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Abstract

This thesis describes an algorithm finding and proving equa-
tions suitable to be used as rewrite rules, which have the po-
tential to simplify a functional program.
To be independent from any specific functional programming
language, a dialect of λ-calculus is introduced. It covers com-
mon features of such languages, including recursion, pattern
matching and case-expressions.
The main focus of this work lies on putting expressions of this
language in a partial order. Finally, a concrete strategy for
finding rewrite rules using this partial order is specified.
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1 Introduction

1.1 Motivation

Optimization is a key feature of compilers. Functional programming languages are usually
not as close to the hardware as imperative programming languages like C++. This
is a consequence of both execution and data being treated in a much more abstract,
mathematical way — rather than a way that reflects the details of underlying hardware.
As a result, compilers of functional programming languages have to put great effort into
optimization in order to minimize the overhead caused by the transformation from high-
level functional to low-level imperative primitives.
One of the main features of purely functional programming languages like Haskell is

the immutability of data. Functions designed to transform data (say, a list), will therefore
always create brand new data instead of mutating existing objects. Under certain circum-
stances those functions might actually create an exact copy of an already existing object
(e.g. Haskell’s fmap function of Functor instances when passing the identity function as
first argument).
However, whenever exact copies of an object are created (i.e. the object is cloned)

one could instead just use the original object. As a result of immutability, clones are
indistinguishable and thus are always redundant.
Furthermore, the same is true for any two objects that have different type but identical

internal representation. While the programmer might be forced (with good reason) to
explicitly cast between types (using constructors or pattern matching), those casts might
turn out to have no effect under the hood and can therefore be removed during optimiza-
tion, improving performance. Simply changing the type of an object without touching its
internal representation is called type coercion.

GHC already knows how to identify such cases of safe type coercions [4]. The current
approach has limits, though. Imagine a functor F and arbitrary types A and B. A pro-
grammer might want to convert an object of type F A to type F B, but has available only
a method conv for converting from type A to type B. The obvious solution is using the
functor’s fmap function to convert the object, element by element.
GHC may know a safe coercion between A and B and between F A and F B. Still, if conv

turns out to be a safe coercion, only conv itself will be a zero-cost operation. The call to
fmap remains unchanged, whereas “ideal code” would make use of the safe coercion from
F A to F B. The problem is, that the compiler does not recognize the behavior of fmap
conv, or more specifically: If fmap is called with a coercion (ignoring types: an identity
function) the result behaves like a coercion as well.
Note that a situation as described here is quite unlikely to occur in source code written

by human programmers. However, they may occur in code emitted during optimization
itself, i.e. in compiler generated code.

Manually written rewrite rules are currently the only option enabling advanced opti-
mization of this kind. Unfortunately, the responsibility of proving the rewrite rule is laid

1



1 Introduction

upon the programmer.

1.2 Goal
It is desirable for a compiler to automatically find the rewrite rules that programmers are
currently required to provide. For a rewrite rule to be valid, it must replace expressions
with equivalent ones. In other words, we are looking for a systematic way to find equalities
between expressions, which can be expressed using rewrite rules.
In the previous section we were mainly talking about coercions arising from calling

higher-order functions with a coercion as a parameter. In an untyped context, this is just
a special case of equality having a function call on one side and one of the parameters
(unmodified) on the other side of the equation. Pattern:

f ... e ... = e

We present an algorithm that, given a function (or rather its definition), will automat-
ically search for rewrite rules of this simplifying kind. Intuitively, it will search for special
cases of arguments, leading to trivial behavior of the overall expression.

First, we will work out a general way of proving equations and finding equations of
a certain pattern. Since this task is relevant independently from any specific program-
ming language, we will operate on an untyped λ-calculus with case-expressions, data con-
structors and a named fixed-point combinator (to enable easier detection of anonymous
recursion).
Our proving algorithm will expect an equation (claim) as input, possibly with place-

holders (making the equation really just a pattern of equations), and will return equations
(witnesses) as output. Each witness must be successfully proved and contain none of the
claim’s placeholders. In other words, every output equation must imply the input equa-
tion.

1.3 Related Work
In the λ-calculus, proving the equality of two normalizing expressions is as easy as normal-
izing them and checking for α-equivalence. Infinitary equational reasoning as introduced
in [9] can help dealing with divergent terms.

When it comes to functional programming languages, using logic programming (i.e.
transform programs or equations to first-order logic) and theorem provers are the best
choice for automated equational reasoning. A transformation from Haskell to first-order
logic is presented in [14].

This thesis, in contrast, is meant to present a generic calculus and algorithm, usable
independent from any specific functional programming language. Also, we focus on finding
equations instead of proving given ones.

2



2 Language and syntax

2.1 Syntax
〈Constructor〉 ::= 〈upper case letter〉 [ 〈index〉 ]

〈Variable〉 ::= 〈lower case letter〉 [ 〈index〉 ]

〈QA〉 ::= [ ‘∀’ 〈QTail〉 ]

〈QE〉 ::= [ ‘∃’ 〈QTail〉 ]

〈QTail〉 ::= 〈Variable〉 ‘:’

〈PatternAlt〉 ::= 〈QA〉 〈Expression〉 ‘ 7→ ’ 〈Expression〉

〈Function〉 ::= ‘(’ 〈PatternAlt〉 { ‘,’ 〈PatternAlt〉 } ‘)’

〈Cases〉 ::= ‘[’ 〈PatternAlt〉 { ‘,’ 〈PatternAlt〉 } ‘]’

〈Expression〉 ::= ‘fix’ | 〈Constructor〉 | 〈Variable〉 | 〈Function〉 | 〈Cases〉
| 〈Expression〉 〈Expression〉
| ‘(’ 〈Expression〉 ‘)’

2.2 Expressions

The following constructs are available in our dialect of the λ-calculus:

Data constructor
Data constructors will be written as upper-case Latin letters, possibly together with
an index. They are constant and unique.
Examples: A B C0

Variable
Variables will be written as lower-case Latin letters (identifiers), possibly together
with an index. They are named placeholders for expressions, either free or bound
(for example by an abstraction).
Examples: a b x y z v0
Remark: For meta variables, we will use e, f , g.

Application
The common syntax for applications of two expressions applies. That includes left-
associativity of the (invisible) application operator and usage of parentheses.
Examples: e f g e (f g) (e f) g

3



2 Language and syntax

Pattern Alternative
Pattern alternatives are generalizations of λ-abstractions. They are inspired by the
ρ-calculus [8] and patterns as introduced in [10].
They consist of a list of universally quantified variables, a pattern expression (called
“left-hand side” or LHS) and a result expression (called “right-hand side” or RHS).
Note the following points:
• Variables quantified in a pattern alternative and not appearing free in its LHS
will not bind the corresponding free variables of the RHS.
• Variables appearing free in the LHS of a pattern alternative are not allowed to
be bound by another (surrounding) pattern alternative. This ensures that func-
tions are always monotonically increasing. (The importance of this is shown
in section 8.1.7.)
• Unlike λ-abstractions, pattern alternatives themselves are no valid expressions

and have no reduction semantics of their own. Instead, they are the key com-
ponent of functions and case-expressions, which specify detailed reduction rules
based on pattern alternatives.

Examples: e 7→ f ∀a : a 7→ b a ∀a, b : C a b 7→ b

Function and Case-expression
Functions and case-expressions are both containers of pattern alternatives. Their
semantics have subtle but important differences that will be described later. We
call functions and case-expressions methods.
While the usage of patterns in case-expressions is nothing uncommon, their usage
in functions may seem like useless, duplicate logic. In fact, functions and case-
expressions have only subtle differences in their semantics, which we will rely on
later.
Examples:
Functions (∀a, b : C a b 7→ b) (∀a : C a 7→ a,∀b : D b 7→ b)
Case-expressions [∀a, b : C a b 7→ b] [∀a : C a 7→ a,∀b : D b 7→ b]

Named fixed-point combinator
With the language being untyped, one can define a fixed-point combinator, e.g.:

(∀f : f 7→ (∀x : x 7→ f (x x)) (∀x : x 7→ f (x x)))

Nevertheless we also provide a named one: fix
The main advantage is that our algorithms will be able to identify fix as being a
fixed-point combinator, whereas it is hard or even undecidable to reliably determine
whether an arbitrary expressions is a valid fixed-point combinator.

Expression
The following constructs are valid expressions:
• Variables
• Constructors
• Fixed-point combinator “fix”
• Functions

4



2.3 Notation

• Case-expressions

Be aware that constraints (like correctly bound pattern alternative variables) are not
ensured by the grammar.

2.3 Notation
• ē is an abbreviation for a finite range of expressions e0, e1, ...

• For any binary relation ×,
ē× f̄

holds iff ē and f̄ have same cardinality n and

n−1∧
i=0

ei × fi

• Consecutive quantifiers of the same kind can freely be merged into a single quantifier:

∀w, x : ∃y : ∃z : ... ≡ ∀w : ∀x : ∃y, z : ...

2.4 Subexpressions
An expression s is called subexpressions of an expression e, if it is an element of the set
of e’s subexpressions, defined as:

sub(e) = {e} ∪



sub(f) ∪ sub(g), if e = f g is an application
sub(p) ∪ sub(f), if e = ∀v̄ : p 7→ f is a map⋃n
i=0 sub(mi), if e = (m0, ...,mn) is a function⋃n
i=0 sub(mi), if e = [m0, ...,mn] is a case-expression

∅, otherwise

2.5 Free variables
A variable is bound, if it is subexpression of the RHS of a pattern alternative that both
quantifies the variable and freely contains it inside its LHS. Variables are considered
“free” if they are not bound. We define the function vars returning all free variables of
an expression or pattern alternative:

vars(e) =



{e}, if e is a variable
vars(f) ∪ vars(g), if e = f g is an application⋃n
i=0 vars(mi), if e = (m0, ...,mn) is a function⋃n
i=0 vars(mi), if e = [m0, ...,mn] is a case-expression

vars(f) \ (vars(p) ∩ v̄), if e = ∀v̄ : p 7→ f is a pattern alternative
∅, otherwise

5



2 Language and syntax

2.6 Substitutions
We attach curly braces containing substitution clauses to expressions to denote a substitu-
tion operation. A substitution clause has the conventional syntax: variable := expression

Multiple substitutions listed within the same curly braces are applied simultaneously,
so the order in which they are mentioned does not matter. This justifies set notation.
Chained substitution operators, on the other hand, are applied left to right. Examples:

(a b c){a := b}{b := a} ≡ (a a c)
(a b c){b := a}{a := b} ≡ (b b c)
(a b c){a := b, b := a} ≡ (b a c)
(a b c){b := a, a := b} ≡ (b a c)

(a0 a1 a2){an := an+1 | n ∈ N0} ≡ (a1 a2 a3)

Closed expressions do not contain any free variables.

2.7 Evaluation and equality
The evaluation rules are very close to those of regular λ-calculus. We will later formally
define the evaluation relation ; (see section 4.1), which would not make sense before
discussing other, more important details about expressions.
So far, we can think of ; as performing one step of ordinary β-reduction. It is un-

decidable whether repeated reduction leads to an expression that cannot be reduced any
further (see discussion about normal form in section 4.4).

Equality of two expressions is defined as follows:

Reflexivity e = e
Transitivity e = f ∧ f = g =⇒ e = g

Constructors ē = f̄ =⇒ C ē = C f̄
Eta-Conversion (∀x : e x = f x) ⇐⇒ e = f (if e and f do not freely contain x)
Beta-Reduction e; f =⇒ e = f

6



3 Partial order of expressions v

There are several reasons for the equality relation to be the wrong relation for our algo-
rithm to work on. In this section we motivate and define the partial order of expressions
v.

3.1 Motivation
An equality relation feels like the wrong choice in several situations:

3.1.1 Conservative approximation of possibly divergent expressions

Imagine two expressions e and f that our algorithm wants to compare. They probably
do not appear similar “at first sight” (e.g. they are not structurally identical), so we try
to normalize both of them.
e turns out to have a normal form, but f does not normalize after applying a certain

number of reduction steps. (The halting problem forces the algorithm to impose hard
limits on the number of performed reduction steps. Thus it may sometimes have to
simply give up without knowing whether a normal form exists.)
At this point there are three possible situations:

• f is divergent and therefore not equal to e.

• f has a normal form that is not equal to e.

• f has a normal form that is equal to e.

As a result, we can neither claim e = f nor e 6= f , as both of these statements could turn
out to be wrong. Therefore, equality is not the right relation for making any statement
here.
Instead, it would be more useful to have a relation that expresses something like: Either

e equals to f or f is divergent.

3.1.2 Functions with patterns

Given a function with a certain pattern, what does applying this function to something
that does not match the pattern evaluate to?

Consider two functions e = (∀x : x 7→ x) and f = (∀x, y : P x y 7→ P x y): Both
of them are identities, but obviously operating in different domains. Are e and f equal?
Certainly not! Still, they behave somewhat similar and it would be nice to have a relation
that is able to express this similarity, instead of having to write e 6= f .

