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Abstract. Confidentiality is an important security goal that is ensured
by the absence of information flow between secrets and observable out-
puts. Quantitative information flow (QIF) analyses quantify the amount
of knowledge an attacker can gain on the secrets by observing the out-
puts. This paper presents a novel approach for calculating an upper
bound for the leakage of confidential information in a program regard-
ing min-entropy. The approach uses a data flow analysis that represents
dependencies between program variables as a bit dependency graph. The
bit dependency graph is interpreted as a flow network and used to com-
pute an upper bound for the leakage using a maximum flow computation.
We introduce two novelties to improve the precision and soundness: We
strengthen the precision of the data flow representation by using the path
conditions. We add sound support of unbounded loops and recursion by
using summary graphs, an extension of a common technique from com-
piler engineering. Our approach computes a valid upper bound of the
leakage for all programs regardless of the number of loop iterations and
recursion depth. We evaluate our tool against a state-of-the-art analysis
on 13 example programs.

Keywords: Security analysis · Quantitative information flow · Bit
dependency graphs

1 Introduction

Information Flow. The analysis of secure information flow (IF) tries to find the
information flow of confidential secret information to output variables that can
be observed by unclassified personnel or attackers. It is an important analysis to
ensure the confidentiality of programs. Traditionally, the result of an IF analysis
is a qualitative answer: either there is an influence of confidential information
on attacker-observable outputs (we say the program leaks information) or not.
Qualitative Information Flow is an established area of research that produced
tools that scale to large programs and support a variety of language features.
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Fig. 1. Program that leaks only one bit
of information from the secret input h
to the public output o.

The problem is that small leaks may
often be acceptable and sometimes neces-
sary; it is necessary to know the amount
of leaked information. Secure Qualita-
tive Information Flow cannot distinguish
between a program that leaks only a sin-
gle bit, like the program given in Fig. 1,

and a program that leaks the whole secret, as the information flow is not quanti-
fied. The urge to distinguish between such cases leads to the need of quantifying
the leakage.

Quantitative Information Flow (QIF) aims to calculate the leakage, the
amount of secret information which is gained by an attacker, by executing a
program. Applications range from ensuring the security of distributed applica-
tions to formally certifying data storage systems [19]. Typically, an attacker has
access to the program code and can only see low outputs o after program termi-
nation. The quantified leakage of the program from Fig. 1 is clearly lower than
the leakage of the program that leaks the whole secret. In the following, we call
a QIF analysis sound if and only if the analysis computes an upper bound.

Fig. 2. Laundering Attack which
leaks the secret input over all iter-
ations of the loop.

Motivating Example. We consider now the
program in Fig. 2 with signed fixed-width inte-
gers. This program demonstrates the Laun-
dering Attack, and leaks the whole secret into
the public output. This leakage occurs indi-
rectly due to control statements. Each iter-
ation of the loop itself only leaks the infor-
mation whether z = h for a specific z, but
all iterations together leak the whole secret.
Figure 2 is an example of how a small leak
can be extended into a leak of the secret. A

related real-world example is the brute-force attack on passwords, checking all
possible passwords to find the correct one, with each call to the password check
routine leaking only a small amount of information.

Many static QIF analyses based on abstract interpretation, model counting,
or program algebras were proposed in recent years. They have in common that
they only investigate programs up to a prior set upper bound on execution
paths. If the upper bound is too small, the estimated leakage might be too low.
This can be observed in our evaluation in Sect. 7. The usage of a prior set
upper bound means that current analyses can only consider a limited number of
loop iterations. There are multiple static analyses that support both loops and
functions, but in practice, only a limited recursion depth and a limited number of
loop iterations can be soundly analyzed due to resource limitations. As a result,
these analyses cannot give, in practice, an upper bound for the leakage of all
analyzed programs, an example for such a program is the Laundering Attack in
Fig. 2.
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Contribution. We present Nildumu1, a novel over-approximative static QIF anal-
ysis for a while-language with recursion and fixed-length arrays with copy seman-
tics. It supports both unbounded loops and recursion, contrary to the current
state of the art. The analysis does this by considering a limited number of exe-
cution paths, like previous approaches, over-approximating the effects of the
remaining iterations and recursive calls. The basis of the analysis is a bit depen-
dency graph, which records the dependencies between the values in a program
on the bit-level. During the construction of the graph, path conditions are taken
into account. The bit dependency graph is extended using the novel summary
graphs, which are used to improve the precision of the over-approximation. The
evaluation shows that the analysis is approximately as precise as current analy-
ses based on model counting while being sound for every number of considered
execution paths.

