
Combining Graph-Based and Deduction-Based
Information-Flow Analysis

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten, and
Marko Kleine Büning

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,simon.bischof,herda,kirsten}@kit.edu,

marko@kleinebuening.de

Abstract. Information flow control (IFC) is a category of techniques for
ensuring system security by enforcing information flow properties such as
non-interference. Established IFC techniques range from fully automatic
approaches with much over-approximation to approaches with high pre-
cision but potentially laborious user interaction. A noteworthy approach
mitigating the weaknesses of both automatic and interactive IFC tech-
niques is the hybrid approach, developed by Küsters et al., which – how-
ever – is based on program modifications and still requires a significant
amount of user interaction.
In this paper, we present a combined approach that works without any
program modifications. It minimizes potential user interactions by apply-
ing a dependency-graph-based information-flow analysis first. Based on
over-approximations, this step potentially generates false positives. Pre-
cise non-interference proofs are achieved by applying a deductive theorem
prover with a specialized information-flow calculus for checking that no
path from a secret input to a public output exists. Both tools are fully
integrated into a combined approach, which is evaluated on a case study,
demonstrating the feasibility of automatic and precise non-interference
proofs for complex programs.

1 Introduction

When sensitive information leaks to unauthorized parties, this is often a result
from bugs and errors introduced in the system during software development. In
order to prevent such a leakage, we analyze systems for the absence of illegal
information flows, also defined as confidentiality [20]. An established approach
for proving confidentiality for a system is to prove the non-interference property.
Non-interference holds if there is no illegal information flow from a secret (high)
input to a public (low) output of the system.

There are a variety of different techniques for checking non-interference.
Within this work, we distinguish these techniques by their required user interac-
tion and the precision of their checks. These are (a) fully automatic approaches
based on type checking [23] or dependency graphs [7], which require no user
interaction. Due to decidability problems, this automation comes at the cost

of over-approximation and therefore can generate false positives. A false posi-
tive is a situation where the approach indicates an illegal information flow, even
though there is none. Tools implementing such techniques are, e.g., JIF [18]
and JOANA [14]. There are also (b) interactive techniques based on theorem
provers that do not run automatically, but achieve more precise non-interference
checks [3]. Interactive approaches do not generate false positives, but require a
high degree of time- and user-interaction.

Küsters et al. developed a hybrid approach that combines an automatic
dependency-graph analysis with a theorem prover to minimize the user-effort
of non-interference proofs [16]. The hybrid approach attempts to show non-
interference with the dependency-graph analysis tool and –if not successful– the
user must extend the program such that the affected low output is overwrit-
ten independently of the high inputs. Hence, the proof task is divided into two
parts, one equivalence proof for the theorem prover, and one non-interference
check with the dependency-graph analysis. In this paper we provide an alterna-
tive way to combine both tools, thereby not requiring the user to modify the
original program in any way, and thus automating large parts of the combination
that requires user interaction.

Our contribution is a new combined approach that improves state-of-the-art
approaches regarding the automation while maintaining the same level of preci-
sion. The combined approach attempts to show the non-interference property of
a program using the dependency-graph tool. If the attempt fails, the reported
leaks are disproved with the theorem prover. The communication between the
two approaches is fully automated: the reported leaks are analyzed one by one
and the information flow proof obligations necessary to disprove the leaks are
generated and given to the theorem prover. The user can simply provide the pro-
gram (with high sources and low sinks annotated) to our tool-chain and attempt
to prove non-interference. The user does not need to analyze the output of the
dependency-graph analysis tool and manually extend the program. The proof
obligations for the theorem prover consist of code with generated specification
that need to be proven in order to show that the reported leaks are false posi-
tives. However, the user might need to provide additional auxiliary specification
(e.g., loop invariants) in order for the proof attempt to succeed, this is generally
an undecidable problem.

We implemented this new combined approach for the Java programming
language focusing on sequential and terminating programs. For the implementa-
tion, we chose JOANA [14] as the dependency-graph analysis tool and KeY [1] as
the theorem prover, both based on state-of-the-art approaches. The approach is
evaluated based on examples and a small case study for which JOANA by itself
returns false positives. For these examples, a direct non-interference proof with
KeY would require a high degree of user interaction in the form of specifications
and proof-interactions. Based on these examples, we show that our approach can
prove non-interference automatically but also indicate limits in automation.

We give definitions and background information on logic- and graph-based
information-flow analysis underlying the IFC tools JOANA and KeY in Section 2.

In Section 3, we present our combined approach and its guaranteed properties.
The implementation including the specification generation and heuristics for an
efficient selection of proof obligations is described in Section 4, and evaluated on
a number of case studies in Section 5. In Section 6, we discuss related work, and
finally conclude in Section 7.

2 Non-Interference

In order to prevent sensitive information from leaking to unauthorized parties,
we analyze programs for the absence of illegal information flow. If such an anal-
ysis succeeds, we have shown that this program maintains confidentiality of the
specified sensitive information with respect to the specified unauthorized parties.
In general, the situation can be more complex, and not only two, but a multi-
tude of different sensitivity levels may exist as, e.g., already expressed in the
Bell-LaPadula security model [4] establishing access control mechanisms, and
extended by the lattice-model thereby establishing a formal notion of informa-
tion flow [8]. This emerged to more general techniques, denoted by information
flow control (IFC), which check that no secret input channel of a given program
may influence what is passed to a public output channel [10].

