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Abstract

Information flow control is the analysis of the information that an attacker can
gain by examining the output of a program. This is a current topic that got more
publicity in the recent years as incidents like the HeartBleed bug showed that leaked
information can have severe consequences. The HeartBleed bug resulted in the
leakage of the secret key for SSL encryption.

The traditional approach in information flow control is qualitative, i.e. examining
whether any leakage exists or not. Quantitative Information Flow Control extends
this by quantifying the amount of knowledge an attacker can gain on the secret.
This thesis presents a static approach to Quantitative Information Flow Control

using a data flow analysis that examines the dependencies between the bits in the
program. These dependencies form a graph that is used to calculate an upper bound
on the leakage of a program using a minimum-vertex-cut algorithm. The analysis is
interprocedural using summary graphs combined with an inlining based approach.

Informationsflusskontrolle ist die Analyse der Information, die ein Angreifer durch
die Analyse der Ausgabe eines Programms erlangen kann. Dies ist ein aktuelles
Thema, dass in den letzten Jahren immer größere öffentliche Aufmerksamkeit bekam,
als Vorfälle wie der HeartBleed-Bug zeigten, dass preisgegebene Informationen
schwerwiegende Konsequenzen haben können. Im Falle des HeartBleed-Bugs führte
dies zur Preisgabe des geheimen Schlüssels für die SSL-Verschlüsselung.
Der traditionelle Ansatz der Informationsflusskontrolle ist qualitativ. Es wird

hierbei untersucht, ob Informationen preisgegeben werden, oder nicht. Quantitativer
Informationsfluss erweitert dies mit der Quantifizierung der Menge an Informationen,
die ein Angreifer erlangen kann.

Diese Arbeit präsentiert einen statischen Ansatz zur Quantitativen Informations-
flusskontrolle, welcher eine Datenflussanalyse nutzt um die Abhängigkeiten zwischen
den Bits eines Programmes zu analysieren. Diese Abhängigkeiten bilden einen Gra-
phen, welcher benutzt wird, um eine obere Schranke für die durch ein Programm gele-
akte Information eines Programms mit Hilfe eines Minimum-Vertex-Cut-Algorithmus
zu berechnen. Die präsentierte Analyse ist interprozedural durch die Kombination
von Summary-Graphen und einem Inlining-basierten Ansatz.
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1. Introduction

1.1. Motivation
Information flow control deals with the information on the secret inputs leaked by
the public outputs of a program.
The traditional approach to information flow control is the qualitative approach.

It checks whether secrets can affect the public outputs of a program in any way and
are thereby leaked to an attacker.

o = h % 10

Listing 1.1: Program that explicitly leaks the last digit of the secret input

An example for a leak is given in the program presented in Listing 1.1, with h
being the secret input and o the public output. This program explicitly leaks the last
digit of the secret. An implicit leak can be seen in the program given in Listing 1.2,
called Password checker. This program returns 1 if the secret input is equal to the
public, attacker-chosen, input l. Both leaks can be found by Qualitative Information
Flow Control. This has many applications ranging from the security of distributed
applications to formally certifying data storage systems [1].
Qualitative Information Flow Control is an established area of research that

produced tools like JOANA [2] that scale to 100K lines of real-world Java code. The
problem is that small leaks may often be acceptable and sometimes necessary; the
amount of the leaked information is therefore necessary to know. In the case of the
Password checker program, the leakage of the information whether the secret has a
specific value is necessary.

if (h == l) {
o = 1

} else {
o = 0

}

Listing 1.2: Password checker program
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1.2. RELATED WORK

Qualitative Information Flow Control cannot distinguish between this program and
the program that leaks the whole secret. The urge to distinguish between such cases
leads to the need of quantifying the leakage. The aim of Quantitative Information
Flow Control is to calculate the leakage of a program in bits. The quantified leakage
of the Password checker is clearly lower than the leakage of the program that leaks
the whole secret. Quantitative Information Flow analyses are called sound if the
analysis returns an upper bound on the leakage.

Many analyses were proposed in recent years, a few of them can analyse the leakage
of real-world programs, see Appendix B. The problem with most of these analyses is
that they are at most theoretically sound or do not support functions. There are
essentially three classes of analyses:

Static The program is analysed without executing it. These analyses have the
advantage of being sound. Most papers focus on type systems, abstract
semantics, statistical models or bit variability patterns. A subclass is the class
of theoretically sound analyses.
Theoretically Sound Static These analyses only work theoretically for un-

bounded finite loops and recursion. In practice, only a limited recursion
depth and a limited number of loop iterations can be soundly analysed
due to resource limitations.

Probabilistic Static The program is analysed statically, but the analysis only gives
a confidence interval for the upper bound of the leakage.

Dynamic The leakage is approximated by executing the program with different
inputs. Such analyses can only approximate the leakage of programs without
giving upper bounds for the leakage. The reason for this is the infeasibility to
execute a program with all possible combinations of inputs.

We found no analysis that uses data flow techniques, which are commonly used
in the field of compiler development. Furthermore, there are, to our knowledge, no
sound analyses that support unbounded finite loops and recursion, see Appendix B.
This thesis presents such an analysis. The analysis is based on a constant bit

analysis [3].

1.2. Related Work
Quantitative Information Flow has first been formally defined by Lowe [4] as an
extension of information flow that quantifies the information passed from a user on a
higher level to a user on a lower level. The theoretical foundations are described by
Smith [5]. Smith describes the min-entropy measure and other general concepts of
Quantitative Information Flow analyses. The analyses can be categorised in different
classes, as described before. The following gives a short overview, a comprehensive
survey on analysis tools is presented in Appendix B:
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1.2. RELATED WORK

Static analyses are typically based on program algebras, model counting or abstract
interpretation. An algebraic framework has been presented by Malacaria [6]. One
of the first model counting analyses has been developed by Newsome et al. [7]
and abstract interpretations are summarised by Smith [8]. Recent advances in the
field of approximative model counting resulted in the development of analyses that
can process real-world code; such an analysis tool, ApproxFlow [9], is evaluated in
Chapter 9. An example for a recent analysis based on abstract interpretation is jpf-qif
developed by Phan et al. [10]. The jpf-quilura analysis [11] by the same authors
combines abstract interpretation and model counting using reliability analysis.

Dynamic analyses are typically based on statistical sampling or dynamic tainting.
Tainting describes the process of marking values if they are influenced by the secret
input. An analysis based on statistical sampling is LeakWatch [12]. Rather recently,
tools like Kite [13] explored the combination of dynamic tainting with model counting.
The advantage of the dynamic approaches is that they work on thousands of lines of
code, producing precise leakage estimations for a limited input space.
Furthermore, although there is no other data flow based static analysis, there

are, to our knowledge, two analyses based on the same ideas as this thesis: The
dynamic analysis described by McCamant et al. [14] uses a dynamic tainting based
approach instead of statically tracking the flow of information through the program.
The static analysis by Mu [15] tracks the dependencies between variables in a PDG
representation of the program and computes the value distributions for each program
variable. The analysis is able to soundly analyse programs of a while-language using
a probabilistic denotational semantic.
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2. Foundations
This chapter describes the theoretical foundations of this thesis. It covers the
foundations of Quantitative Information Flow, Program Dependency Graphs and
the underlying constant bit analysis.

2.1. Quantitative Information Flow
Quantitative Information Flow is formalised in this section using an information
theoretical notion of leakage [5]. This is based on Shannon’s concept of entropy
[16]. The entropy is the amount of information a specific value of a random variable
conveys, given in bit. In the following, H is the secret input, O the public output and
H(·) a measure of entropy.

Definition 2.1 (Leakage). The leakage is the mutual information of H and O, as
defined by the following equation:

I(H; O)︸ ︷︷ ︸
leakage

= H(H)︸ ︷︷ ︸
initial uncertainty

− H(H|O)︸ ︷︷ ︸
remaining uncertainty

H(H) is the amount of information that the secret H conveys. H(H|O) is the amount
of uncertainty on the value of H after observing the program’s public output O. The
mutual information then gives the amount of information on H that is leaked to the
observer of O.

One of the typically used entropy measures for leakage computation is the min-
entropy.

Definition 2.2 (Min-entropy). Min-entropy H∞ is based on the concept of vulnera-
bility [5]:

V (X) = max
x∈X

P [X = x]

H∞(X) = log2
1

V (X)

Min-entropy is related to the probability of a secret being guessed in one try, as
V (X) is the worst-case probability that X’s value can be guessed correctly in one try.

Theorem 2.1 (Min-entropy for deterministic programs). The min-entropy leakage
can be calculated for deterministic programs with a uniform distribution of secrets by
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2.2. PROGRAM DEPENDENCY GRAPHS

counting the different possible outputs of a program [5]. Let O be the set of possible
outputs of the program, then:

I∞(H; O) = H∞(H)−H∞(H|O) = log2 |O|

The calculated leakage is also the maximum leakage over all distributions of secrets,
therefore the calculated min-entropy can be seen as the capacity of the program when
used as an information theoretic channel.

Attacker model We assume that attackers have access to the program code, can
set low inputs at the beginning and see low outputs after program termination. More
general, for arbitrary security lattices, an attacker on security level α can see all
outputs with level ≤ α and set and see inputs with level ≤ α. All other inputs and
outputs are inaccessible. The runtime of the program, other side channels like power
consumption, or intermediate states of variables in the program cannot be observed.

Security lattice The different security levels, like “low” (l̂) and “high” (ĥ), can be
organised in a lattice that is typically bounded and complete [17]. A security lattice
gives the different levels an ordering.

Security lattice The different security levels, like “low” (l̂) and “high” (ĥ), can be
organised in a lattice that is typically bounded and complete [17]. A security lattice
gives the different levels a partial ordering.

Assumptions on analysed programs All analysed programs are deterministic and
terminate normally, i.e. without an exception. The programs are assumed to be
written in a variant of a while-language with functions and recursion.

2.2. Program Dependency Graphs
Programs can be represented in varying ways, but there is a consensus that Program
Dependency Graphs (PDG) are valuable for program analyses [18] and that they
can be used for information flow analyses [19]. This thesis uses PDGs as its main
representation of programs.

PDGs were first introduced by Ferrante et al. [20]. Each node in the PDG represents
a statement or a part of it. There are two edge types: control dependency and data
dependency edges. A statement A control-depends on another statement B if the
execution or non-execution of A depends on the result of the execution of B and
there is no other statement C that control depends on B and A control depends on. B
can be seen as the conditional control flow statement whose control flow structure
directly encloses A.
There are different variants of PDGs, depending on the form of the program

statements. The basic variant is based on the Single Static Assignment (SSA) form,
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2.3. CONSTANT BIT ANALYSIS

if (h == l) {
o1 = 1

} else {
o2 = 0

}
o = φ(o1, o2)

h

φ(1, 0)h == l

l

Figure 2.1.: SSA-form and basic PDG for the Password checker program Listing 9.8

which is an intermediate form of a program in which each variable is only assigned
once [18, p. 252f]. This makes the relation between variable definition and usage
explicit. φ-functions are introduced during the transformation into SSA-form to
join the different definitions of the same variable coming from different branches of
control structures. An example for a SSA-PDG is given in Figure 2.1. The SSA
variant used in this thesis is called Gated Single Static Assignment (GSSA) [21]. In
GSSA-form the φ-functions are annotated with conditions that determine which of
the incoming variables are actually used depending on the execution context.
PDGs can be extended to System Dependency Graphs (SDG) [22] that support

functions. SDGs and PDGs are often used interchangeably as is it clear from the
context whether the analysis is intra- or interprocedural.

2.3. Constant Bit Analysis
The aim of the constant bit analysis is to find bits that are statically known. This
section explains the basic elements of the analysis described by Budiu et al. [3].

The core of the analysis is a data flow analysis that combines a constant propagation
with an unreachable code elimination, to analyse only reachable portions of the
program. A basic combination of these analyses was first presented by Wegman et
al. [23] and formalised by Click et al. [24]. The combined analysis presented here
works on PDGs and associates each PDG node with a bit string value.

Definition 2.3 (Value lattice). Integer values are represented as bit strings in two’s
complement [25]. The values have a fixed width n for brevity. Boolean values are
represented as 0 . . . 0︸ ︷︷ ︸

n−1

1 (true) and 0 . . . 0︸ ︷︷ ︸
n−1

0 (false). The value lattice is a product

lattice of bits:
Value = Bit × · · · × Bit︸ ︷︷ ︸

n bits

In the basic version of this analysis, the bit lattice is equivalent to the bit value
lattice defined in the following.

Definition 2.4 (Bit value lattice). Bits are represented by elements of a bit value
lattice B, its structure is presented in Figure 2.2:
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2.3. CONSTANT BIT ANALYSIS

û = >

0̂ 1̂
x̂ = ⊥

Figure 2.2.: Structure of the bit lattice

Each bit can be represented by one of the following Bit lattice elements:

û, 1̂ The value of the bit is statically unknown.

0̂, 1̂ The value of the bit is statically known to be either 0 or 1.

x̂, 1̂ The analysis did not yet evaluate the PDG node that this bit belongs to.

The focus of the security analysis is on statically unknown bits, as they might leak
information to an attacker.
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3. Basic Analysis
This chapter explains the basic structure of the Quantitative Information Flow
analysis for loop-free programs. The analysis directly builds upon the constant bit
analysis. This chapter first describes the basic idea, then the program analysis and
finally three basic operators.