Fig. 3. Structure of our analysis.

Overview. We first describe the related static analyses in Sect. 2 and the theo-
retical foundations in Sect. 3. We then describe our analysis itself. The analysis
is structured into different parts, as seen in Fig. 3: The program is first trans-
formed into an equivalent loop-free program with recursion, lowering arrays to
int variables. This loop-free program is then transformed into a simplified form
so that variables are only assigned once. These transformations are given in Sect.
4. Then the summary graphs are computed for every function, and with them,
the bit dependency graph is created, presented in section Sect. 5. The actual
computation of the leakage is then based on the bit dependency graph, using a
maximum flow computation. We then give an improvement of the precision of
the analysis harnessing the knowledge gathered from path conditions in Sect. 6.
We follow this by an evaluation in Sect. 7 comparing the analysis with a state-
of-the-art model counting analysis and end with the conclusion and future work
in Sect. 8.

2 Related Work

There are multiple static QIF analyses based on abstract interpretation, as pre-
sented by Smith in [27], like jpf-qif developed by Phan et al. [26]. Recent advances
in the field of approximative model counting resulted in the development of anal-
yses that can process code written in C and C++, like ApproxFlow [4]. In con-
trast to the SAT-based model counting, Moped-QLeak [9] uses binary decision

1 Nildumu is Lojban for “is a quantity”.
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diagrams (BDD) for computing a summary of a program and using this sum-
mary to compute its leakage. Model-counting and BDD-based analyses rely on
inlining and unwinding and are prone to under-approximations, as mentioned in
the introduction.

Furthermore, there are two static analyses by Mu [23] and Clark et al.
[12] that use a Program Dependence Graph (PDG) to track the dependencies
between variables in a graph representation of the program. This differs from
our approach, which tracks the dependencies between individual bits instead of
variables. These analyses compute the value probability distributions for each
program variable. Both analyses are based on the notions given in [18], describ-
ing an algebra for an imperative language. The analyses using these techniques
can soundly analyze programs of a while-language using a probabilistic denota-
tional semantic. But these analyses do not support recursion and are limited to
small programs. Newer approaches [1] improve on these analyses based on newer
work on the formalization of hyperproperties, but they are not yet implemented
in tools. The advantage of these approaches is that they support multiple leakage
measures.

Finally, although there is no other bit dependency graph based analysis, there
is one dynamic analysis using byte dependency graphs: The dynamic analysis by
McCamant and Ernst [21] uses dynamic tainting instead of statically tracking
the flow of information through the program with a byte level granularity. Other
dynamic analyses exist, but they are usually based on black box approaches
[10,11] that do not consider the program code at all.

As stated previously, none of these tools support the static analysis of pro-
grams with both arbitrary numbers of loop iterations and recursion depth.

3 Foundations

We use the information-theoretical notion of QIF as presented by Smith [28]. The
entropy H(X) describes the amount of information of a random variable X. It
gives the minimal number of bits that are required to encode the information of
X (Shannon Entropy).

In the following, we consider only sequential programs, similar to [28], where
the attacker only observes the output O after the execution of the program fin-
ishes and has no information on the secret input H. In QIF, we are interested
in the information shared between H and O. This information is called mutual
information. It is denoted as H(H; O) and expresses the information gained on H
by observing O. The actual leakage I(H; O) is then defined as the reduction of the
uncertainty by observing O: I(H; O) = H(H) − H(H; O) .

In the following, we use the min-entropy H∞, which is based on the concept
of vulnerability [28] and quantifies the probability that the secret is guessed
by the attacker in one try. Formally, the vulnerability V (H) is defined as
V (H) = maxh∈H P [H = h] with the resulting entropy being H∞(H) = log 1

V (H)

[17]. In particular, V (X) is the worst-case probability that X’s value can be
guessed correctly in one try.
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Assuming we have a deterministic program with a uniformly distributed
secret, the min-entropy leakage I∞ is calculated by counting the different possi-
ble outputs of a program [28]. Formally, let O be the set of possible outputs of
the program, then the leakage is

I∞(H; O) = log2 |O|.
This leakage is an upper bound of the leakage over all distributions of H.

