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Zusammenfassung

Devirtualisierung beschreibt das Ersetzen dynamischer Methodenaufrufe durch
statische Methodenaufrufe, wenn zur Kompilierzeit ein einziges Ziel des dynamis-
chen Aufrufes ermittelt werden kann. In libFirm wird dies aktuell mittels Rapid-
Type-Analysis (RTA) erreicht. In dieser Arbeit geht es darum, den Devirtual-
isierungsprozess mittels XTA zu verbessern, damit mehr dynamische Aufrufe zu
statischen umgewandelt werden können. Das Ergebnis ist eine präzisere Analyse, die
weniger Methoden als erreichbar markiert.

Devirtualization describes the replacement of dynamic method calls with static
method calls when, during compilation, it is possible to determine that a dynamic
method call has only one target method. Currently, in libFirm this is achieved
via Rapid-Type-Analysis (RTA). This thesis is about improving the process of
devirtualization via the introduction of XTA, so more dynamic method calls can be
replaced with static ones. The result is a more precise analysis which marks less
methods as reachable.
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1 Introduction
Many programs nowadays are written in object-oriented programming (OOP) lan-
guages. One common feature of these languages is that methods can be called based
on the dynamic type of the object they are called on. Thus, the target of a dynamic
function call is, without further analysis, not known at compile time. But there are
two advantages of knowing the target at compile time:
First there is the immediate time advantage gained by replacing a dynamic call

with a static one. This is because the dynamic call works via a v-table, where all
methods’ addresses for one object type are stored. So calling a method via dynamic
dispatch involves loading the v-pointer to a v-table, loading the method’s address
using the v-pointer and then calling the function at the specified address. In contrast,
a static call involves only the last step: calling the function at the specified address.
The other advantage of replacing a virtual call with a static one is that further

optimizations, e.g. inlining of a devirtualized call, can be done.
Especially the latter improves the performance of a program significantly.
This bachelor thesis is about improving the devirtualization process in the compiler

framework libFirm. libFirm features a graph-based intermediate representation in
SSA form and several front- and backends as well as many optimization options. One
of these is the Rapid-Type-Analysis to devirtualize method calls. The idea behind
RTA is to search for all object instantiations and to then collect the type of the
created object. By reading the whole program once, all used object types are known
as well as the class hierachy. Thus, one can use this information to infer for each
dynamic method call, whether there is only one target or several. If there is only
one, the call’s devirtualization is possible.
The problem is that RTA is imprecise as it is only recorded which object types

are in use and not where they are actually used. Thus, the following call to foo()
cannot be devirtualized using information obtained via RTA:

c l a s s A { void foo ( ) {} }
c l a s s B extends A {

void foo {}

pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
A a = new A( ) ;
bar ( ) ;

}

s t a t i c void bar ( ) {
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A b = new B( ) ;
b . foo ( ) ; // Ca l l to foo ( )

}
}

Listing 1.1: Example code where RTA cannot devirtualize call to foo() but XTA
can.

RTA will collect the information that an object of type A as well as type B was
created. When analyzing the call site to foo(), it walks the class hierarchy from
the static type of variable b, which is A. Two methods can be called: A::foo() and
B::foo().
A more precise analysis is XTA. Instead of one set of created object types, a set

is created for each called method and referenced field. These sets store all object
types which are accessible in a method or through a field. The idea is to model the
possible flow of object types between methods and fields as objects are passed on as
parameters or returned to another method. Thus, the immediate effect of an object
creation is local to one method.
Analysing the example using XTA, the following result is achieved: The call to

foo() gets devirtualized, as only objects of type B are accessible inside bar(). The
object creation of type A in the main method does not alter the results, as the object
is not passed on to bar().

The goal of this thesis is to improve the devirtualization process by implementing
XTA in libFirm.
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2 Basics and Related Work

2.1 libFirm
libFirm is a library providing a graph-based intermediate representation called
FIRM, plus optimizations and assembly code generation to compilers 1. As compilers
are split into frontend and backend, libFirm can be used as a backend for different
compilers. Generally, the frontend reads program code and creates an intermediate
representation (IR), whereas the backend uses the IR to create executable assembly
code. The advantage of using an IR is that multiple frontends and backends are
independent from each other, and one backend can be used by different frontends
and vice versa. Additionally, optimizations to the IR become source and target code
independent.
libFirm [1, 2] uses FIRM (Fiasco’s Intermediate Representation Mesh) as an IR,

originally developed for the Sather-K compiler Fiasco, hence its name. It features a
SSA-graph based representation of code. Single Static Assignment (SSA) [3] requires
that every (local) variable is only defined once, eliminating the concept of variables
altogether, replacing it with SSA values. This simplifies many possible optimizations.
Converting a program into SSA form is done by renaming the variable each time a
new assignment occurs. Additionally a special φ-function is needed, whenever two
control flows merge and a value needs to be chosen from depending on the taken
path.

SSA form allows for building a graph without variables: The graph links together
each operation and the associated operands, the results of previous operations. Thus
this graph shows the dependency between operations. Whereas IRs featuring an
instruction list representation imply a total order of operations, a dependency graph
representation only leads to a partial order, making the backend responsible for
calculating a total order, by scheduling instructions.
A function in FIRM is represented by a program graph, starting with a start

node and ending with an end node. All nodes represent an operation and the edges
represent the dependencies between them. Edges are directed from a node to its
dependencies. Thus the graph is reversed compared to a control flow graph where
edges link a node to the subsequently executed node. A separate model is included
in the graph to keep track of memory changes. The specific state of the memory
is represented by a node, each change via load/store operations results in a new
memory state, thus a new node. This is necessary, as memory-dependent operations
have to be executed in the correct order.

1https://pp.ipd.kit.edu/firm/

9

https://pp.ipd.kit.edu/firm/


2.1. LIBFIRM

Many different node types exists. Besides basic arithmetic operations, e.g. Add,
Sub, Mul, Div, Shift, there are nodes for function calling, Call, as well as a Return
node and the previously discussed Load and Store nodes.

Additionally, the nodes Address, Offset, Member and Const exist, representing
addresses, constants or members of an entity.

There is also a projection node, Proj, for selecting a specific value out of a tuple
of values. This is necessary, so edges do not need to store additional information,
besides where they are pointing to.

To model the control flow, operations are grouped into blocks. Jump nodes,
conditional and unconditional, exist to jump to a different block.

The Call node resembles a function call and depends on a memory state, the call
target’s address and a number of possible arguments. As functions in FIRM are
entities, the Address node contains the call target’s function entity. The output of a
Call node is a new memory state and a result Proj node.

