs are, as the discussions in the previous sections showed,
abundant with pitfalls. We would not believe our own proofs, had we not imple-
mented all of them in Isabelle.

This includes a formalization of the similarity relation between the two denota-
tional semantics from [27]. As it is a non-monotonous relation, we cannot simply
define it as an inductive relation, but have to first define finite approximations and
then manually take the limit. Once constructed, however, the details of the construc-
tion are no longer relevant – a blessing of the extensionality of Isabelle’s logic.

Throughout our development we used the Isabelle implementation [32] of Nomi-
nal Logic [21] to elegantly deal with the contentious issues involving name binding.
The interested reader can find full details in [6] and Breitner’s award-winning thesis
[5].

We have since extended our formalization [2] with boolean values and it has
served as the target for a formal verification that a transformation performed by
the Haskell compiler does not increase the number of allocations performed by the
program [3, 4] – a property that can only be proven with a semantics as operational
as Launchbury’s.
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4 Conclusion

Juvenal’s question “Quis custodiet ipsos custodes?” can from a science-theoretic
viewpoint be interpreted as an early precursor of later “constructivist” positions,
which deny the possibility of objective knowledge and sound methodology. While
we dismantled constructivist positions in the field of software technology [31, 30],
we interpreted Juvenal’s question as a challenge to produce soundness guarantees
for various program analysis and software security techniques. Today we are satis-
fied to state our answer to Juvenal: “Illi Isabellistes Se Custodes Egregios Praesta-
bant!”.
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