In its simplest form, i.e., there is no information flow, this is known as non-
interference. With this generalized notion, it suffices to regard only two security
or confidentiality levels, in the following referred to as high confidentiality and
low confidentiality, as we abstract from the leakage itself, and instead analyze the
program’s potential for information leakage from a specified (information) source
to a specified (information) sink. A sink specifies the (program) location, where
an unauthorized party may be able to observe the potentially secret information,
i.e., we call this a publicly observable location. We hence want to check that any
two different executions of a program P with different secret inputs (i.e., coming
from sources specified as high) ih, i′h and the same public input (i.e., coming
from sources specified as low) i` must be indistinguishable in their publicly-
observable output (i.e., sinks specified as low sinks). Note that this is stronger
than dynamically searching for illegal flows during run-time, as when proven to
be non-interferent, no illegal information flow is possible for any execution of the
program. A given security lattice can hence also be specified as pairs of sources
and sinks.

Within this work, we examine and make use of two different language-based
types of techniques for IFC [21], namely dependency-graph-based techniques
transforming the program into a graph and hence performing specialized graph
traversal algorithms [12], as well as logic-based techniques based on a deductive
theorem-prover approach symbolically executing the program twice and hence
performing a logic-based calculus on the composition of both executions [6]. One
main difference is that the dependency-graph analysis is done on the whole sys-
tem, and the self-composition is done modularly for each involved method, allow-
ing for reasoning about the whole system based on specialized method contracts.
Note that we focus on techniques operating directly on either the program’s

source or byte code without the need for any manual program modifications.
Language-based approaches, in our sense, refer to IFC techniques considering
potential attackers being able to evaluate expressions, but not able to observe
changes in the memory directly. Furthermore, we only consider deterministic
sequential programs and do not regard concurrent flows.

2.1 SDG-based Approaches

JOANA is a tool for checking the non-interference property for a given program.
It builds a system dependency graph (SDG) from the program code. A formal
definition of an SDG is given in [9]. The nodes represent statements and the
edges represent dependencies between those statements. JOANA is able to detect
direct dependencies, which are also called data dependencies [11], and indirect or
control dependencies [11]. Furthermore, there are special nodes, e.g., for method
calls, field accesses and exceptions.

For a method we have special formal-in nodes and formal-out nodes. Formal-
in nodes represent all direct inputs that influence the method execution. These
are the input parameters, used fields, other classes that are called during execu-
tion and the class in which the method is executed. The formal-out nodes repre-
sent the influence of the method. In most cases the formal-out node represents
the method’s return value. Other possibilities are that the method influences
global variables, fields in other classes or terminates with an exception.

1 int f(int x, int y) { return x; }
2

3 void caller() { ...
4 f(a,b); ...
5 }

Listing 1. Method call

For function f in Listing 1, we would have two formal-in nodes for x and y and
one formal-out node for the return value of f. At each method call site, we have
actual-in nodes representing the arguments and actual-out nodes representing
the returned values. For a given method site, each actual-in node corresponds
to a formal-in node of the callee and vice versa. The same holds for actual-out
and formal-out nodes. For the call in Listing 1, there are actual-in nodes for
a and b, corresponding to the formal-in nodes of f for x and y, respectively.
We also have one actual-out node representing the return value of f, which
corresponds to the single formal-out node of f. For every method call we also have
so called summary edges [9] in the SDG from any actual-in node to any actual-
out node of the method whenever the tool finds a flow between the corresponding
formal-in to the formal-out node of the called method. In Listing 1, we have a
flow in f from x to the result, so a summary edge is inserted at the call site,

namely from the actual-in node representing a to the single actual-out node.
For a complex method there can be a huge number of actual-in and actual-out
nodes and therefore an even greater number of summary edges. For our combined
approach, we focus on summary edges that belong to a chop between high and
low and it thus is sufficient to regard only a smaller subset of these edges. A
chop from a node s to a node t consists of all nodes on paths from s to t in the
SDG. It is commonly computed by intersecting the backward slice for t with the
forward slice for s. An example of an SDG generated from a program is given in
Giffhorn’s thesis on page 18 [9].

Through graph analysis, namely through slicing and chopping on a syntactic
level, [11] JOANA is able to detect an information flow. As with KeY, there are
some specifications required. But in comparison to KeY, these are rather light-
weight. The user must annotate which variables contain secure (high) or public
(low) information. After these annotations have been made, JOANA can run the
information flow analysis automatically. If the analysis returns that there is no
illegal information flow, JOANA guarantees that the program is secure.

Before we give specific property definitions, we introduce the relation low-
equivalent (∼L) for the term state. We base our definitions on Wasserab’s thesis
[24]. A state s is a program state, consisting of variable values and storage
locations. We assume that the input of a program is included in the initial state
and the output of a program is included in the final state. Two states s, s′ are
low-equivalent if all low variables have the same value.

We only regard sequential programs here. Thus, we want to prove a prop-
erty called sequential non-interference or classical non-interference as shown in
Definition 1 [24]. If for a sequential program, JOANA returns that there is no
illegal information flow, sequential non-interference holds for that program [24].
Note that this definition is equivalent to Definition 4 and hence also guaranteed
by non-interference proofs done with KeY.

Definition 1 (Sequential non-interference (SNI)). Let P be a program. Let
s, s′ be initial program states, let JP K(s), JP K(s′) be the final states after executing
P in state s resp. s′. Non-interference holds iff

s ∼L s′ ⇒ JP K(s) ∼L JP K(s′) .