3.1. Basic Idea
The analysis extends the constant bit analysis by tracking all dependencies between
the bits of different nodes. The resulting bit dependency graph will be analysed to
approximate the leakage of a program, as described in Chapter 4.

3.1.1. Bit and Value lattice
The aim to track the dependencies results in an extension of the original bit lattice.

Definition 3.1 (Bit lattice).

Bit = B︸︷︷︸
bit value = v

× P(Identity)︸ ︷︷ ︸
dependencies = d

The bit lattice is a product lattice consisting of the bit value lattice (Definition 2.4)
and a power set lattice containing the data and control dependencies of each bit.

Definition 3.2 (Identity). The identity of a bit consists of the PDG node with
which it is associated and its index in the bit string:

Identity = Node × N0︸︷︷︸
index

.

Definition 3.3 (Value). The values of the nodes are modelled as:

Value = Identity × · · · × Identity︸ ︷︷ ︸
n bits

Definition 3.4 (bitMap mapping). The bitMap maps a bit’s identity to its current
value in the analysis:

bitMap : Identity → Bit

15



3.1. BASIC IDEA

Definition 3.5 (nodeValue function). The nodeValue function maps a PDG node
to its value:

nodeValue : Node → Value
x 7→ ((x, n− 1), . . . , (x, 1), (x, 0))

The following text uses bits and their identities interchangeably. Bits are often
referenced by their identity using the notation nodeindex . This implicitly uses the
bitMap mapping and the nodeValue function:

nodeindex ≡ bitMap(nodeValue(node)index)

Definition 3.6 (Input bits). Input bits belong to the input values of the program
and therefore have a statically unknown value and no dependencies. They have an
inherent security level.

Definition 3.7 (Inherent security level). The function sec : Identity → S maps
inputs bit to their inherent security level and all other bits with no such level to the
lowest level.

sec : Identity → S, b 7→

α b is an input of level α
l̂ else

Definition 3.8 (Output bits). Output bits are the bits assigned to output variables
of a specific security level.

3.1.2. Notation for Bits and Values

Elements of the bit and value lattice are often used in the following sections and
chapters, their notation is given in the following.
A value is notated as a tuple of its bits:

(bn−1, . . . , b0)

The notation for a bit itself is:

( [x̂|0̂|1̂|û]︸ ︷︷ ︸
bit value

, {id1, . . . , idγ︸ ︷︷ ︸
dependencies

})

An example is the constant bit 0: (0̂,∅). A short notation for the bit value of the
ith bit of a value or node x is vix, an analogous notation is used for dependencies d.

16



3.2. PROGRAM ANALYSIS

def evaluate(node: Node):
args = [nodeValue(p) for p in paramNode(node)]
for i, new in enumerate(op(node)(args)):

bitMap(nodei) = bitMap(new)

Listing 3.1: Basic transfer function

3.2. Program Analysis
This section describes the analysis of loop-free programs based on the constant bit
data flow analysis. During this analysis, the bits associated with the value of each
PDG node are stored in the bitMap mapping.

Definition 3.9 (Operator). An operator formalises the effect of a PDG node on its
arguments:

Operator = Seq[Value]→ Value

This uses the notation Seq[ τ ] for a finite sequence of elements of τ .

The function op returns the operator function for each node:

op : Node → (Seq[Value]→ Value)

The function paramNode returns the sequence of data dependencies that constitute
the parameter nodes:

paramNode : Node → Seq[Node]︸ ︷︷ ︸
parameter nodes

Definition 3.10 (evaluate function). The evaluate function is the transfer function
of the data flow analysis. This function is defined in Listing 3.1. It stores the result
of the operator application into the bitMap mapping.

Tracking the dependencies Dependencies are tracked by the operators that process
bits. The control dependencies can be gathered from annotations of the GSSA-PDG,
using the function incomingControlDeps.

3.3. Operator Specification
In the following, we specify three operators that we need for meaningful examples in
the next chapter; a larger set is specified in Section 5.2.
In the following, x is the first operand, y the second operand and r the result of

each operator.
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3.3. OPERATOR SPECIFICATION

The equality operator

All result bits besides the least significant bit have the constant value 0̂ as the result
of the operator is of type boolean.

ri = (0̂,∅) 0 < i < n

The bit value of the least significant result bit is 1̂ if both operands have the same
constant value. The bit value is 0̂ if both operands have different constant values at
one index and û otherwise:

v0
r =


1̂ ∀i : vix = viy ∧ vix, viy ∈ {0̂, 1̂}
0̂ ∃i : vix 6= viy ∧ vix, viy ∈ {0̂, 1̂}
û else

The least significant result bit depends on all statically unknown bits of both operands
if the result is statically unknown:

d0
r =

{αi|α ∈ {x, y}, viα = û, 0 ≤ i < n} v0
r = û

∅ else

The bitwise or-operator The operator can be defined bitwise:

vir =


1̂ vix = 1̂ ∨ viy = 1̂
0̂ vix = viy = 0̂
û else

0 ≤ i < n

Each statically unknown result bit depends on the respective operand bits that are
statically unknown at index i:

dir =

{αi|α ∈ {x, y}, viα = û} vir = û

∅ else

The φ-operator This operator works with an arbitrary number of values αj in a
bitwise manner. The bit value of the result bit is the supremum of the bit values of
all operand bits.

vir =
⊔
j

viαj
0 ≤ i < n

The control dependencies are gathered by considering the values of the nodes that the
φ-node control-depends on. The helper function cs : Nodeφ → P(Identity) returns
the control dependencies for each φ-node ϕ:

cs(ϕ) = {µ0|µ ∈ incomingControlDeps(ϕ), v0
µ = û}

18



3.3. OPERATOR SPECIFICATION

The control dependencies are combined with the data dependencies to form the
dependencies of the result bit. We assume that ϕ is the current φ-node.

dir =

{αi|viα = û, 0 ≤ i < n} ∪ cs(ϕ) vir = û

∅ else
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4. Leakage Computation
This chapter explains the sound approximation of the leakage of a program using
the bit dependency graphs created by the program analysis of the previous chapter.

The leakage computation consists of calculating the maximum number of different
outputs over all low inputs (Theorem 2.1). The logarithm of this number is an
upper bound on the leakage of the program [5]. In the following, the low inputs are
assumed to be arbitrary, but fixed.

Definition 4.1 (Bit dependency graph). The bits and their dependencies form the
bit dependency graph. This is a directed graph. Nodes of this graph represent the
bits. This graph contains an edge from a bit a to a bit b if b depends on a.

Definition 4.2 (Leakage calculation function). The leakage calculation can be
formalised as a function

C : Value → R≥0

that returns the leakage of a program for its output value. The output value is
a result of the analysis presented in the previous chapter. The program itself is
omitted in the function definition for brevity. In the following, the result of the
leakage computation is in N0.

4.1. Basic Approximations
There are two basic approximations for the leakage calculation that are described in
the following.

4.1.1. Counting high input bits
The first basic leakage approximation Cinput is calculated by counting all high input
bits that the output depends on. The set of input bits that a set of bits transitively
depends on can be calculated recursively:

inputBits : P(Identity)→ P(Identity)

bs 7→
⋃
b∈bs

{b} b is an input bit
inputBits(db) else
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4.1. BASIC APPROXIMATIONS

The high input bits that a set of bits depends on can then be calculated using the
sec mapping:

highInputBits : P(Identity)→ P(Identity)
bs 7→ {b|b ∈ inputBits(bs), sec(b) = ĥ}

Finally Cinput can be defined as:

Cinput : Value → N0

val 7→ |highInputBits(val)|

This leakage approximation is sound because the number of different outputs is
bounded by the number of different input bits that can influence the outputs, as the
analysed program is deterministic and PDGs include all dependencies between the
inputs and outputs.

4.1.2. Counting high dependent output bits
Another basic approximation is to count the number of high dependent bits in
the output value. Using the previous basic approximation, a bit b can be defined
as depending on a high input bit if Cinput((b)) > 0. This results in the leakage
approximation Coutput :

Coutput : Value → N0

val 7→ |{b|b ∈ val, Cinput((b)) > 0}|

This is a direct result of the observation that an output bit whose value is not
influenced by a high input variable cannot leak any secret information. The logarithm
of the number of different outputs is upper-bounded by the number of unknown
output bits, as each unknown bit doubles the number of possible outputs. Only high
dependent bits are considered, as the analysis assumes that all low input bits are
arbitrary but fixed.

4.1.3. Combined basic approximation
The two basic leakage approximations are both sound over-approximations, therefore
using the minimum leakage calculated by both is a sound approximation too:

C : Value → N0

val 7→ min (Cinput(val), Coutput(val))

4.1.4. Examples
The following examples show how to calculate the leakage for basic programs. All
examples use two bit values, h = (h1, h0) as high input, l = (l1, l0) as low input
and o = (o1, o0) as low output for simplicity.
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4.2. GENERALISED LEAKAGE APPROXIMATION

o = h == 0

Listing 4.1: Program with a basic comparison

1 if (h == 0) {
2 o1 = 0b00
3 } else {
4 o2 = 0b11
5 }
6 o = φ(o1,o2)

Listing 4.2: Program with a basic if-statement

Program with basic comparison The program given in Listing 4.1 uses the equal-
ity operator. The least significant bit of the result is 0 if h has the value 0, i.e.
v0
h = 0̂ ∧ v1

h = 0̂, and 0 otherwise. The least significant bit of o is therefore
data dependent on both bits of h, as the value of the secret is statically unknown:
o = ((0̂,∅), (û, {h1, h0})). The leakage of the program is 1, as one output bit depends
on two input bits.

C(o) = min (Cinput(o), Coutput(o)) = min(2, 1) = 1

Program with basic if-statement The following program gives an example for a
program with an if-statement, that uses the comparison expression of the previous
example as a condition. Its code is presented in Listing 4.2.
The condition h == 0 evaluates to ((0̂,∅), (û, {h1, h0})) as the result of the

comparison is unknown. The variable o1 has the value ((0̂,∅), (0̂,∅)), the variable
o2 the value ((1̂,∅), (1̂,∅)). The φ-operator in line 5 has the arguments o1 and
o2. The result of evaluating the φ-node is o = ((û, {h == 0)0}), (û, {(h == 0)0})) as
v0
o1 6= v0

o2, v1
o1 6= v1

o2 and the node depends on the condition h == 0. The output
o therefore depends on two high input bits and consists of two unknown bits that
depend on high input bits. As a result the leakage is approximated to be

C(o) = min(2, 2) = 2.

4.2. Generalised Leakage Approximation
The aim of this section is to generalise the basic leakage approximations, so that
they take the structure of the bit dependency graph into account. This section starts
with some key observations, followed by a concrete algorithm.
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4.2. GENERALISED LEAKAGE APPROXIMATION

A first observation is that we can approximate the leakage conservatively by either
considering a bit b itself, counting it as one if Cinput((b)) > 0, or by combining the
leakage approximated for all bits b depends on. In other words: Instead of considering
b as high dependent, we can also count the high dependent bits that b depends on.
This is because the value of b is fixed if we fix all the bit’s dependencies. The idea is
that there are often overlaps between the bits that different bits depend on, thereby
reducing the number of bits to consider and fix for an output value consisting of
multiple bits. The goal is to find the minimal set of bits that have to be fixed to fix
the output, assuming that low input and constant bits are considered as fixed by
default and can be ignored. The discovered set of bits fully defines the output.

This leads to an optimisation problem which can be transformed into instances of
different well-known optimisation problems for which solvers already exist. The aim
it to use these solvers to approximate the leakage. The following section describes
how the leakage approximation can be directly transformed into a minimum-vertex-
cut problem. Appendix A contains a transformation into instances of another
optimisation problem called Partial MAXSAT.

Example The following is a reevaluation of the short example given in Listing 4.2.
This shows how the leakage approximation works and that it is more precise than
the previous approximations.
The analysis of the program works as before, it computes the following values:

(h == 0) = ((0̂,∅), (û, {h1, h0}))
o1 = ((0̂,∅), (0̂,∅))
o2 = ((1̂,∅), (1̂,∅))
o = ((û, {(h == 0)0}), (û, {(h == 0)0}))

Fixing the bit (h == 0)0 is enough to fix the output, as both output bits only depend
on (h == 0)0. The leakage of the program is therefore 1. Fixing the output bits o1

and o0 would also fix the output, but this set of fixed bits would not be minimal, as
fixing the single bit (h == 0)0 is enough. The same holds for the input bits. The
basic leakage approximations calculate a leakage of 2. This is an example for the
precision improvement gained using the generalised leakage approximation.

4.2.1. Leakage approximation using Minimum-Vertex-Cut
We extend the bit dependency graph (Definition 4.1) to include an input and an
output pseudo-vertex. All output bits have an edge to the output pseudo-vertex.
The input pseudo-vertex has an edge to all high input bits. The secret information
can be seen as flowing from the input pseudo-vertex to the output pseudo-vertex.
Every bit vertex has weight 1 as each bit can leak at most one bit. This results in a
transformation of the information flow problem into a maximum flow problem, so we
can use pre-existing solving algorithms. An example for a leakage graph is given in
Figure 4.1.
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h1

h0 o0

o1

output(h == 0)0input

Figure 4.1.: The leakage graph for Listing 4.2

The leakage can then be approximated by calculating the minimum-vertex-cut
through the graph. The minimum-vertex-cut of a graph is the minimal set of vertices
that need to be removed to cut all connections between the input and the output
pseudo-vertex [26]. This is equivalent to finding the minimal set of bits that need to
be fixed to fix the output bits. In the example above, the minimum-vertex-cut is
calculated as {(h == 0)0}, resulting in a calculated leakage of 1, as expected.