Instead of not defining an evaluation rule for the non-matching case, we could return a
special value, representing this failure of pattern matching.
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3 Partial order of expressions v

3.1.3 Case expressions

Although there are no types in our language, we want case-expressions to behave as if
they were exhaustive. In other words, we expect the programmer to provide a case for
every argument the expression could be applied to.
Consider an expression e = [Z 7→ S Z,∀n : S n 7→ S (S n)]. Note that e is a valid

“successor” function for natural numbers defined by the data constructors Z and S. How
does e differ from the expression f = S?
As in the previous section, the domains of e and f are very different. While f will take

any argument and wrap it inside an S, e makes sure it is actually dealing with a natural
number. Since this is untyped lambda calculus, e and f are just not equal, but again, we
would like to express their relationship.

3.2 Idea
As we are looking for a weaker relation than equality, equality of two expressions implies
that they are also in relation v with each other. We also want v to be antisymmetric in
order to be able to prove equality of expressions, but using only the partial order.
We design the partial order with the idea of inducing rewrite rules replacing e with f ,

whenever e v f holds.

3.2.1 Extended language

We extend our syntax with two special expressions > (“Top”) and ⊥ (“Bottom”):

〈Expression’〉 ::= 〈Expression〉 | ‘>’ | ‘⊥’

3.2.2 ⊥

Sometimes we might be unable to determine whether an expression is divergent or not
(see motivation in section 3.1.1). Keeping rewrite rules in mind, we prefer replacing a
divergent expression with a normalizing one to the other way round.
We therefore introduce ⊥ as a representative of divergent expressions and define it to

be lower than or equal to any other expression according to v:

⊥ = e for any divergent expression e
⊥ v e for any expression e

We will also use ⊥ as the expression a case-expression will evaluate to once pattern
matching fails throughout all alternatives (see motivation in section 3.1.3). This way, the
following holds:

[Z 7→ S Z,∀n : S n 7→ S (S n)] v S

Note how this relationship would emit a reasonable rewrite rule — assuming that the
programmer designed the case-expression to be exhaustive, the resulting optimization
would not change a programs semantics!

3.2.3 >

We introduce > (in some sense representing failure) as an expression dual to ⊥, being
greater than or equal to any other expression:
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3.3 Definition

e v > for any expression e

As an important result, there is no expression greater than >. We chose > as the
expression a function will evaluate to if pattern matching fails (see motivation in section
3.1.2). This way, the following holds:

(∀x : x 7→ x) v (∀x, y : P x y 7→ P x y)

Formally, both correctness of deduction rules used by our algorithm (see † in section
8.2.1) and monotonicity of expressions (see † in section 8.1.5) strongly depend on this
behavior of functions.

3.2.4 Intuition

The following ways of thinking about > and ⊥ might help to understand the partial order
better.

Set theory

We define a function J·K mapping an expression e to the set of all divergent expressions
and equal expressions:

JeK = {e′ | e′ has a normal form e′NF =⇒ e′NF = e }

Taking > and ⊥ into account, the function behaves as follows:

J⊥K = {e′ | e′ does not have a normal form }
J>K = {e | true}

Now we could redefine v as follows:

e v f ⇐⇒ JeK ⊆ JfK

Type theory

Let’s assume we were dealing with types instead of expressions and v would be the
“assignable to” relation. Obviously, if two types are equivalent, they are compatible for
assignment.
In this system, we would give > the broadest type (something like object in Java/.NET),

whereas ⊥ would have to be the narrowest type there is available, the one that is more
specific than all the others (although you cannot explicitly name it in Java/.NET, it would
probably be the type of null).

3.3 Definition
We now formally introduce the partial order v. Note how only > and ⊥ make this rela-
tion any different from equality:
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3 Partial order of expressions v

Bottom-Axiom ⊥ v e
Top-Axiom e v >

The following rules are just a generalization of the rules of equality between expressions
(as defined in section 2.7):

Reflexivity e v e
Transitivity e v f ∧ f v g =⇒ e v g
Constructors ē v f̄ =⇒ C ē v C f̄
Eta-Conversion (∀x : e x v f x) ⇐⇒ e v f (if e and f do not freely contain x)
Beta-Reduction e; f =⇒ e = f (see section 2.7 and 4.1)

Also, we redefine the equality relation using v, so expressions containing >/⊥ are covered:

Antisymmetry e v f ∧ f v e =⇒ e = f

Note that all variables occurring free in above statements are treated as if they were
universally quantified, i.e. we do not make any assumptions about their values.

We will write e < f iff e v f ∧ e 6= f holds.

3.4 Monotonicity and composition rule
It turns out that expressions behave monotonically increasing, i.e.

f v g =⇒ e f v e g

holds. The proof of this rule (we refer to as Monotonicity) is given in the appendix
(section 8.1).

In this section we will show that our definition of v implies a new, very general rule

e1 v e2 ∧ f1 v f2 =⇒ e1 f1 v e2 f2

which we will refer to as Composition rule. The proof makes use of Eta-Conversion and
Monotonicity:

f1 v f2 Monotonicity
e1 f1 v e1 f2

e1 v e2 Eta-Conversion
e1 f2 v e2 f2 Transitivity

e1 f1 v e2 f2

Note that this rule implies the Monotonicity rule, the Constructors rule and η-
expansion (making only the reduction part of the Eta− Conversion rule necessary).

10



4 Semantics

4.1 Evaluation
Small-step semantics (operator ;):

Fixed-point combinator
fix f ; f (fix f)

Top/Bottom
> f ; >

⊥ f ; ⊥

Methods
The following definitions will greatly simplify the evaluation rules:

Γclassic(v̄i) ≡ c = αi(v̄i)
Γmin(v̄i) ≡ c v αi(v̄i)
Γmax(v̄i) ≡ c w αi(v̄i)

Ψ ≡ ∀ vars(c) ∪ vars(αi)
∆classic ≡ {v̄i | Ψ : Γclassic(v̄i)}

∆min ≡ {v̄i | Ψ : Γmin(v̄i)}
∆max ≡ {v̄i | Ψ : Γmax(v̄i)}

(∀v̄0 : α0(v̄0) 7→ β0(v̄0), ...) c;
nl

i=0

{
βi(min ∆min), if Ψ : Γmin(>)
>, if Ψ : ¬Γmin(>)

[∀v̄0 : α0(v̄0) 7→ β0(v̄0), ...] c;
n⊔
i=0

{
βi(max ∆max), if Ψ : Γmax(⊥)
⊥, if Ψ : ¬Γmax(⊥)

Remarks:
• αi and βi are no language constructs but expressions that depend on the cor-

responding pattern alternative’s variables v̄i.
• Infimum and supremum operators are defined below (section 4.1.2).
• The ∆-sets are not empty iff pattern matching succeeds:

– If pattern matching succeeds, at least the substitution of v̄i that caused
pattern matching to succeed is element of the set.

– If the set is not empty, then also the pattern matching substitution must
be in the set (due to monotonicity of substitution, see appendix 8.1.4).
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4 Semantics

• Compare the rules of “classical” pattern matching and unification (Γclassic and
∆classic) with those of our language. Basically, the only difference is the use of
v instead of =. For unification, we select the lowest/greatest values v̄i which
let pattern matching succeed. Although we cannot necessarily always find a
substitution for v̄i that leads to an equality of two expressions, we will still call
this process unification.

• The reduction rules are only exhaustive if Ψ does not quantify any variables,
i.e. if c and αi are closed expressions. If, on the other hand, none of those two
cases apply, the reduction step cannot be taken (partial knowledge). Note that
this is not a blocked situation, so the expression is also not in normal form.
With the substitution of a free variable, a case may suddenly apply and the
reduction step could be performed.

Applications
(a1 a2) c; a c iff a1 a2 ; a

4.1.1 Notation

The following operators are added for convenience:

;∗ is the reflexive, transitive closure of ;.

!∗ is the symmetric, reflexive, transitive closure of ;.

Note how the transitivity and β-reduction rule (see section 2.7) lead to !∗ being a
witness of equality. However, the opposite implication is false, i.e. !∗ is not implied by
equality. This is due to the fact that ; does not operate on subexpressions whereas two
expressions are also considered equal if their subexpressions are equal (Composition) or
if they are equal after being applied to an argument (Eta-Conversion).

Example

⊥ D ; ⊥
=⇒

⊥ D ;∗ ⊥
=⇒

⊥ D !∗ ⊥
=⇒

⊥ D = ⊥
=⇒

C (⊥ D) = C ⊥

Note how the resulting equality does not imply

C (⊥ D) !∗ C ⊥

since there is simply no reduction rule for either of those two expressions!

12



4.2 Examples

4.1.2 Infimum and supremum
We define the infimum/supremum of a set of expressions as the greatest/lowest expression
(according to v) which is lower/greater than all elements of the set.

Note that only the infimum/supremum of closed expressions is guaranteed to also be
closed. Otherwise, it may depend on the substitutions for free variables. Example:

C t x

where x is a free variable and C is a data constructor. Because of C being a constructor
there are only two supremum candidates to begin with: C and >

The result obviously depends on the concrete value of x:

C t x =
{
C , if x v C
> , otherwise

This result could be expressed using a pattern matching function (see section for 4.1
semantics):

C t x = (C 7→ C) x

Note that generally, expressions containing free variables may have much more complex
infima/suprema, which we are not interested in. For our algorithm, we therefore restrict
our efforts to reliably handle closed expressions that have a normal form.

4.2 Examples
The following examples show correct usage of the evaluation semantics.

4.2.1 Equality due to semantics
Each of the following lists represents a set of equivalent expressions from the partially
ordered set:

• ⊥, ⊥ a, ⊥ >, (> 7→ ⊥) b, (∀x : x 7→ ⊥) c, [∀x : D x 7→ x] ((∀x : x 7→ C x) e)

• >, > a, > ⊥, [⊥ 7→ >] b, fix >

• a, (∀y : y 7→ y) a, (∀y : y 7→ a y), (∀y : y 7→ a) b, [∀y : C y 7→ y] (C a)

4.2.2 Pattern matching
Note how our two approaches of pattern matching complement each other to behave ex-
actly like ordinary pattern matching (and resulting unification). As a result, whenever
ordinary unification succeeds, so will both of our approaches, and vice versa.

The following two examples are an immediate comparison of the different semantics in
action.
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4 Semantics

a) Pattern: ∀x : C x

Argument ordinary unification function semantics case semantics
C A success (x := A) success (x := A) success (x := A)
C B success (x := B) success (x := B) success (x := B)
D failure failure (; >) failure (; ⊥)
⊥ failure success (x := ⊥) failure (; ⊥)
> failure failure (; >) success (x := >)
C ⊥ success (x := ⊥) success (x := ⊥) success (x := ⊥)
C > success (x := >) success (x := >) success (x := >)

b) Pattern: ∀x : D x x

Argument ordinary unification function semantics case semantics
D ⊥ ⊥ success (x := ⊥) success (x := ⊥) success (x := ⊥)
D > > success (x := >) success (x := >) success (x := >)
D A A success (x := A) success (x := A) success (x := A)
D B A failure success (x := >) success (x := ⊥)
D ⊥ A failure success (x := A) success (x := ⊥)
D > A failure success (x := >) success (x := A)

The first example shows a few “classical” cases where the algorithms behave the same.
The biggest difference can be observed when passing just > or ⊥ as an argument, each
behaving as wildcards in either of our semantics. Note how function- and case-semantics
are dual to each other.

4.2.3 Function evaluation

We analyze the expression (∀v : A v v 7→ B v) x

x Unification using x v (A v v) Result of (∀v : A v v 7→ B v) x
A > > true, emitting v := > t> = > B >
A C1 > true, emitting v := C1 t > = > B >
A > C1 true, emitting v := > t C1 = > B >
A C1 C2 true, emitting v := C1 t C2 = > B >
A C1 C1 true, emitting v := C1 t C1 = C1 B C1
A C1 ⊥ true, emitting v := C1 t ⊥ = C1 B C1
A ⊥ 1 true, emitting v := ⊥ t C1 = C1 B C1
A ⊥ ⊥ true, emitting v := ⊥ t⊥ = ⊥ B ⊥
B false >

4.2.4 Case evaluation

We analyze the expression [∀x : A x x 7→ D V x,∀y : A y V 7→ D y V,B 7→ C] w
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4.3 Relationship to the λ-calculus

w (A x x) v w (A y V ) v w B v w [...] w
A > > true, em. x := > u> = > true, em. y := > false D V > t D > V = D > >
A V > true, em. x := V u > = V true, em. y := V false D V V t D V V = D V V
A > V true, em. x := > u V = V true, em. y := > false D V V t D > V = D > V
A V W true, em. x := V uW = ⊥ false false D V ⊥
A V V true, em. x := V u V = V true, em. y := V false D V V t D V V = D V V
A V ⊥ true, em. x := V u ⊥ = ⊥ false false D V ⊥
A ⊥ V true, em. x := ⊥ u V = ⊥ true, em. y := ⊥ false D V ⊥ t D ⊥ V = D V V
A ⊥ ⊥ true, em. x := ⊥ u⊥ = ⊥ false false D V ⊥
B false false true C
C false false false ⊥

4.3 Relationship to the λ-calculus
It is worth noting how terms of the λ-calculus correspond to terms of our language.
We introduce the transformation operator T , converting λ-calculus terms into equivalent
expressions of our language.