JOANA guarantees that for a program P it finds secure, if two initial states
are low-equivalent then the final states, after executing P from each of the two
initial states independently, are also low-equivalent. In case SNI is violated,
JOANA generates at least one violation, and can calculate the respective vi-
olation chops as well.

2.2 Logic-based Approaches

When attempting to prove non-interference with respect to existing software
programs, precision can only be attained by taking functional properties into
account. For example, a program such as “low = high * 0;” can only be proven

to be secure with knowledge about the functionality of *. Similarly, for proving
non-interference of the program “if (high) low = f1(); else low = f2();”, we
need to verify that f1 and f2 compute the same value.

We start with the standard dynamic logic definition from [6], which defines
non-interference as a problem of value independence (Definition 2). Dynamic
program logics allows to reason about the program P as well as program variables
h of high confidentiality, and l of low confidentiality. The predicate .= is to be
evaluated in the post-state of P.
Definition 2 (Non-Interference as value independence). When starting P
with arbitrary values l, then the value r of l – after executing P – is independent
of the choice of h.

∀l ∃r ∀h 〈P〉 r .= l

Non-interference verification using self-composition. Amtoft et al. intro-
duced an approach based on a Hoare-style logic, which formalizes non-interference
as an “indistinguishability” relation on program states [2]. As such, the foremost
functional verification task now becomes relational by comparing two runs of
the same program, performed by a technique called self-composition as pro-
posed, e.g., in [3,6]. Furthermore, we can abstract from a concrete location and
instead talk about location sets. Based on the notion of low-equivalence as in
Definition 3, we obtain the notion given in Definition 4, where low-equivalence
refers to identity on all low variables [6,22]. Note that by self-composing the pro-
gram to two instances, we got rid of the existential quantifier, thereby enabling
automatic verification techniques as we avoid the difficult quantifier instantia-
tion.

Definition 3 (Low-equivalence). Two states s, s′ are low-equivalent iff they
assign the same values to low variables (with L denoting the set of all low vari-
ables in state s).

s 'L s′ ⇔ ∀ v ∈ L (vs = vs
′
)

Definition 4 (Non-Interference as self-composition). Let P be a program
and L1, L2 two sets of low variables. Then starting two instances of P in two
arbitrary low-equivalent states (on arbitrary high values however) results in two
final states that are also low-equivalent.

s1 'L1 s
′
1 ⇒ [P]s2 'L2 [P]s′

2

These findings were extended by a fully compositional information-flow cal-
culus for Java based on a deductive theorem prover for functional program verifi-
cation [1,22]. It deals with object-oriented software by allowing for two different
semantics, distinguishing on whether object creation is low-observable or not.
For the new semantics, we assume that references are opaque, in particular ob-
ject comparison can only be done via the operator ==. Furthermore, we assume
isomorphisms πi on objects such that π1 and π2 are compatible, i.e., for an ob-
ject o, π1(o) = π2(o) holds if o is observable in both states s1 and s2. Then,
low-equivalence can be generalized by Definition 5.

Definition 5 (Low-equivalence with isomorphism). Two states s, s′ are
low-equivalent iff they assign the same values to low variables (with L denoting
the set of all low variables in state s).

s 'πL s′ ⇔ ∀ v ∈ L (π(vs) = vs
′
)

The calculus and means for specification are implemented in the KeY system
[1]. KeY is a deductive theorem prover for Java programs based on JavaDL, a
first-order dynamic logic for Java, which allows to reason directly about Java
programs on a language-level with an explicit heap variable and changes to the
program state translated into so-called updates operating on the heap. Thereby,
the program can be symbolically executed directly in the logic.

In JavaDL, we can express non-interference based on Definition 4 using heap
variables within update operations as given in Definition 6. The updates as a
means to change program states are denoted by curly braces.

Definition 6 (Non-Interference as self-composition in JavaDL).

∀inl ∀in1
h ∀in2

h ∀out1l ∀out2l {low := inl}(
{high := in1

h}[P] out1l = low

∧ {high := in2
h}[P] out2l = low

→ out1l = out2l

)

The postcondition can be weakened by only proving the variables to be equal
up to isomorphism.

The KeY system proves non-interference or other program properties modu-
larly on the program code on Java method level, specified using method contracts
as well as auxiliary specifications such as loop invariants inside the method by
the modelling language JML*. The formulation of these specifications always
depends on the outcome to be proven and describes, e.g., the non-interference
property of the program. After the specification is complete, KeY transforms it
into equivalent formulas in Dynamic Logic and performs a proof using the se-
quent calculus. In general, the problem is undecidable and verification sometimes
requires some user-interaction. KeY is capable of verifying non-interference for
Java programs and covers a wide range of Java features. Proofs are constructed
in a precise manner based on a deductive rule base with the possibility of in-
specting the proof tree later-on.

Non-interference specification. Information-flow properties are specified in
KeY using an extension of the Java Modeling Language (JML) [17], thereby
introducing special determines clauses for expressing a fine-grained information
flow control [22]. These constructs can be used for modular specifications on the
method level as well as for enhancing loop invariants for the self-composition of
loop statements and block contracts for the self-composition of arbitrarily chosen
blocks of statements enclosed by curly braces.