Thus the FIRM graph is the combination of a dependency graph and a control
flow graph.

Figure 2.1 is an exemplary graph of a simple function. The blue edges are the
memory dependency edges. As there is no operation involved changing the memory
state, the original state is passed through. In the first block, the arguments are
separated to different nodes to pass them to a compare operator. Based on the
comparison result, either the left add or the right subtract node is chosen. These
blocks consist of a simple arithmetic operation, dependent on both arguments, and a
jump statement for getting into the last block. To merge the data dependency flow,
a φ-node is placed in the last block. The last statement is the return, before the end
node signals the end of the graph.

The FIRM graph is created iteratively using the algorithm described by Braun
et al. [4]. During the process several optimizations are done on-the-fly, including
Arithmetic Simplification, Common Subexpression Elimination and Constant Folding.
Inherent optimizations, as of the SSA-graph’s creation, include Copy Propagation
and Dead Code Elimination. Copy Propagation removes unnecessary assignments.
But as there are no local variables in a FIRM graph, there are no assignments either.
As the graph is a dependency graph, dead code gets eliminated automatically.

Type information is stored in a separate graph. This graph represents the depen-
dencies between different types. Several types of nodes exists: Primitive types store
primitives, pointer types specify the type of the instance they are pointing to and
method types list argument and return types. Additionally, Array, Union, Struct
and Class types exist. Class types have a collection of fields and methods and a list
of supertypes. Information about overwritten fields and methods is also stored. A
special class GlobalType exists, to list global variables as well as static methods.
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2.1. LIBFIRM
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Figure 2.1: This FIRM graph shows the function foo which takes two arguments
and returns the result of a multiplication. The two arguments Arg 0
and Arg 1 are either added up or one is substracted from the other one,
depending which one is greater. Afterwards, the result of the addition
or subtraction is doubled and returned.
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2.2. LIBOO

2.2 Liboo
Liboo is a library, depending on libFirm, which adds support for object-oriented
programming constructs. Especially dynamic dispatch via v-tables and the creation
of these are handled. During a lowering phase all added features are replaced by
libFirm instructions, making it compatible to all optimizations include in libFirm.

Liboo introduces a new node named MethodSel to handle dynamic dispatch. This
node hides the complexity of selecting a call target by reading the v-table. The
MethodSel node takes the place of an address node, as its output is the address of
the actual call target. A method in an object-oriented language resembles a function
where the this-pointer is the first parameter. Thus, the MethodSel node depends
on the call’s first argument (index zero), as the method selection needs the v-table.
Additionally, the node stores the call entity, a FIRM entity representing the static
type’s method, needed to search for the right method to be called, based on the
this-pointer’s dynamic type.

2.3 Bytecode2Firm
Bytecode2Firm is a frontend which translates java bytecode to the FIRM IR. It’s
class-file compatibility is tested for the versions 49, 50, and 51, which corresponds
to the Java SE versions 5, 6 and 7. Therefore it lacks support for newer language
features such as anonymous functions. Also exception handling is not yet included.
Bytecode2Firm has a runtime library included called SimpleRT which supports

basic Java features. In order to access the full standard library, one has to depend
on libgcj, the runtime-libraries of GCJ (GNU Compiler for Java).

2.4 Static Analyses used for Devirtualization
One way to determine whether dynamic method calls can be devirtualized is the
use of static program analyses. Static program analyses examine the program code
itself without executing it, while dynamic analyses draw conclusions by running
the program. In order to accomplish the devirtualization of virtual call sites, static
analyses often build a call graph. A call graph represents the calling relationships
between methods. For every method a node is created in the graph, and for each
static call site in a method an edge is created from the method to the call’s target
method. As the target of a dynamic call is only known at run time, the analysis has
to approximate the list of possible target methods. For each possible target method
an edge has to be generated from the caller to the callee. If the analysis is able to
reduce the number of call targets at a virtual call site to only one target method,
the virtual call can be converted to a static one. Thus, the call is devirtualized.
A method to which no edge is leading to can be removed as the method is not

called. This optimization step of removing unreachable methods is called Dead Code
Elimination.
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2.4. STATIC ANALYSES USED FOR DEVIRTUALIZATION

The goal is to build a conservative approximation: A graph that may not be
as precise as the optimal graph, but still includes the optimal graph, also called
over-approximation. As building the exact call graph statically is an undecidable
problem [5], the goal is to approximate the call graph conservatively. The result is a
graph that may not be as precise as the optimal graph, but still includes the optimal
graph.

A requirement for building a complete call-graph is to consider the whole program,
not just one translation unit. In order to build a sound and precise call graph, and
to be able to devirtualize as many calls as possible, the following assumption has to
be made: The known code forms a closed world. Thus, nothing outside the known
code base is used by the known code and vice versa.

Some of the static analyses that can be used for devirtualization are closely related
to each other, with each analysis improving on another one. By using set-constraints
and sets of live classes, i.e. classes in use, to formulate the analyses, the similarities
and improvements are displayed very clearly. The goal is to find the least sets, that
fulfil all constraints.
A basic approach to devirtualize dynamic calls is to replace every dynamic call

with a static one where there is only one target method with the given signature.
The set-constraints define the set of reachable methods R as follows:

1. main ∈ R

2. For each method M , each virtual call site e.m() in M , and each method M ′

with the same signature as m:

M ∈ R =⇒ M ′ ∈ R

Thus, reachable methods are methods that can be reached from the main method
and additionally all methods with the same signature as a method from a call site.
So devirtualizable calls are virtual calls, where there is only one method with that
signature.

This approach is called Reachability Analysis [6] and closely resembles the Unique
Name Analysis [7], which compares mangled names of methods at link time to devir-
tualize calls. The prerequisite for correctly devirtualizing all calls is the knowledge
of all method signatures, otherwise calls may get devirtualized that have target
methods which are unknown to the analysis. This results in a corrupt program.
A slightly advanced version considers the class hierarchy, thus it is called Class

Hierarchy Analysis [8]. Whereas rule Nr. 1 stays the same, rule Nr.2 changes to
following:

2. For each method M , each virtual call site e.m() in M , and each class C ∈
SubTypes(StaticType(e)) where StaticLookup(C,m) = M ′:

M ∈ R =⇒ M ′ ∈ R

13



2.4. STATIC ANALYSES USED FOR DEVIRTUALIZATION

where StaticType(e) is the static type of the expression e, SubTypes(t) is the set
of all declared sub types of type t. The notation StaticLookup(C,m) is the static
lookup, searching for a method named m starting from class C, then going upwards
in the class hierarchy.
The difference to the Reachability Analysis is that CHA uses the class hierarchy

to narrow down the search for matching methods: for a call e.m() only methods
with the name m which are inherited by a subtype of the static type of e will be
regarded as reachable. Thus, the requirements for a correct analysis get extended to
not only requiring all method names, but also the complete class hierarchy. While
CHA does work only taking into account method names, using signatures instead
does also work and enhances the outcome.