T [x] = x

T [e f ] = T [e] T [f ]
T [λx.e] = (∀x : x 7→ T [e])

Remark: The reverse transformation T−1 will fail for any construct of our language that
has no matching counterpart in the λ-calculus.

Indeed, β-reduction of the λ-calculus matches our evaluation semantics:

(λx.e) f ;β e{x := f}

T [(λx.e) f ] = T [(λx.e)] T [f ]
= (∀x : x 7→ T [e]) T [f ]
; T [e]{x := T [f ]}
= T [e{x := f}]

The evaluation step we took needs to be proved:

α0(x) ≡ x

β0(x) ≡ T [e]{x := x}
Γmin(x) ≡ T [f ] v x

Ψ ≡ ∀ vars(T [f ])
∆min ≡ {x | Ψ : Γmin(x)}

(∀x : x 7→ T [e]) T [f ] ;

{
T [e]{x := min ∆min}, if Ψ : Γmin(>)
>, if Ψ : ¬Γmin(>)
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4 Semantics

The first evaluation case applies since Ψ : T [f ] v > matches our axiom for >. As a
result, we need to calculate the unification to substitute x:

min ∆min = min {x | Ψ : Γmin(x)}
= min {x | Ψ : T [f ] v x}
= T [f ]

The result of the evaluation is therefore T [e]{x := T [f ]}.

4.4 Normal form

Applying ; to an expression e over and over again might at some point result in an
expression f that no rule applies to, i.e. the situation is blocked. In that case, f is called
normal form of e. Whether a normal form exists or not is undecidable.

With an expressions e reducing to an expression f implying e v f , the partial order
must be undecidable as well. Otherwise we could decide whether e has the normal form
f by deciding e v f .

Note how ; relies on v in the case of function/case-expression reduction. Therefore,
the result of a single evaluation step is also undecidable.

Normal forms have the following shape:

Atomic
Anything that is not an application of two expressions cannot be reduced further
since evaluation rules only deal with applications (see section 4.1).
Summary of expressions: Variables, data constructors, fix, >, ⊥, methods

Composite
When dealing with an application, evaluation rules will always try to recursively
reduce the left expression. This terminates if the leftmost expression is atomic
and there is no evaluation rule applying this atomic expression to an arbitrary
argument. There are such rules for fix, >, ⊥, methods, but not for variables or
data constructors.
Summary of expressions: Applications that have a variable (or data constructor) as
its leftmost subexpression.

4.5 Multi-argument functions and currying

At a later point it will come in handy to have multi-argument functions, i.e. functions
consisting of a single pattern alternative that can consume multiple arguments. Special
about multiple patterns per alternative is the fact that the patterns share the same set
of universally quantified variables. For example, this allows the creation of a function
accepting two arbitrary but identical arguments:

(∀a : a 7→ a 7→ C)
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4.5 Multi-argument functions and currying

We therefore extend our syntax of expressions with multi-argument functions and —
instead of giving their semantics explicitly — provide rules for currying them into nested
single-argument functions:

(Ψ p0 7→ p1 7→ ... 7→ pn 7→ e)

≡

(∀x0 : x0 7→ (∀x1 : x1 7→ (... (∀xn : xn 7→ (Ψ C p0 p1 ... pn 7→ e) (C x0 x1 ... xn))...))

with (optional) universal quantification Ψ, unique data constructor C, expressions
e, p0, p1, ..., pn, variables x0, x1, ..., xn.

Arguments are simply collected one by one, packed into a single expression and passed
to a function — which has all patterns packed into a single pattern in the exact same
fashion.

The special case of zero-argument functions is also covered by above definition:

(Ψ e)

≡

(Ψ C 7→ e) (C)

which can be reduced to just e.

4.5.1 Comparison with naive currying

One might wonder why arguments are not simply collected one by one and then mapped
to the RHS expression e, but are instead first packed and then pattern matched at once.
As mentioned above, multi-argument functions are special in terms of quantification:

f = (∀a : a 7→ a 7→ a)

This multi-argument function could mistakenly be “naively” curried in one of the fol-
lowing two ways:

f1 = (∀a : a 7→ (a 7→ a))
f2 = (∀a : a 7→ (∀a : a 7→ a))

Both options can be ruled out quickly: f1 violates our language specification (more
specifically, the inner function contains a variable in its pattern that is bound by a sur-
rounding pattern alternative; see sections 2 and 8.1.7), while f2 behaves like a constant
function since its first argument has no effect.

Compare this to the correct translation using the currying rule from the previous sec-
tion:

f = (∀x0 : x0 7→ (∀x1 : x1 7→ (∀a : C a a 7→ a) (C x0 x1)))
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4 Semantics

4.6 Regular methods
We call a function and especially case-expression “regular” iff the patterns of its alterna-
tives

• are in normal form.

• are constructors, applied to an arbitrary number of distinct variables bound by the
very same pattern alternative (matches the definition of a linear pattern in [11]).

• contain pairwise disjoint data constructors.

In other words, each pattern alternative has the following shape:

∀v0, v1, ... : C v0 v1 ... 7→ e

with data constructor C and an arbitrary expression e.
In the following, we focus on case-expressions as their regularity will be more important

to us than that of functions. However, the same reasoning applies to functions.

4.6.1 Examples

Following above definition, the following case-expressions are regular.

[N 7→ n,

∀x : J x 7→ j x]

[E 7→ E,

∀h, t : C h t 7→ C (f h) (r f t)]

[B 7→ ⊥,
T 7→ >,

∀v : V v 7→ v,

∀a b : A a b 7→ (t a) (t b)]

4.6.2 Evaluation

Recall the evaluation rules of case-expressions:

Γmax(v̄i) ≡ c w αi(v̄i)
Ψ ≡ ∀ vars(c) ∪ vars(αi)

∆max ≡ {v̄i | Ψ : Γmax(v̄i)}

[∀v̄0 : α0(v̄0) 7→ β0(v̄0), ...] c;
n⊔
i=0

{
βi(max ∆max), if Ψ : Γmax(⊥)
⊥, if Ψ : ¬Γmax(⊥)
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4.6 Regular methods

If the case-expression is regular, we know that

αi(v̄i) = Ci v̄i

for all 0 ≤ i ≤ n and pairwise distinct Ci. As a result, αi(v̄i) contains no free variables,
i.e. v̄i are bound by the pattern alternative. Therefore Ψ universally quantifies only the
free variables of c.
We now take a closer look at the conditions for evaluating to βi(v̄i) or ⊥ and will find

that the result of pattern matching is now very predictable (if c is in normal form).

We assume that c is in normal form and has the following shape:

c = h e0 e1 ...

The pattern matching condition is therefore

Γmax(v̄i) ≡ h ē w Ci v̄i

Cases of c‘s left-most subexpression h and resulting behavior of a pattern alternative:

Variable x
x is free inside c (it is leftmost, so it is obviously not surrounded by a pattern al-
ternative), so it is universally quantified by Ψ. As a result, none of both cases of
evaluation match! As shown below, there is always a substitution for x that would
result in a successful pattern match, as well as a substitution that would result in a
mismatch, i.e. neither of both reduction cases apply!

Substitution that would let pattern matching succeed (besides from x := >):

x := (∀x̄ : x̄ 7→ Ci ȳ) with x̄ and ē having the same cardinality

Γmax(ȳ) ≡ (∀x̄ : x̄ 7→ Ci ȳ) ē w Ci ȳ
≡ Ci ȳ w Ci ȳ

Substitution that would let pattern matching fail (besides from x := ⊥):

x := X

Γmax(v̄i) ≡ X ē w Ci v̄i
≡ X ē w Ci v̄i
≡ false for every substitution of v̄i

Data constructor X 6= Ci
The pattern alternative will evaluate to ⊥. We proof the necessary statement:

X 6= Ci

=⇒ ¬(X w Ci)
⇐⇒ ∀ē, f̄ : ¬(X ē w Ci f̄)

=⇒ ∀ē : ¬(X ē w Ci ⊥ ⊥ ...)
⇐⇒ ∀ē : ¬(Γmax(⊥))
⇐⇒ Ψ : ¬(Γmax(⊥))
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4 Semantics

Data constructor X = Ci
The pattern alternative will evaluate to βi(ē) iff v̄i and ē have the same cardinality.
In that case, the unification is v̄i := ē (element-wise):

ReflΨ : Ci ē w Ci ē ≡
Ψ : Γmax(ē)

weaken (substitution v̄i := ē)
Ψ : Γmax(⊥)

If, on the other hand, cardinalities of v̄i and ē do not match, the pattern alternative
will again evaluate to ⊥. This is due to the fact that mismatching cardinalities
require a constructor to equal or be lower/greater than itself, applied to a number
of other expressions. This is impossible:

Ψ : Γmax(⊥)
⇐⇒

Ψ : Ci ē w Ci ⊥ ⊥ ...

⇐⇒ (because of cardinality mismatch)
Ψ : Ci w Ci ⊥ ⊥ ... ∨ Ψ : Ci e0 e1 ... w Ci

None of those two statements are true: all expressions are in normal form, equal-
ity is obviously not given and none of the axioms of the partial order apply for
corresponding subexpressions.

Top >
Note that h = > implies c = >, since c is in normal form.
The expression will reduce to βi(>,>, ...):

Top-Axiom
Ψ : > w Ci > > ... ≡

Ψ : Γmax(>)

Bottom ⊥ or fix
Note that c being in normal form means that c = h.
The pattern alternative evaluates to ⊥ since c (being ⊥ or fix) can never be greater
than or equal to a data constructor.

Method
Note that c being in normal form means that c = h.
We try to η-reduce c and restart the algorithm on success. Otherwise, the pattern
alternative evaluates to ⊥ since c cannot be η-equivalent to an expression greater
or equal to the pattern.

With this behavior of pattern alternatives in mind, the overall behavior of regular
case-expressions can be summarized as follows:
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4.7 Well-formed statements

• If the argument is >, the expression evaluates to
⊔n
i=0 βi(>,>, ...).

• If the argument is a data constructor with a number of arguments and the case-
expression has a corresponding pattern (i.e. same data constructor and same number
of arguments), the expression evaluates to the corresponding alternative’s RHS —
with the unification variables trivially substituted.

• If the argument is a method in normal form, try η-reduction and restart — on
failure, evaluate to ⊥.

• If the argument is closed and none of above three cases apply, the expression eval-
uates to ⊥.

4.7 Well-formed statements
So far we have defined all the basic building blocks our algorithm will operate on. It will
try to prove the relationship between expressions using the rules of v and ;.
However, we have not yet given any further meaning to free variables, i.e. variables that

are not bound by a pattern alternative. So far, we never made any assumptions about
their actual values - we treated them as unknown atomic symbols. As a result, if we could
prove e v f with e and/or f containing a free variable x, then also e{x := g} v f{x := g}
would hold for any expression g.

4.7.1 Notation
To make explicit that we are not making any assumptions about the variable, we would
from now on write ∀x : e v f , i.e. universally quantify all free variables.
On the other hand, we may want to state, that there exists a certain value for a variable

x, that would make a statement containing x true. In that case we will write ∃x : e v f .

Conclusion: All free variables must be quantified. Quantified variables are considered
bound. Well-formed statements contain only bound variables.

Syntax

〈Relation〉 ::= 〈Expression〉 (‘ v ’ | ‘ < ’ | ‘ = ’) 〈Expression〉

〈Statement〉 ::= 〈Relation〉
| 〈QE〉 〈QA〉 〈Statement〉
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5 Proving statements

5.1 Statements as input and output

The algorithm will try to find and output statements that it can prove. Also recall that it
will not just search for any well-formed statement but for statements of a certain pattern
(see section 1.2):

Output statements
For the purpose of rewrite rules, statements with existentially quantified variables
are of no use. Therefore, the algorithm will try to find proofs for statements with
only universally quantified variables.

Input statements
On the other hand, existentially quantified variables are exactly what enables us
to specify patterns of statements. For every existentially quantified variable, the
algorithm will try to either find a specific expression/substitution that makes the
statement true or even prove the statement correct for any substitution, i.e. pro-
moting the variable to a universally quantified one.

Thus the overall behavior of the algorithm can be formalized like this:

output (witness) =⇒ input (claim)

with output being a statement arising from input by having all existentially quantified
variables eliminated in one or the other way.

5.2 Deduction rules

As we have now formalized our notion of statements, we can now define the concrete
steps our algorithm will take in order to prove such a statement. For this purpose we now
collect all the rules we have come up with so far in the context of the partial order v or
quantification.

The goal is to have a well-defined set of deduction rules for our algorithm to choose
from. This greatly simplifies reasoning about the steps the algorithm may or may not
perform in a given situation.

5.2.1 Notation

For conciseness the following abbreviations for quantifiers will be used:

Ψ is an arbitrary chain of universal quantifiers.

Φ on the other hand is a chain of arbitrary universal and/or existential quantifiers.
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5 Proving statements

In proofs, we will sometimes use double lines instead of single lines to separate premises
from conclusion. We use double lines to separate a reduction statement e; f (conclusion)
from its justification (premises; pattern matching and unification).

5.2.2 Relation
The following rules directly emerge from the definition of v and its implications (see
section 3.3 and 3.4).