The central specification elements for IFC purposes consist of the two key-
words determines and \by both followed by a comma-separated list of JML
expressions. The determines clause states that the JML expressions found after
the determines keyword depend only on the JML expressions found after the
\by keyword. This can furthermore be followed by the keyword \new_objects
for specifying fresh objects to be included in the isomorphism. With this toolkit,
powerful specification elements are given for proving non-interference, also al-
lowing for declassification.

3 The Combined Approach

In this section, we present our approach that combines the advantages of precise
logic-based approaches based on theorem provers, such as KeY, and automatic
SDG-based approaches using graph-traversal algorithms, such as JOANA. We
argue that our approach gurantees the SNI property for a given program and
specified sources and sinks.

In the following, we describe our combined approach on the example of prov-
ing non-interference for a given program P . In Section 2.1, we established that
SDG-based IFC techniques can detect any illegal information flow. Hence, if the
SDG-analysis indicates that there is no illegal information flow for the program
P , we need no further action as it is guaranteed that non-interference holds. The
combined approach is used in case the automatic SDG-based approach detects
an illegal information flow and we want to check whether this information flow
is a false positive or a genuine leak.

For the information flow check, we first create a system-dependency graph
(SDG) as defined in [9]. The created SDG is over-approximated and thus may
contain edges which do not represent an actual flow in the program, hence po-
tentially leading to false positives. Our approach assumes that the SDG nodes
corresponding to high inputs and low outputs are annotated as high and low
respectively. Furthermore, Nh denotes the set of all nodes annotated as high,
and N` the set of all nodes annotated as low. There is an illegal information flow
if information may flow from a node that is annotated as high to a node that is
annotated as low. If any set of Nh or N` is empty, there is no illegal information
flow.

After the SDG has been annotated by the user, the automated tool runs an
information flow check. This check returns a set of violations. A violation is a pair
(nh, n`) of a high node nh ∈ Nh (secret source) and a low node n` ∈ N` (public
sink) such that there is a path from nh to n`. We then call the set of all nodes
lying on a path from nh to n` the violation chop c(n`, nh). To keep the notation
simple, we will also use c(nh, n`) for the subgraph induced by those nodes. The
set of all violation chops is denoted by CV . If this set is empty, the SDG-based
approach guarantees non-interference, independently from our approach. If –
however – there is a false positive, CV contains at least one chop. The idea of
the combined approach is then to validate each violation chop c(nh, n`) ∈ CV
and try to prove it does not exist on the semantic level in program P . We show

this by verifying each chop to be interrupted (see Definition 7) with the help of
a theorem prover.

Definition 7 (Unnecessary summary edge, Interrupted violation chop).
A summary edge e = (ai, ao) is called unnecessary if we can prove with a theorem
prover that, in the context of the SDG, there is no flow from the formal-in node
fi to the formal-out node fo corresponding to ai and ao, respectively.

A violation chop is interrupted, if we find a non-empty set S of unnecessary
summary edges on this chop, such that after deleting the edges in S from the
SDG, no path exists between the source and the sink of the violation chop.

In order to show that a summary edge e = (ai, ao) is unnecessary, a proof
obligation is generated for the theorem prover. This proof obligation states that
there is no information flow from fi to fo. The proof is done for the method
corresponding to the summary edge e and is generally done for all possible
contexts. Additionally, results from software analyses done by the SDG-based
approach (e.g., points-to analysis) are used to generate a precondition for the
analyzed method thus increasing the likelihood of showing non-interference for
that method and interrupting the violation chop.

Our approach attempts to interrupt each violation chop in CV . For each
violation chop a summary edge is taken, the appropriate information flow proof
obligation is generated for the method corresponding to the summary edge,
and a proof attempt is made using the theorem prover. Our non-interference
transformation directly converts the summary edge information to a specification
for KeY. If the proof is successful, the summary edge can then be deleted from
the SDG based on Definition 7.

Note that this is possible as KeY’s (object-sensitive) non-interference prop-
erty is at least as strict as SNI (Definition 1). This however only holds without
the opaqueness assumption, i.e., only for KeY’s standard non-interference se-
mantics based on Definition 3 and not Definition 5. If this obligation is chosen,
low-equivalence of states from Definition 1 matches low-equivalence of heap loca-
tions from Definition 6. In conclusion, we can state that KeY’s non-interference
property is equivalent to SNI (Definition 1). This implies Theorem 1.

Theorem 1 (Non-Interference Combined Approach). The combined ap-
proach guarantees sequential non-interference.

We then check whether this violation chop is interrupted, in which case we
can proceed to analyse the remaining violation chops until all of them are inter-
rupted. If the violation chop is still not interrupted, or in case the proof attempt
is not successful, another summary edge from the violation chop is chosen. If
we are able to interrupt every violation chop by deleting unnecessary edges, our
approach guarantees non-interference.

Note that each violation chop is guaranteed to contain at least one summary
edge, namely the one corresponding to the main method. Generating a proof
obligation for the main method – however – is equivalent to verifying the entire
program with the theorem prover.

Proofs with the theorem prover are often performed fully automatically, but
may sometimes need auxiliary specification and user interaction. Therefore, we
want to minimize the theorem prover usage as much as possible. We hence de-
veloped a number of heuristics for choosing the order in which the edges are
checked by the theorem prover.

4 Implementation

We implemented the combined approach using JOANA as the dependency-graph
analysis tool and KeY as the theorem prover. In this section, we show how we
generate the proof obligations for KeY in the form of specified Java code and
also describe the heuristics choosing the summary edges that are to be analyzed
by KeY.