Soundness. To work with estimations of static QIF analyses that are not exact,
we define soundness as follows: An analysis is sound if and only if the calculated
leakage for all programs p with the secret input H and public output O, Îp(H; O),
is an upper bound of the actual leakage Ip(H; O), i.e., Ip(H; O) ≤ Îp(H; O).

Program Dependency Graph (PDG). A PDG is a data dependence graph with
added control flow edges [15]. Such a graph consists of nodes that represent
variables and operations. There is an edge from a node a to a node b present
in this graph if the value of b directly depends on the value of a (data depen-
dence) or if the value of a directly affects whether or not b is executed (control
dependence). Our analysis uses a PDG as its underlying representation of the
program structure.

Constant Bit Analysis. For our QIF analysis, we exploit a static intra-procedural
constant bit analysis on a PDG. A constant bit analysis aims to find bits that
are statically known. We base our analysis on the analysis described by Budiu
et al. [7] which uses a bit lattice (B). This lattice contains the possible statically
known information on a bit. A bit is a constant (0 or 1), might be both (�B), or
is never evaluated (⊥B).

A constant bit analysis associates each node in the PDG with a tuple of
elements from the bit lattice representing the knowledge that we have of each
bit of the value of each node.

4 Preprocessing

Shape of Programs. In this paper, we consider programs of a while-language
containing the typical imperative statements: assignments, if-statements and
while-loops (cf. Fig. 4). Moreover, the programming language contains functions
that might be directly or mutually recursive. Also, functions can have multiple
return values, an assignment of the form (v1, . . . , vk) := f() allows to assign the
return values of the function call f() to multiple variables v1 to vn. Additionally,
the dot denotes bit-access operator, i.e., e.n denotes the nth bit of the expres-
sion e. To identify the secret and public information, variables declaration can
contain the modifier input (secret) and output (public). All variables without
such a modifier are considered as hidden and non-confidential.

The only supported data types are signed fixed-sized integers and fixed-length
arrays. Integers are represented in two’s complement with an arbitrary but fixed
bit-width called W in the following. Boolean values are represented by the inte-
gers 0 and 1.
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Preprocessing. We start the analysis by preprocessing programs into an array-
and loop-free form to simplify the QIF analysis. Arrays have a fixed-length, and
therefore can be split into single variables that represent its entries. This tech-
nique is known as scalar replacement of aggregates [24]. Every access of an array
element with a constant index can directly be mapped onto the corresponding
variable. All other accesses are replaced with if-else-cascades to determine the
correct variable.

Loops are transformed into recursive functions. The transformation rule is
given in Fig. 5 which requires multiple return values. The application of this
rule for the example in Fig. 2 is in Fig. 6. This transformation is followed by
the inlining of all functions on their call-sites with argument passing and return
statements replaced by variable assignments. Recursive functions are only inlined
up to a user-specified bound. This is a common technique that is used in model
checking and program analyses to support functions [3,24]. Note that the func-
tion calls are preserved when the inlining bound is hit. Thus, the resulting pro-
gram is not free of function calls, which are handled later in our QIF analysis
by over-approximating the behavior of the remaining (recursive) function calls.
The inlining increases the precision of the analysis as every inlined function call
is not over-approximated and increases its run-time.

After the inlining, we translate the program into Static Single Assignment
form (SSA). We introduce fresh variables, such that every variable is only
assigned once. Moreover, we ensure that the right-hand side of each assign-
ment is an atomic expression. An atomic expression is either a function call or
a binary operator with variables (v) or constants (n) as operands. The final
result is a program that only consists of if- and function call statements, as well
as assignments v = e and return statements return e where e is an atomic
expression.

5 Bit Dependency Graph

This section covers the novel generation of the bit dependency graph for a pro-
gram with arbitrary recursive functions (Sect. 5.1, Sect. 5.3) but without loops
and arrays. The construction is based on the constant bit analysis and results in

Fig. 4. The grammar of the considered while-language. Placeholder v denotes a variable
name, t a type name, n an integer constant and � a typical binary operator like
addition, multiplication, or exclusive-or on integers.
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Fig. 5. Translation of a loop into a semantically equivalent function, with w1, . . . , wn

being the variables written in the loop and r1, . . . , rm being other variables that are
accessed in the loop.