Refl
∀ vars(e) : e v e

Ψ e1 v e2 Ψ e2 v e3 ... Ψ en−1 v en
TransΨ e1 v en

Ψ e v f Ψ f v e
Antisymm

Ψ e = f

Φ e = f
Symm=Φ f = e

Φ e = f
Weaken=Φ e v f

⊥
∀ vars(e) : ⊥ v e

>
∀ vars(e) : e v >

Ψ e1 v e2 Ψ f1 v f2
Comp

Ψ e1 f1 v e2 f2

Ψ ∀x : e x v f x (with x 6∈ vars(e) ∪ vars(f))
η

Ψ e v f

e; f
β′

∀ vars(e) ∪ vars(f) : e v f

Note that the definition of β′, Weaken= and Trans actually make Refl redundant.
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5.2 Deduction rules

5.2.3 Quantification
The following rules describe how quantifiers can be introduced, removed or transformed
into each other legally. This is generally accompanied by information loss. The rules are
compliant with standard first-order logic.

Φ e v f (with x 6∈ vars(e) ∪ vars(f))
Introduce∀Φ ∀x : e v f

Φ e v f (with x 6∈ vars(e) ∪ vars(f))
Introduce∃∃x : Φ e v f

Φ1 ∀x : Φ2 f v g (Φ2 does not quantify x, Φ1 does not quantify any of vars(e))
Weaken∀Φ1 ∀ vars(e) : Φ2 f{x := e} v g{x := e}

Φ f{x := e} v g{x := e} (with x 6∈ vars(e))
Weaken∃∃x : Φ f v g

Φ1 ∃v : ∀w : Φ2 e v f
SwapweakenΦ1 ∀w : ∃v : Φ2 e v f

Φ1 ∀v : ∀w : Φ2 e v f
Swap∀Φ1 ∀w : ∀v : Φ2 e v f

Φ1 ∃v : ∃w : Φ2 e v f
Swap∃Φ1 ∃w : ∃v : Φ2 e v f

Φ1 ∃x : Φ2 e v f (Φ2 quantifies x or x 6∈ vars(e) ∪ vars(f))
Hide∃Φ1 Φ2 a v b

Φ1 ∀x : Φ2 e v f (Φ2 quantifies x or x 6∈ vars(e) ∪ vars(f))
Hide∀Φ1 Φ2 e v f

it can be used that P (e)
.
.
.

Φ f v g

it can be used that ¬P (e)
.
.
.

Φ f v g
CasesΦ f v g
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5 Proving statements

5.2.4 Admissible
The following rules are all redundant and implied by already defined rules. Nevertheless,
they represent meaningful steps of reasoning as we would like to use them instead of
always applying all their components one by one.
Furthermore, some of them are too complex for our algorithm to infer from the existing

rules. This way we provide powerful rules and at the same time take the responsibility of
proving them away from the algorithm (proofs in section 8.2).

e!∗ f
β

∀ vars(e) ∪ vars(f) : e = f

Ψ f e0 e1 ... en v g
Lift

Ψ f v (Ψ e0 7→ e1 7→ ... 7→ en 7→ g)

Ψ f (Ψ e0 7→ ... 7→ en 7→ g) e0 ... en v g

it can be assumed that ai < >
.
.
.

Ψ f > e0 ... en < >
FixΨ fix f e0 ... en v g

Φ1 ∀x : Φ2 f v g
Weaken∀∃∃x : Φ1 Φ2 f v g

Φ e1 v f Ψ e1 = e2
Combine1∀ vars(e2) : Φ e2 v f

Φ f v e1 Ψ e1 = e2
Combine2∀ vars(e2) : Φ f v e2

The following two rules only work for regular case-expressions (see section 4.6):

Φ1 Φ2
⊔n
i=0 (βi(>, ...){x := >}) v e{x := >} Φ1 ∀v̄0 : Φ2 β0(v̄0){x := α0(v̄0)} v e{x := α0(v̄0)} ...

CaseCombine∀Φ1 ∀x : Φ2 [∀v̄0 : α0(v̄0) 7→ β0(v̄0), ...] x v e

Φ1 ∃v̄i : Φ2 βi(v̄i){x := αi(v̄i)} v e{x := αi(v̄i)}
CaseCombine∃Φ1 ∃x : Φ2 [∀v̄0 : α0(v̄0) 7→ β0(v̄0), ...] x v e

Sometimes, we will simply rewrite a statement into an equivalent one (e.g. applying a
substitution). To emphasize such a step within a proof, we may use the following pseudo-
rule:

statement ≡
equivalent statement
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5.3 Promises emitted by successful proofs

5.3 Promises emitted by successful proofs
5.3.1 Motivation
Recall the evaluation semantics of methods (see section 4.1). Apart from proving whether
pattern matching succeeds (Γ-conditions), we need to calculate the minimum/maximum
of the ∆-sets, should pattern matching succeed (unification).
So far, we have no strategy for calculating these values, but as the following sections

will show, this information can elegantly be determined together with a successful pattern
matching proof.

5.3.2 Unification using > and ⊥
According to the pattern matching rules, we try proving:

• Γ(>,>, ...) when we are afterwards looking for the minimum v̄ satisfying Γ(v̄).

• Γ(⊥,⊥, ...) when we are afterwards looking for the maximum v̄ satisfying Γ(v̄).

To express these “deferred” intentions, we annotate > and ⊥ with the unification variable
we would afterwards like to determine (e.g. >v or ⊥v). The fact that we annotate the
variables has no influence on evaluation semantics or deduction rules.

We now investigate how we could extract exactly the information we are later looking
for from successful proofs of Γ(>v0 ,>v1 , ...) or Γ(⊥v0 ,⊥v1 , ...) . When looking at a proof,
there are only few rules that rely on the fact that ⊥v behaves like ⊥ or >v behaves like
>. These rules are:

>
Note that a statement e v >v does not require >v ≡ >. In other words, it would
still be provable if we had used v instead of >v, as long as e v v holds. Each time
this rule is applied, we therefore emit e as a lower bound for v.

⊥
Note that a statement ⊥v v e does not require ⊥v ≡ ⊥. In other words, it would
still be provable if we had used v instead of ⊥v, as long as v v e holds. Each time
this rule is applied, we therefore emit e as an upper bound for v.

β
The evaluation rules ⊥v e ; ⊥ and >v e ; > rely on >v behaving like > and ⊥v
behaving like ⊥. Reduction of ⊥v e therefore requires v = ⊥ (when assuming we
used v instead of ⊥v all along). The same applies for >.
To pin v to ⊥/>, we emit corresponding upper/lower bounds.

We make the following observations:

• The third rule (β) is emitting information, that is not perfect, i.e it does not attempt
to allow other values of v that might have worked to prove the statement (an example
of this can be found below; section 5.3.4). In other words, information is destroyed
whenever this rule is applied.
The consequences are rather dramatic: In a case where the proof for pattern match-
ing relies on this kind of reasoning, we cannot give the correct answer for how v
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5 Proving statements

must be chosen. Unification fails although pattern matching succeeds. Unfortu-
nately, evaluation must be terminated as the result cannot be determined. The
algorithm should therefore always try to find a proof not relying on this rule.

• Note how the first two rules (> and ⊥) give us a precise lower/upper bound for
v for the proof to still work. There are special cases, though: When looking at
a statement like ⊥a v ⊥b, emitting ⊥ as an upper bound for a would be wrong.
Instead, we would obviously use b. In general, when emitting an upper/lower bound,
subexpressions ⊥x/>x must be substituted by x for all variables x.

• We will need to take a closer look on reliability of bounds emitted by proofs. This will
be done when discussing and formalizing the details of the algorithm (see section
6.5). For now, we are satisfied with roughly knowing which rules emit precise
conditions of annotated variables.

In the successful case (having found a proof with only “safe” rules applied), we can
reliably work with the bounds emitted for v. Note that only lower(upper) bounds of v
are emitted if we prove a statement containing >v(⊥v). As a consequence, there can be
no conflict like having both upper and lower bounds for a variable — that potentially no
expression can respect at the same time.

We observe multiple cases of how many bounds could be emitted for a variable v:

None
This means that indeed any value for v works. When looking for the lowest possible
value for v, we will obviously choose ⊥ and vice versa.

Single
In this case, the perfect value for v is the boundary itself.

Multiple
For v to respect multiple lower bounds at once, choose the supremum of all lower
bounds. By definition of the supremum, it will respect all lower bounds by being
greater (or equal) whilst still being the lowest possible value to do so. The same
applies to upper bounds and taking their infimum.

As it turns out, infimum and supremum operators can also be used when one or zero
bounds are emitted. They will behave exactly as desired.

5.3.3 Summary
For combining pattern matching and unification, prove Γ(>v0 ,>v1 , ...) or Γ(⊥v0 ,⊥v1 , ...) .
Finding a proof means that pattern matching succeeded. Finding a proof that does not
rely on >/⊥-reduction emits precise bounds for unification variables. These boundaries
can be combined using infimum/supremum which gives the final values of all unification
variables.

5.3.4 Examples
The following examples illustrate how information gets emitted by successful proofs as
described above:
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5.3 Promises emitted by successful proofs

a) C ⊥v v C X

The following is a valid proof:

Refl
C v C

emit! ⊥⊥v v X
Comp

C ⊥v v C X

This emits the single upper bound X for v.
As a result of pattern matching for case-expression evaluation, this would result in
the substitution {v := X}.

b) D V W v D >v >v

The following is a valid proof:

Refl
D v D

emit! >
V v >v

emit! >
W v >v

Comp
D V W v D >v >v

This emits the lower bounds V and W for v.
As a result of pattern matching for function evaluation, this would result in the
substitution {v := >} since V tW = >.

c) ⊥v C v C

The following is a valid proof:

⊥ C ; ⊥ emit!
β

⊥v C v ⊥
⊥⊥ v C
Trans⊥v C v C

This emits the the upper bound ⊥ for v. However, note that this result is not valid
for unification, since the proof makes use of the ⊥-reduction rule. In other words ⊥
might not be the greatest possible upper bound for v.
We try an alternative proof:

emit! ⊥
⊥v v (C 7→ C)

Refl
C v C

Comp
⊥v C v (C 7→ C) C

(C 7→ C) C ; C
β

(C 7→ C) C v C
Trans⊥v C v C

This emits the the upper bound (C 7→ C) for v. Indeed, this result is valid for
unification, as no unsafe rules are used: {v := (C 7→ C)}
Also note that this proof is formally incomplete: The reduction used for the β-rule
uses function evaluation. Thus it would require another pattern matching proof of
its own.
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5 Proving statements

5.3.5 General approach
Above approach might appear complex for what it achieves. Basically we are only search-
ing for values of variables that satisfy a given statement — this is what existentially
quantified variables are used for. The subtle but far-reaching difference is in fact that we
are not looking for just any values satisfying the statement, but for the lowest/greatest
ones. The main problem lies with our definition of a provable statement: It lacks any way
to associate such extra requirements with existentially quantified variables.

Using annotated > and ⊥ on the other hand naturally leads to a kind of proof that
respects these extra wishes by emitting bounds for annotated variables. As we will see
in section 6.5.3, this approach is indeed just a special case of a procedure that we will
introduce to solve a much more general problem.

5.4 Proving different types of statements
Note that so far we have only presented the building blocks for proving statements of
a very certain shape (a v b and thus also a = b). Indeed, this is not the only kind of
statement we are dealing with:

• To ensure that pattern matching definitely fails (when evaluating a function or
case-expression), we have to disprove a well-formed statement.

• The Fix rule requires us to prove <. Fortunately, this can be reduced to proving
and disproving one well-formed statement, as

e < f ⇐⇒ e v f ∧ ¬(f v e)

5.4.1 Approach
A similar approach as in the previous section (5.3) about promises emitted by successful
proofs can be taken.

Disproving a well formed statement is indeed possible when no weakening rules have
been applied (i.e. no assumptions were made), and the statement is obviously incorrect
(e.g. different data constructors are compared). The details of this will also be discussed in
the definition of the algorithm (see section 6). Basically, passing a well-formed statement
to the algorithm will always emit as much information about it as possible.

5.5 Examples of true/provable statements
Proofs for the following statements can be found in the appendix (section 8.3).

∃n0, j0 : ∀x : (∀n : n 7→ (∀j : j 7→ [N 7→ n,∀s : J s 7→ j s])) n0 j0 x v x

∃x : ∀n0, j0 : (∀n : n 7→ (∀j : j 7→ [N 7→ n, ∀s : J s 7→ j s])) n0 j0 x v n0

∃f : ∀l : fix (∀r : r 7→ (∀g : g 7→ [E 7→ E,∀h, t : C h t 7→ C (g h) (r g t)])) f l v l
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5.5 Examples of true/provable statements

fix (∀x : x 7→ x,> 7→ C) = ⊥

fix ⊥ = ⊥

fix > = >

fix (> 7→ ⊥) = ⊥

fix (⊥ 7→ >) = >

fix (> 7→ >) = >
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Recall the overall interface of the algorithm as defined in section 5.1.
It turns out that for every proof found, we can simply transform the claim into a witness

according to the assumptions about variables made in the proof. In other words, if at any
point in the proof we used the rule Weaken∃, the existentially quantified variable needs
to be substituted accordingly. Otherwise, it can be promoted.