2.4.1 RTA
The Rapid Type Analysis [7] extends the CHA by using information about object-
instantiations to further reduce the possible number of targets for a dynamic call. The
idea is to track each object instantiation and save the type of the object. Therefore
a new set S is introduced to keep track of classes which are considered in use. Now
only methods of classes which are in S can get called, changing constraint Nr. 2 to
the following:

2. For each method M , each virtual call site e.m() in M , and each class C ∈
SubTypes(StaticType(e)) where StaticLookup(C,m) = M ′:

M ∈ R ∧ C ∈ S =⇒ M ′ ∈ R

Additionally, a new constraint is needed to define which classes are in the set S for
used classes:

3. For each method M and each object creation in M , e. g. "new C()":

M ∈ R =⇒ C ∈ S

This states that only object instantiations in reachable methods are taken into
account.
In contrast to CHA and RA, RTA does need full knowledge of the code to track

object instantiations. Thus the closed-world assumption has to be valid. This can be
a major drawback, as compilers often link pre-compiled libraries to a program. These
libraries cannot be analyzed, thus objects created in a library cannot be tracked.
If these objects are used in the analyzed and optimized code, the program may
malfunction. This does occur when a call gets devirtualized, but an object is created
in non-analyzed code and changes the possible call targets for that call.
RTA is already implemented in liboo [9].

14



2.4. STATIC ANALYSES USED FOR DEVIRTUALIZATION

2.4.2 XTA
While RTA is fast and simple, the usage of only one set of live classes can be too
imprecise. It gives only a global view of classes in use, but a more local view may help
devirtualizing additional call sites. XTA [6] is a hybrid approach and the combination
of FTA and MTA, which are seperately explained in section 2.4.3. To give a more
local view, a set SM of live classes is created for each method M and a set Sx for
each field x. The set of a field contains the object types which are at some point
stored in it. The set of a method has following classes in it:

• All types of objects which are initialized in the method.

• All possible types of objects which are returned from a call site inside the
method.

• All possible types of objects passed to the method as an argument.

To fill the sets, the following constraints are used:

2. For each method M , each virtual call site e.m() in M , and each class C ∈
SubTypes(StaticType(e)) where StaticLookup(C,m) = M ′:

M ∈ R ∧ C ∈ SM =⇒


M ′ ∈ R ∧
SubTypes(ParamTypes(M ′)) ∩ SM ⊆ SM ′ ∧
SubTypes(ReturnType(M ′)) ∩ SM ′ ⊆ SM ∧
C ∈ SM ′

ParamTypes(M) are the classes of the parameters, excluding the this-Pointer
parameter, and ReturnTypes(M) are the return types of the methodM . SubTypes(·)
is the combined set of subtypes of the given set of types.
This is a refinement to RTA’s similar constraint Nr. 2 as it only considers target

methods of classes which may be in use at the call site. Additionally, the flow of
classes is captured by taking into account the parameters and the return type of a
method. This is done by using the information gained about which classes are live
at a call site and by only passing on live classes that are subclasses of the defined
parameters. Handling the return type of a method is done the same way. As the
this-Pointer is not seen as an argument, the last part of the constraint explicitly
states that the type of the object the method belongs to is live.
The third constraint handles the construction of new objects:

3. For each method M and each object creation in M , e. g. "new C()":

M ∈ R =⇒ C ∈ SM

As XTA not only has sets for each method, but also for each field, two new
constraints are needed to model a field’s reads and writes:
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2.4. STATIC ANALYSES USED FOR DEVIRTUALIZATION

4. For each method M in which a read of field x occurs:

M ∈ R =⇒ Sx ⊆ SM

5. For each method M in which a write to field x occurs:

M ∈ R =⇒ SM ∩ SubTypes(StaticType(x)) ⊆ Sx

A field read sets all the field’s live classes live in the method the read is in. A field
write adds all subtype’s of the field’s static type to the field’s set of live classes, if
they are considered live in the method the write is located in.

In order to deal with unavailable code, Tip and Palsberg propose the use of a set
SE of classes associated with library code. The following rules are introduced:

• Calling a library method M ′ in an application method M results in the prop-
agation of the all possible parameters to SE. Also all possible types of the
this-pointer from virtual method calls are propagated. This results in the
following set relation:

M ∈ R ∧ C ∈ SM =⇒ SubTypes(ParamTypes(M ′) ∪ this) ∩ SM ⊆ SE

for each virtual call site e.m(), and each class C ∈ SubTypes(StaticType(e))
where StaticLookup(C,m) = M ′ and C is a library class.

• A write in method M to a field f defined outside the application leads to the
propagation of SM ∩ Type(f). A read propagates SE ∩ Type(f) to SM . Read:

M ∈ R =⇒ SE ∩ SubTypes(StaticType(f)) ⊆ SM

Write:
M ∈ R =⇒ SM ∩ (SubTypes(StaticType(f)) ⊆ SE

• For each method M overwriting a library method the assumption is made, that
a library method will call it. The set SE is used to determine which method
M can be called from the library. For such methods M ′ the flow of parameter
and return types is modeled using SM ′ and SE in accordance with rule 2.

2.4.3 CTA,FTA and MTA
There are several analyses using more than one set for approximating live classes,
but which are less complex than XTA, including the aforementioned FTA and MTA.

1. CTA is an analysis using only a set for each class, unifying all sets SM and Sx

of a class C to SC .

2. MTA also defines a set SC for each class, but also a set Sx for each field x.
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2.5. RELATED WORK

RA CHA RTA CTA

MTA

XTA

FTA

0-CFA

cost and accuracy

Figure 2.2: The relationship of the analyses in regard to cost and accuracy (adapted
from [6])

3. FTA also defines a set SC for each class, but also a set SM for each method M .

Thus XTA combines MTA and FTA to grasp the flow of live classes between methods
and fields.
Tip and Palsberg [6] classify the algorithms by how many sets are used for

approximating run-time values of expressions. While the Reachability and the Class
Hierarchy Analysis do not use such a set, the Rapid Type Analysis uses one to keep
track of the global state. More precise analyses such as XTA, FTA, MTA and CTA
use more than one set for the whole program.
CTA, FTA, MTA, and XTA can be executed in O(n2 × C), where n is the

number of used sets and C is the number of classes [10]. Thus, XTA can be run in
O((M + F )2 × C), where M is the number of methods, F is the number of fields.
The relationship between all analyses discussed is shown in figure 2.2.