4.1 Method Contracts

For the method corresponding to the summary edge selected by the heuristics
we generate an information flow method contract such that a successful proof
would show that there is in fact no dependency between the formal in and formal
out node of the summary edge.

Thus, to show that a summary edge se(ai, ao) is unnecessary we prove that
there is no information flow between the corresponding formal-in node fi and
formal-out node fo. In order to achieve this, we generate a JML specification
for the appropriate method stating that fo is determined by all formal in nodes
other than fi, as explained in Definition 8.

Definition 8 (Generation of the determines clause). Let se(ai, ao) be the
summary edge to be checked, and let fi and fo be the formal nodes corresponding
to the actual nodes ai and ao. Let Li be a list of all formal-in nodes f ′

i other than
fi of the method belonging to the call site of ai and ao. The following determines
clause is added to the method contract: determines fo \by Li.

Should the proof of this property succeed then it would show that fo does
not depend on fi and therefore ao does not depend on actual-in parameter ai.
Since there is no dependency between ai and ao the summary edge can be safely
deleted from the violation chop.

In order to avoid some false positives, JOANA uses a points-to analysis which
keeps track of the objects a reference o may point to (the points-to set of o). This
information is useful, since it may show that two references cannot be aliased.
We use the results of the points-to analysis to generate preconditions for the
method contracts, as shown in Definition 9, thus transferring information about
the context from JOANA to KeY and increasing the likelihood of a successful
proof.

Definition 9 (Generation of preconditions). Let o be a reference and Po
its points-to set. We generate the following precondition:

∨
o′∈Po

o = o′

4.2 Loop Invariants

In Section 3, we stated that the proof with the theorem prover can cost a lot of
time- and user-effort. The theorem prover needs auxiliary specification like loop
invariants or frame conditions. The method contracts generated as described in
the previous section are necessary for proving a summary edge is unnecessary,
however in the general case they are not sufficient for a successful proof. If the
method contains loops of any kind, the theorem prover needs loop-invariants.
The automatic generation of loop-invariants is an active research field, see for
example [15, 19]. These approaches focus on functional loop-invariants and do
not consider information flow loop-invariants.

The determines clause, described in the previous section, can be used to
specify the allowed information flows of a loop. The determines clause generated
for a loop invariant is similar to the one for method contracts. Because the
variables from the formal-in and formal-out nodes may not directly occur in
the loop some adjustments are necessary. Definition 10 shows what determines
clauses are generated for loops invariants:

Definition 10 (Generation of the determines clause for loop invari-
ants). Let se(ai, ao) be the summary edge to be checked, and let fi and fo be the
formal nodes corresponding to the actual nodes ai and ao. Let Li be a list of all
formal-in nodes f ′

i other than fi of the method belonging to the call site of ai and
ao. Let Vi be the set of all variables in the loop and let Ii be a list of variables
in the method that influence fo. The following determines clause is added to the
loop invariant: determines fo, Vi \by Li, Ii.

Note that the sets Vi and Ii can be constructed by analysing the SDG.

4.3 Heuristics

The order in which the summary edges of in the violation chops are checked
determine the performance of the combined approach. Ideally we would want to
avoid proof attempts of methods that do have an information flow or of very
large methods that would overwhelm the theorem prover (for example the main
method). In order to achieve these goals we developed several heuristics.

A first category of heuristics searches the code for three patterns that are
likely to cause false positives by the SDG-based tool . The first pattern focuses on
the problem of array-handling. The tool considers the array to be one syntactical
construct and ignores the indexes. Thus, for Listing 2, tools like JOANA would
detect an information flow from high to the return value. Thus we consider
methods containing array accesses to be more likely to cause a false positives
and assign a higher priority to them.

The second pattern in Listing 3 considers infeasible path conditions. Through
purely syntactical slicing, it is not possible to detect that there cannot be an
illegal information flow in the example below. The current implementation finds
simple excluding statements, like “x < = 0” and “x > 0”. While the heuristic

itself does not check wheter a method contains infeasible paths it does assign a
higher priority to methods containing complex path conditions.

The second category of heuristics attempts to identify the methods that are
likely to run through the theorem prover automatically. Earlier, we mentioned
that it is difficult to create precise loop-invariants and thus methods without
loops are assigned a higher priority. Furthermore, the method should have as
few as possible references to other classes and methods.

A third category of heuristics tries to identify the methods that, if proven
non-interferent, would bring the greatest benefit to the goal of proving the entire
program non-interferent. We assign a high priority to summary edges which are
bridges in the SDG, i.e. an edge whose removal from the SDG would result in
two unconnected graphs [5].

In the case that there is no bridge, we prefer the method with the highest
number of connections i.e. the most often called method.

5 Evaluation

The evaluation is two-parted. First the combined approach was evaluated based
on examples that generate false positives for SDG-based tools like JOANA. Sec-
ond, we applied the combined on a case study based on a simple e-voting system.
The simple e-voting system was taken from the information flow examples of the
KeY system. Both evaluations were tested on a standard PC (Core i7 2.6GHz,
8GB RAM) and outline the advantages and limitations of the combined approach
compared to the state-of-the-art.

5.1 List of Examples

We considered eleven examples, which cover different program structures and
reasons for false positives. Each of these examples is not solvable by automated
graph based approaches like JOANA.