Fig. 6. Translation of the loop from Fig. 2 using the schema from Fig. 5.

a graph that expresses the dependencies between single bits. We use this graph
to approximate the leakage of a program (Sect. 5.2).

Definition 1 (Bit Dependency Graph). A bit dependency graph G = (V,E)
is a directed graph of nodes where each node represents a bit that belongs to the
value of a node in the underlying PDG. This graph contains an edge from v1 to
v2 if v2 data or control depends on v1.

Each bit node in the graph represents a single bit of the information on
a variable at a specific program location, due to the SSA form. Thus, a bit
dependency graph represents the dependencies between variables at the bit-level.
A peculiarity in this definition is that an edge between two nodes (bits) expresses
the possibility of a dependency. To achieve a sound analysis, the set of distinct
paths between nodes must always be a superset of the actual bit dependencies
defined by the program.

In the following, we call nodes that are reachable from a node v ∈ V the
transitive successors of v and nodes vi ∈ V for which an edge (v, vi) ∈ E exists
successors of v.

Construction. We construct a bit dependency graph from a PDG during the
constant bit analysis by collecting the dependencies between the individual bits
associated with the PDG nodes.

Let G = (V,E) be the bit dependency graph for a given preprocessed pro-
gram. The preprocessed program only consists of control statements, function
calls, atomic assignments and return statements, as described before. The set
of vertices of the graph is V := {x.i | 1 ≤ i ≤ W, x is a PDG node} that con-
tains a node for each bit of every PDG node and thereby every variable in the
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program. The set of edges E is formed by using specific function handlers. A
function handler, defined in Sect. 5.1, models a bit dependency graph from the
arguments to the return value. We treat every operator in the following as an
implicitly defined function, e.g. a + b is treated as f+(a, b). Let us consider the
case of two arguments in function calls (or binary operators), x := f(y, z) (or
x := y � z): We add edges between the bit nodes of y, z and x if there is a data
or control dependency between them. We can trivially extend this to functions
with higher arity.

Due to the preprocessing, we only need to consider assignments with function
calls and single operator expressions. Each specific function or operator requires
a function handler.

Example 1. The bit dependency graph for the program x := y | z with two bit
integers is given in Fig. 7. The nodes yi and zi are connected to xi since each bit
of the result depends on the corresponding bits of the operands.

Fig. 7. Graph for x := y | z

In the remaining, we define the concept of
function handlers (Definition 2) and discuss
different handlers (Sect. 5.1 and Sect. 5.3). We
afterwards state the relationship between the
bit dependency graph and the leakage compu-
tation Sect. 5.2.

5.1 Handling Functions

We formally introduce the concept of a function handler hc, which models the
bit dependencies from the arguments a1, . . . , an to the return value x. A function
handler returns a specific bit dependency graph for a specific function call x :=
f(a1, . . . , an). Therefore, the handler can react to specific arguments, e.g. an
optimization for neutral elements of operators are possible (a + 0 = a).

In the best case, this function handler represents the bit dependencies pre-
cisely. In the worst case, if no such function handler exists, we add an approxi-
mative sub-graph. Such an approximative sub-graph leads to a sound analysis if
it is an over-approximation, i.e., it adds at least as many distinct paths between
every parameter node and every return node as the precise sub-graph.

Definition 2 (Function Handler). A function handler for a specific function
call c, x := f(a1, . . . , an), with the tuple of bit nodes Ac = (a1.1, . . . , a1.W, . . . ,
an.1, . . . , an.W ) related to the arguments a1, . . . , an, is formally defined as a
function hc : Ac �→ (Vc, Ec) with Ac ⊆ Vc.

The resulting graph Gc = (Vc, Ec) is an over-approximation of the application
of f and the return value nodes Rc are used as the nodes of x.