2.5 Related Work
While this thesis is about devirtualization via XTA, there are several different
approaches discussed in other papers. The following section is a brief overview about
these.

2.5.1 Points-To Analysis
The Points-To Analysis [11] is classified as 0-CFA by Tip and Palsberg [6]. 0-CFA is
the class of control-flow analyses using one set per expression to model the flow of
objects. The Points-To Analysis’ goal is to find the set of possible objects a pointer
can point to, thus making it more precise than XTA. Still the procedure closely
resembles the one of XTA, but now using one set for each pointer: At every site an
object is created, it is inserted in the points-to set of the specified pointer. Each
variable assignment results in a set-relation between the two involved points-to sets.
Thus many set relations are gathered and resolving these can be done in O(n3),
where n is the number of sets.
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2.5. RELATED WORK

Several approaches exists to speed-up the Points-to Analysis. Steensgaard [12]
proposed to use set equations instead of inequalities. On the one hand, it makes
the analysis less precise, on the other hand, this version runs in almost linear time.
Berndl et al. [13] propose the use of binary decision trees to improve speed and
memory consumption.
To make the points-to analysis more precise it is refined to an object- and heap-

sensitive one. To speed up these object- and heap-sensitive points-to analyses, one
can only selectively apply a precise points-to analysis to program parts where the
expected gain is high [14].
Sundaresan et al. [15] alter the points-to analysis by recording only object types

instead of object representatives, thus reducing the number of elements in the
points-to sets.

2.5.2 Devirtualization techniques in modern compilers
Much research went into devirtualization techniques suitable for Just-in-Time com-
pilers. Regarding devirtualization, their big advantage is that they don’t need to
make the closed-world assumption, as they can cope with class hierarchy changes
during runtime. Dynamic recompilation using on-stack replacement [16] can be used
to handle dynamic class loading.

Another technique is the direct devirtualization with the code patching mechanism
[17] where inlined code of a devirtualized call is executed as long as the current class
hierarchy supports the devirtualization. When the class hierarchy changes and does
not support the call’s devirtualization anymore, the code is patched and the dynamic
call site is reintroduced.

LLVM

LLVM is a compiler library featuring an SSA-based IR. Devirtualization is realized
using load/store optimization. Using instruction metadata the frontend has to mark
every load and store operation with a so-called invariant group metadata. This tells
optimizations that they can assume that a load from a pointer annotated with that
metadata will always return the same value.

Therefore pointers to the same memory location, but with different dynamic type
must have different SSA values. This occurs in C++ for example, if placement new
is used to create a new object.

If a constructor is not inlined the optimizer cannot know the value of the v-pointer.
Thus, via an @llvm.assume intrinsic it is assumed that after a call to a constructor
the v-pointer points to the v-table of the constructed object’s type.
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3 Design and Implementation
This chapter is about designing and implementing XTA in liboo. Section 3.1 is
specifically about the design decisions made, section 3.3 is about how calls are
devirtualized section 3.2 explains the propagation algorithm, section 3.4 is about
finding all target methods to a virtual call, and section 3.5 explains how object
creations and field reads and writes are recognized in a FIRM graph.

3.1 Design Decisions
Just like the already existing RTA [9], XTA is part of the liboo library. This is
the lowest layer where object-oriented constructs, such as object creations, can be
recognized in a FIRM graph. Placing XTA in liboo has the advantage that all
frontends using liboo are able to run XTA and take advantage of the devirtualization
of dynamic calls. Therefore, the XTA implementation has to work with different
frontends and has to make as few assumptions as possible about the code structure.

As some information is only available to the frontend and cannot be retrieved from
liboo, two callbacks have to be implemented by the frontend in order for XTA to
work. One callback gets called every time the analysis finds a call to a method where
no graph is known, these are also marked as external by the frontend. For example,
this is the case if the method is a library method, or is written in a different language.
As these methods cannot be analyzed, the frontend has to determine whether the
external method calls methods which are to be be analyzed.
The other callback is for detecting constructors and is further explained in Sec-

tion 3.6.
After configuring these callbacks, the analysis, including the devirtualization

process, is started via one method call. The following information is passed on at
start:

1. A list of entry points. Usually, this is only the main method of a program.
When compiling libraries, this list must include all publicly accessible methods,
as all of these can be called from an application. If not every possible entry
point is passed to XTA, the flow of object types cannot be reconstructed in a
correct way which may result in incorrect devirtualization.

2. A list of those classes which are to be set live initially. These classes will be
considered live in all methods.

3. Information about object types returned from methods which cannot be ana-
lyzed can be provided to enhance the result. Specifically, this is used to set
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the Java class String live wherever a string is created using a string literal
surrounded by quotation marks. This is necessary as the called method returns
a primitive type instead of a reference to a String object.

XTA can be split into two parts: Part one is the reading of the program’s code
and the gathering of information. For each method all callers, field read and writes,
parameter and return types as well as object creations have to be tracked. This
is explained in detail in section 3.5. Part two is to use the information gained to
propagate possible classes in use according to the rules in section 2.4.2.

The idea is to only read code from methods which are reachable. These are called
on objects whose type is considered live in that context. To do so, the analysis
starts reading the entry point methods. Going through a method, call sites, field
accesses, and object creations are recorded. At every static call site, the target
method is added to a work-queue of still-to-be-analyzed methods. The same is done
at a dynamic call site where every possible call target is recorded. But only the
methods on objects which are considered in use at the call site are added to the
work-queue. As a class can become live in a method later on, all target methods of
classes which are not live yet, have to be saved too. If a class is set live in a method
later on, the store of saved call targets for that method is used to update all target
sets for each call site in that method.
As long as the work-queue is not empty, the methods in the queue are analyzed.

This also involves collecting all possible return and parameter subtypes. We do not
need to consider primitives, but references to objects and arrays. For each reference
type we collect the object type first and then all subtypes. We treat references to
arrays similar: we get the type of the array and afterwards all possible subtypes.
Doing so produces correct results, but it is not as precise as treating arrays like classes
with only one field, which is proposed in [6]. The passing of types not available in
Java, such as struct and union and function pointers, is not supported.