In Table 1 we have listed the eleven examples. The evaluation is split into
automatic mode and interactive mode. In the automatic mode, an attempt is
made to prove the generated proof obligations automatically. In the interactive
mode, the theorem prover is called for all proof obligations in interactive mode.
In this mode, the user can perform automatic or interactive steps and can add
auxiliary specification.

1 int[] array = new int[2];
2 array[0] = high;
3 array[1] = 3;
4 return array[1];

Listing 2. Array-handling

1 if (x > 0){ y = high; }
2 if (x <= 0){ low = y; }
3 return low;

Listing 3. Excluding statements

The eleven examples are again divided into two groups. First, there are indi-
vidual methods that cause false positives. In the method Identity the high value
is added and subtracted to the low variable such that the low value remains the
same. On a syntactical level there is dependency from high to low but in reality
there is none. In the method Precondition there is an if-condition that can never
be true and the method Excluding Statements contains if-statements that can
not both be true at the same program execution. The example Loop Override
contains a loop which overrides the low value in the last loop execution. For this
example the non-interference loop-invariant was not enough for an automated
proof and further functional information had to be given by the user. The last
simple method Array Access describes the problem described in Section 4.3, it
represents the handling of data structures. The second group consists of pro-
grams that include these problems in different program structures. Based on the
possible SDG, we regard simple flows, branching, nested summary edges and a
combination of it all.

Table 1. List of examples

Automatic Mode Interactive Mode
Program Provable KeY Calls Time Provable KeY Calls

Individual Methods
Identity Yes 1 5 sec. Yes 1
Precondition Yes 1 5 sec. Yes 1
Excluding Statements Yes 1 5 sec. Yes 1
Loop Override No 1 7 sec. Yes 1
Array Access Yes 1 6 sec. Yes 1
Whole Programs
KeY example Yes 1 7 sec. Yes 1
Single Flow Yes 1 6 sec. Yes 1
Branching Yes 2 10 sec. Yes 2
Nested Methods Yes 2 10 sec. Yes 2
Mixture Yes 4 19 sec. Yes 3
Mixture with Loops No 7 20 sec. Yes 5

The example programs are in the scope of 5 to 30 lines of code. They show
that the combined approach can prove programs automatically for which JOANA

would generate false positives and KeY would require a significant amount of user
interaction.

5.2 Case Study - E-Voting

In addition to the outlined examples a small case study has been conducted.
The code used in this case study is attached in Appendix A (Listing 5) and
represents a simple implementation of a voting system. The vote of every voter
is read and sent over a simulated network. If the read vote is not valid, then
0 is sent instead to indicate abstention. The votes itself and whether a vote is
valid is secret. All variables starting with low (e. g. low_sendSuccessful) are
annotated as low and the high_inputstream is annotated as high.

In the first step of our combined approach, we use JOANA to analyze the
program code based on the mentioned annotations. The SDG-based approach
finds 14 violations. All these violations are false positives that occur due to
the over-approximation of the SDG. Specifically, they occur because the con-
dition isValid(high_vote), which is high, controls which assignment to low_
sendSuccessful is executed, so JOANA assumes that this variable depends
on a secret input. In reality, the values assigned to low_sendSuccessful do
not depend on which branch is taken, since they only depend on low_output-
StreamAvailable, which remains constant during a fixed execution. All viola-
tions are different chops from the high input stream high_inputstream to the
different low output streams at different locations, including one exception that
can be thrown when assigning low_numOfVotes to a value.

The combined approach tries to validate these chops bottom up and interrupt
them if possible. First the heuristic looks for smaller methods like sendVote(int
x), inputVote() and isValid(int high_vote) but all three of them are not
secure in regards to our specification and thus cannot be proven secure with the
KeY system. The approach then looks at the top-level method secure_voting().

For the method given in Listing 4 our approach is able to generate most of
the specifications automatically. The JML method contract can be generated
automatically. For the loop-invariant, the current approach is not able to specify
functional properties such as the frame condition or the term that is decreasing
every loop-run. In Listing 4, the boxed commands must be added manually for
a sufficient loop-specification. For the KeY to automatically prove the method
contract two block-contracts are necessary. These are auxiliary specifications for
a group of statements that provide supplementary information to the prover.
For the method secure_voting() the information flow specification has to be
copied manually for both if-blocks as shown in Appendix A.

This specification can then be proven with KeY for the first violation. All
other 13 violations are running through the same top-level method and thus
are satisfied by the same proof. Thus, we showed that our combined approach
can automatically find the causes of false positives by the SDG-based tool and
generate the necessary proof obligations in order to disprove the reported leaks.

1 /*@ normal_behavior
2 @ determines low_outputStream, low_outputStreamAvailable,
3 @ low_NUM_OF_VOTERS, low_numOfVotes,
4 @ low_sendSuccessful \by \itself;
5 @*/
6 void secure_voting() {

7 /*@ loop_invariant 0 <= i && i <= low_NUM_OF _V OT ERS;

8 @ loop_invariant \invariant_for(this);
9 @ determines low_outputStream, low_outputStreamAvailable,

10 @ low_NUM_OF_VOTERS, low_numOfVotes,

11 @ low_sendSuccessful, i \by \itself;

12 @ decreases low_NUM_OF _V OT ERS − i;
13 @*/
14 for (int i = 0; i < low_NUM_OF_VOTERS; i++) {
15 ...
16 }
17 publishVoterParticipation();
18 }

Listing 4. Method secure_voting() with loop invariant

6 Related Work

There exist many different approaches for proving non-interference. In Sec-
tion 2.2 and Section 2.1 we have introduced logic-based and SDG-based ap-
proaches. In addition, we will discuss two other possibilities for proving non-
interference.