There are many algorithms for finding the minimum-vertex-cut in polynomial time,
a comprehensive survey was created by Esfahanian [27]. The most common approach
is to transform the minimum-vertex-cut problem into a minimum-cut problem [28,
p. 122f]. The minimum-cut of a graph is the minimal set of edges that need to be
removed from the graph to cut all connections between the input and the output
pseudo-vertex.

The minimum-vertex-cut based leakage approximation is correct by construction
as the bits in the vertex-cut constitute a set of bits that defines the output. Every
transitive dependency of the output to the input goes through at least one of the
bits in the vertex-cut. Furthermore the leakage approximation is precise as the
minimum-vertex-cut constitutes a minimal set of bits that have to be fixed.

Asymptotic runtime of the computation During the transformation, each node
is split into two, connected by an edge with weight 1; all other edges have an infinite
weight. This results in an edge-weighted-graph. The Ford-Fulkerson algorithm has
an asymptotic runtime of O(|edges| ·maxflow) [29]. Assuming that the arity of each
operator is upper-bounded and values are w bits wide, a single bit can only depend on
O(w) other bits, resulting in O(w · |bits|) edges. The leakage of a program is bounded
both by the number of output and by the number of input bits. The runtime of
Ford-Fulkerson can therefore be given as O(w · |bits| ·min(|input bits|, |output bits|)).

Optimisation It is possible to adapt minimum-cut algorithms to work on vertex
weighted graphs, erasing the need for the construction of a new graph data structure.
The idea is to take advantage of the fact that all outer-edges have an infinite weight.

4.2.2. Example for using the Minimum-Vertex-Cut approach
The following example, given in Listing 4.3, is more complex than the previous ones
and uses 3 bit values. It uses the notation α[i] == 1 to express that only the ith bit
of α is used for the comparison. The ·[·] operator is emulatable using the bitwise
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4.2. GENERALISED LEAKAGE APPROXIMATION

1 z = h[1] == 1
2 if (h[2] == 1) {
3 if (z){
4 o11 = 0b000
5 } else {
6 o12 = 0b001
7 }
8 o1 = φ(o11, o12)
9 } else {

10 o2 = 0b111
11 }
12 o = φ(o1, o2)

Listing 4.3: Example with nested if-statements

and-operator and the shift operators.
The analysis of the program works as before. The following values are gathered by
the analysis:

z = ((0̂,∅), (0̂,∅), (û, {h1}))
(h[2] == 1) = ((0̂,∅), (0̂,∅), (û, {h2}))

o11 = ((0̂,∅), (0̂,∅), (0̂,∅))
o12 = ((0̂,∅), (0̂,∅), (1̂,∅))
o1 = ((0̂,∅), (0̂,∅), (û, {z0}))
o2 = ((1̂,∅), (1̂,∅), (1̂,∅))

The last φ-node then evaluates to:

o = ((û, {(h[2] == 1)0}), (û, {(h[2] == 1)0}), (û, {(h[2] == 1)0, o10}))
The bit dependency graph is then transformed into a graph for minimum-vertex-
cut problem, given in Figure 4.2. The minimum-vertex-cut consists of z0 and
(h[2] == 1)0, as a result the leakage is approximated as 2 which is a precise upper
integer bound of the real leakage of log2 3 as the example program can have three
different outputs.

4.2.3. Example with n-bit values
We give in the following an example where the generalised leakage approximation
computes a constant and the basic approximations an arbitrary leakage, depending on
the width of the values in the program. The example code is presented in Listing 4.4.
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h1 z0

o2

o0

o1h2 output

input

(h[2] == 1)0

o10

Figure 4.2.: Bit dependency graph for Listing 4.3.

if (h == 0) {
o1 = 0b000...0 // n 0s

} else {
o2 = 0b111...1 // n 1s

}
o = φ(o1, o2)

Listing 4.4: If-statement example with n bit values

h1

h0

...

o0

o1

hn−1 on−1

...
output(h == 0)0input

Figure 4.3.: The leakage graph for Listing 4.4
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The analysis of this program works as before and computes the following output
value:

o = ( (û, {(h == 0)0})︸ ︷︷ ︸
on−1

, . . . , (û, {(h == 0)0})︸ ︷︷ ︸
o0

)

(h == 0)0 = (û, {h1, h0}) is the least significant bit of the value of the node that the
φ-node control-depends on. The number of high dependent unknown output bits
and the number of input bits is n. Therefore, the basic leakage approximations
calculate a leakage of C(o) = min(n, n) = n. It is clear that the example program
has only two different outputs and therefore a leakage of 1. The generalised approach
approximates the leakage to be 1. The bit dependency graph is given in Figure 4.3.

4.2.4. Leakage computation for arbitrary security lattices
We can extended the leakage computation to calculate the leakage for an attacker
on security level α. The leakage computation works mainly as before, but uses all
input bits with a security level 6≤ α as secret input and all bits of outputs with a
security level ≤ α as public output.
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5. Extension: Increasing Precision
This chapter explains how the basic analysis, described in Chapter 3, can be extended
to increase its precision. This finalises the analysis for loop-free programs. It is
followed by a specification of all directly supported operators.

5.1. Extended Analysis
The analysis described in Chapter 3 does not propagate information on bits that
can be easily obtained by analysing evaluated conditions that an expression control
depends on. If we know for example that the condition x == 1 evaluated to true in
the path to the current statement, then we also know that x has the value 1 there.
Such information can be used to increase the precision of the analysis. The described
propagation is based on the notion of propagated predicates, first formalised by
Wegbreit [30]. This section starts with an introduction of the basic propagation idea,
followed by a formal description and the specification of the equality operator.

5.1.1. Basic idea and formalisation
The basic idea is to have a local mapping called mods to store the gathered informa-
tion.

Definition 5.1 (mods mapping).

mods = Identity︸ ︷︷ ︸
bit

⇀ Identity︸ ︷︷ ︸
replacement

Each mods mapping maps a bit to a replacement bit in a specific context, representing
the gathered knowledge on the relation between the two bits. We define the supremum
relation for such mappings as:

mods tmods → mods

a t b 7→ λx.


a(x) a(x) = b(x) ∨ b(x) = None
b(x) a(x) = None
None else

The mods mappings are created whenever a condition of a conditional statement like
an if-statement is evaluated. Such newly gathered mods mappings are stored in the
modsMap (Definition 5.2) for each branch of the conditional statement.
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Example The gathered knowledge for a basic case can be seen in the following
example with one bit values, given in Listing 5.1.

1 if (h){ // the then-branch is only evaluated if h is 1
2 o1 = h
3 ...
4 }
5 ...

Listing 5.1: Basic example with boolean values

The analysis can statically assert that h has the value 1 in the then-branch of the
if-statement. During the evaluation of this branch, the mods mapping for this context
should therefore contain a mapping from h0 to (1̂,∅). This knowledge is stored in
the modsMap. When h is then accessed in line 2, h0 should be replaced by (1̂,∅).
Without taking the condition into account, o1 would have the value ((û, {h0})).

Definition 5.2 (modsMap mapping). The modsMap mapping maps each branch of
every conditional statement to a mods mapping:

modsMap : Branch → mods
Branch = Nodecondition × B︸︷︷︸

{true, false}

The modsMap is updated after the evaluation of the condition of every conditional
statement, to contain the newly gathered knowledge for each branch of the conditional
statement.
If the current conditional statement is part of the branch of another (outer)

conditional statement, then the mods of this outer branch also apply. The mods of
inner branches are prioritised over mods of the outer branches.

Example In the prior example, the analysis would add the following to the modsMap
after analysing the condition h:

(h, true) 7→ (h0 7→ (1̂,∅))
(h, false) 7→ (h0 7→ (0̂,∅))

The evaluation of the expression h in line 2 belongs to the then-branch, therefore the
mods of modsMap(h, true) are applied. If the if-statement is part of another branch,
then the mods of this branch are applied the same way.

Before we describe how to acquire such knowledge from more complex conditional
expressions, it is important to know how the mods mapping is used when accessing
a bit.
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Definition 5.3 (replace function). Every time a bit is accessed in the evaluate
function (Definition 3.10), the modifications stored in the modsMap mapping are
applied using the replace function.

replace : Node︸ ︷︷ ︸
current PDG node

× Identity︸ ︷︷ ︸
passed bit

→ Identity︸ ︷︷ ︸
replacement

It replaces the passed bit using the first applicable replacement from the current
branch upwards that is stored in the modsMap.
This process is repeated with the replacement, as long as there is a replacement

available. In the example from Listing 5.1, this results in a call of replace(o1, h0)
that returns (1̂,∅).

The version of replace that accepts whole bit-string values as its argument applies
the replace function on every bit with the same node as the first argument.

With this, the evaluate function can be altered to call the replace function properly.
The altered pseudo-code of the evaluate function is given in Listing 5.2.

def evaluate(node: Node):
args = [replace(node, nodeValue(p)) for p in paramNode(node)]
for i, new in enumerate(op(node)(args)):

bitMap(nodei) = bitMap(new)

Listing 5.2: Altered evaluate function that uses the replace function

Example for updating modsMap The example presented in Listing 5.3 explains
the proper updating of the modsMap. This program uses two bit values. In the case
of if-statements we know that the least significant bit of the conditional expression
has to be 1 = (1̂,∅) in the then-branch and 0 in the else-branch. Therefore the
evaluation of the condition in line 1 adds the following mappings to modsMap:

(h, true) 7→ (h0 7→ (1̂,∅))
(h, false) 7→ (h0 7→ (0̂,∅))

With the current evaluation technique, no mods would be applied to the arguments
of the φ expression. This is because the φ-operator is a special operator as it takes
operands originating from different branches.

Alteration of evaluate for φ-expressions During a real execution, only one operand
is chosen. Therefore the mods applied to each operand have to be related to the
branch that caused the operand to be passed to the operator. Such a branch is
acquired via the function

paramBranch : Node × N0 → Branch
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1 if (h) {
2 o1 = h
3 } else {
4 o2 = 0b11
5 }
6 o = φ(o1, o2)

Listing 5.3: Example for a program in which the replacements that are applied to
the values should depend on the branch that they originate from

returning the branch for each operand, referenced by its index. With this the evaluate
function is modified as given in Listing 5.4.

def evaluate(node: Node):
args = [replace(paramBranch(node, i), nodeValue(p))

for i, p in enumerate(paramNode(node))]
for i, new in enumerate(op(node)(args)):

bitMap(nodei) = bitMap(new)

Listing 5.4: Altered evaluate function that takes the parameter branch into account

This is equivalent to the previous version for all but the φ-nodes, as the following
condition holds for all other nodes µ: ∀i : paramBranch(µ, i) = branch(µ).

Definition 5.4 (repl mapping). The operators store a function in the repl mapping
for every bit. This function returns the mods mapping for an asserted value of the
bit that the function is associated with.

repl : Identity︸ ︷︷ ︸
associated bit

→ ( Identity︸ ︷︷ ︸
asserted value

→ mods︸ ︷︷ ︸
resulting knowledge on bits

)

b 7→ λa.(b 7→ a)

The supremum on repl entries is defined point-wise.
This functions stored in this mapping are used to populate the modsMap mapping

after the evaluation of a condition, e.g. after analysing a condition µ the modsMap
is updated as follows:

modsMap((µ, true)) = repl(µ0)((1̂,∅))
modsMap((µ, false)) = repl(µ0)((0̂,∅))

The gathering of knowledge from conditions is generalised in the following using
the repl mapping.
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if (e1 == e2) {
...

} else {
...

}

Listing 5.5: Basic example with the equality operator

1 if (h == 0) {
2 o1 = h
3 } else {
4 o2 = 0
5 }
6 o = φ(o1, o2)

Listing 5.6: Basic if-statement example

5.1.2. Equality operator

Consider the following example presented in Listing 5.5. In the then-branch, the
condition e1 == e2 is true and therefore the results of the evaluation of e1 and e2
have to be equal, in particular their bit values. So if we know that the ith bit of e1
evaluates to 1, then we also know that the ith bit of e2 evaluates to 1 too, even if
e2i was statically unknown before. The same applies to 0. If both bits are statically
known, then we cannot gain more knowledge about them. In general, we cannot state
anything about the else-branch. The resulting addition to repl can be formalised as:

repl((e1 == e2)0) = λa.((e1 == e2)0 7→ a)t

n−1⊔
i=0


repl(e1i)(e2i) va = 1̂ ∧ vie1 = û ∧ vie2 ∈ {0̂, 1̂}
repl(e2i)(e1i) va = 1̂ ∧ vie2 = û ∧ vie1 ∈ {0̂, 1̂}
() else

The repl instantiation for the expression result uses the repl instantiations of its
operands recursively. This formalisation of the operator is used in the following
example.

Example with an equality operator The code of this example is given in Listing 5.6.
After evaluating the conditional expression, the following is added to repl, inlining
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the basic mods:

repl((h == 0)0) = λa.((h == 0)0 7→ a)t

n−1⊔
i=0


0i 7→ hi va = 1̂ ∧ vih = û ∧ vi0 ∈ {0̂, 1̂}
hi 7→ 0i va = 1̂ ∧ vi0 = û ∧ vih ∈ {0̂, 1̂}
() else

Then in the then-branch the mods apply that are generated by repl((h == 0)0)((1,∅)),
this results in the mappings:

(h == 0)0 7→ a

hi 7→ (0̂,∅) 0 ≤ i < n

As a result, the expression φ(o1, o2) in line 5 evaluates to a constant value, resulting
in no leakage of secret information during any execution of the program.
A key observation is that we can exchange the ith bit in e1 with the ith bit in e2

and vice versa if e1 is known to be equal to e2, and the analysis is still correct.
The following deals with both bits being statically unknown: The aim is to choose

the bit that results in a lower leakage and therefore a more precise leakage calculation.