Together with the set of already analyzed methods, the queued methods form the
set of reachable methods R (see section 2.4.2).
If the work-queue is empty, the second part of the analysis is started to find new

methods to be analyzed. The propagation algorithm goes through each analyzed
method’s set of information and manipulates the sets of live classes with the help
of the gathered data according to the rules in section 2.4.2. This is repeated until
either a new method is added to the work-queue or the propagation algorithm does
not change any set at all, which marks the end of the analysis.
Following pseudo code describes the procedure:

do {
whi le ( ! is_empty ( workqueue ) ) {

method = get_element ( workqueue )
add_to_set ( done_set , method )
analyze_method (method )

}
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} whi le ( p ropagate_l ive_c la s s e s ( ) )
Listing 3.1: As long as the propagation algorithm changes the live classes of methods,

the work-queue of yet to be analyzed methods is emptied and analyzed.

The result of the XTA analysis is the information about live classes for each
method and field. Using this information the possible call targets for each dynamic
call are determined. Afterwards the graph of each reachable method is read again
and each dynamic call which has only one call target according to XTA, is replaced
by a static call.
In contrast to the implemented RTA, the actual call graph is built as well, as we

have to store each caller for a method to propagate classes. The call graph is built
on-the-fly while reading method graphs and propagating live classes until a fixed
point of live classes is reached.

While XTA can determine the possible flow of live classes, it can fail to devirtualize
even a dynamic call which can obviously be replaced with a static call, as in listing 3.2.
We assume there is a class B extending class A, both defining a method foo, and a
method main in which A and B are considered live by XTA. If now an object of type
B is created and subsequently a call to foo is made, XTA is not able to devirtualize
that call, as both classes A and B are live and both define foo. But they can be
easily detected in the FIRM graph, as the graph resembles a dependency graph and
the call to foo is directly dependent on the object creation. Thus by searching for
patterns of dynamic calls dependent on objects created locally in that method, calls
can be devirtualized, without the analysis results of XTA.
c l a s s A { void foo ( ) {} }
c l a s s B extends A {

void foo {}

pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
A a = new A( ) ;
B b = new B( ) ;
b . foo ( ) ; //Cannot be d e v i r t u a l i z e d by XTA

}
}

Listing 3.2: Example code where XTA cannot devirtualize call to foo().

This search and immediate replacement of virtual calls on locally created objects
is done before XTA starts. Thus, we reduce the number of dynamic call sites the
XTA has to consider.

3.2 The Propagation Algorithm
The propagation occurs iteratively. In each step, a method’s live class will only be
inserted in sets of callers or sets of called methods, and it will not be propagated
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further until the next iteration. This has to be done, as we do not build a directed
graph of related sets and do not walk this graph from top to bottom. In each iteration,
we apply the set-relations defined in section 2.4.2 to all analyzed method’s live classes.
As we have to calculate the intersection of two sets very often during propagation,
keeping the looked-at sets as small as possible is essential for improving the run-time.
Therefore, we consider three groups of live classes: Firstly, the new set, containing
classes which are newly-added during propagation. Secondly, the currently onwards
propagated classes are stored in the current set. Thirdly, the propagated set contains
already propagated classes, which do not have to be considered during propagation.
Thus classes from a current set will be propagated to the new set of another

method. After a propagation iteration, the content of a method’s current set will be
moved to the propagated set, the new set becomes the current set and an empty set
is the new set now.

Important to note is that now one cannot rely fully on the propagation method to
propagate classes to newly read methods. Live classes in the propagated set have to
be propagated to a newly read method outside propagation iterations.
Another thing to consider is that we cannot add a class to the current set while

we iterate over it. This happens for example, when we iterate over the current set
after an iteration. The classes in the set are now considered live, and therefore we
have to go through the list of previously collected call targets. If a call target is now
live because it is the member of a class in the current set and it’s graph is already
analyzed, we have to propagate possible return types to the method. As we iterate
over the current set, we have to add them to the new set.

3.2.1 Example
To illustrate the propagation algorithm, we consider the code in listing 3.3. The
first thing the XTA does is analyzing the entry point methods, in this case the
main-method. While walking the main-method’s graph, the class A is set live due to
the object instantiation, and thus is added to the main-method’s current set. When
the call to getB() is discovered, getB() is added to the work-queue and analyzed
afterwards. The result of the analysis is that B is added to getB()’s current set.
Now the work-queue is empty, and the propagation starts.
When analyzing methods, we save the caller information at the callee’s. Thus,

during propagation we iterate over all callers of a method. As the main-method does
not have any callers, nothing happens. But when iterating over getB()’s callers, the
main-method is found. Parameter and return types are propagated. As getB() does
not have any parameters, only the return types are considered. The intersection
between all subtypes of the return type and getB()’s current set is built, which is
the class B. This class is now inserted into the main-method’s new set.
Afterwards the propagation is finished, which leads to the next step: all types in

the new set and current set are copied one set further. This is shown in figure 3.1
for the main-method’s sets.
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c l a s s A { }
c l a s s B extends A {

pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
A a = new A( ) ;
a = getB ( ) ;

}

s t a t i c B getB ( ) {
re turn new B( ) ;

}
}

Listing 3.3: Example code to illustrate the analyzing of methods and the propagation
of object types.

B

new

A

B

current

String

A,String

propagated

time

Figure 3.1: This figure shows how the classes in the three sets of the main-method
are moved to the next one.
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3.3 Devirtualizing Calls
After the execution of XTA, the actual devirtualization process starts. As information
about which methods are possibly called exists now, only the graphs of active methods
are read again. At each virtual call site we have to check whether more than one
call target exists. If only one target exists, the call is to be devirtualized.
A call site can be identified in a FIRM graph via a Call node.
In order to devirtualize a method call, we have to identify every MethodSel node

preceding a Call node and, given devirtualization is possible, replace the MethodSel
node by an Address node. As devirtualization using XTA is the same as in RTA,
the process is almost identical. The major difference is that XTA results in sets of
possible call targets which not only depend on the call entity, but also the method
where the call site is located.

3.4 Finding Possible Target Methods
As with devirtualizing calls, the procedure of finding possible target methods is the
same as in the already implemented RTA. In theory, these are the steps needed to
collect all targets: One uses the static type and walks the class hierarchy upwards
until a method with a matching signature is found. This step is needed to cope
with inherited methods which are not overwritten in the static type’s class. After a
fitting method is found, all subclasses of the static type are searched for methods
overwriting the superclass’s method. The details and FIRM-related differences are
discussed in [9].