6.1 Challenges
For building a deterministic algorithm, there are a number of challenges we have to face:

• Whether a pair of expressions is in relation v or ; is undecidable (see section
4.4). Although the algorithm works with these relations, termination must still be
guaranteed.

• Finding proofs means applying deduction rules backwards. Rules like Trans have
infinitely many ways to apply backwards. In other words, we have to be very smart
about what rules to apply, and how.

• Note that most rules only work with statements that are free of existentially quan-
tified variables. Also, there is no rule turning existentially quantified variables into
universally quantified ones.
As a result, all proofs can be divided into two parts: Proving a statement with only
universally quantified variables and then weakening it into one with existentially
quantified variables.
Since the algorithm searches for proofs starting from the conclusion, this is a bad
property: a generalization of the statement (reverse application of weakening rules)
would be performed before having a proof of the resulting statement (premise). As
there are usually a lot of ways to generalize a statement, the algorithm must be
careful to find those it can afterwards prove.

• It might be the case that at some point during the process, the algorithm may
be unable to prove or disprove a statement (for example in the context of pattern
matching). In this case, we might still be able to go on with the proof: Using
conservative approximations (see section 6.7).

• It must be possible to get guarantees about the minimality/maximality of instances
found for existentially quantified variables (see section 5.3).

• It must be possible to disprove a statement (see section 5.4).

• We are interested in witnesses that are as general as possible, as the resulting rewrite
rules are the most powerful. Furthermore, there is no point in returning witnesses
implied by another (therefore more general) witness.
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6.2 Most general output
One can imagine that a valid output statement may actually imply other valid statements
if they are more specific. As statements implied by another statement are redundant (in
terms of acting as rewrite-rules), it is desirable to only emit the most general statement
and omit the implied ones.

6.2.1 Examples
Input Possible output Remarks
∃b : ∀a : b a v a ∀a : (∀x : x 7→ x) a v a A concrete expression for b was

found.
∃b : ∀a : a b v a b ∀b, a : a b v a b b could be promoted.
∃b : ∀a : a b v a b ∀a : a C v a C A concrete expression for b was

found. Promoting b would have
been more desirable, though.

6.3 Dealing with undecidability
There are several situations where we are trying to normalize an expression (e.g. to re-
liably prove/disprove equality or v). Whenever reducing expressions, we must therefore
limit the number of performed reduction steps. As soon as this limit is reached, evalua-
tion is simply aborted (without information gain). So whatever caused the algorithm to
perform a reduction that was aborted cannot draw any conclusion from it.

6.4 Formalization of input and output
With all the additional things we now expect the algorithm to do (or at least try), it
makes sense to review and summarize the interface of our algorithm.

6.4.1 Required features
• Try to prove the provided statement. On success: Return what to do with existen-
tially quantified variables (promote or substitute).

• Try to disprove the provided statement.

• If desired, find the lowest/greatest value for an existentially quantified variable. We
generalize the approach elaborated in section 5.3, i.e. going back to using existen-
tially quantified variables instead of annotated >/⊥. On success: Return bounds of
existentially quantified variables and whether precision of those boundaries can be
guaranteed.

6.4.2 Encoding
The input is a statement to be analyzed. The output on the other hand can have one of
the following shapes:

Unknown
The algorithm could neither prove nor disprove the statement.
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True (+ set of bounds of variables with “precision”-flags)
The statement could be proved. Witnesses can be constructed using the bounds.

False
The statement could be disproved.

6.5 Not losing information
As mentioned several times before the key of giving promises (going beyond confirmation
of a statement) is not losing information in the process of proving. This is what “losing
information” means intuitively:

• Applying a weakening rule to a provable statement s might result in a statement s′
that is not provable. Disproving s′ is therefore not sufficient for disproving s, because
we lost the information that we actually wanted to prove something weaker.

• Applying rules like Trans/Comp can split a provable statement into statements
(premises) with at least one unprovable one. In other words, we lost the information
that we actually wanted to prove a combination of all those statements.

Not losing information demands usage of only logical implications, i.e. rules where the
premise(s) are all implied by the conclusion. We call those rules safe. Formally, disproving
one of the premises of a safe rule is therefore sufficient to disprove the conclusion:

conclusion =⇒ premise1 ∧ premise2 ∧ ...
iff

¬premise1 ∨ ¬premise2 ∨ ... =⇒ ¬conclusion

6.5.1 Safe deduction rules
Let’s analyze our rules in terms of their ability to preserve all information.

Refl, ⊥, >
These rules are safe, because having no premises implicitly guarantees that all
premises are a logical implication of the conclusion.

Trans
These rules are unsafe. As already discussed, having to make a decision about how
to split the statement is based on assumptions lacking proof.

Antisymm, Symm=, η, Introduce∀, Introduce∃, Swap∀, Swap∃
These rules are safe, since we even have deduction rules with the opposite effect
(e.g. Weaken= corresponds to Antisymm).

Comp
This rules is safe when operating on normal forms with constructors or universally
quantified variables as their leftmost expression. Such irreducible statements are in
a relationship iff they can be decomposed into subexpressions that are in the same
relationship.
Counter-example:

⊥ C v (∀x : x 7→ x) ⊥
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β′

This rules is unsafe, as the conclusion is much weaker than the premise.

Weaken=, Weaken∀, Weaken∃, Weaken∀∃ and Swapweaken
These rules are unsafe. As their names suggest, these rules have weaker conclusion
than premise. The same applies to CaseCombine∃, as it is defined using Weaken∃.

Cases
This rules is safe. Even if the predicate P is chosen so poorly that it cannot be
used for proving any of the premises (this is the worst case), the premises are still
provable iff the conclusion is provable.

β
This rules is safe. Equality arises from our evaluation semantics, so the conclusion
implies the premise. Note that safe does not mean, that using the rule guarantees
success: It can easily be impossible for the algorithm to find out whether a !∗ b
holds or not. This is only guaranteed to work if a and b are in normal form, and
likely to work if they at least have a normal form.

Lift, CaseCombine∀
This rules is safe. Consists only consists of safe rules (see proof in section 8.2).

Fix
This rules is unsafe. Basically only covers special cases. Counter-example:

fix > v >

is obviously true but violates the second premise.

Combine1 and Combine2
These rules are safe if we already know for sure that e1 = e2. In other words, we
are always allowed to simply “squeeze in” known identities.

Again, a summary of safe deduction rules: Refl, Antisymm, Symm=, ⊥, >, Comp (for
normal forms), η, Swap∀, Swap∃, Cases, β, Lift, Introduce∀, Introduce∃, Combine1/Combine2
(for known identities, e.g. single reduction steps).

6.5.2 Consequences

Reviewing the challenges we are facing, above set of rules are a good start for reasoning
that is free of assumptions. But the problem remains, that existentially quantified vari-
ables must somehow still be replaced/removed at the very beginning of our reasoning.
The deduction rules to replace/remove them are all unsafe (except Introduce∃, but it can
only remove meaningless variables).

Having to apply one of these rules at the very beginning therefore basically turns our
algorithm into a promise-free state immediately.
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6.5.3 Delayed weakening and global restrictions
If unsafe rules eliminate the option of disproving a statement in the same run, weakening
should be delayed as long as possible. Here is an example of an incorrect expression we
would like to be able to disprove:

∀c : ∃a : ∀b : c a b v c b a

Note how the composition rule Comp looks like a good choice, but for a very good
reason it cannot be applied on statements with existentially quantified variables:

Refl
∀c : ∃a : ∀b : c v c

⊥∀c : ∀b : ⊥ v b
Weaken∃ (a := ⊥)

∃a : ∀c : ∀b : a v b
Swapweaken∀c : ∃a : ∀b : a v b

>∀c : ∀b : b v >
Weaken∃ (a := >)

∃a : ∀c : ∀b : b v a
Swapweaken∀c : ∃a : ∀b : b v a misused Comp

∀c : ∃a : ∀b : c a b v c b a

Suddenly the incorrect statement would be provable! This example also makes very
obvious the core problem of applying rules like Comp (or rather any rule that has more
than one premise like Trans) before weakening. One and the same existentially quanti-
fied variable a could be weakened to/substituted by different statements (here: > and ⊥).

In other words, rules like Comp, Trans, Antisymm, Fix or Cases have very good
reason to only work with universally quantified variables: We cannot assume that an ex-
istentially quantified variable appearing in more than one premise is witnessed by the very
same substitution throughout those premises (which is a crucial requirement for joining
them to one and the same variable in the conclusion).

Thus, the key for delaying weakening beyond the use of such rules is to remember the
relationship between existentially quantified variables to prevent conflicting substitutions
like above. We will from now on treat existentially quantified variables as global, so
“knowledge” (like substitutions) used/gained in one part of the proof must be visible to
all parts of the proof. This is achieved by globally storing upper and lower bounds per
existentially quantified variables. These bounds indicate the range of values for the vari-
able to satisfy the statement. We also call those bounds restrictions.

6.5.4 Example
Here, the statement from above (∀c : ∃a : ∀b : c a b v c b a) is disproved reliably using
globally visible restrictions:

• Initial statement: ∀c : ∃a : ∀b : c a b v c b a

• Initial precise restrictions: ⊥ v a v >

• As both expressions are normalized, apply Comp:
– Statement 1: ∀c : ∃a : ∀b : c v c
– Apply Refl
– Statement 1 proved without unprecise assumptions.
– Statement 2: ∀c : ∃a : ∀b : a v b
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– Substitute a := ⊥ (provably within bounds), because a cannot depend on b
(order of quantification). New precise restrictions: ⊥ v a v ⊥

– Statement 2 proved without unprecise assumptions.
– Statement 3: ∀c : ∃a : ∀b : b v a
– Substitute a := > (provably not within bounds).
– Statement 3 disproved.

• Statement disproved.

Note that this very general approach of preventing early weakening also covers the
requirement for reliable promises introduced in section 5.3. Using >/⊥ with annotations
is just a special case of delayed weakening!

6.5.5 Working with global restrictions
Existentially quantified variables are initialized unrestricted, i.e. bounds are initialized
to ⊥ and >. Along with trying to prove a statement, these bounds are updated (using
infimum/supremum). As long as no unsafe rules are used, these bounds are known to
be precise. Updating bounds in a way that would leave no values for the corresponding
variable (i.e. if boundlower v boundupper was violated) leads to immediate cancellation
of the (sub-)proof. If bounds are guaranteed to be precise up to this point, the initial
statement was effectively disproved.

Note that this is the unification of precision as a whole: So far we found two different
goals strongly depending on precision and therefore safety of used rules: giving promises
(section 5.3) and disproving (section 5.4). Now both of these goals are direct implications
of restrictions and their precision:

Promises
If restrictions are precise, simply extract the required boundary.

Disproving
If restrictions are precise and impossible (i.e. unfulfillable by any expression), the
statement is incorrect.

6.6 Internal structure
Above specifications lead to the following internal structure of the algorithm.

6.6.1 Data
• For each existentially quantified variable, there are restrictions stored. They consist
of an upper and lower bound, each with a flag indicating precision.

• There needs to be a flag associated with the overall state of the proof, indicating
whether any unsafe assumptions were made so far. If the current state of the proof
is unsafe all subsequent updates of variable bounds are not precise. Also, trivially
false statements are only a valid disproof of the original statement, if the algorithm
is still in a safe state.
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6.6.2 Proving strategy
Since the algorithm is meant to work deterministically we will finally discuss exactly what
rule to use in which situation. Making an assumption is often connected with making
a (possibly wrong) substitution for one of the existentially quantified variables. Making
such a substitution is only allowed if it respects the boundaries of the corresponding vari-
able.

Notation:

• Whenever it matters, variables are annotated with ∀/∃ to indicate their quantifica-
tion.

• An application in normal form is abbreviated as “ApplicationNF”.

• An application having a universally quantified variable or constructor as its leftmost
expression is abbreviated as “ApplicationNFS”.

• An application with fix as its leftmost expression is written as “ApplicationFIX”.

The following cases are stated with descending priority, which is important as they may
overlap.

⊥ v anything
Use the ⊥-rule.

anything v >
Use the >-rule.

Constructor/>/fix v Constructor/⊥/fix
Use Refl if expressions match (trivial), otherwise fail.

Constructor/>/fix v Variable or

Variable v Constructor/⊥/fix
If the variable is universally quantified, fail. Otherwise, update the corresponding
boundary using the constructor/>/⊥/fix (precise assumption).

Variable v Variable
Pattern: a v b
Several cases exist:
a = b (trivial check)

Use Refl.
a∀ v b∀

Fail.
a∀ v b∃

Update lower bound of b using a if b may depend on a (precise assumption).
Otherwise, update it to > (precise assumption). Recall that an existentially
quantified variable may depend on variables quantified left of them.

a∃ v b∀
Update upper bound of a using b if a may depend on b (precise assumption).
Otherwise, update it to ⊥ (precise assumption).
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a∃ v b∃
Depending on which variable may influence the other (i.e. their order of quan-
tification), update one upper/lower bound of one variable using the other vari-
able (precise assumption).

anything v Method or

Method v anything
Use η combined with Cases (so results of unification are already known).