Definition 5.5 (choose heuristic). A simple heuristic is to choose the bit that has
the lower intrinsic leakage C((·)).

choose : Identity × Identity → Identity

(a, b) 7→

a C((a)) ≤ C((b))
b else

The bit that is not chosen is returned by the function notChosen:

notChosen : Identity × Identity → Identity

(a, b) 7→

a choose(a, b) = b

b else

This heuristic does not result in optimal results, as it cannot take the whole
bit dependency graph into account. A solution to this problem is presented in
Appendix A.

Usage of the heuristic We can extend the default value of the repl mapping to
call the choose function:

repl(b) = λa.(b 7→ choose(a, b))
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if (h == l) {
o1 = h

} else {
o2 = 0b11

}
o = φ(o1, o2)

Listing 5.7: Example in which the choose heuristic increases the precision of the
analysis

Another usage is the simplification of the repl instantiation for the equality operator:

repl((e1 == e2)0) = λa.
(
(e1 == e2)0 7→ choose(a, (e1 == e2)0)

)
t

n−1⊔
i=0

repl(notChosen(e1i, e2i))(choose(e1i, e2i)) va = 1̂
() else

A complete specification of the equality operator and other operators can be found
in Section 5.2.
There are many cases where the choose heuristic increases the precision of the

analysis. One such case is given in the following example whose code is presented in
Listing 5.7

The analysis of the conditional expression results in the addition of the following
mapping to repl:

repl((h == l)0) = λa.
(
(h == l)0 7→ choose(a, (h == l)0)

)
t

1⊔
i=0

repl(choose(hi, li))(notChosen(hi, li))

For the then-branch the mods are gathered by calling repl((h == l)0)((1̂,∅)) which
evaluates to:

(h == l)0 7→ (1̂,∅)
h1 7→ l1

h0 7→ l0

The mods for the else-branch are gathered similarly:

(h == l)0 7→ (0̂,∅).

Using these mods, the expression φ(o1, o2) evaluates to

((û, {l1, (h == l)0}), (û, {l0, (h == l)0})).
Therefore the approximated leakage of the program is 1, using the generalised leakage
approximation.
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1 if (h1) {
2 x1 = h1
3 } else {
4 x2 = 0b11
5 }
6 x = φ(x1, x2) // = ((û, {h10, h10}), (1̂,∅))
7 if (h2) {
8 y1 = h2
9 } else {

10 y2 = 0b11
11 }
12 y = φ(y1, y2) // = ((û, {h21, h20}), (1̂,∅))
13 s = x == y
14 if (s) {
15 o1 = y
16 } else {
17 o2 = 0b11
18 }
19 o = φ(o1, o2)
20 p = h1

Listing 5.8: Complex example that results in non-trivial cuts for the minimum-vertex-
cut based leakage approximation

5.1.3. Complex example
The following is a more complex example that shows how the analysis works and
that the minimum-vertex-cut based leakage approximation can lead to non-trivial
cuts. The example, see Listing 5.8, uses two bit values, two high input variables h1
and h2, and three output variables o, p and s:
The analysis of the code until the line 12 is analogous to the prior examples and

therefore omitted here. Evaluating line 13 results in the addition of the following to
repl:

repl( s0︸︷︷︸
(x==y)0

) = λa.(s 7→ a) t
1⊔
i=0

repl(notChosen(xi, yi))(choose(xi, yi))

s0 evaluates to (û, {x1, y1}). This results in the following bit modifications for the
then-branch by calling repl(s0)((1̂,∅)):

s 7→ (1̂,∅)
y1 7→ x1

y0 7→ x0,
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resulting in y being replaced by x in the expression φ(o1, o2) in line 19. Therefore,
the φ-expression evaluates to ((û, {x1, s0}), (1̂,∅)). This results in a leakage of
3. The minimum-vertex-cut approach gives us the following bit dependency graph
presented in Figure 5.1.

s0

output

o1

y1

x1

h20

h21

input

p1

p0

h11

h10

Figure 5.1.: Bit dependency graph for the example program given in Listing 5.8

5.2. Operator Specification
This section extends the list of operators from Section 3.3 and includes the repl
instantiations for each operator. Only few operators are specified, other operators
can be transformed into expressions consisting of these basic operators before the
analysis.

In the following, x is the first operand, y the second operand for binary operators
and r the result of each operator. The replacement function is

vir ∈ {0̂, 1̂} ⇒ repl(ri) = λa.()

for all constant return bits ri. This is omitted in the operator specifications for
brevity. The specifications only include the replacement functions for non-constant
bits. Another simplification is that assigning an argument bit αj directly to a result
bit ri implicitly creates a new bit that copies the repl entry and solely depends on
the bit αj:

α ∈ {x, y} : ri = αj

≡ vir = vjα ∧ dir =

{αj} vjα ∈ {0̂, 1̂}
∅ else

∧ repl(ri) = repl [αj→ri](αj)
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5.2.1. Bitwise operators

Bitwise operators calculate each result bit using the corresponding operand bits of
the same index. The following specification of four operators assumes 0 ≤ i < n.

Bitwise negation-operator

The negation-operator negates every bit of its operand.

vir =


1̂ vix = 0̂
0̂ vix = 1̂
û else

dir =

{dix} vix = û

∅ else
repl(ri) = λa.(ri 7→ choose(a, ri))

t


repl(xi)((0̂, da)) va = 1̂
repl(xi)((1̂, da)) va = 0̂
repl(xi)(a) va = û

() else

Bitwise or-operator

A detailed explanation of the operator is given in Section 3.3, the only addition to
the previous specification is the alteration of repl. The repl instantiation depends
on whether the value of one operand’s bit determines the result alone. If this is the
case, the repl instantiation of this bit is used. If the result of the or-expression has
value 0̂, it can be asserted that both operand bits are 0̂, too.

repl(ri) = λa.(ri 7→ choose(a, ri))

t


repl(xi)(a) va = 1̂ ∧ vyi = 0̂
repl(yi)(a) va = 1̂ ∧ vxi = 0̂
repl(xi)(a) t repl(yi)(a) va = 0̂
() else

The bitwise and-operator can be defined analogously or by using the equivalence
of a ∧ b and ¬(¬a ∨ ¬b).
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Bitwise exclusive-or-operator

The exclusive-or-operator returns 1 only if both operand bits have different values at
runtime. It can be seen as a bitwise not-equal operator.

vir =


1̂ {0̂, 1̂} = {viy, viy}
0̂ vix = viy = α, α ∈ {0̂, 1̂}
û else

If the result is statically unknown, then it depends on the statically unknown operand
bits.

dir =

{αi|α ∈ {x, y}, viα = û} vir = û

∅ else

The following is split into three parts, depending on the bit value of the result.
The notation ⊔{α,β}={x,y} expresses the combination off the cases α = x, β = y and
α = y, β = x.

repl(ri) = λa.(ri 7→ choose(a, ri))t

⊔
{α,β}={x,y}



repl(αi)((1̂, da)) va = 1̂ ∧ vβi = 0̂
repl(αi)((0̂, da)) va = 1̂ ∧ vβi = 1̂
repl(αi)((û, dβi ∪ da)) va = 1̂ ∧ vαi = û ∧ vβi = û ∧ βi = choose(αi, βi)

repl(αi)((0̂, da)) va = 0̂ ∧ vβi = 0̂
repl(αi)((1̂, da)) va = 0̂ ∧ vβi = 1̂
repl(αi)((û, dβi ∪ da)) va = 0̂ ∧ vαi = û ∧ vβi = û ∧ βi = choose(αi, βi)

() else

φ-operator

A detailed explanation of this operator is given in Section 3.3. The φ-operator works
with an arbitrary number of operand values αj. The only addition to the previous
explanation is the alteration of repl for the case that all but one operand’s bit is
statically known, else no knowledge can be propagated.

repl(ri) = λa.(ri 7→ choose(a, ri))

t

repl(αik)(a) |{αj|viαj
= û}| = 1 ∧ viαk

= û

() else

5.2.2. Comparison operators
All comparison operators return a boolean:

ri = (0̂,∅) 0 < i < n
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Only two operators are specified in the following, all other comparison operators can
be replaced prior to the analysis with a combination of these.

Equality operator

A detailed explanation of the operator is given in Section 3.3, the only addition is
the alteration of repl explained in Section 5.1.2:

repl(r1) = λa.(r1 7→ choose(a, r1))t
n⊔
i=1

repl(notChosen(xi, yi))(choose(xi, yi)) va = 1̂
() else

The inequality operator can be defined accordingly.

Less operator

The less operator specified in the following has to explicitly deal with the sign bit,
i.e. the highest significant bit.
Before defining the operator, two helper functions are defined:
The diff -function returns the maximum index at which both operands have the

same constant bit value for all lower bits.

diff : Value × Value ⇀ N0

(α, β) 7→ max{j|0 ≤ j < n− 1 ∧ vjα = vjβ ∧ vjα ∈ {0̂, 1̂}}

There are two basic cases for calculating the bit value of the result bit: If the
first operand is negative and the second operand is positive, then the result is 1̂.
Conversely, the result is 0̂ for the opposite case.
The two remaining cases of both operands being positive or negative are more

complicated. If both operands are positive and they differ at index diff (x, y) with
constant bits, then the result is 1̂ if the bit value of y at this index is 1̂ and 0̂ otherwise.
If both operands are negative and they differ at index diff (x, y) with constant bits,
then the result is 1̂ if the bit value of x at this index is 1̂ and 0̂ otherwise.

v0
r =



1̂ vn−1
x = 1̂ ∧ vn−1

x , vn−1
y ∈ {0̂, 1̂} ∧ vn−1

x 6= vn−1
y

0̂ vn−1
x = 0̂ ∧ vn−1

x , vn−1
y ∈ {0̂, 1̂} ∧ vn−1

x 6= vn−1
y

vdiff (x,y)
y vn−1

x = 0̂ ∧ vn−1
y = 0̂ ∧ diff (x, y) 6= None ∧ vdiff (x,y)

x , vdiff (x,y)
y ∈ {0̂, 1̂}

vdiff (x,y)
x vn−1

x = 1̂ ∧ vn−1
y = 1̂ ∧ diff (x, y) 6= None ∧ vdiff (x,y)

x , vdiff (x,y)
y ∈ {0̂, 1̂}

û else

The result bit depends on all unknown bits of the operands.

d0
r =

{αi|α ∈ {x, y}, viα = û} vir = û

∅ else
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5.2. OPERATOR SPECIFICATION

Good heuristics for generating mods implicated by a less-expression are difficult to
construct, they are outside the scope of this work.

repl(r0)(a) = r0 7→ choose(a, r0)

5.2.3. Single bit operators

The following two operators are useful for working directly on bits in the program.

Bit selection operator

The bit selection operator, x[j], returns the jth bit of x. The resulting value consists
of zeros, besides the least significant bit which is set to the jth bit of x. j has to be a
valid bit index that is statically known.

ri = (0̂,∅) 0 < i < n

r0 = (vjx, djx)
repl(r0) = λa.(r0 7→ choose(a, r0)) t repl(xj)(a)

Bit place operator

The bit place operator [j]x returns a value that consists of zeros, besides the jth bit
which is replaced by the least significant bit of x. j has to be a valid bit index that
is statically known.

ri = (0̂,∅) 0 ≤ i < n ∧ i 6= j

rj = (v0
x, d

0
x)

repl(rj) = λa.(rj 7→ choose(a, rj)) t repl(x0)(a)

5.2.4. Shift operators

The following presents the specification of the two logical shift operators.
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5.2. OPERATOR SPECIFICATION

Left shift operator

The left shift operator shifts the bits y to the left and inserts zeros as needed with
0 ≤ i < n:

iff y is a constant integer ≥ 0

ri =

xi−y i− y ≥ 0
(0,∅) else

iff y is a constant integer < 0

ri =

xi−y i− y < n

(0,∅) else

else
ri = (û, x ∪ y)

Right shift operator

The right shift operator shifts the bits y to the right and inserts zeros as needed with
0 ≤ i < n:

iff y is a constant integer ≥ 0

ri =

0 i+ y > n− 1
xi+y else

iff y is a constant integer < 0

ri =

0 i+ y < 0
xi+y else

else
ri = (û, x ∪ y)

5.2.5. Arithmetic operators
Bit lattices are not well suited for modelling arithmetic operators [31]. The following
specifications are sound approximations of four operators. The most precise spec-
ification would result in transforming each arithmetic operator into an expression
using only bitwise operators before the analysis. The addition operator is the only
operator without an imprecise version since the created expressions are comparably
small.
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5.2. OPERATOR SPECIFICATION

Multiplication operator

This imprecise specification handles powers of two precisely.

rn−1 =


(0̂,∅) vn−1

x = vn−1
y ∧ vn−1

x ∈ {0̂, 1̂}
(1̂,∅) vn−1

x 6= vn−1
y ∧ vn−1

x , vn−1
y ∈ {0̂, 1̂}

(û, x ∪ y) else

iff x and y are constant values

r[0,n−2] = valueOf (x · y)

else if |y| is a constant power of two

∀i ∈ [0, n− 2] : ri =

xi−|y| i− |y| ≥ 0
(0,∅) else

else if |x| is a constant power of two

∀i ∈ [0, n− 2] : ri =

yi−|x| i− |x| ≥ 0
(0,∅) else

else

∀i ∈ [0, n− 2] : ri = (û, x ∪ y)

An implementation based on the transformation into basic operators can be done
based on for example the circuit proposed by Dadda [32].