3.5 Recognizing Object Creations and Field Read and
Writes

When walking through a method’s graph, every node is passed, but only specific types
of nodes are of interest. Creating an object can look differently in a FIRM graph,
as the specific implementation is up to the frontend and the language specification.
Usually the steps that are needed include memory allocation, setting a v-pointer to
the virtual table, calling the constructor plus possible parent constructors and possibly
the initialization of class members. Memory allocation and calls to a constructor are
not feasible for identifying an object creation, as memory can be allocated without
creating an object. Constructors are only called during object creation, but due to
inheritance, multiple constructor calls can occur during the creation of one object.
Also, as constructors are treated like methods in liboo, constructors cannot be easily
identified without knowledge of the language and frontend used.
So the only option left to identify object creations is to recognize the setting of

a v-pointer. Since this also marks the first possible occurrence of a virtual call
afterwards, it is the best place to consider an object to be completely initialized
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for our purposes. The problem is that the v-pointer is a normal member of an
object. Thus without knowing the member’s name, which is chosen by the frontend,
identifying the related store-operation is not feasible.

Therefore liboo introduces a flag node, called VptrIsSet, which marks the existence
of a v-pointer [9]. So at every occurrence of a VptrIsSet node, we get the type
information from the node and set the specific class live in that context.
Recognizing field reads and stores can be achieved without the help of a marker

node. The reason is that for each read a load operation must occur and for each
write there is a store operation. Thus at each load and store node the associated
class member has to be retrieved. There are two possible cases: Either a member
or an address node is directly connected to a load/store node. The class member
information can be read from both node types. If the field stores a primitive value
instead of an object, the read or write is skipped.

3.6 Dealing with Constructors
In liboo, constructors are normal method entities, and there is no flag to indicate that
a specific entity is a class constructor. But as our XTA implementation is designed
and tested with the Java frontend bytecode2firm in mind, we assume the following to
be true: Firstly, constructors do not return references to initialized objects. Secondly,
constructors call one or more super-class constructors if there is a super-class.

Without detecting and handling constructors specially, the following happens: For
example, if there is a class B which extends a class A, the default constructor of B
calls the constructor of A (see listing 3.4). In Java, the dynamic type of this in
the constructor of A is B as an object of type B was created. Thus, class B is live
in the constructor of A. But our propagation algorithm only propagates live classes
from one method to the other if the parameter types or return types match. As
the this-pointer is only considered when passing arguments to external methods
(see section 3.7), class B is not set live in the constructor of A without treating
constructors specially.

c l a s s A { pub l i c A( ) {} }
c l a s s B extends A {

pub l i c B( ) {
super ( ) ; // Ca l l to A : :A( )

}

pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
B b = new B( ) ;

}
}

Listing 3.4: Example code where the constructor B calls the constructor of A
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In order to solve this problem, we have to detect constructor methods and treat
parameter passing as with external methods. As only the frontend is capable of
detecting constructors, a callback to the frontend is introduced. If the frontend
identifies a method as a constructor, the parameter list is extended to the zeroth
argument which is the this-pointer.
In other languages the initialization of objects is done differently. For example,

base-class constructors are called first in C++. Thus, the this-pointer points to
the created sub-object, so a virtual call in a base class constructor will never result
in the calling of an overwritten method in the derived class [18]. Still, our special
handling of constructors does not result in falsely devirtualized calls.

3.7 Dealing with Incomplete Programs
According to section 2.4 static analyses inspecting code must have the ability to read
the whole program in order to produce a sound call graph. But the closed-world
assumption is not tenable under realistic circumstances, as many programs use
external libraries, especially language’s standard libraries. One possibility is to fulfil
the assumption and compile the library’s1 code together with the application code,
thus eliminating unavailable code. But often libraries are only available as a compiled
unit, rendering static code inspection impossible. Even if the library’s source code is
available, analyzing small programs using a language’s standard library can make the
analysis more time- and resource-consuming. For example, the call graph creation of
a simple "Hello World"-routine in Java using SPARC [19] can take up to 30 seconds
and produces a graph with 5,313 reachable methods and more than 23,000 edges
[20].
The second possibility is to cope with unavailable method code directly, and to

set up rules to approximate the effect of library code. In order to still be able to
build a sound call graph, we cannot assume a closed-world anymore, but have to
deal with application classes extending library classes, the calling of library methods
and the overriding of library methods, thus making these methods accessible from
within the library.

The idea is to replace the closed-world assumption with the separate compilation
assumption [20]: A library can be compiled separately from the application. Thus,
following rules are assumed to be valid:

1. A library class cannot extend an application class or interface.

2. A library method cannot instantiate an object whose type is an application
class, except with the use of dynamic class loading. As the Java frontend
bytecode2firm does not support dynamic class loading, we are not taking it
into account further.

1Below, the singular library is used to refer to all linked libraries.
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3. A library method can instantiate any object whose type is a library class, and
can return it if the return type allows it.

4. A set SE is introduced containing all library and application classes which can
be accessed from within the library. An application class C is inserted into the
set if one of the following conditions is met:
• An object of type C is passed as an argument to a library method.
• An application method called from within the library can return an object

of type C.
• An object of type C is stored in a field of a library object.

5. An application method m in class C can be called from a library class under
following circumstances: m has to override a library method and C or subclass
of C must be in SE.

Another reason for not being able to read the whole program is code written in
another source language. Java for example gives programmers the possibility of
native methods which are not written in Java via the Java Native Interface [21]. As
the Java Library uses native methods for system-specific code, one cannot assume
that if the application code does not contain native methods no native method will
be called.
In libFirm methods with no graph exist. These are either native methods,

library methods or even native library methods. Whereas library methods can be
distinguished from native methods by reading liboo’s external flag, library methods
cannot be distinguished from native library methods. Thus, these are treated like
normal library methods.
Explicitly, five parts are to be considered:

1. native methods

2. an application method calling a library method, therefore passing arguments
to SE

3. a field read of a library field, or the write to one

4. an application method overwriting a library method, thus being accessible in
the library

5. all library methods have to be inserted into SE

We implement the rules stated by Tip and Palsberg section 2.4.2 to model the
flow of classes between application and library.

In order to cope with native methods, we assume the following: a native method
does not call a normal method, or writes to a field, thus the only interaction point
is the return value. Secondly, a native method may return all possible classes,
specifically all subtypes of the return type. Therefore, whenever a method with no

27



3.7. DEALING WITH INCOMPLETE PROGRAMS

graph is called, all subtypes of the return type are set live resulting in these to be
passed to the callers.

The second part is handled by checking whether a library method is involved each
time we propagate live classes between methods. If so, we propagate between SE and
the other method’s live classes. An important difference is that we also propagate
any type passed via the this-pointer to a method. A library method is recognized
by checking whether the method’s owner is external.
Field access to library fields is done the same way as with library methods:

propagation takes place between SE and a method’s live classes. A library field’s
owner is either an external class, in case of an instance field, or the firm-specific
GlobalType which stores all static fields and methods. Thus, a library class’s static
field cannot be identified as being from a library class due to libFirm limitations.
The only way to still produce correct results is to handle all static fields as library
fields. This may introduce more live classes in a method on average, but is necessary
to stay correct.