ApplicationNFS v ApplicationNFS
Use Comp.

ApplicationNFS v Constructor/⊥/fix or

Constructor/>/fix v ApplicationNFS
Fail.

ApplicationNF v Variable or

Variable v ApplicationNF
If the variable is universally quantified and the application does not have a variable
as its leftmost subexpression, fail.
Otherwise: Try substituting the applications leftmost variable with functions ex-
tracting the variable from the applications subexpressions, e.g.:
• (∀x : x 7→ x)
• (∀x̄ : x0 7→ x1 7→ ... 7→ xi)
• (∀x : x 7→ x y) with fresh y
• There are infinitely many possibly useful substitutions. Our algorithm will try
above substitutions, but any implementation trying additional substitutions is
valid.

Otherwise: If the application contains any variable that the variable cannot depend
on, fail.
Otherwise: Update the boundary of the variable using the application (precise as-
sumption).

ApplicationNF v ApplicationNF
Assumptions will be made! Several strategies come to mind:

• Use Comp.
• Try substituting the leftmost variables with functions extracting subexpres-
sions of the applications (see previous case for heuristics).
• Substitute the leftmost variables with functions trivially making the statement
true (e.g. ⊥, >, constant methods).

ApplicationNF v Constructor/⊥/fix or

Constructor/>/fix v ApplicationNF
Assumptions will be made! Several strategies come to mind:
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• Try substituting the leftmost variable with functions extracting the constructor/⊥/fix
from subexpressions of the application.

• Substitute the leftmost variables with functions trivially making the statement
true.

• Use Comp.
• Try substituting the leftmost variables with functions extracting subexpres-

sions of the applications.
• Substitute the leftmost variables with functions trivially making the statement

true.

ApplicationFIX v anything
Assumptions will be made! Try using Fix: If existentially quantified variables
are present, treat them as universally quantified (hoping for a promotion of the
variables) when it comes to applying the Fix-rule. Should they, unfortunately,
be substituted at a later point, the proof must be restarted from at the Fix-rule,
but with the substitution applied. This is due to the fact that Fix has different
premises depending on the set of universally quantified variables (see duplication of
Ψ in section 5.2.4).
If all this fails, go to the next case.

Application v anything or

anything v Application
Try using Combine1/Combine2/CaseCombine∀/CaseCombine∃. This is also the
place for making conservative approximations if none of the above rules work out
(see section 6.7). If nothing succeeds, the correctness of the statement remains
unknown.

6.7 Conservative approximations
In some situations, our algorithm might be unable to apply a safe rule for various rea-
sons. For example, an expression may obviously be reducible, but we cannot perform the
reduction step because required conditions (e.g. pattern matching) cannot be proved:

(C 7→ C X,> 7→ C ⊥) (fix (...)) v C Y

The left expression is obviously a reducible application, but we cannot decide whether
pattern matching succeeds for the first pattern alternative, i.e. if (fix (...)) v C. Whenever
facing evaluation, we can make conservative approximations about the outcome of the
reduction step. As the evaluation is happening on the left side of “v”, a valid conservative
approximation of the result would be anything greater than or equal to the actual result.
Example of an approximation:

(C 7→ C X,> 7→ C ⊥) (fix (...)) v >

leading to
> v C Y

Formally, performing a conservative approximation is applying the Trans rule to the
statement in question:
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(C 7→ C X,> 7→ C ⊥) (fix (...)) v > > v C Y
Trans

(C 7→ C X,> 7→ C ⊥) (fix (...)) v C Y

While this approximation was obviously too conservative (> v C Y cannot be proved),
there exists a better approximation:

(C 7→ C X,> 7→ C ⊥) (fix (...)) v C ⊥

leading to
C ⊥ v C Y

How do we know about this approximation? Recall that function evaluation calculates
the infimum of the results from each of its alternatives. The second alternative’s pattern
obviously matches any argument, so the overall evaluation result is the infimum of an
unknown value and C ⊥. Therefore, the result of evaluation must be lower than or equal
to C ⊥.
Remark: We already found out that Trans is an unsafe rule (see section 6.5.1). Above

example is a witness of this: The premises were chosen poorly so > v C Y turning out
wrong is no disproof of the original statement.

6.8 Example of proving
We will prove the following statement:

∃n0, j0 : ∀x : (∀n : n 7→ (∀j : j 7→ [N 7→ n,∀s : J s 7→ j s])) n0 j0 x v x

We start the algorithm, initializing the boundaries of n0 and j0 with ⊥ and > respec-
tively. We are in a safe state. The following steps are performed:

Pattern: Application v anything
Combine1 can be applied:

f1 ≡ (∀j : j 7→ [N 7→ n, ∀s : J s 7→ j s])
f2 ≡ (∀j : j 7→ [N 7→ n0, ∀s : J s 7→ j s])

∃n0, j0 : ∀x : f2 j0 x v x

see 6.8.1
(∀n : n 7→ f1) n0 ; f2

(∀n : n 7→ f1) n0 j0 ; f2 j0

(∀n : n 7→ f1) n0 j0 x; f2 j0 x
β

∀n0, j0, x : (∀n : n 7→ f1) n0 j0 x = f2 j0 x
Combine1∃n0, j0 : ∀x : (∀n : n 7→ f1) n0 j0 x v x

Pattern: Application v anything
Combine1 can be applied:

f1 ≡ [N 7→ n0,∀s : J s 7→ j s]
f2 ≡ [N 7→ n0,∀s : J s 7→ j0 s]
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∃n0, j0 : ∀x : f2 x v x

analogous to 6.8.1
(∀j : j 7→ f1) j0 ; f2

(∀j : j 7→ f1) j0 x; f2 x
β

∀n0, j0, x : (∀j : j 7→ f1) j0 x = f2 x
Combine1∃n0, j0 : ∀x : (∀j : j 7→ f1) j0 x v x

Pattern: Application v anything
CaseCombine∀ can be applied:

∃n0, j0 : ∀s : j0 s v J s ∃n0, j0 : n0 v N
CaseCombine∀∃n0, j0 : ∀x : [N 7→ n0,∀s : J s 7→ j0 s] x v x

Pattern: Variable v Constructor/⊥/fix
Statement:

∃n0, j0 : n0 v N

Update upper bound of n0 to: > uN = N

Pattern: ApplicationNF v ApplicationNF
Assumptions! We are now in an unsafe state. Statement:

∃n0, j0 : ∀s : j0 s v J s

Strategy: Comp

∃n0, j0 : ∀s : j0 v J ∃n0, j0 : ∀s : s v s
Comp

∃n0, j0 : ∀s : j0 s v J s

Pattern: Variable v Variable
Statement:

∃n0, j0 : ∀s : s v s

Case: a = b

Refl
∃n0, j0 : ∀s : s v s

Pattern: Variable v Constructor/⊥/fix
Statement:

∃n0, j0 : ∀s : j0 v J

Update upper bound of j0 to: > u J = J

6.8.1 Evaluation

We need to decide what the following obviously reducible expression reduces to:

(∀n : n 7→ (∀j : j 7→ [N 7→ n,∀s : J s 7→ j s])) n0

Trying to prove successful pattern match:

∀n0 : ∃n : (n0 v n ∧ ∀m : (n0 v m =⇒ n v m))
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This can be achieved when finding a precise lower bound for n when proving

∀n0 : ∃n : n0 v n

This statement has the pattern Variable v Variable with subcase a∀ v b∃. As a result,
the lower bound of n is updated to ⊥ t n0 = n0.
No assumptions were made, the algorithm was still in a safe state when updating the

lower bound of n so the lower bound n0 is guaranteed to be precise. Pattern matching was
therefore successful and the substitution {n := n0} is applied to the pattern alternative’s
RHS

(∀j : j 7→ [N 7→ n, ∀s : J s 7→ j s])

leading to
(∀j : j 7→ [N 7→ n0,∀s : J s 7→ j s])

6.8.2 Check restrictions

Restrictions:
⊥ v

(precise)
n0 v

(precise)
N

⊥ v
(precise)

j0 v J

Resulting statements to prove:
⊥ v N

⊥ v J

Obviously true. Boundaries are valid.

6.9 Example of disproving
We will disprove the following statement:

∀a : ∃x : P x Y v P a x

We start the algorithm, initializing the boundaries of x with ⊥ and > respectively. We
are in a safe state. The following steps are performed:

Pattern: ApplicationNFS v ApplicationNFS
Statement:

∀a : ∃x : P x Y v P a x

Comp can be applied:

∀a : ∃x : P v P ∀a : ∃x : x v a ∀a : ∃x : Y v x
Trans∀a : ∃x : P x Y v P a x

Pattern: Constructor/>/fix v Constructor/⊥/fix
Statement:

∀a : ∃x : P v P

Refl can be applied:
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Refl
∀a : ∃x : P v P

Pattern: Variable v Variable
Statement:

∀a : ∃x : x v a
Case: a∃ v b∀ Update upper bound of x using a since x may depend on a. New
upper bound: > u a = a

Pattern: Constructor/>/fix v Variable
Statement:

∀a : ∃x : Y v x
Update lower bound of x using Y . New lower bound: ⊥ t Y = Y

6.9.1 Check restrictions
Restrictions:

Y v
(precise)

x v
(precise)

a

Resulting statements to prove:
∀a : Y v a

Pattern: Constructor/>/fix v Variable
Fail, because a is universally quantified. Proof was in safe state, so statement is
disproved.

The restriction is precise but impossible. The overall statement is disproved.

6.10 Finding rewrite rules
Recall that our main goal is finding rewrite rules of the following form (see section 1.2)
for given definition of f :

f ... e ... = e

As it turned out, we will really search for proofs of

f ... e ... v e

as it allows us to reason about things that we cannot have full knowledge about (see
section 3.1).

6.10.1 Strategy
Given a function definition f , we will also need the arity n of the function. Then we will
execute the algorithm against the following statements:

∃a0, a1, ..., an : f a0 a1 ... an v a0

∃a0, a1, ..., an : f a0 a1 ... an v a1

.

.

.

∃a0, a1, ..., an : f a0 a1 ... an v an
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6.10.2 Interpretation of results
After getting results back from our algorithm for above statements, we have to interpret
them to create statements with only universally quantified variables (i.e. rewrite rules).
For each existentially quantified variable:

• If it’s boundaries are untouched (i.e. still ⊥ and >), promote it to a universally
quantified variable.

• Otherwise, choose an arbitrary expression e respecting the boundaries and substitute
the variable with e.

6.10.3 Relevant output
Recall that we introduced >/⊥ (together with v, see section 3) to enable reasoning about
expressions we do not have full knowledge about. The source language is likely to have
no equivalent counterpart for these expressions.

In other words: We have no use for output statements containing > or ⊥, whereas both
are perfectly legal to appear during calculations leading to that output.
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To wrap everything up, we will now evaluate the capabilities of our algorithm and discuss
future directions.

7.1 Evaluation
Our algorithm is capable of finding fmap id v id (as motivated in section 1.1) for arbi-
trary functor instances, as long as they do not rely on other function definitions we are
not aware of. It has limits, though, which are caused by both the undecidability of some
statements and the algorithm using only heuristics in some situations.

7.1.1 Functors
We are given an arbitrary functor instance (using Haskell syntax):

data F t = A_0 ā0 | A_1 ā1 | ...

with the types āi being an arbitrary combination (with cardinality ci ∈ N0) of t or functor
instances parameterized by t. The corresponding fmap function should then be defined
like this:

fmap f (A_0 x_0_0 x_0_1 ...) = A_0 γ(x_0_0) γ(x_0_1) ...
fmap f (A_1 x_1_0 x_1_1 ...) = ...
...

with γ(x_i_j) =
{

f x_i_j , if ai,j = t
fmap f x_i_j , otherwise

Note that the function fmap used here references a different function, depending on the
type ai,j of x_i_j. We do not know their definition, except for ai,j being of type F t, as
we are currently looking at the corresponding function. We therefore assume that each
ai,j is either t or F t. In the following, we translate fmap into our language using a
regular case-expression and anonymous recursion:

fmap ≡ fix (∀r : r 7→
(∀f : f 7→ [ ∀x̄0 : A0 x̄0 7→ A0 γ

′(x0,0) γ′(x0,1) ...
, ∀x̄1 : A1 x̄1 7→ A1 ...

, ... ]))

with γ′(xi,j) =
{
f xi,j , if ai,j = t
r f xi,j , if ai,j = F t
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Our first goal is to prove fmap (∀x : x 7→ x) v (∀x : x 7→ x) using our deduction rules.
Afterwards we will show that not only is our algorithm able to perform this proof but
will also find the statement when given the pattern

∃a, b : fmap a b v b

(see section 6.10 for discussion). Note that the resulting witness would be

∀e : fmap (∀x : x 7→ x) e v e

, which is η-equivalent to

fmap (∀x : x 7→ x) v (∀x : x 7→ x)

.

Proof

>
... v >

Refl
∀x̄0 : A0 x̄0 v A0 x̄0 ...