6.1 The Hybrid Approach

The hybrid approach by Küsters et al. [16] is the work most related to our
approach. It combines the same type of tools, i.e. an automatic dependency-
graph analysis with a theorem prover, in an attempt to prove non-interference
for a given program with minimized user-effort. The hybrid approach attempts
to show non-interference with the dependency-graph analysis tool first. If the
attempt does not succeed, the user must identify the possible cause of the false
positive and extend the program such that the affected low output is overwritten
with a value that does not depend on the high inputs. The extension is not
allowed to change the state of the original program, it is allowed to use an
extended state and is only allowed to read and overwrite variables from the
original program. The extended program must be shown to be non-interferent
with the dependency-graph analysis tool. In the next step, the theorem prover
is used to show that the extended program is equivalent to the original program
(modulo the extended state).

Similarly to our approach, the SDG-based tool is called first and if it does
not prove non-interference, further action is taken. Unlike our case, the user has
to analyze the program and the output of the SDG-based tool carefully in order
to find out whether the reported flow is a false positive or not. The user then
has to extend the program such that the low output is overwritten with a value
such that the SDG-based tool successfully shows non-interference and then use
the theorem prover to prove that the extended program is equivalent to the
original one. In our approach, the interaction between the SDG-based tool and
the theorem prover is automatic, the user needs to provide functional auxiliary
specification when necessary.

6.2 Path Conditions

Path conditions [13] are another example of how SDG-based tools can be com-
bined with more precise approaches, in this case constraints solvers, to increase
precision. For a violation found by such an analysis, a path condition is a nec-
essary condition that an information flow exists from the source to the sink of
the violation. Path conditions can be computed automatically. In the program
“int y = high; if (x < 0) low = y;”, the path condition for an information flow
from high to low would be x < 0. A constraint solver can then be used to gen-
erate a satisfying assignment for the path condition, which is a potential witness
for an illegal flow. If the path condition is not satisfiable, then one can conclude
that the violation was a false alarm.

Thus SDG-based non-interference analysis can be improved by path con-
ditions. But it is important to state that the generation of path conditions is
non-trivial [13]. The generation and checking of path conditions is not feasible
for huge programs and is therefore not fully included in SDG-based tools like
JOANA.

6.3 Type Systems

A well established technique is the information flow analysis based on security
type systems. Type systems usually use syntactic rules to assign security types,
typically low and high, to expressions and statements of a given program. If the
program is typeable, the non-interference property holds. Examples of such a
security type system are given in [21] or in [23].

The advantages of security type systems is that there is a clear separation
between the rules and the concrete program execution. Furthermore, soundness
proofs and the verification of a program with type systems are very fast. The
disadvantages on the other hand are possible false positives and limitations of
type systems. Most type systems are neither flow-, context- nor object sensitive,
which degrades precision. Also, there exist languages like separation logic for
which there is no known type system available.

7 Conclusion and Future Work

In this paper we introduced a new combined approach to prove non-interference
with less user interaction while keeping the same precision. Our approach com-
bines an automated SDG-based technique with a deductive theorem prover. We
demonstrated that the non-interference properties guaranteed by the two tools
are compatible and, thus, that our approach is sound. The combined approach
has been developed tool-independently, but implemented and evaluated on a
selection of examples as well as a small case study. Although the programs cov-
ered in our evaluation do not exceed 100 lines of code and could – as such – also
be proven without the help of SDG-based IFC, they could – however – also be
embedded in much bigger programs, which – as such – may be clearly too big
for the analysis with a theorem prover. Thereby, our evaluation demonstrates
promising results for complex programs and we are confident that much bigger
programs are in reach.

An extended case study, covering programs too big to be checked by a the-
orem prover alone, is planned. For future work, the heuristics can be improved
by integrating an SMT solver in order to enhance the recognition of excluding
statements or further excluding program structures. The user-effort of the ap-
proach can be further minimized by automating the generation of functional
loop invariants. Furthermore, the approach itself can be extended to also cover
non-sequential programs and declassification.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice, Lecture
Notes in Computer Science, vol. 10001. Springer (2016)

2. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy,
August 26-28, 2004, Proceedings. Lecture Notes in Computer Science, vol. 3148,
pp. 100–115. Springer (2004)

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Computer Security Foundations Workshop, 2004. Proceedings. 17th IEEE. pp.
100–114. IEEE (2004)

4. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations.
Tech. rep., DTIC Document (1973)

5. Bollobás, B.: Modern graph theory, vol. 184. Springer Science & Business Media
(2013)

6. Darvas, Á., Hähnle, R., Sands, D.: A Theorem Proving Approach to Analysis of
Secure Information Flow, pp. 193–209. Springer (2005)

7. van Delft, B.: Abstraction, objects and information flow analysis. Ph.D. thesis,
Chalmers University of Technology, Goeteborg, Sweden (2011)

8. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

9. Giffhorn, D.: Slicing of Concurrent Programs and its Application to Information
Flow Control. Ph.D. thesis, Karlsruher Institut für Technologie, Fakultät für In-
formatik (2012)

10. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceedings of
the 1984 IEEE Symposium on Security and Privacy, Oakland, California, USA,
April 29 - May 2, 1984. pp. 75–87. IEEE Computer Society (1984)