Division operator

An imprecise version that assumes that a division by zero cannot occur, as exceptions
are not supported by the analysis.

rn =


(0̂,∅) vn−1

x = vn−1
y ∧ vn−1

x ∈ {0̂, 1̂}
(1̂,∅) vn−1

x 6= vn−1
y ∧ vn−1

x , vn−1
y ∈ {0̂, 1̂}

(û, x ∪ y) else

iff x and y are constant values

r[0,n−2] = valueOf(x/y)

else if |y| is a constant power of two

∀i ∈ [0, n− 2] : ri =

0 i− |y| < n

xi−|y| else

else

∀i ∈ [0, n− 2] : ri = (û, x ∪ y)
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def halfadder(a, b):
return (a ^ b, a & b)

def fulladder(a, b, c):
(rt, c1) = halfadder(a, b)
(r, c2) = halfadder(rt, c)
r2 = c1 | c2
return (r, r2)

def adder(a, b):
result = 0
carry = 0
for i in range(0, n):

(r, carry) = fulladder(a[i], b[i], carry)
result = result | [i]r

return result

Listing 5.9: Pseudo-code for the addition operator

Modulo operator

The modulo operator treats the case of a constant divisor that is a power of two
specially:

rn =


0̂ y is a constant power of two and vn−1

x = 0̂
1̂ y is a constant power of two, x is contant and xmod y < 0
û else

if y = 2α for an α ∈ N0

ri = xi 0 ≤ i ≤ α

rj = (0̂,∅) α < j < n

Addition operator

The transformation for the addition operator is given as pseudo-code in Listing 5.9.
It results in a half-adder based construct that should be inlined before the actual
analysis. This results in 9n operations per addition.
The addition operator can also be implemented by using the algorithm given

in Listing 5.9 to compute the result of each addition operation and then altering
the result bits so that they only depend on the operand bits that they originally
transitively depended on.
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6. Extension: Loop Analysis
The previous chapters elaborated on the analysis of loop-free PDGs. This chapter
introduces a version of the analysis that allows to evaluate PDGs with arbitrary
reducible control flows. A control flow graph is reducible when the iterative replace-
ment of the smallest strongly connected sub-graph with a single node results in a
linear graph [33]. Programs with reducible control graphs closely match the notion
of control flow graphs created by control-flow constructs of the Java language [34, p.
377].

6.1. Evaluation Function Alteration
The idea behind the alteration of the evaluate function is to merge the evaluation
result with the old bits for a PDG node stored in bitMap whenever a PDG node is
reevaluated. This merge is the bitwise supremum. This alteration of the evaluation
function from Section 5.1 results in the version that is presented in Listing 6.1.
A problem that arises from the generalised leakage approximations is that a

condition bit that belongs to the evaluation of a loop can leak more than one bit, as
the loop condition can be executed multiple times with changing argument values.

Definition 6.1 (Weight). All condition bits that are computed in a condition as a
part of a loop are assigned an infinite weight to soundly approximate loops. Every
operator assigns this weight. A condition bit with an infinite weight can leak all
bits that it depends on. Therefore, such bits are excluded from the minimal-set of
fixed bits in Section 4.2. This is realised in the minimum-vertex-cut calculation by

def evaluate(node: Node):
args = [replace(paramBranch(node, i), nodeValue(p))

for i, p in enumerate(paramNode(node))]
new_value = op(node)(args)
for (old, new) in zip(nodeValue(node), new_value):

repl(old) = repl(old) t repl(new)
bitMap(old) = bitMap(old) t bitMap(new)

Listing 6.1: Altered version of the evaluate function that supports the reevaluation
of nodes
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6.2. EXAMPLE

while (h != o) {
o = o + 1

}

int o1 = 0
while [o2 = φ(o1, o3)] (h != o2) {

o3 = o2 + 1
}
o = o2

Listing 6.2: Counting loop example. On the right hand side shows the program
in SSA-form. The statement o2 = φ(o1, o3) is executed before all
other statements and expressions of the loop.

h1

h0

output

o31

o30

input (h != o2)0

o21

o20

Figure 6.1.: Dependency graph for the program given in Listing 6.2. Note that “↔”
represents edges in both directions. The node with the thick border
has infinite weight.

assigning a weight to each bit-vertex.

weight(r0) =


∞ v0

r = û

∧ node is part of a condition
∧ is inside a loop or a loop condition

1 else

Termination The fix point iteration using the evaluate function terminates, as the
bit lattice has a fixed height and the transfer function is monotone.

6.2. Example
This examples shows the importance of setting the infinite weight for loop condi-

tions. The following describes the analysis of the program given in Listing 6.2 for
two bit values. The modification of repl is omitted for brevity. The analysis steps
are given in the form of changing bits and weight entries.
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First evaluation of the loop:

nodeValue(φ(o1, o3)︸ ︷︷ ︸
o2

) = ((0̂,∅), (0̂,∅))

nodeValue(h != o2︸ ︷︷ ︸
condition

) = ((0̂,∅), (û, {h1, h0})

weight((h != o2)0) =∞
nodeValue(o2 + 1︸ ︷︷ ︸

o3

) = ((0̂,∅), (1̂,∅))

Next iteration of the loop, as the bits changed:

nodeValue(φ(o1, o3)︸ ︷︷ ︸
o2

) = ((0̂,∅), (û, {(h != o2)0}))

nodeValue(h != o2) = ((0̂,∅), (û, {h1, h0, o20})
weight((h != o2)0) =∞
nodeValue(o2 + 1︸ ︷︷ ︸

o3

) = ((û, {o20}), (û, {o20}))

Third iteration of the loop, as the bits changed:

nodeValue(φ(o1, o3)︸ ︷︷ ︸
o2

) = ((û, {(h != o2)0, o31}), (û, {(h != o2)0, o30}))

nodeValue(h != o2) = ((0̂,∅), (û, {h0, h1, o20, o21})
weight((h != o2)0) =∞
nodeValue(o2 + 1︸ ︷︷ ︸

o3

) = ((û, {o20, o21}), (û, {o20, o21}))

Fourth iteration of the loop, as the bits changed:

nodeValue(φ(o1, o3)︸ ︷︷ ︸
o2

) = ((û, {(h != o2)0, o31}), (û, {(h != o2)0, o30}))

nodeValue(h != o2) = ((0̂,∅), (û, {h0, h1, o20, o21})
weight((h != o2)0) =∞
nodeValue(o2 + 1︸ ︷︷ ︸

o3

) = ((û, {o20, o21}), (û, {o20, o21}))

A fix-point is found, as no bits changed in the last iteration. The output o of
the program equals o2. This results in the bit dependency graph presented in
Figure 6.1. The marked bits h1 and h0 constitute a possible minimum-vertex-cut, as
the conditional bit (h != o2)0 has an infinite weight. The approximated leakage for
the program is 2 bits, which is correct, as the program leaks the whole secret. The
analysis would have under-approximated the leakage as 1 bit if the setting of the
weight for the conditional bit had been omitted.
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7. Extension: Interprocedural
Analysis

This chapter introduces an interprocedural version of the analysis that supports
functions with multiple parameters and at most one return value. The main extension
of the previously described analysis is that function calls are handled by a specific
function handler.
Definition 7.1 (Function handler). A function handler is a function that returns a
function for every call-site that evaluates a specific call and returns the result, given
the arguments of the call. This can be formalised as:

handler = CallSite → (Seq[Value]︸ ︷︷ ︸
arguments

→ Value)

There are three main types of handlers that are described in the following: the all
handler, the inlining handler and the summary handler.

7.1. All Function Handler
This is the most basic version of the interprocedural analysis. It yields a return value
in which each bit has an unknown value and depends on all argument bits.
The handler can be formalised as:

all : CallSite → (Seq[Value]→ Value)
site 7→ (args 7→ ((û, {b|b ∈ v, v ∈ args}︸ ︷︷ ︸

=:γ

), . . . , (û, γ)

︸ ︷︷ ︸
n times

))

The advantage of this handler is that it is trivially terminating for every function call.
Its disadvantage is that it ignores the body of the called function and is therefore
over-conservative compared to other handlers.

7.2. Inlining Function Handler
This handler is inspired by the call-string analysis technique described by Muchnik
and Jones [35]. It is a basic version that inlines each function upon call. To avoid
problems with recursion, each function is inlined only a fixed number of times per
call-path. If this limit is reached, then another function handler, referred to as
bot-handler, is used to obtain a result for the remaining call-sites.
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7.3. Summary Function Handler
This handler pre-computes a summary-graph for every function that contains the
dependencies between argument bits and return bits. This has the advantage of
supporting unbounded finite recursion more precisely than the other handlers. The
idea behind the calculation of the summary graphs is to evaluate each function
with newly created, statically unknown argument bits and to then examine the
dependencies between these arguments and the return value. This is repeated in a
fix-point iteration on the call-graph. The inlining handler is used in each reevaluation,
using the result of previous reevaluations as a bot-handler.
The resulting summary-graphs can be used when handling a call as follows: The

summary graph for the specific function is cloned. The argument and return bits of
the graph are then replaced by their actual correspondents at the call site.

7.3.1. Reduction
The inlining handler produces complex graphs. The graphs have to be reduced to
get usable summary-graphs, as all graphs have to be cloned on call.
There are two different reductions: basic and min-cut.

basic reduction The basic reduction removes all but the argument and the return
bits, setting the dependencies of the return-bits to the argument bits that they
have transitive dependencies to. This results in a reduction of precision, as the
inner structure of the graph is omitted. An example for a result of this reduction is
presented in Figure 7.3.

min-cut reduction This reduction extends the basic reduction by including bits
that constitute the minimum-vertex-cut, using the argument bits as a source and
the return bits as a sink. The source and the sink bits have an infinite weight in this
calculation. As a result, the distinct paths of all source and sink bits are included.
This improves the precision, as the number of distinct paths between the argument
bits and the return bits is not inflated compared to the basic reduction. An example
for a result of this reduction is presented in Figure 7.5.

7.3.2. Fix-point iteration
The fix-point iteration iterates over the call graph. Each function node is mapped to
the current summary graph for its function. The starting graph for each node has
no connections between the argument and the return bits. The possible summary
graphs for each function node form a bounded lattice, using the result of the all
handler as a > element, the bit graph where the return bits have no dependencies
as a ⊥ element and the less relation on the number of connections between the
argument and return bits.
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7.4. EXAMPLE

int func(int a, int b){
int r1 = 0
if (a == 0) {

r2 = b | 0b101
}
return φ(r1, r2) | 0

}
o = func(h | 1, l | 0)

Listing 7.1: Example of a program with a non-recursive function and three bit values

input output

Figure 7.1.: Dependency graph for the example program given in Listing 7.1 using
the inlining handler

7.4. Example
This illustrative example shows the differences of the function handlers for a non-
recursive program for simplicity. The example program assumes three bit values
and its code is presented in Listing 7.1. The following paragraphs give the analysis
results, like the bit dependency graph, for an instantiation of the analysis using the
inlining handler and the summary handler with the basic and the min-cut reduction.
Bits that constitute a minimal-cut are marked.

7.4.1. Inlining handler
The inlining handler directly inlines the function call in the last line of the program
and approximates the leakage as 0 bits, as the condition a == 0 with a ≡ h|1 is never
true. The resulting bit dependency graph for the program is given in Figure 7.1.

7.4.2. Summary handler
For the summary handler, the function func of the program is analysed before the
actual analysis. The method graph produced by the internal inlining handler is given
in figure Figure 7.2. This graph is then post-processed using the basic and the min-cut
reduction, see Figure 7.3 and Figure 7.5. The resulting bit dependency graphs for
the program are given in Figure 7.4 and Figure 7.6. The basic reduction reduces
the method dependency graph to a smaller graph, but results in an approximated
leakage of 2 bits. On the other hand the min-cut reduction results in a larger graph,
but also in an approximated leakage of only 1 bit.
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(a == 0)0

a0

a1

a2 (φ(r1, r2)|0)2

(φ(r1, r2)|0)1

(φ(r1, r2)|0)0

(b|0b101)1

b1

(φ(r1, r2))0

(φ(r1, r2))1

(φ(r1, r2))2

Figure 7.2.: Unreduced method dependency graph for the func function. The
marked bits constitute the minimum-vertex-cut used by the min-cut
reduction.

a0

a1

a2 (φ(r1, r2)|0)2

(φ(r1, r2)|0)0

(φ(r1, r2)|0)1

b1

Figure 7.3.: Reduced version of the method dependency graph given in Figure 7.2
after applying the basic reduction

h1

h0

h2

(l|0)1

(φ(r1, r2)|0)2

(φ(r1, r2)|0)0

(φ(r1, r2)|0)11

output(h|1)1

input

(h|1)2

l1

Figure 7.4.: Dependency graph of the program, analysed with the basic reduction
summary handler. The dashed node is only included for readability.
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(a == 0)0

a0

a1

a2 (φ(r1, r2)|0)2

(φ(r1, r2)|0)0

(φ(r1, r2)|0)1
(b|0b101)1

b1

Figure 7.5.: Reduced version of the method dependency graph given in Figure 7.2
after applying the min-cut reduction

h1

h0

h2

(a == 0)0

(l|0)1

(φ(r1, r2)|0)2

(φ(r1, r2)|0)0

(φ(r1, r2)|0)1
1

(b|0b101)1

output
(h|1)1

input

(h|1)2

l1

Figure 7.6.: Dependency graph of the program, analysed with the min-cut reduction
summary handler. The dashed node is only included for readability.
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8. Implementation
The analysis has been implemented in two tools: as a stand-alone demo implemen-
tation with a graphical user interface1 and on top of JOANA [2]. The stand-alone
demo implementation is the first experimental version that was used for debugging
and preliminary testing the analysis ideas and the generation of evaluation programs,
see section 9.3. We then implemented the final version of the analysis on top of
JOANA, learning from the mistakes in the first implementation. The JOANA-based
implementation is therefore technically much more mature and stable than the
stand-alone demo implementation.