CaseCombine∀∀b : [∀x̄0 : A0 x̄0 7→ A0 x̄0, ...] b v b (see below)
Combine1∀b : (∀r : r 7→ ...) (∀b : (∀x : x 7→ x) 7→ b 7→ b) (∀x : x 7→ x) b v b (omitted)

Fix
∀b : fmap (∀x : x 7→ x) b v b

Weaken∀∃,Weaken∃∃a, b : fmap a b v b

We now proof the equality used for the Combine1 rule:

(∀r : r 7→ ...) (∀b : (∀x : x 7→ x) 7→ b 7→ b) (∀x : x 7→ x) b
;∗ [ ∀x̄0 : A0 x̄0 7→ A0 γ

′(x0,0) γ′(x0,1) ...
, ∀x̄1 : A1 x̄1 7→ A1 ...

, ... ]

with γ′(xi,j) =
{

(∀x : x 7→ x) xi,j , if ai,j = t
(∀b : (∀x : x 7→ x) 7→ b 7→ b) (∀x : x 7→ x) xi,j , if ai,j = F t

= xi,j

This results in the expression [∀x̄0 : A0 x̄0 7→ A0 x̄0, ...].

Algorithm

Input statement:
∃a, b : fmap a b v b

Note that we are initially in an “ApplicationFIX v anything” situation (see section
6.6.2), so there will be assumptions made. As a result, we are in an unsafe state and
unable to disprove the statement or make precise guarantees — fortunately, neither is
required in our case.

We start the algorithm, initializing the boundaries of a and b with ⊥ and > respec-
tively. According to the situation we are in, we try using Fix. Note that we assume that
a and b are universally quantified and will need to come back to this point (†), should
this assumption turn out to be wrong.
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Now we need to prove:

∃a, b : (∀r : r 7→ ...) (∀a, b : a 7→ b 7→ b) a b v b
∃a, b : (∀r : r 7→ ...) > a b < >

We omit the proving process of the second statement as it is trivial (reduce the left-
hand side using Combine1 and apply axioms — the algorithm will come up with that).
Due to its shape (Application v anything), the first statement will be processed using
Combine1, resulting in:

∃a, b : [ ∀x̄0 : A0 x̄0 7→ A0 γ
′(x0,0) γ′(x0,1) ...] b v b

with γ′(xi,j) =
{
a xi,j , if ai,j = t
(∀a, b : a 7→ b 7→ b) a xi,j = xi,j , if ai,j = F t

Due to its shape (Application v anything), this statement will be processed using
CaseCombine∀ (note that the algorithm will also try using Combine1 or Combine2 and
possibly find proofs for different statements! We will focus on the execution path leading
to our desired result), resulting in:

... v >
∀x̄0 : A0 x̄0 v A0 γ

′(x0,0) γ′(x0,1) ...
...

The first statement will be processed using the >-rule, the remaining ones using Comp:

∀x̄i : Ai v Ai
∀x̄i : xi,j v γ′(xi,j)

The first set of statements will be processed using Refl, the remaining ones depend on
the types ai,j :

ai,j = F t
The statement (∀x̄0 : xi,j v xi,j) will be processed using Refl.

ai,j = t
The statement (∀x̄0 : xi,j v a xi,j) is of the shape Variable v ApplicationNF. As
a result, a is being substituted with a function extracting xi,j from its arguments:
a := (∀x : x 7→ x). Afterwards, Refl can be applied.

Remark: We are done at this point if F does not make use of its type argument t a single
time (i.e. there is no ai,j = t). In that case, both a and b can be promoted and the wit-
ness ∀a, b : fmap a b v b is emitted. In the following, we assume that there is an ai,j = t.

The substitution a := (∀x : x 7→ x) violates the assumption we took back when ap-
plying Fix (see †), so we need to restart the algorithm from that point, but having the
substitution applied. This time, using Fix requires us to prove

∃b : (∀r : r 7→ ...) (∀b : (∀x : x 7→ x) 7→ b 7→ b) (∀x : x 7→ x) b v b
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which will succeed. b will be promoted and therefore

∀b : fmap (∀x : x 7→ x) b v b

will be emitted as a witness.

We omit this part of the algorithms behavior as it is entirely analogous to the first run.
After applying Comp, all the statements will be provable using Refl this time.

Summary

It is worth noting how the proof tree we found before could also be constructed looking
at the algorithms execution: Ignoring the weakening rules for a moment, the algorithm
traversed and processed the statement in the exact opposite order we applied the rules in
our proof (Fix first, axioms and Refl last). Weakening (or rather the opposite) occurred
in our algorithm in the form of promoting b after no restrictions were made (corresponds
to Weaken∀∃) and substituting a in order to prove some subexpression (corresponds to
Weaken∃).

Also, the bounds of a and b were never touched, because no rule leading to an update
was used.

7.1.2 λ-calculus

Recall how ordinary λ-calculus terms correspond to terms of our language (see section
4.3). Suppose we apply our algorithm to a statement, with expressions obtained from
λ-calculus terms. We would transform back returned witness statements, or drop them,
should the transformation fail.

We will now shortly investigate the shape of witnesses and discuss in which cases the
reverse transformation will fail:

Starting from a statement that contains only expressions that can be transformed back
to λ-calculus, our algorithm will never introduce case-expressions (as there is no deduc-
tion rule introducing a case-expression in one of its premises). Likewise, data constructors
or fix will never be introduced by any rule. Note that Fix is the only rule introducing
a pattern function — it will never be applied though, as fix will never appear in any
expression. All in all, no methods with multiple pattern alternatives are introduced, so
the only kind of method that could appear in a witness is the one matching λ-abstractions.

This already leaves us with only two language features that we cannot transform back:
⊥ and >. They may emerge as an evaluation result of pattern methods, using Fix or
using CaseCombine∀. As neither of these situations can occur (according to our previous
reasoning), they will not be introduced.
Note that witnesses containing ⊥ or > would not be returned anyway (see section

6.10.3). Still, it is worth noting that applying deduction rules (backwards) will not intro-
duce them in the first place.

To sum up, our algorithm is qualified to effectively operate on statements originating
from the λ-calculus, as it will never make use of additional features of our dialect. This
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reflects the fact that our semantics are consistent with those of the λ-calculus and that
the language is therefore a proper extension of it.

7.1.3 Limitations
Our approach has a number of limitations and weaknesses we will describe in this section.

Finding substitutions

In some situations, the algorithm is forced to make a substitution for an existentially
quantified variable, e.g. for statements like

∃a : ∀b : b v a b
(see section 6.6.2).

With such substitution being an assumption, we are not only eliminating our ability
to disprove the statement reliably (should the subsequent statement be disproved), but
also cannot ensure that it leads to a successful proof (should the original statement be
provable).

In above statement, our algorithm will (among other things) substitute a with (∀x :
x 7→ x), leading to a successful proof.

In contrast,
∃a : ∀b, c : a b (∀x : x 7→ c) v a c (∀x : x 7→ x)

is true for a substitution like
a := (∀x, y : x 7→ y 7→ y x)

whereas our algorithm (recall strategy for ApplicationNF v ApplicationNF) will just
come up with a := ⊥, a := > and a := (∀x, y : x 7→ y 7→ c) for some constant c.

Disproving statements

There are a number of rules that put the algorithm in an unsafe state (one of them being
Fix, as seen in the previous section about functors). As a result, we are often unable to
reliably disprove a given statement.
Certainly, more effort could be put into disproving statements (e.g. an approach similar

to stuck theory Tstk introduced in [8]). We put more effort into proving than disproving
due to the fact that the latter is rarely required:
The algorithm is required to disprove a well-formed statement in the context of method

evaluation and Fix (to prove a v b). Method evaluation can only fail when dealing with
methods with patterns.

Functions with patterns are rare (recall our main motivation to introduce them in the
first place; section 2.2) and particularly occur in the context of applying the Fix rule to a
statement. Fortunately, in this context we are mainly interested in reliably deciding that
patterns do match (see typical example in section 7.1.1 about functors).
Case-expressions with patterns, on the other hand, are nothing uncommon. The admis-

sible CaseCombine rules help with this issue, as they cover common cases of statements
containing case-expressions (they take away the responsibility of pattern matching proofs
entirely; see section 5.2.4).
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Termination

The fact that we deal with undecidability by aborting evaluation after a number of steps
(see section 6.3) bears the risk of aborting the evaluation of an expression with normal
form.
In other words, our approach of enforcing termination of the algorithm may cause it to

fail proving an otherwise provable statement.

Universality

The algorithm we defined in this work is not very universal in its proving capabilities,
but instead influenced a lot by our original goal to find rewrite rules. An example of this
is our treatment of statements containing fix:
We have not defined a deduction rule for dealing with a statement having fix in its

right-hand side. In other words, there is no equivalent of Fix (although we could define
one, Fix is admissible after all).
Another example is our extra treatment of case-expressions in the form of CaseCombine-

rules, although the same reasoning would apply to functions — case-expressions are simply
the more common case.

7.2 Future Work
As it was the main motivation of this work, one of our goals is to implement this algorithm
as an extension of GHC. The algorithm would be executed for every compiled function,
emitting the corresponding rewrite rules in the right place (for future compilations to find
and use them).

We are also investigating the ways a type system could benefit our analysis. Important
aspects are the early rejection of impossible statements or type driven heuristics (e.g.
when searching for a substitution for an existentially quantified variable as in section
7.1.3).

Other than that, this work might turn out useful in any scenario that requires estimation
of the behavior of expressions involving guarded recursion, pattern matching and unknown
or divergent subexpressions.
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8.1 Monotonicity

We now prove the Monotonicity rule (introduced in section 3.4):

f v g =⇒ e f v e g

We will do so via induction on the expression e:

8.1.1 Data constructor

Constructors obey the rule by definition (Constructor rule, see section 3.3).

8.1.2 Top/Bottom

⊥ e; ⊥
β

⊥ e v ⊥
⊥ f ; ⊥

β
⊥ v ⊥ f

Trans⊥ e v ⊥ f

> e; >
β

> e v >
> f ; >

β
> v > f

Trans> e v > f

8.1.3 Fixed-point combinator

We prove that

fix = (∀f : f 7→ (∀x : x 7→ f (x x)) (∀x : x 7→ f (x x)))

. As a result, the monotonicity of fix is implied by the monotonicity of functions (see
section 8.1.5).

∀f : f (f (f ...)) = f (f (f ...))
.
.

Combine1, Combine2.
∀f : fix f = (∀x : x 7→ f (x x)) (∀x : x 7→ f (x x))

Combine2∀f : fix f ē = (∀f : f 7→ (∀x : x 7→ f (x x)) (∀x : x 7→ f (x x))) f
η

fix = (∀f : f 7→ (∀x : x 7→ f (x x)) (∀x : x 7→ f (x x)))

53



8 Appendix

8.1.4 Substitution of a pattern alternative-bound variable
For proving consistency of functions and case-expressions, the following implication will
be required:

a v b =⇒ e{v := a} v e{v := b}

A very important aspect is the fact that e is from inside a pattern alternative that
binds v. This guarantees that e does not have a pattern alternative that freely contains
v in its LHS as a subexpression (see section 2). We will rely on this fact (and without it,
above implication would really be false).
We will prove the implication using structural induction on e:

Variable
If e = v:

a v b ≡
e{v := a} v e{v := b}

If e 6= v:

Refl
e v e ≡

e{v := a} v e{v := b}

Data constructor, >, ⊥ or fix

Refl
e v e ≡

e{v := a} v e{v := b}

Function or case-expression

inductive
∀x : (e x){v := a} v (e x){v := b}

≡ (†)
∀x : e{v := a} x v e{v := b} x

η
e{v := a} v e{v := b}

The statement above and below † are equivalent: Recall that we are guaranteed
that e does not contain v freely in the patterns of any of its pattern alternatives.
Therefore pattern matching is independent from the value of v and not influenced
by the substitution. As a result, it does not matter if you apply the substitution to
the pattern alternative before or after reduction.

Application
Assumption: e = f g

inductive
f{v := a} v f{v := b}

inductive
g{v := a} v g{v := b}

Comp
f{v := a} g{v := a} v f{v := b} g{v := b}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e{v := a} v e{v := b}
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8.1 Monotonicity

8.1.5 Function/Cases containing a single alternative
Function

(statement1) (statement2)
Cases with P (b) = b matches ρ(v̄) with v̄ := v̄b(∀v̄ : ρ(v̄) 7→ θ(v̄)) a v (∀v̄ : ρ(v̄) 7→ θ(v̄)) b

P (a)

(∀v̄ : ρ(v̄) 7→ θ(v̄)) a; θ(v̄a)
β

(∀v̄ : ρ(v̄) 7→ θ(v̄)) a v θ(v̄a)

a v b
P (b)

b v ρ(v̄b)
Trans

a v ρ(v̄b)
P (a)

v̄a v v̄b see 8.1.4
θ(v̄a) v θ(v̄b)

P (b)

(∀v̄ : ρ(v̄) 7→ θ(v̄)) b; θ(v̄b)
β

θ(v̄b) v (∀v̄ : ρ(v̄) 7→ θ(v̄)) b
Trans

(∀v̄ : ρ(v̄) 7→ θ(v̄)) a v (∀v̄ : ρ(v̄) 7→ θ(v̄)) b
≡

(statement1)

>
(∀v̄ : ρ(v̄) 7→ θ(v̄)) a v >

¬P (b)

(∀v̄ : ρ(v̄) 7→ θ(v̄)) b; >
β (†)

> v (∀v̄ : ρ(v̄) 7→ θ(v̄)) b
Trans

(∀v̄ : ρ(v̄) 7→ θ(v̄)) a v (∀v̄ : ρ(v̄) 7→ θ(v̄)) b
≡

(statement2)

We have used P (a) in the part of the proof where only P (b) is known to be true.
This is legitimate:

a v b
P (b)

≡
b v ρ(v̄b)

Trans
a v ρ(v̄b)

Weaken∃∃v̄a : a v ρ(v̄a) ≡
P (a)

Case-expression
The proof is analogous to above proof for a function.