We distinguish two kinds of handlers: the built-in and the summary han-
dlers. We describe in the following the built-in handlers and detail the summary
handlers in Sect. 5.3.
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Built-In Handler. For operators and built-in functions, we define handlers that
model their effect: We interpret non-bitwise operators as their equivalent combi-
nation of bit-wise operators and over-approximate more complex operators like
multiplication. This allows the analysis to only implement the bit-wise operators
directly. The built-in handlers are more precise than the summary handlers but
have to be implemented directly in the core analysis.

5.2 From Bit Dependency Graph to Leakage

We can compute an approximation of the leakage by using network flow algo-
rithms. Commonly, a directed node-weighted flow network NG = (G = (V,E), γ,
vsource ∈ V, vsink ∈ V ) consists of a directed graph G, a node capacity
γ : V → {1,∞} and a source and a sink node for the flow. A comparable idea
based on an edge-weighted flow network has first been used by McCamant and
Ernst [21].

Construction of the Flow Network. Given a bit dependency graph G = (V,E)
with the nodes Vinput ⊆ V representing the secret input bits and the nodes
Voutput ⊆ V representing the public output bits, we can construct the corre-
sponding node-weighted flow network NG as follows: We introduce a new source
node vsource which has as successors all input nodes Vinput and a new sink node
vsink which is a successor of all output nodes Voutput:

NG = (G′ = (V ′, E′), γ, vsource, vsink) V ′ = V ∪ {vsource, vsink}
E′ = E ∪ { (vsource, v) | v ∈ Vinput } ∪ { (v, vsink) | v ∈ Voutput }

γ(v) �→
{

∞ : v ∈ {vsource, vsink}
1 : otherwise

Theorem 1 (Leakage Computation using Minimum Cuts). The size of
the minimum node cut of the network NG is an upper bound of the leakage of a
program with the bit dependency graph G.

Proof Sketch. First two observations: A single bit can only be statically unknown
if it is either a secret input bit or it transitively depends on at least one secret
input bit. Consider now the bits b1, . . . , bn that form the bit vector b which are
statically unknown. b can than have at most 2n different values at runtime.

If we can find the bits b′
1, . . . , b

′
m so that all paths from vsource to b1, . . . , bn

contain these bits, then b can have at most 2m values: The vector b′ can have at
most 2m values and every value of b′ leads to one value of b at runtime.

The minimum cut M is the b′ with the minimal combined weight if we con-
sider b to be the vector of public output bits. 2|M | is therefore an upper bound
on the number of different output values at runtime and as a result M is an
upper bound for the min-entropy of the underlying program (see Sect. 3).
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Computation. We can compute the minimum node cut by transforming the node-
weighted network into an edge-weighted network [14, Algorithm 9] on which we
compute the minimum edge cut. The minimum edge cut can be computed by
using maximum flow algorithms as a result of the max-flow min-cut theorem [6].
Another possibility is to use a Partial MaxSAT solver as presented in Sect. 6.

5.3 Summary Function Handler

By treating bit dependency graphs as node-weighted network flow graphs, we
can reconsider function handlers and define summary handlers. We first define
the concept of summary graphs, their construction, and at last their application
in form of a function handler.

Definition 3 (Summary Graphs). A summary graph Gs for a bit dependency
graph G of a function f consists of the parameter nodes P , the return nodes R
and the intermediary nodes Γ . The edges of Gs and Γ , satisfy the following
constraint: The information flow between P and R is the same in Gs as in G.

Summary graphs are modeled after the transitive dependence graphs for
functions introduced by Horwitz et al. [16]. These dependence graphs consist
of summary edges and are commonly used in compiler engineering for program
slicing. A summary edge connects a parameter node with a return node if and
only if there is a transitive dependency between them. A summary graph is
a transitive dependence graph on bit-level that includes the nodes from the
minimum-node-cut as intermediary nodes Γ to improve the precision.

Construction. Minimal summary graphs for each function are constructed iter-
atively using a fixed-point iteration over the call-graph. It uses a graph without
any edges as a starting point for every function. The fixed-point iteration com-
putes the summary graph for a given function f in each iteration using the
following steps:

1. Construct the bit dependency graph G for f with parameters as secret inputs
and return values as public outputs, using the current iteration’s summary
graphs whenever a function is called.