The last two points are done by walking the complete class hierarchy before starting
the analysis. Each external class is inserted into the set SE. Afterwards, for each
class in SE we check whether an application subclass overwrites a method defined in
the external class. At the end of each propagation iteration, we check whether one
of these methods has to be considered in use because its class is in SE now.
Often there are library methods which do not pass arguments to other library

methods or fields. For example, the Object.clone() method does not call another
library method, neither is the parameter stored in a field. Another example is the
constructor of the class Object which is called whenever any object is initialized. If
it is known that these methods do not leak the object to other library entities, we
can treat these like application methods. Therefore, the frontend has the ability to
specify a list of library methods which are to be treated like application methods.
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4 Evaluation
This chapter is about evaluating the implementation of XTA. As the goal was to
improve the existing RTA, this will be our baseline. The improvement of several
aspects are measured and evaluated. Beside the success of the devirtualization
process, these include the identification of unreachable methods, the handling with
unaccessible library code, and the time XTA needs to analyze the program.
To be expected is the following: XTA is more precise, but takes more time to

compute in comparison to RTA. Tip and Palsberg [6] determined that XTA was able
to resolve 12.5% of the polymorphic calls RTA discovered to monomorphic ones. On
average XTA was five times slower than XTA.
The experiments are run on an Intel Core i5 4770HQ running at a clock speed

of 2.2GHz. The host system is a MacOS X 10.13.4, whereas the guest system is a
64-bit Linux Mint with kernel version 4.10.0-38-generic. 8GB of RAM are available
to the guest system.

4.1 Evaluated Programs
In order to compare XTA to RTA, the following programs were compiled: jython
version 2.2.1, from the benchmark suite SPECjvm98 [22] the benchmarks mpegaudio,
and jack, and from SPECjvm2008 [23] the benchmark Tidy.
Other benchmarks from the SPEC suits could not be compiled due to missing

support of features in bytecode2firm. One of the missing features was missing
instruction support for jsr and ret. These are instruction which were being used
for try-catch blocks.

Program characteristics such as number of classes, methods, and fields are shown
in figure 4.1. In the table, external classes and methods are library classes and
methods, and native methods are counted as normal methods, not as external ones.
The number of fields are the number of reference-typed fields found by XTA.

All programs are written in Java and are compiled using bytecode2firm1, liboo2,
and libFirm3 with the gcj option to turn on the GCJ runtime.
As one can see, while the benchmarks consist of less than 100 classes, jython

has 743 classes. The different number of external classes result from the loading
procedure of Java classes: Only necessary classes are loaded, thus library classes
which are not in use are not loaded.

1140a0c95f7c39c5299ce95702e9331b9df38b0a8
2115c6d57896ba74427d0a47f87949a7b56f94a03
3b3212b7a72d3042564781d085f2eae496726f953
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Name #classes #ext. classes #methods #ext. methods #fields
jython2.2.1 743 226 6328 2293 636
mpegaudio 62 175 362 1371 87
jack 67 173 373 1386 78
Tidy 99 94 656 871 122

Figure 4.1: Characteristics of compiled programs.

Name #reached methods #static c.s. #virtual c.s. #interface c.s.
XTA RTA XTA RTA XTA RTA XTA RTA

jython2.2.1 5274 6157 23333 24786 9840 13193 251 320
mpegaudio 159 330 638 1989 188 465 0 15
jack 382 385 2601 2465 1156 1292 83 83
Tidy 408 503 5120 5644 1073 1509 6 9

Figure 4.2: This table contains the number of reached methods, and static, virtual,
and interface call sites reached by XTA.

4.2 Devirtualization Results
To evaluate XTA, the number of reachable methods and the number, or percentage,
of devirtualizable calls has to be compared to the respective results of RTA.
In order for the results to be comparable, both analyses have to correctly handle

libraries, as well as native methods. The current approach of handling native methods
and libraries in XTA is explained in section 3.7.

To match the behaviour of XTA, we change RTA’s procedure to cope with native
methods: all subtypes of the return type are set live. In the context of RTA, this
implicates that all subtypes are considered live to the whole program. As some native
methods in the Java Class Library do return the class Object, this leads to the
problem that RTA is as effective as CHA when these native methods are reachable.
This is due to the fact that all classes inherit from the class Object in Java.

Handling libraries in RTA is done by setting all library classes live initially[9].
The numbers of reached methods, and the numbers of reached static, virtual, and

interface call sites are shown in figure 4.2.
Figure 4.2 shows that XTA reaches less methods than RTA, but on average cannot

devirtualize more call sites. A problem with the data collection is that more reachable
methods equals more virtual call sites, thus possibly more devirtualized call sites
(see figure 4.3). This means RTA can devirtualize more call sites than XTA, even
in percentage terms. For example, XTA only devirtualizes 67% of virtual call sites
in jython whereas RTA achieves 74%. This difference is even more severe when
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Name #virtual calls devirt #interface calls devirt #init devirt
XTA RTA XTA RTA XTA RTA

jython2.2.1 6597 (67%) 9705 (74%) 139 (55%) 138 (43%) 1387 -
mpegaudio 88 (46%) 398 (85%) 0(100%) 15(100%) 64 -
jack 456 (39%) 622 (48%) 26 (31%) 27 (33%) 150 -
Tidy 572 (53%) 1185 (78%) 0 (0%) 0 (0%) 114 -
avg. 51% 71% 47% 44%

Figure 4.3: Devirtualization results of XTA an RTA.

Name XTA RTA
mean std. dev. mean std. dev.

jython2.2.1 39.91 1.09 1.10419 0.09546
mpegaudio 0.04571 0.00523 0.04613 0.00338
jack 0.06658 0.0067 0.0469 0.00419
Tidy 0.07939 0.01187 0.06991 0.00601

Figure 4.4: This table shows the mean run-time of XTA and RTA, and their standard
deviations.

analyzing the benchmark mpegaudio, where XTA achieves 46% and RTA 85%.
Still, less reachable methods are the result of a more precise analysis.
Figure 4.3’s last column are the numbers of devirtualized calls prior to XTA.

We analyze the method and virtual calls on locally created objects are replaced
with static calls. Thus, these calls are devirtualized, but are part of the number of
static calls in figure 4.2. They are also not taken into account when calculating the
percentage of devirtualized calls.