Both implementations are developed in a project called Nildumu2 project. These
implementations are prototypes written in Java 8 and limited to the constructs of a
while-language with functions.

8.1. Stand-Alone Demo Implementation
The stand-alone demo implementation is based on an LR-parser and lexer generator
developed before this work. This implementation of the analysis has its own pro-
gramming language that is restricted to language features supported by the analysis.
Programs written in this language can be analysed using a graphical user interface
which plots the bit dependency graphs.

The programming language is C-like and supports only int as a data type and
functions with one return value and multiple parameters. The return statement of
a function has to be the last statement in the function. The code inside a function
cannot access any global variables. In the global scope, variables can be declared as
output and input on varying security levels. The only supported control structures
are while and if (with an optional else). Integers are implicitly converted into
boolean by only using their lowest significant bit. The assumed width of an int can
be configured.

Furthermore, the analysis works on an extended abstract syntax tree in SSA-form.
Although the used data structure is not a proper PDG, the analysis works, with a
few exceptions, the same as for a PDG. The advantage of this data structure is that
it results in a more direct mapping between nodes and source code, making it easier
to understand.
The major disadvantage is that this pseudo-PDG implementation is hard to

maintain. It requires a custom SSA transformation and other basic analysis steps
1https://github.com/parttimenerd/nildumu
2Nildumu is lojban for “something is a quantity”.
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8.2. JOANA-BASED IMPLEMENTATION

that are already included in JOANA.

8.2. JOANA-Based Implementation
The implementation3 based on JOANA uses the underlying WALA framework
extensively and works on a proper PDG implementation, provided by JOANA. This
is a major advantage, as the creation of PDGs is error-prone. Another advantage is
that the underlying infrastructure includes support for an object-sensitive analysis
and more Java features which could be useful in the future, see Section 10.2.

The major disadvantage is that the PDG does not contain information on the actual
operators as JOANA is focussed on Qualitative Information Flow. We circumvent
this lack of information by using the underlying bytecode instructions and basic
block structures. Especially the correct implementation of the fix-point iteration and
the gathering of parameter conditions for φ-nodes was difficult and error-prone.

3https://github.com/parttimenerd/nildumu-joana
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9. Evaluation
In this chapter, three different Quantitative Information Flow analysis tools are
compared with Nildumu. The JOANA-based implementation of the Nildumu project
is used in the following, as it is technically more mature. The analysis tools are
compared using standard benchmarks from literature. The analysis tools are described
in Section 9.1, followed by the benchmark programs in Section 9.2, the evaluation
process in Section 9.3 and the evaluation results Section 9.4.

9.1. Compared Analyses
The three analysis tools that are compared with Nildumu1 are examples of the
different categories of analyses introduced in the introduction chapter: ApproxFlow
is based on a static approximation, Flowcheck and LeakWatch on dynamic observation.
More tools were considered, but we were unable to access or successfully run them.

ApproxFlow [9] This tool creates a SAT formula that represents the program using
the bounded model generator CBMC [36]. The tool then post-processes the SAT
formula and uses the approximate model counter ApproxMC2 [37] to approximate
the number of different possible outputs of the program. ApproxFlow implements a
theoretically sound static analysis that produces an approximation of the leakage.
The arguments for CBMC cannot be altered in the original command-line interface
of the tool, the evaluation therefore uses a modified version2.

Flowcheck [14] This tool is based on the memcheck tool of valgrind3 and uses
dynamic tainting to dynamically approximate the leakage of certain program evalua-
tions. The basic concept behind this tool is the same as the concept behind Nildumu:
The tool tracks the dependencies between the bits and uses a minimum–cut algorithm
to approximate the leakage. The main difference is that the tool only approximates
the leakage for a given input and does not return a conservative approximation for all
inputs. Flowcheck fully supports any binary and works with programs with several
hundred thousand lines of code.
We developed a tiny wrapper that calls the tool multiple times with different

random inputs and takes the maximum of the returned leakages to be able to compare
1The evaluated version of the stand-alone demo implementation of Nildumu is 49d3eef, the
evaluated version of the JOANA-based implementation is 313e8d2.

2The modified version of ApproxFlow can be found at https://github.com/parttimenerd/approxflow
3http://valgrind.org/
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this tool with the other static analysis tools. This wrapper calls the tool three times
in a row and repeats this as long as the maximum leakage does change. It also ends
the analysis if the tool returns the same leakage three times in a row. This reduces
the variance of the leakage approximation. As a result of using this wrapper, the
results for Flowcheck in this work might vary from other evaluations in literature.

LeakWatch [12] This tool, version 0.5 is used here, supports analysing arbitrary
Java code in a dynamic manner. The program that is to be analysed is run several
times, with its secret inputs and public output observed. The resulting input-output-
pairs are then statistically analysed to get an approximation of the leakage. The
inputs have to be generated at runtime. The evaluation in this chapter uses the
SecureRandom class of Java to generate random secrets.

It differs from the Flowcheck tool by automatically reexecuting the program until
the computed leakage is stable. The other difference is that it does not use dynamic
tainting but works solely by observing the inputs and outputs.

9.2. Benchmark Programs
This section describes the benchmark programs used in the evaluation. The bench-
marks from literature are obtained from [38], [39] and [7]. These benchmarks are used
in many other papers to compare different analyses with each other. The following
describes the benchmark programs including their leakage.
The programs are given in the format of the previous examples and are then

transformed into the input formats of each analysis as the input format for the
compared analyses varies. The benchmarks only use a common subset of the features
that all tools support, except for low inputs that are not supported by ApproxFlow.
Nildumu only supports a while-language with functions, limiting the complexity of
the benchmark programs.

All listed programs assume that the variable h is a high input, l a low input, o a
low output and that values are 32 bits wide.

9.2.1. Benchmarks from literature
Binary search This program splits its input into a sum of powers of two, dropping
all powers of two lower than 216 and outputting the sum. It should leak the first 16
bits of the input. The program was first described by Meng et al. [38], its code is
given in Listing 9.1.

Electronic purse This program was originally presented by Backes et al. [39]. In
this program h represents the balance of a bank account and the output the number
of times that 5 units of money can be withdrawn. The balance is limited to 20 units.
The program should leak 2 bits of information and its code is given in Listing 9.2.
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int BITS = 16
int z = 0
for (int i = 0; i < BITS; i++) {

int m = 1 << (31 - i)
if (z + m <= h) {

z = z + m
}

}
o = z

Listing 9.1: Binary search

int z = 0
while (h >= 5 && h < 20) {

h = h - 5
z = z + 1

}
o = z

Listing 9.2: Electronic purse
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int z = h & 0x77777777
int x
if (z <= 64) {

x = z
} else {

x = 0
}
if (x % 2 == 0) {

x = x + 1
}
o = x

Listing 9.3: Illustrative example

Illustrative example This program is used for illustration purposes by Meng et al.
[38]. It leaks log2 17 ≈ 4.1 bits and is presented in Listing 9.3.

Implicit flow This program, as described by Meng et al. [38], is a cascade of if-
statements that produces 7 different outputs and therefore leaks log2 7 ≈ 2.8 bits.
The code of this program is given in Listing 9.4.

Masked copy This program was first presented by Meng et al. [38] and leaks the
upper 16 bits of the secret. The code of this program is given in Listing 9.5.

Mix and duplicate This program splits the secret into two halves. Both halves
are then XORed. The result of this operation is then split into two halves. The
upper half is ORed with the lower half. The result of this operation is appended to
the lower half and returned. This should, according to Newsome et al. [7], present
problems for tools that examine the whole input space. The program leaks 16 bits
and its code is presented in Listing 9.6.

Population count This program, first described by Newsome et al. [7], counts the
number of set bits in the input. It leaks log2 33 ≈ 5.0 bits and its code is given in
Listing 9.7.

Password checker This is the typical introductory program for information flow
that checks whether the input l is the correct password h. It should leak 1 bit. The
code of this program is given in Listing 9.8.

Sanity check This program limits the high input and the output to a certain range,
possibly posing problems to dynamic analyses [7] and leaking 4 bits. Typical values
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int z = 0
if (h == 0) {

z = 0
} else if (h == 1) {

z = 1
} else if (h == 2) {

z = 2
} else if (h == 3) {

z = 3
} else if (h == 4) {

z = 4
} else if (h == 5) {

z = 5
} else if (h == 6) {

z = 6
} else {

z = 0
}
o = z

Listing 9.4: Implicit flow

o = h & 0xffff0000

Listing 9.5: Masked copy

int z = ( ( h >> 16 ) ^ h ) & 0x0000ffff
o = z | ( z << 16 )

Listing 9.6: Mix and duplicate

int z = ( h & 0x55555555 ) + ( ( h >> 1) & 0x55555555 )
z = ( z & 0x33333333 ) + ( ( z >> 2) & 0x33333333 )
z = ( z & 0x0f0f0f0f ) + ( ( z >> 4) & 0x0f0f0f0f )
z = ( z & 0x00ff00ff ) + ( ( z >> 8) & 0x00ff00ff )
o = ( z + (z >> 16 ) ) & 0x0000ffff

Listing 9.7: Population count
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int z
if (h == l) {

z = 1
} else {

z = 0
}
o = z

Listing 9.8: Password checker

int z
if (h >= 0 && h < 16) {

z = base + h
} else {

z = base
}
o = z

Listing 9.9: Sanity check

for base are 0x00001000 and 0x7ffffffa. The code of this program is presented in
Listing 9.9.

Sum This program sums up three different high inputs and should leak 32 bits,
it was first presented by Backes et al. [39]. The code of this program is given in
Listing 9.10.

o = h + i + j

Listing 9.10: Sum

9.2.2. Recursion related benchmarks
The following benchmark programs test the ability of the analyses to work with
recursion properly.

Fibonacci This program is a basic implementation of the Fibonacci function. This
program leaks log2 31 ≈ 5.0 bits for version 1 and log2 1023 ≈ 10.0 bits for version 2.
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int fib(int num) {
int r = 1
if (num > 2) {

r = fib(num - 1) + fib(num - 2)
}
return r

}
// version 1:
o = fib(h & 31)
// version 2:
o = fib(h & 1023)

Listing 9.11: Fibonnaci

int fib(int num) {
int r = 1
if (r > 2) {

r = fib(num - 1) + fib(num - 2)
}
return r

}
o = fib(h & 31)

Listing 9.12: Dead Fibonacci

It poses problems to analyses, as the number of function calls increases non-linearly
with the input parameter. The code of this program is presented in Listing 9.11.

Dead Fibonacci This program is a variant of the Fibonacci program that returns
1 for all inputs and thereby leaks no information on the secret input. It might cause
problems for static analyses, as the function fib recursively calls itself in unreachable
code. The code of this program is given in Listing 9.12.

Recursive id This is a simple program with linear recursion which contains an id
function that returns the value of its parameter for positive parameters and zero
otherwise. The program results in a leakage of 31 bits. Its code is presented in
Listing 9.13.

Dead recursive id This program is an adaption of the Recursive id program that
returns 0 for every input, resulting in a leakage of 0 bit. The code of this program is
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int id(int num) {
int r = 0
if (num > 0) {

r = id(num - 1) + 1
}
return r

}
o = id(h)

Listing 9.13: Recursive id

int id(int num) {
int r = 0
if (num > 0) {

r = id(num - 1) + 1
}
return 0

}
o = id(h)

Listing 9.14: Dead recursive id

presented in Listing 9.14.

9.2.3. If-statement scalability benchmark
This benchmarking program is used to evaluate the scalability of the analyses for
programs of increasing size. The size of the program given in Listing 9.15 can be
varied by altering α. The program has α different outputs and therefore leaks log2 α
bits.

9.3. Evaluation Process
The following describes the evaluation process and environment. This is based
on the guidelines from our previous work [40] and uses the therein developed tool
temci4 to actually benchmark. The evaluation framework itself is implemented in
the stand-alone demo Nildumu tool.