2. Reduce the graph G with parameter nodes P and return nodes R: Construct
the flow network NG and compute the minimum node cut Γ . Reduce the
graph to a graph G′ = (V ′, E′) that consists of V ′ = P ∪R∪Γ and transitive
edges between P and R ∪ Γ , and Γ and R.

3. Set G = G′ for the next iteration of the summary graph for f .

Using this construction, the summary graphs for all functions in the program can
be pre-computed. Every iteration of the fixed-point iteration in the construction
adds at least one new distinct path between the parameter and return nodes
of at least one function. The fixed-point iteration terminates, as the number of
distinct paths is bounded. Therefore, the construction itself terminates.

Example 2. We consider the function f given in Fig. 8a with three bit integers.
Figure 8b shows the graph G(f) for the function and the resulting summary
graph in Fig. 8c. This shows how the size of the summary graph is reduced.
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Fig. 8. Example function with its graphs, omitting constant nodes.

Summary Handler. The summary handler is a function handler which uses a
copy of the precomputed summary graph Gf

s for a function f on its call-site c.

hsummary
c : Ac �→ copy(Gf

s )[P �→ Ac]

Summary function handlers summarize the effect of a function on the leak-
age computation. They are still an over-approximation as they cannot use the
information the constant bit propagation has on the arguments at any given
call-site.

Soundness. We follow with Menger’s Theorem for directed graphs [6] that the
minimum node cut is equivalent to the number of internally node disjoint paths,
as all nodes have weight 1. By the construction of the reduced graph G′, the dis-
jointedness of paths is preserved by the graph reduction, thus the set of disjoint
paths is a superset of the disjoint paths of G. The summary handler is therefore
sound.

6 Increasing the Precision

Fig. 9. Example for path conditions

Knowledge from path conditions is
not used in the construction of the
bit dependency graph as described in
Sect. 5. We extend the previous graph
construction to take this knowledge
into account, which increases the pre-

cision of our analysis. We annotate each bit node b with a function replb : B →
22

Bit

which returns the sets of bits that can be considered equal under the
assumption that b has a given value. We use these functions to compute the
equal bits for every path condition. In particular replcond(1) returns the bits
that are considered equal in the current context under the assumption that cond
evaluates to true.

For example, we know that x & 1 = (y >> 1) & 1 evaluated to true in the
then branch of the if-statement in Fig. 9, therefore we can infer that the first bit
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of x is equivalent to the second bit of y, {x.1, y.2} ∈ replx&1=(y>>1)&1(1). The
propagation of knowledge is based on the notion of propagated predicates, first
formalized by Wegbreit [29]. Every path condition leads to new knowledge on
bits.

This knowledge leads us to a set of bit dependency graphs, as we know in each
context-specific bits that can be replaced by other bits, e.g. the bits belonging
to x.1 with the bits belonging to y.2 in the example above. Inserting an edge
from either bit in the specific context leads to a sound over-approximation.
Therefore every of the possible graphs leads to an over-approximated leakage. In
our example, we can replace the edge (vx.1, vz.1) with the edge (vy.2, vz.1) leading
us to a set of graphs. We can either use simple heuristics to choose a specific
graph or use a Partial MaxSAT (PMSAT) solver for leakage computation to
optimize the chosen edges (Sect. 6) to minimize the calculated leakage.

Heuristic-Based Graph Selection. We select the graph, which promises the small-
est leakage, by applying a simple greedy edge selection heuristic: In principle, we
prefer edges that start in constant bits. The idea is that it improves the constant
propagation and the precision of the analysis, as constant bits do not depend on
the secret input. The advantage of this heuristic is its computational simplicity.
Its main disadvantage is that it does depend on one of the possible edges start-
ing in a constant bit, arbitrarily choosing an edge otherwise, not guaranteeing
an optimal result. A preliminary evaluation showed that this did not affect the
precision of the analysis for the programs in the evaluation. This heuristic is
therefore used in the evaluation.

PMSAT-Based Leakage Computation. In general, an instance of PMSAT con-
sists of formulas in conjunctive normal form (CNF) that consist of soft and hard
clauses conjunctively combined with disjunctively connected (negated) propo-
sitional variables. A PMSAT solver, like Open-WBO [20], tries to find a sat-
isfying variable assignment such that the variable assignment meets all given
hard clauses, and the most possible soft clauses [8]. Finding such a solution is
NP-complete but its usage removes the need for heuristics for incorporating the
knowledge on replacement edges.