To consider is the fact that non-static, non-final Java methods are always virtual
and can be overwritten. In contrast, C++ uses the keyword virtual for explicitly
marking methods as virtual. Therefore, many virtual calls can be devirtualized using
CHA or RTA which can be seen our results, too.
A detailed comparison between XTA and RTA is done by Tip and Palsberg [6].
Another aspect to compare is the run-time of the analyses which is shown in

figure 4.4. To measure the time spent executing the analyses the FIRM internal
ir_timer methods are used. These methods measure the wall-clock time spent in
the analysis. The spent CPU time is not measured.
Noticeably, XTA is not much slower than RTA when analyzing the benchmarks.

But the analysis of jython using XTA is 40 times slower than RTA. The reason for
this is discussed in the next section.
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Name #methods #static c.s. #virtual c.s. #interface c.s.
XTA RTA XTA RTA XTA RTA XTA RTA

jython2.2.1 2323 3271 13353 15451 5000 7984 225 298
jython2.2.1 (n) 5274 6157 23333 24786 9840 13193 251 320

Figure 4.5: This table contains the number of reached methods, and static, virtual,
and interface call sites reached by XTA and RTA.

4.3 Native Method Handling
In order to produce valid call graphs, we have to assume that a native method
can return all subtypes of its return value. This is implemented in XTA, and to
compare results this was adapted in RTA. This can lead to following scenario: A
native method’s return type is Object in Java, thus all classes are set live. If we
consider this to happen in RTA, this means that the results are the same as those
gained via CHA. In many object-oriented languages, there exists one type at the top
of the class hierarchy all objects inherit from. Thus, we cannot assume this to be an
edge case.
In this section, we evaluate the effect of setting all subtypes of native method’s

return value live. Therefore, we disable this feature in both, RTA and XTA.
It has to be mentioned that the result is not a valid call graph, and therefore calls

may get devirtualized falsely. As jython is the biggest of the four programs, we are
only considering jython in this section.
Figure 4.5, figure 4.6 and figure 4.7 have the same columns as in the previous

section. But this time, we compare the results of jython compiled with RTA and
XTA, each with native method support and without it. The rows jython2.2.1 (n)
show the results for the version with native method support. The content is the
same as in the previous section.

As expected, we see that all values of analyses without native method support in
figure 4.5 are lower. Approximately 3.000 additional methods are reachable due to
the handling of native methods. The results are 10.000 more static call sites and
5.000 virtual ones. About 3.000 more call sites are devirtualized.

While this is the only valid over-approximation of a call graph without assuming
anything about native methods, the results show that the approximation loses a lot
of precision. And we see that this is true for XTA as well as for RTA.

Figure 4.7 shows the mean run-time of both XTA and RTA versions. Clearly, XTA
is slowed down significantly by the handling of native methods. Not taking native
methods into account leads to a run-time 20 times faster. As most of the time is
spent in the propagation algorithm, the issue seems to be that the sets become too
big which leads to the longer run-time.
Calculating the average set sizes for the live classes of each method uncovers the

following: XTA without native method support has an average set size of 20 for
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4.3. NATIVE METHOD HANDLING

Name #virtual calls devirt #interface calls devirt #init devirt
XTA RTA XTA RTA XTA RTA

jython2.2.1 3811 6576 145 155 1387 -
jython2.2.1 (n) 6597 9705 139 138 1387 -

Figure 4.6: Devirtualization results of XTA an RTA.

Name XTA RTA
mean std. dev. mean std. dev.

jython2.2.1 1.7039 0.09424 0.93508 0.03865
jython2.2.1 (n) 39.91 1.09 1.10419 0.09546

Figure 4.7: This table shows the mean run-time of XTA and RTA, and their standard
deviations.

methods and fields. With native method support this number reaches 298 which
explains the longer run-time.
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5 Conclusion and Future Work

This thesis was about improving the devirtualization process in libFirm. Therefore,
we implemented XTA, an analysis which determines a set of live object types for
each method. XTA is based on RTA which determines a set of live classes for the
whole program. Obviously, by not only storing which object are in use, but also their
locations, the outcome is a more precise call graph. Our test results show that this
is true. XTA is able to reduce the number of reachable methods to almost the half.
As RTA devirtualizes calls in methods deemed by XTA as unreachable, RTA has a
higher number of devirtualized call sites.

The detection of unreachable methods leads to removing these, a feature currently
not implemented in XTA or bytecode2firm. This reduces the size of the executable
which can be an important objective.

While Tip and Palsberg [6] report that XTA is five times slower than RTA, our
implementation is significantly slower than the currently in libFirm available RTA.
The reason is that the goal was to implement an analysis which can built a sound call
graph. Therefore, XTA has to deal with native methods. These are methods whose
implementation is unknown, and therefore we have to assume that any possible type
may get returned. This leads to a significantly increased average set size, which is
the reason for the longer run-time.
Thus, if compile time is deemed to be important, either the current XTA imple-

mentation needs to be improved, or one has to switch to the still available RTA
which ignores native methods. Since the problem can be narrowed down to the
propagation algorithm, improving it will result in significant run-time improvements.
An alternative is to introduce an option for turning off XTA’s native method handling.
This seems to be an easy solution but in fact, it does only circumvent the problem.

XTA was designed to work with the Java frontend bytecode2firm. Therefore,
only Java language features are explicitly supported. Exceptions are Java features
which are not yet supported in bytecode2firm. This includes, amongst other things,
dynamic class loading, reflection, try-catch blocks and exceptions, and anonymous
functions via lambda expression.
Additional languages were not tested, and the XTA result may be incorrect if

used with these. Especially, the use of function pointers, available for example in
C++, is not considered in the current implementation. But also structs and unions
as parameter and return types are not supported. It needs minor code modifications
for these to work.
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5.1. FUTURE WORK

5.1 Future Work
The basic XTA implementation was done in this work. But there are still things
which can be improved:

1. Currently, only a simple propagation algorithm is implemented. As much run-
time is spent propagating classes, it is one of the main parts where improving
the implementation may lead to a considerable performance increase.

2. Tip and Palsberg [6] model arrays as classes with only one instance field. This
may increase the result’s precision.

3. Another possibility is to extend the idea of the already introduced devirtu-
alization of calls to locally created object to an inter-procedural approach.
Namolaru [24] demonstrates this approach in combination with RTA.

Additionally, other analyses show also promising results, for example the analyses
presented in section 2.5. One could use the work of Sundaresan et al. [15], a modified
points-to analysis, and combine it with one advantage of graphs in SSA form, i.e.
the replacement of local variables with SSA values, to create an analysis where only
set relations between fields, and return and parameter types are created.
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