4https://temci.readthedocs.io/en/latest/
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int z = 0
if (h == 1) {

z = 1;
}
// ...
if (h == α) {

z = α;
}
o = z

Listing 9.15: If-statement scalability benchmark

Analysis tools The analysis tools are benchmarked partly in different configurations,
to gather results even when the original configuration resulted in a non-termination
of the analysis. ApproxFlow is evaluated in three configurations, depending on the
amount of loop unrolling and function inlining. The original configuration unrolls
and inlines 32 times. The other configurations unroll and inline 2 and 5 times.
Both implementations of Nildumu are evaluated: The JOANA-based implemen-

tation is evaluated in two configurations, depending on the level of inlining for the
used inlining handler and the level of inlining in the summary handler, called by
the inlining handler: the first configuration inlines 2 times, the second configuration
5 times in both cases. The stand-alone demo implementation of Nildumu is only
evaluated in the configuration that inlines 2 times. In the following the term Nildumu
refers to the much more mature JOANA-based implementation.
Flowcheck is evaluated in two configurations: with and without the calculation

of the minimum-cut. Enabling the calculation of the minimum-cut increases the
precision of the analysis, but we were unable to use it in the main benchmarking
environment, as it resulted in the analysis aborting with the following error message:
“t5 = CASle(t10::t3->t4) Flowcheck: the ’impossible’ happened: flowcheck trace:
unhandled IRStmt”.

Environment The main evaluation is done on a desktop computer with 64 GiB
of RAM and a hyper-threaded Intel Core i7-6700 CPU with 4 physical cores. This
computer has a SSD with 240 GiB as its hard-drive and runs an Ubuntu 16.04.5 LTS
with kernel version 4.4.0-137-generic without a graphical user interface. The CBMC
version on this computer is 5.3.

Flowcheck with enabled minimum-cut calculation was evaluated on a laptop with
8 GiB of RAM, a hyper-threaded Intel Core i5-4300U CPU with 2 physical cores
and a 500 GiB SSD as its hard-drive. This computation runs a Debian Buster with
GNOME and kernel version 4.18.0-2-amd64 and is in the following referred to as the
second benchmarking environment.
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Benchmarking The benchmarks were gathered by executing each analysis 10 times,
using the GNU time utility5 for the actual measurements and taking their mean.
The recorded time includes the runtime of all pre-processing tools that an analysis
needs. For example, the Flowcheck tool works on binaries, therefore the runtime
includes the compilation of the analysed code with the GNU C compiler6, version
5.4.0 in the main and 8.2.0 for the second benchmarking environment.

9.4. Results
This section presents the individual results of all analyses and their discussion. The
timeout for the benchmarks was 30 minutes, timeouts are marked as -. The standard
deviations were below 5% unless marked otherwise. If the runtimes or approximated
leakages for different configurations of the same analysis differ less than one standard
deviation, then the mean is presented. Under-approximations of programs are marked
as bold and underlined.

9.4.1. Benchmarks from literature
The runtimes are presented in Table 9.3, the leakages in Table 9.2.

ApproxFlow The benchmarking results for ApproxFlow seem to be unpredictable,
especially for programs like Binary Search: The amount of loop unrolling is not
related to the performance. The reason for this might be that modern SAT solvers,
on which ApproxFlow is based, use complex heuristics resulting in widely varying
runtimes for similar formulas [41]. This is the reason why ApproxFlow runs faster
for an unrolling level of 32 compared to an unrolling level of 5 although the latter
results in a smaller SAT formula.
Another big problem of ApproxFlow is that it does support functions only by

inlining them multiple times, resulting in long runtimes for small programs even if the
functions are actually never called during a program’s execution, see Dead Fibonacci.
Besides the long runtimes, it can also cause under-approximations if functions are
called more often than they are inlined. Other approaches for supporting functions
in bounded model checking based tools are presented in Section 10.2.2.
Loop unrolling is also a cause of under-approximations, as can be seen for the

Electronic purse program. The loop body in this program is executed at most 4
times. If the loop is unrolled only 2 times, then the effects of the two other possible
iterations are ignored, leading to the observed under-approximation.

5https://www.gnu.org/software/time/
6https://www.gnu.org/software/gcc/
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Program ApproxFlow Flowcheck LeakWatch Nildumu
2 5 32 2 5 demo3

Binary Search 0.788 0.812 0.574 1.153 - 2.758 error3

Electronic Purse 0.129 0.140 0.241 1.114 - 1.735 0.427
Illustrative ex. 0.882 1.141 - 1.637 0.344
Implicit Flow 0.129 1.153 - 1.573 0.357
Masked Copy 0.270 2.272*** - 1.554 0.310
Mix and dup. 0.280 1.731*** - 1.566 0.328
Pass. checker unsupported1 1.200 - 1.587 0.321
Pop. count 0.200 1.148 - 1.635 0.332
Sanity check (1) 0.811 1.151 - 1.615 0.344
Sanity check (2) 1.093 1.152 - 1.603 0.349
Sum 0.801 1.945*** - 1.581 0.352

Dead Fibonacci 0.774 1.150 - 1.611 0.344
Fibonacci (1) 0.947 4.710 -2 54.433** - 3.480 67.332 0.799
Fibonacci (2) 0.940 5.789 - - - 3.475 62.693* 0.824
Dead rec. id 0.828 0.933 2.637 3.679*** - 1.625 0.378
Recursive id 0.829 0.935 2.624 2.346*** - 2.013 2.487* 0.526

Table 9.1.: The runtimes of the analyses in seconds.
1 ApproxFlow does not support low inputs.
2 ApproxFlow did not terminate after 16 hours, as the model generator
3 CBMC was still generating the formula.
3 The stand-alone demo version of Nildumu does not support this test
3 case correctly
* The standard deviation is between 5% and 10%.
** The standard deviation is between 10% and 30%.
*** The standard deviation is between 30% and 90%.
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Program C
ApproxFlow Flowcheck1 LeakWatch Nildumu2
2 5 32

Binary Search 16.0 32.0 32.0 15.0 16.0 - 32.03

Electronic Purse 2.0 1.0 2.0 2.0 2.0 - 32.0
Illustrative ex. 4.1 30.0 1.0 - 32.0
Implicit Flow 2.8 2.8 7.0 - 3.0
Masked Copy 16.0 16.0 334.0 - 16.0
Mix and duplicate 16.0 16.0 331.0 - 16.0
Password checker 1.0 unsupported 1.0 - 1.0
Population count 5.0 8.2 200.0 - 10.0
Sanity check (1/2) 4.0 31.0 1.0 - 32.0
Sum 32.0 32.0 334.0 - 32.0

Dead Fibonacci 0.0 32.0 0.0 - 0.0
Fibonacci (1) 5.0 32.0 32.0 - 2692537.0 - 5.0
Fibonacci (2) 10.0 32.0 32.0 - - - 10.0
Dead recursive id 0.0 32.0 32.0 - 0.0
Recursive id 31.0 32.0 32.0 - 32.0

Table 9.2.: The approximated leakage for the basic benchmark program calculated
by the different analyses in bits rounded to the first decimal digit.
The calculated leakages did not vary between the different runs of
the analyses. The second column C gives the actual leakages of the
programs.
1 Flowcheck is called with disabled minimum-cut calculation, this reduces
3 the precision, see Table 9.4.
2 All evaluated implementations and configurations of Nildumu resulted
3 in the same computed leakage.
3 The stand-alone demo version of Nildumu does not support this pro-
34gram correctly.
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Program Flowcheck Nildumu
with mininum-cut without minimum-cut 2

Binary Search 2.360 0.931 5.085
Electronic Purse 2.348 0.929 3.659
Illustrative ex. 2.355 0.969 2.952
Implicit Flow 2.360 0.946 2.880
Masked Copy 2.359 1.376*** 2.717
Mix and duplicate 2.358 1.521*** 2.804
Password checker 2.356 0.929 2.860
Population count 2.363 0.944 3.061
Sanity check (1/2) 2.356 0.942 2.927
Sum 2.372 1.936 2.880

Dead Fibonacci 2.357 0.928 2.847
Fibonacci (1) - 71.194*** 6.004
Fibonacci (2) - - 6.000
Dead recursive id 3.180*** 2.429*** 2.933
Recursive id 2.754** 2.931*** 3.721

Table 9.3.: The runtimes of the two different configurations of Flowcheck and the
JOANA-based implementation Nildumu in seconds. These measure-
ments were obtained in the second benchmarking environment.
** The standard deviation is between 10% and 30%.
*** The standard deviation is between 30% and 90%.
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Program C
Flowcheck Nildumuwith minimum-cut without minimum-cut

Binary Search 16.0 16.0 16.0 32.0
Electronic Purse 2.0 2.0 2.0 32.0
Illustrative ex. 4.1 1.0 1.0 32.0
Implicit Flow 2.8 7.0 7.0 3.0
Masked Copy 16.0 16.0 334.0 16.0
Mix and duplicate 16.0 16.0 331.0 16.0
Password checker 1.0 1.0 1.0 1.0
Population count 5.0 10.0 200.0 10.0
Sanity check (1/2) 4.0 1.0 1.0 32.0
Sum 32.0 32.0 334.0 32.0

Dead Fibonacci 0.0 0.0 0.0 0.0
Fibonacci (1) 5.0 - 2692537.0 5.0
Fibonacci (2) 10.0 - - 10.0
Dead recursive id 0.0 5.0 32.0 0.0
Recursive id 31.0 5.0 32.0 32.0

Table 9.4.: The approximated leakage for the basic benchmark program by the two
different configurations of Flowcheck and the JOANA-based implemen-
tation of Nildumu. The calculated leakages did not vary between the
different runs of the analyses. The second column C gives the actual
leakages of the programs.
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LeakWatch This tool did not terminate for any program after 30 minutes: The
problem is that the input space consists of 232 elements.

LeakWatch also has problems with programs that leak a high amount of information,
as the tool is then unable to decide whether the obtained result is stable and observing
a high number of outputs needs many reexecutions. The tool therefore is only usable
for smaller input spaces, terminating for all programs for a bit width of for example
5 bits.

Flowcheck The dynamic nature of Flowcheck results in under-approximations for
programs, like Illustrative example, as only a few inputs are evaluated. The under-
approximations are infrequent, as the analysis treats control-flow-dependencies prop-
erly. The proper treatment of control-dependencies resulted in an over-approximation
for the Implicit flow program which only leaks due to control dependencies. Enabling
the minimum-cut calculation significantly improves the precision of the analysis, see
for example the Masked copy program for which the approximated leakage decreased
from 334 to 16 bits in Table 9.4. But the minimum-cut version has also double the
runtime for most examples.

Nildumu The JOANA-based version of Nildumu is needs to load the complex
JOANA framework consisting of over 400MiB of Java JARs before a program can
be analysed. This is the cause for the high runtimes even for small programs like
Password checker and why the runtime is roughly the same for most programs.

The stand-alone demo version of Nildumu has far less dependencies and processes
the program code directly without compiling it to bytecode and building up a proper
PDG. This version is therefore much faster but also less mature, e.g. it cannot analyse
the Binary Search program correctly.

A major problem of the analysis as whole is that loops and conditions are treated
conservatively. Nildumu can handle arbitrary recursion by using summary-graphs
with good precision and performance, compared to the other tools.

9.4.2. If-statements scalability test
Nildumu and LeakWatch failed for programs with more than 212 if-statements, due
to constraints of the JVM that limits the size of methods and number of constants
in class files [42, §4.11]. ApproxFlow ran into a timeout for programs larger than
214 if-statements. This is the reason why the results for programs with more than
214 if-statements are not presented in the following. The runtimes are given in
Table 9.5 and plotted in figure 9.1, the calculated leakages in Table 9.6. The two
configurations of Flowcheck are evaluated in the second benchmarking environment,
the results are given in Table 9.7 and Table 9.8 and compared with the JOANA-based
implementation of Nildumu.
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log2(|if-stmts|) ApproxFlow Flowcheck LeakWatch Nildumu N. Demo1

0 error 1.139 - 1.523 0.317
1 error 1.143 - 1.537 0.331
2 0.120 1.141 - 1.550 0.332
3 0.129 1.140 - 1.605 0.354
4 0.131 1.140 - 1.651 0.370
5 0.150 1.143 - 1.771 0.409
6 0.519 1.151 - 1.943 0.456
7 1.372 1.160 - 2.311 0.536
8 4.843 1.178 - 2.944 0.650
9 18.916 1.213 - 4.340 0.851
10 49.369 1.281 - 7.648 1.161
11 110.119 1.423 - 18.639 1.672
12 125.488 1.708 - 59.965 2.560
13 174.241 2.299 error error 4.444
14 583.775 3.498 error error 7.791

Table 9.5.: Runtime of the scalability test in seconds. The standard deviations for
all measurements are below 6%. Most of the runtime for the smaller
programs is related to the starting of the analysis tools.
1 Stand-alone demo version of Nildumu
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Figure 9.1.: Runtime of the scalability test in seconds.
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log2(|if-stmts|) C ApproxFlow Flowcheck LeakWatch Nildumu N. Demo
0 0 error1 1 - 0 0
1 1 error1 2 - 1 1
2 2 2 4 - 32 32

3 3 3 8 - 4 4
4 4 4 16 - 5 5
5 5 5 32 - 6 6
6 6 6 64 - 7 7
7 7 7 128 - 8 8
8 8 8 256 - 9 9
9 9 9 512 - 10 10

10 10 10 1024 - 11 11
11 11 11 2048 - 12 12
12 12 12 4096 - 13 13
13 13 13 8192 error3 error3 14
14 14 14 16384 error3 error3 15

Table 9.6.: The approximated leakage for the scalability test in bits.
2 Three bits of the output are statically unknown as the output ranges
3 from 0b0001 to 0b0100, therefore the leakage is 3 for Nildumu.
3 The size of the program exceeds the capabilities of the JVM as men-
3 tioned before.
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log2(|if-stmts|) Flowcheck Nildumuwith minimum-cut without minimum-cut
0 2.353 0.937 2.700
1 2.366 0.930 2.778
2 2.393 0.942 2.774
3 2.358 0.944 2.859
4 2.364 0.948 2.961*

5 2.381 0.950 3.070
6 2.412 0.953 3.465
7 2.464 0.976 3.874
8 2.577 1.001 4.674
9 2.793 1.047 6.321
10 3.239 1.153 10.755
11 4.151 1.373 23.836
12 6.004 1.847 154.992
13 9.731 2.769 error
14 17.275 4.793 error

Table 9.7.: The runtimes of the two different configurations of Flowcheck and the
JOANA-based implementation of Nildumu in seconds. These measure-
ments were obtained in the second benchmarking environment.
* The standard deviation is between 5% and 10%.
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log2(|if-stmts|) C
Flowcheck Nildumuwith minimum-cut without minimum-cut

0 0 1 1 0
1 1 2 2 1
2 2 4 4 3
3 3 8 8 4
4 4 8 16 5
5 5 8 32 6
6 6 8 64 7
7 7 8 128 8
8 8 8 256 9
9 9 8 512 10
10 10 8 1024 11
11 11 8 2048 12
12 12 8 4096 13
13 13 8 8192 error
14 14 8 16384 error

Table 9.8.: The approximated leakage for the scalability test in bits per analysis for
the two configurations of Flowcheck and the JOANA-based implemen-
tation Nildumu, evaluated in the second benchmarking environment.