In the following, we give the encoding of the node-weighted flow network
N = (G′ = (V ′, E′), γ, vsource, vsink) into hard and soft constraints: For each
vertex v, we introduce the propositional variables cv and rv, which represents
the participation of the vertex in the minimum cut: If cv holds, add vertex v to
the minimum cut, or if rv holds, cut the graph after the successors vs of vertex
v (cvs

) or their successor transitively. The hard constraints Γ (v) for every node
v are therefore defined as:

Γ (v) := dv → (cv ∨ rv)

︸ ︷︷ ︸
(1)

∧ rv →
∧

s∈successors(v)

(ds ∨
n∨

i=1

dsi)

︸ ︷︷ ︸
(2)
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We create the helper variable dv in (1) that states that we cut the graph
either at the vertex or after the vertex. (2) states that if we consider cutting the
graph after v then we have to either cut the graph after every successor s. If
there are any replacements (v, si) for the edge (v, s), we can cut at or after any
of the si instead. If v does not have any successors, Γ (v) degenerates to dv → cv.

We add the hard constraints ¬cvsource
and ¬cvsink

as the source and the
sink cannot, by definition, be part of the minimum cut. We add rvsource

as the
minimum cut consists of transitive successors of vsource and ¬rvsink

as we cannot
cut after the sink. We finally add the soft constraint ¬cv for every node v, leading
us to the final formula:

∧
v∈V ′

Γ (v) ∧ ¬cvsource
∧ ¬cvsink

∧ rvsource
∧ ¬rvsink

︸ ︷︷ ︸
hard

∧
∧

v∈V ′
¬cv

︸ ︷︷ ︸
soft

A PMSAT solver tries to maximize the number of fulfillable ¬cv clauses and
thereby minimize the number of nodes participating in the minimum cut, leading
us to a leakage computation.

7 Evaluation

We compare Nildumu2 with ApproxFlow3. As stated before, we found no other
tool that supports both unbounded loops and unbounded recursion and use
ApproxFlow as a state-of-the-art analysis. ApproxFlow is based on model count-
ing. It works by first creating a SAT formula representing a program using CBMC
[13] and then counting the number of different assignments for the output vari-
ables using an approximate model counter. Although we do compare the run-
times of both tools, the value of the comparison is limited, as both tools are
based on different libraries using different language runtimes.

Tool Configuration. The tools are evaluated with different levels of inlining and
unwinding to show the effect of this parameter on the approximated leakage.
We consider 2, 8, and 32 as both unrolling and inlining levels. A level of 32
is the default for ApproxFlow. ApproxFlow is by default configured so that
its results differ by at most 0.8 bits from the real leakage with a probability
of 80%, as ApproxFlow uses an approximate model counter. We use the same
inlining levels in combination with the summary handler for Nildumu. For the
sake of completeness, we also present the datapoints for Nildumu without path
conditions support (32w).

2 Nildumu is available as open-source with a GUI at https://github.com/
parttimenerd/nildumu with the full evaluation reproducible using the docker image
parttimenerd/nildumu. The evaluation used version 49ebe88948874.

3 We used a modified version of ApproxFlow [4] with an update to ApproxMC4,
publicly available at https://github.com/parttimenerd/approxflow.

https://github.com/parttimenerd/nildumu
https://github.com/parttimenerd/nildumu
https://github.com/parttimenerd/approxflow
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Table 1. The computed leakage for all benchmarked programs with different
unrolling levels k. The timeout was 2 h, timeouts are marked with a dash (“-”).
Under-approximations of programs are marked as bold and underlined and over-
approximations larger than one bit are marked as overlined, as a deviation of 0.8
bits is accepted for ApproxFlow with the default configuration. The second column I
gives the actual leakages of the programs with ∼ marking the estimate by ApproxFlow
as explained before and the third column Imax gives the maximum possible leakage,
considering only the number of input and output bits.

Table 2. The mean execution time for all benchmarked programs in seconds. The
timeout was 2 h and the standard deviation was at maximum 10%.
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Benchmark Process. Both tools are run 5 times for every combination of program
and unrolling level to account for randomness in the underlying system and in
ApproxFlow. The benchmarking took place on an Intel Xeon Gold 6230 CPU
with 512 GiB of RAM, running a Linux 5.4.0 kernel with OpenJDK 1.8.0 and
CBMC 5.21.0. Both tools are restricted to two cores.