11. Graf, J., Hecker, M., Mohr, M.: Using joana for information flow control in Java
programs-a practical guide. In: Software Engineering (Workshops). pp. 123–138
(2013)

12. Hammer, C.: Experiences with pdg-based IFC. In: Massacci, F., Wallach, D.S.,
Zannone, N. (eds.) Engineering Secure Software and Systems, Second International
Symposium, ESSoS 2010, Pisa, Italy, February 3-4, 2010. Proceedings. Lecture
Notes in Computer Science, vol. 5965, pp. 44–60. Springer (2010)

13. Hammer, C., Krinke, J., Snelting, G.: Information flow control for Java based
on path conditions in dependence graphs. In: IEEE International Symposium on
Secure Software Engineering. pp. 87–96 (2006)

14. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Jour-
nal of Information Security 8(6), 399–422 (2009)

15. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik (2006)

16. Küsters, R., Truderung, T., Beckert, B., Bruns, D., Kirsten, M., Mohr, M.: A
hybrid approach for proving noninterference of Java programs. Proceedings of the
Computer Security Foundations Workshop 2015-Septe, 305–319 (2015)

17. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

18. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)

19. Rodríguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. Journal of Symbolic Computation 42(4), 443–476 (2007)

20. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. Computer
Security Foundations Workshop, 1999. Proceedings of the 12th IEEE pp. 214–227
(1999)

21. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on selected areas in communications 21(1), 5–19 (2003)

22. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java pro-
grams without approximations. In: International Conference on Formal Verification
of Object-Oriented Software. pp. 232–249. Springer (2011)

23. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
Journal of computer security 4(2-3), 167–187 (1996)

24. Wasserrab, D.: From Formal Semantics to Verified Slicing - A Modular Frame-
work with Applications in Language Based Security. Ph.D. thesis, Karlsruher In-
stitut für Technologie, Fakultät für Informatik (Oct 2010), http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000020678

A Source Code for E-Voting Case Study

1 /**
2 * Information flow example.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020678

3 * The example is a toy implementation of a voting process. The vote of
4 * every voter is read and sent over a not further modelled network. If
5 * the read vote is not valid, then 0 is sent instead to indicate
6 * abstention. The votes itself and whether a vote is valid is secret.
7 * At the end the participation is output.
8 * Without the optimizations described in the FM-Paper the verification
9 * of the method secure_voting() with the help of self-composition is

10 * very expensive or even infeasible.
11 *
12 * @author Christoph Scheben
13 */
14 public class Voter {
15 public static int low_outputStream;
16 public static boolean low_outputStreamAvailable;
17 private static int high_inputStream;
18

19 public static final int low_NUM_OF_VOTERS = 763;
20 public static int low_numOfVotes;
21 public boolean low_sendSuccessful;
22

23 private boolean high_voteValid;
24

25 public static void main(String[] args) {
26 Voter v = new Voter();
27 v.secure_voting();
28 }
29

30 /*@ normal_behavior
31 @ determines low_outputStream, low_outputStreamAvailable,
32 @ low_NUM_OF_VOTERS, low_numOfVotes,
33 @ low_sendSuccessful \by \itself;
34 @*/
35 void secure_voting() {
36 /*@ loop_invariant 0 <= i && i <= low_NUM_OF_VOTERS
37 @ && \invariant_for(this);
38 @ determines low_outputStream, low_outputStreamAvailable,
39 @ low_NUM_OF_VOTERS, low_numOfVotes,
40 @ low_sendSuccessful, i \by \itself;
41 @ decreases low_NUM_OF_VOTERS - i;
42 @*/
43 for (int i = 0; i < low_NUM_OF_VOTERS; i++) {
44 int high_vote = inputVote();
45 /*@ normal_behavior
46 @ determines low_outputStream,
47 @ low_outputStreamAvailable,
48 @ low_NUM_OF_VOTERS,
49 @ low_numOfVotes,
50 @ low_sendSuccessful \by \itself;
51 @*/
52 {

53 if (isValid(high_vote)) {
54 high_voteValid = true;
55 low_sendSuccessful = sendVote(high_vote);
56 } else {
57 high_voteValid = false;
58 low_sendSuccessful = sendVote(0);
59 }
60 }
61 /*@ normal_behavior
62 @ determines low_outputStream,
63 @ low_outputStreamAvailable,
64 @ low_NUM_OF_VOTERS, low_numOfVotes,
65 @ low_sendSuccessful \by \itself;
66 @*/
67 {
68 low_numOfVotes =
69 (low_sendSuccessful ?
70 low_numOfVotes + 1 : low_numOfVotes);
71 }
72 }
73 publishVoterParticipation();
74 }
75

76 int inputVote() {
77 return high_inputStream;
78 }
79

80 boolean sendVote(int x) {
81 if (low_outputStreamAvailable) {
82 // encrypt and send over some channel
83 // (not further modeled here)
84 return true;
85 } else {
86 return false;
87 }
88 }
89

90 boolean isValid(int high_vote) {
91 // vote has to be in range 1..255
92 return 0 < high_vote && high_vote <= 255;
93 }
94

95 void publishVoterParticipation() {
96 low_outputStream =
97 low_numOfVotes * 100 / low_NUM_OF_VOTERS;
98 }
99 }

Listing 5. Source Code

	Combining Graph-Based and Deduction-Based Information-Flow Analysis