Precision ApproxFlow is the most precise tool, followed by Flowcheck and Nildumu.
LeakWatch does not terminate, as before, even after 30 minutes. Both implementa-
tions of Nildumu slightly over-approximate the leakage because they count varying
bits.

Runtimes A major part of the runtimes for smaller programs is the start-up time
for the analysis tools and its pre-processor. The runtime of ApproxFlow increases
approximately linear in the number of if-statements in the range of 25 to 211 if-
statements. The runtime of the stand-alone demo implementation of Nildumu
increases sub-linearly and is the fastest analysis tool for programs with 26 to 210

if-statements.

Flowcheck Flowcheck treats conditions conservatively and as a result the calculated
leakages are overly conservative for programs with many conditions. The dynamic
nature of Flowcheck leads to under-approximations due to the limited number
of observed inputs. The tracking of the bit-dependencies and the minimum-cut
calculation dominates the overall for runtime even for small programs but increases
the precision and leads to under-approximations for larger programs.
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9.4.3. Conclusion
All evaluated analysis tools besides Nildumu have problems with recursive functions
and can produce under-approximations. Nildumu is less performant than the other
tools, partly due to overhead of loading JOANA, but it scales well for larger pro-
grams and the performance is comparable to Flowcheck with enabled minimum-cut
calculation. Furthermore, Nildumu analyses the presented benchmark programs with
a precision that is comparable to other tools for some programs like Implicit Flow
or Population count and better for programs with recursion. All tools have, overall,
different strengths and weaknesses: ApproxFlow works well for programs without
recursion. Nildumu works well for unbounded recursion, but has problems with loops.
Flowcheck is by design prone to under-approximations. LeakWatch only works for
small input spaces.
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10. Conclusion und Future Work

10.1. Conclusion
The analysis presented in this thesis is a Quantitative Information Flow analysis
that supports a while-language extended with functions. This is the first analysis, to
our knowledge, that supports recursion properly. It adapts the well-known concept
of summary edges. The analysis is, to our knowledge, the first data flow analysis in
this field, see Appendix B.

The current version of the analysis is minimal. It does not support objects, arrays
or other data types than integer and only works well for bit-operations. Being
compact and based on a typical data flow analysis has the advantage that these
features can later be added easily, as explained in the next section. The evaluation
results presented in Section 9.4 show that the analysis produces comparably good
results for typical examples with a comparable performance.
The analysis has in its current state several disadvantages compared to other

analyses: The analysis is hard to implement efficiently, as many bit objects have
to be created. Loops are approximated in an overly conservative manner as the
used bit lattice is not well suited for comparison operators. The summary graphs
are limited, as the summary function handler assumes that all parameter bits are
statically unknown and not as placeholders for concrete bits. The thesis presented
here is a condensed version of the algorithm, as many of the proposed improvements
need more time to mature.

But nonetheless, the analysis presents, in our opinion, a good foundation for other
analyses in the field of Quantitative Information Flow.

10.2. Future Work
This section gives an outlook on possible improvements and usages of the analysis
presented in this thesis that could be explored in the future.

10.2.1. Improvements of the analysis
We expect that the analysis can be extended using the techniques already developed
for data flow analysis. This includes techniques to gain object-sensitivity or support
arrays. Other improvements could come from the integration of typical compiler
optimisations like loop unrolling or common sub-expression elimination. It might
furthermore be useful to improve the conditional knowledge propagation of Chapter 5
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by adapting algorithms described in recent papers like [43], which use SMT and SAT
solvers to increase precision.

Interval lattice Another possibility to improve the analysis, orthogonal to the
others, is to choose a different lattice instead of the bit lattice. The problem of the
bit lattice is that is best suited for analysing bitwise-operations, but not arithmetic
operations [44]. An interesting lattice could be the interval-based lattice described in
the following. The idea is to split each value into multiple intervals instead of n bits.

Value = P(BitInterval)

These intervals are comparable to the bits in the original analysis with the addition
of constraints and the possibility of overlapping:

BitInterval = Identity × P(Identity)︸ ︷︷ ︸
dependencies

×P(Constraint)

Identity = Node × Z︸︷︷︸
lower bound

× Z︸︷︷︸
upper bound

The problem with these lattices is that the number of intervals is 2n(2n−1)
2 in the

worst case. Therefore merging intervals of the same value is necessary during the
analysis. A set of constraints like “ith bit is zero” could be used to partially counter
the detrimental effect of merges to the precision of the analysis. The constraints
could also be used to handle bit-operations properly. The difficulty is to design the
constraints properly and to develop fast heuristics for selecting the intervals to be
merged.
The leakage calculation might pose a problem as the new interval dependency

graph is more complex than the original bit-dependency graph. Therefore, the
transformation into an optimisation problem with poly-time solvers is much more
difficult.

10.2.2. Usage of the analysis
This sections details two possible uses of the analysis and its possibly improved
version.

Implementation in compilers As the developed analysis is essentially an extended
constant-bit analysis, it would be interesting to implement it in a real compiler to
improve the constant propagation as compilers like GCC only implement sparse
conditional bit constant propagation [45].

SMT-based model counting A typical approach in Quantitative Information Flow
Control is to approximately count the models of a SAT formula that represents the
program that should be analysed. An analysis of this kind is described in Section 9.1.
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Using SAT formulas has the disadvantage that dealing with loops and recursion
is difficult and often realised with unrolling and inlining. Recent advances in the
field of approximate SMT model counting [46] could make it possible to use SMT
formulas instead.
The advantage of using SMT over SAT is that there are algorithms to generate

SMT formulas that support loops and recursion properly. Loops can be analysed
using a technique called k-induction [47] and recursion can be modelled using model
based projection and interpolation techniques [48]. This is implemented in tools like
SeaHorn [49].

The idea is to use a fast but imprecise analysis, like the analysis presented in this
thesis, to get a rough estimate of the leakage of a program and use this number to
improve the speed of the approximate SMT-model counting [46]. Another approach
is to use the information from the faster analysis to pre-process the SMT formula.
Such information could be that some bits are constant or that a value lies in a given
range.
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A. Partial MAXSAT Based Leakage
Computation

This chapter describes the transformation of the leakage approximation problem
from Section 4.2 into a Partial MAXSAT (PMSAT) optimisation problem. It is more
precise than the previously proposed minimum-vertex-cut based version, as it can
take the alternative mapping into account. This mapping stores for each bit that
a bit b depends on, the other bit that b can depend on instead of the original bit
if there is such an alternative bit. The usage of the alternative mapping increases
the precision of the approximation by taking all bits in the bit dependency graph
into account when deciding for one of the two alternatives, instead of using a basic
heuristic.

An instance of PMSAT consists of formulas in conjunctive normal form (CNF) that
are separated into hard and soft constraints that work with the same set of variables.
Formulas in CNF form consists clauses connected by logical and-operators, these
clauses consist of variables, negated or not, that are connected by logical or-operators.
A solution for a PMSAT instance is an instantiation of the variables in the formulas,
so that all hard constraints and as many soft constraints as possible are fulfilled
[50]. There are many solvers, but finding an optimal solution is NP-complete. The
transformation starts by generating the hard constraints which ensure the soundness
of the solution. Each bit b is associated with three boolean variables:

rb If true, consider the dependencies of the bit instead of the bit itself for fixation.

cb If true, fix the bit b.

db If true, require the consideration of either b or the bits b depends on.

The hard constraints for every statically unknown non-low-input bit b are given in
the following. Low input bits have no hard constraints, as they are not considered in
the leakage computation. Whenever a bit b is considered, then either the bit is really
considered as fixed in the leakage computation or its dependencies are considered:

db → (cb ∨ rb)

If the dependencies are considered then all bits that b directly depends on are
considered. This results in the following formula, assuming that b depends on
α1, . . . , αm and that the alternative to considering the dependency αi is βi if there is
no alternative, then αi = βi:

rb → ∧mi=1(dαi ∨ dβi)
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Converting these constraints into CNF is trivial.
doi is added as a hard constraint for every output bit oi, to ensure that all low

output bits, or their dependencies, are considered. For all bits β with weight(β) =∞,
the constraint dβ → rβ is added, to ensure that these bits are not considered themself.
The soft constraint added for each statically unknown bit is ¬cb. The number of

cb variables set to true in the solution is the approximated leakage.
Another problem, besides the complexity of solving the PMSAT instance, is that

PMSAT solvers are optimised for instances that consist of few hard constraints
and many soft constraints [50]. This is not the case here, as there is only one soft
constraint and multiple hard constraints per bit.

Example The last part of this chapter shows how to analyse a basic example
program given in Listing A.1 using PMSAT based leakage approximation. We
assume single bit values.

if (h == 0) {
o1 = 0b0

} else {
o2 = 0b1

}
o = φ(o1, o2)

Listing A.1: Basic example with one bit values

This results in the following bits, as explained before in Section 4.1.4:

(h == 0)0 = (û, {h0})
o10 = (0̂,∅)
o20 = (1̂,∅)
o0 = (û, {(h == 0)0})

The transformation explained above generates the presented hard constraints for
these bits:

dh0 → (ch0 ∨ rh0)
rh0 → true

d(h==0)0 → (c(h==0)0 ∨ r(h==0)0)
r(h==0)0 → (dh0 ∨ dh0)

do0 → (co0 ∨ ro0)
ro0 → (d(h==0)0 ∨ d(h==0)0)
do0

90



APPENDIX A. PARTIAL MAXSAT BASED LEAKAGE COMPUTATION

The soft constraints are:

¬ch0

¬co0

¬(h == 0)0

The transformation into CNF is omitted for brevity. A PMSAT solver like QMaxSAT
[51] solves this optimisation problem in less than one millisecond. The found optimal
variable setting results in the expected leakage of one bit.
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B. Tool Survey
This chapter presents a survey of the available tools in Quantitative Information
Flow Control. The aim is to give an overview over these tools with their main
characteristics. This survey focusses on tools that can analyse programs with inputs
and outputs, excluding tools that analyse side-channels or database queries. The
survey results are presented in Table B.1. The only other survey, to our knowledge,
was conducted by Mu in 2010 [52].

Collection method We collected the tools by examining all papers that Google
Scholar1 returned for the search query analysis evaluation tool "quantitative

information flow" program. This query includes all papers that contain the words
analysis and tool, as the goal was to find analysis tools, and the words evaluation
and program, as the goal was to find evaluated analyses. Furthermore the query
part "quantitative information flow" ensures that all papers are related to
Quantitative Information Flow.
The papers found by Google Scholar were then filtered manually to include only

papers that contain the word quantitative in their abstract. Of these papers,
only the papers that present an implemented analysis were finally considered. An
implemented analysis is an analysis from a paper that presents an evaluation and
mentions the implementation of a tool. The list of finally selected papers contains
only one published paper per tool, as some tools were mentioned in multiple papers.

Validation The selected papers, found using Google Scholar, included all relevant
tool papers that were known a-priori.

Limitations Due to the number of papers to survey, Google Scholar returned 514,
it was not possible to examine all papers in detail. Relevant papers might omit the
required keywords given before. The summaries of the papers given in Table B.1
are furthermore rather informal, as no attempt was made to fully understand the
papers and their concepts.

Results The results, given in table B.1, show that the majority of the 20 analyses
for Quantitative Information Flow are based on model counting and try to support
a real-world language, but that no tool can practically soundly analyse programs
with unbounded finite recursion and loops.

1https://scholar.google.com visited on the 20th and 21st of November 2018
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https://www-users.cs.umn.edu/~mccamant/flowcheck/
https://github.com/qif/jpf-qif/
https://project.inria.fr/quail
https://github.com/qif/jpf-qilura
htttp://www.cs.bham.ac.uk/research/projects/infotools/leakwatch
https://sites.google.com/site/mopedqleak
https://formal.iti.kit.edu/~weigl/software/sharpPI/
https://github.com/moun/Fhamator
https://project.inria.fr/hyleak/
https://bitbucket.org/valcelina/kite
https://github.com/approxflow/approxflow
https://github.com/GaloisInc/TAMBA
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