Benchmark Programs. We use the Laundering Attack from Fig. 2 and the com-
monly used benchmarks described in [2,9,22,25]. These benchmarks from litera-
ture can be categorized into programs that are focused on the handling of loops
(Binary Search [22] and Electronic Purse [9]), the handling of conditions (Illus-
trative Example [22] and Implicit Flow [22]), the handling of bit operations (Mix
and Duplicate [25] and Population Count [25]), and the handling of arithmetic
or comparison operations (Sanity Check [25] and Sum [2]). We omit programs
that use features not supported by the compared analyses.

We additionally use the Smart Grid and E-Voting examples from [5]. We
use two versions of the E-Voting example as used by [4]: Ranking and single
preference-based voting. There are no exact leakages known for these larger
programs a priori, as the leakage depends on multiple configuration parameters.
To estimate the exact leakage for the Smart Grid and E-Voting examples, we used
ApproxFlow with the unrolling level being the respective loop bound, and set the
allowed deviation to 0.1 bits and a correctness probability of 0.95. Both the lower
allowed deviation and the higher correctness probability increase the run-time
and the precision and result in different values than the default configuration for
the same unrolling levels.

Results. The computed leakages are given in Table 1 and show that Nildumu
over-approximates the leakage for every program and every level of inlining, in
contrast to ApproxFlow which under-approximates the leakage if the unrolling
and inlining level is lower than required by each program. Table 1 also shows that
Nildumu has worse precision for most test cases involving arithmetic and compar-
ison operators. Furthermore, Table 2 gives the execution time for all programs
and shows that Nildumu is slower than ApproxFlow. Additional benchmarks
showed that Nildumu does not produce better results, performance and leakage-
wise, when using the PMSAT based leakage computation with Open-WBO.

Discussion. ApproxFlow is by design more precise for programs where it can
fully unroll all loops and inline all functions, as it models operators directly
as a SAT formula. Nildumu only uses simple dependencies between bits and
not complex, SAT-based dependencies as ApproxFlow and has, therefore, worse
precision, especially for arithmetic operators. Nonetheless, Nildumu analyses the
presented benchmark programs with comparable precision and gives an over-
approximation for every benchmark and unrolling limit. The results also show
that using Nildumu without support for path conditions leads to worse precision
with performance gains for only part of the benchmarks.

The run-time of Nildumu is worse than the run-time of ApproxFlow. This
is partly due to its implementation in Java, compared to ApproxFlow which is
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a small Python wrapper combining two tools written in C++, and due to the
additional computation of summary graphs which is especially expensive as this
computation over-approximates the effect of all remaining recursion.

8 Conclusion and Future Work

In this paper, we presented a QIF analysis exploiting bit dependency graphs that
supports a while-language with loops, recursive functions, fixed-width integers,
and fixed-size arrays. To our knowledge, this is the first analysis that supports
recursion (and loops) without a limit on the recursion depth using summary
graphs as an adaptation of the well-known concept of summary edges. This
reduces the set of assumptions on the processed programs. The analysis computes
an upper bound of the information leakage using min-entropy regardless of the
level of inlining.

The evaluation results presented in Sect. 7 show that the analysis produces
comparably good results for typical examples, but also that the arithmetic and
comparison expressions are conservatively approximated, and that the perfor-
mance and precision could be improved. Especially the construction of summary
graphs and the handling of arrays should be improved to reduce the execution
time of the analysis. The analysis could therein profit from parallelization.

Furthermore, the used summary graphs are currently limited as their con-
struction ignores the specific call-sites and their context. This problem should be
addressed in future extensions of this approach, for example by the techniques
already developed for data flow analyses in compilers. There is ongoing work to
support a broader range of language features (like input and output streams)
as well as using CBMC as a front-end to improve the real-world applicability
of Nildumu. The precision could be improved by using interval-based lattices
or incorporating more operator semantics using techniques from the field of
bounded model checking. Furthermore, the analysis could be extended into a
component-based analysis which analyzes program components and the flows
between them.
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