8.1.6 Function/Cases containing multiple alternatives
We prove the property for functions with two pattern alternatives. The proofs for case-
expressions and methods with more than two alternatives are analogous.

(statement1) (statement2)
def. of infimum (∀c : (c v a ∧ c v b) =⇒ c v a u b)

(m1) a u (m2) a v (m1) b u (m2) b
def. of function evaluation

(m1,m2) a v (m1,m2) b
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(m1) a u (m2) a v (m1) a
a v b

8.1.5
(m1) a v (m1) b

Trans
(m1) a u (m2) a v (m1) b

≡
(statement1)

(m1) a u (m2) a v (m2) a
a v b

8.1.5
(m2) a v (m2) b

Trans
(m1) a u (m2) a v (m2) b

≡
(statement2)

8.1.7 Consequences of allowing alternative’s pattern-variables to be bound
by other pattern alternatives

The following expression would now be legal:

e = (∀x : x 7→ (x 7→ ⊥) >)
Note how x in the LHS of the inner pattern alternative is bound by the outer pattern
alternative. We observe the following reduction behavior:

e ⊥; (⊥ 7→ ⊥) >; >
e >; (> 7→ ⊥) >; ⊥

This allows us to prove:

e ⊥;∗ >
β

> v e ⊥

Refl
e v e ⊥⊥ v >

Comp
e ⊥ v e >

e >;∗ ⊥
β

e > v ⊥
Trans> v ⊥ ⊥⊥ v >

Antisymm
> = ⊥

This would imply equality of all expressions! The root of the problem is the contravariance
of the function “constructor” in its pattern-expression:

p1 v p2 =⇒ (p1 7→ e) w (p2 7→ e)
Proof (quantifiers for free variables of e, p1 and p2 omitted):

(statement1) (statement2)
Cases with P (x) = x v p1∀x : (p2 7→ e) x v (p1 7→ e) x
η

(p2 7→ e) v (p1 7→ e)

x v p1 p1 v p2
Trans

x v p2

(p2 7→ e) x; e
β

∀x : (p2 7→ e) x v e

x v p1

(p1 7→ e) x; e
β

∀x : e v (p1 7→ e) x
Trans

∀x : (p2 7→ e) x v (p1 7→ e) x
≡

(statement1)
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8.2 Proofs for admissible rules

>
∀x : (p2 7→ e) x v >

¬(x v p1)

(p1 7→ e) x; >
β

∀x : > v (p1 7→ e) x
Trans

∀x : (p2 7→ e) x v (p1 7→ e) x
≡

(statement2)

8.2 Proofs for admissible rules
8.2.1 Lift

(statement1) (statement2)
Cases with P (x̄) = x̄ v ē{... := >}

∀x̄ : Ψ f x̄ v (Ψ e0 7→ ... 7→ en 7→ g) x̄
η

Ψ f v (Ψ e0 7→ ... 7→ en 7→ g)

∀x̄ : Ψ f x̄ v g

x̄ v ē{... := >}

∀x̄ : (Ψ e0 7→ ... 7→ en 7→ g) x̄; g
β

∀x̄ : g v (Ψ e0 7→ ... 7→ en 7→ g) x̄
T rans

∀x̄ : Ψ f x̄ v (Ψ e0 7→ ... 7→ en 7→ g) x̄
≡

(statement1)

>∀x̄ : Ψ f x̄ v >

¬(x̄ v ē{... := >})

∀x̄ : (Ψ e0 7→ ... 7→ en 7→ g) x̄; >
β (†)

> v (Ψ e0 7→ ... 7→ en 7→ g) x̄
T rans

∀x̄ : Ψ f x̄ v (Ψ e0 7→ ... 7→ en 7→ g) x̄
≡

(statement2)

Remark: The β reduction rule marked with † is a good example of our strong require-
ment of functions evaluating to > when pattern matching fails.

8.2.2 Fix
(statement1) Ψ f (Ψ e0 7→ ... 7→ en 7→ g) ē v g

TransΨ fix f ē v g

(statement2)
Refl

Ψ e0 v e0 ...
Comp

Ψ fix f ē v f (Ψ e0 7→ ... 7→ en 7→ g) ē
≡

(statement1)

57



8 Appendix

fix f ; f (fix f)
β

Ψ fix f v f (fix f)

Refl
Ψ f v f

Ψ fix f ē v g
Lift

Ψ fix f v (Ψ e0 7→ ... 7→ en 7→ g)
Comp

Ψ f (fix f) v f (Ψ e0 7→ ... 7→ en 7→ g)
Trans

Ψ fix f v f (Ψ e0 7→ ... 7→ en 7→ g)
≡

(statement2)

Note that this proof is recursive. The extra condition Ψ f > e0 e1 ... en < > (simpli-
fication of Ψ f > e0 e1 ... en < > e0 e1 ... en) ensures that for an existing fixed point
(represented by >) and all possible arguments (e0 .. en) one application of f actually
performs an operation. In other words, each application of f narrows down the set of
possible fixed-points passed in (> representing the set of all fixed-points).

8.2.3 Weaken∀∃
We choose a distinct, fresh data constructor C.

Φ1 ∀x : Φ2 e v f
Weaken∀Φ1 Φ2 e{x := C} v f{x := C}
Weaken∃∃x : Φ1 Φ2 e v f

8.2.4 Combine1

Let the statement
Ψ′ e1{subst} v f{subst}

be the witness of
Φ e1 v f

, therefore only containing universally quantifies variables that arise from substitutions
{subst} or promotions of existentially quantified variables.

Ψ e1 = e2
Symm=Ψ e2 = e1

Ψ e2{subst} = e1{subst}
Weaken=Ψ e2{subst} v e1{subst}
Introduce∀∗Ψ Ψ′ e2{subst} v e1{subst}

Ψ′ e1{subst} v f{subst}
Introduce∀∗, SwapweakenΨ Ψ′ e1{subst} v f{subst}
Trans

Ψ Ψ′ e2{subst} v f{subst}
Weaken∃∗Ψ Φ e2 v f

Hide∀/Hide∃∗∀ vars(e2) : Φ e2 v f

8.2.5 Combine2

Analogous to Combine1.
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8.2 Proofs for admissible rules

8.2.6 CaseCombine∃

mi ≡ [∀v̄i : αi(v̄i) 7→ βi(v̄i)]

Φ1 ∃v̄i : Φ2 βi(v̄i){x := αi(v̄i)} v e{x := αi(v̄i)} (evaluation omitted)
Combine1Φ1 ∃v̄i : Φ2 [∀v̄i : αi(v̄i) 7→ βi(v̄i){x := αi(v̄i)}] αi(v̄i) v e{x := αi(v̄i)}

see below
Φ1 ∃v̄i : Φ2 (mi αi(v̄i)){x := αi(v̄i)} t ([...remaining...] αi(v̄i)){x := αi(v̄i)} v e{x := αi(v̄i)}

Weaken∃ (x := αi(v̄i))Φ1 ∃x : ∃v̄i : Φ2 (mi x) t ([...remaining...] x) v e
Hide∃∗Φ1 ∃x : Φ2 (mi x) t ([...remaining...] x) v e

def. of evaluation
Φ1 ∃x : Φ2 [∀v̄0 : α0(v̄0) 7→ β0(v̄0), ...] x v e

Above, at one point we make use of the resulting alternative’s regularity: We know that
αi(v̄i) matches the pattern of the ith alternative (perfectly). Thus it is an expression in
normal form and with a constructor as leftmost subexpression. This cannot match any
other alternative’s pattern since constructors are pairwise distinct (see section 4.6 about
regular methods).

8.2.7 CaseCombine∀

m ≡ [∀v̄0 : α0(v̄0) 7→ β0(v̄0), ...]

(statement1) (statement2)
Cases with P (x) = (x = >)

Φ1 ∀x : Φ2 m x v e

Φ1 Φ2
⊔n
i=0 (βi(>, ...){x := >}) v e{x := >} (evaluation omitted)

Combine1Φ1 Φ2 m{x := >} > v e{x := >}
≡

(statement1)

(statement3) (statement4)
Cases with P (x) = (α0(v̄0) v x)

Φ1 ∀x : Φ2 m x v e ≡
(statement2)

Φ1 ∀v̄0 : Φ2 β0(v̄0){x := α0(v̄0)} v e{x := α0(v̄0)}
we know that x = α0(v̄0) for some v̄0Φ1 ∀x : Φ2 m x v e

(statement3)
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...

⊥Φ1 ∀x : Φ2 ⊥ v e (evaluation omitted)
Combine1Φ1 ∀x : Φ2 [] x v e

we end up with a case with an empty case-expression.
.
.

Cases, analogous to below cases, for all alternatives
Φ1 ∀x : Φ2 [∀v̄1 : α1(v̄1) 7→ β1(v̄1), ...] x v e

we know that x 6= α0(v̄0) for any v̄0Φ1 ∀x : Φ2 m x v e ≡
(statement4)

Again, we make heavy use of the regularity of the resulting case-expression (see section
4.6).

8.3 Proofs for example statements
Statement: ∃x : ∀n0, j0 : (∀n : n 7→ (∀j : j 7→ [N 7→ n,∀s : J s 7→ j s])) n0 j0 x v n0

Refl
∀n0, j0 : n0 v n0

Combine1∀n0, j0 : [N 7→ n0,∀s : J s 7→ j0 s] N v n0
Combine1∗∀n0, j0 : (∀n : n 7→ (∀j : j 7→ [N 7→ n,∀s : J s 7→ j s])) n0 j0 N v n0
Weaken∃∃x : ∀n0, j0 : (∀n : n 7→ (∀j : j 7→ [N 7→ n, ∀s : J s 7→ j s])) n0 j0 x v n0

Statement: ∃n0, j0 : ∀x : (∀n : n 7→ (∀j : j 7→ [N 7→ n,∀s : J s 7→ j s])) n0 j0 x v x

>
N t (J >) v >

Refl
N v N

Refl
∀s : J s v J s

CaseCombine∀∀x : [N 7→ N, ∀s : J s 7→ J s] x v x
Combine1∗∀x : (∀n : n 7→ (∀j : j 7→ [N 7→ n, ∀s : J s 7→ j s])) N J x v x

Weaken∃∗∃n0, j0 : ∀x : (∀n : n 7→ (∀j : j 7→ [N 7→ n, ∀s : J s 7→ j s])) n0 j0 x v x

Statement: ∃f : ∀l : fix (∀r : r 7→ (∀g : g 7→ [E 7→ E,∀h, t : C h t 7→ C (g h) (r g t)])) f l v
l

m ≡ (∀r : r 7→ (∀g : g 7→ [E 7→ E,∀h, t : C h t 7→ C (g h) (r g t)]))
i ≡ (∀x : x 7→ x)

statementind

l < > 4.6
∀l : [E 7→ E,∀h, t : C h t 7→ C h >] l v >

Combine1∗∀l : m > i l v >
Fix∀l : fix m i l v l

Weaken∃∃f : ∀l : fix m f l v l
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>
E t (C > >) v >

Refl
E v E

Refl
∀h, t : C h t v C h t

CaseCombine∀∀l : [E 7→ E,∀h, t : C h t 7→ C h t)] l v l
Combine1∗∀l : [E 7→ E,∀h, t : C h t 7→ C (i h) ((∀l : i 7→ l 7→ l) i t)] l v l

Combine1∀l : (∀g : g 7→ [E 7→ E,∀h, t : C h t 7→ C (g h) ((∀l : i 7→ l 7→ l) g t)]) i l v l
Combine1∀l : m (∀l : i 7→ l 7→ l) i l v l

≡
statementind

Statement: fix (∀x : x 7→ x,> 7→ C) = ⊥

(∀x : x 7→ x,> 7→ C) ⊥; ⊥ u C = ⊥
β

(∀x : x 7→ x,> 7→ C) ⊥ v ⊥

C < > ≡
> u C < >

Combine1(∀x : x 7→ x,> 7→ C) > < >
Fix

fix (∀x : x 7→ x,> 7→ C) v ⊥

⊥
⊥ v fix (∀x : x 7→ x,> 7→ C)

Statement: fix ⊥ = ⊥

fix ⊥; ⊥ (fix ⊥) ; ⊥
β

fix ⊥ v ⊥ ⊥⊥ v fix ⊥
Antisymm

fix ⊥ = ⊥

Alternative:

⊥ ⊥; ⊥
β

⊥ ⊥ v ⊥
⊥ < >
⊥ > < >

Fixfix ⊥ v ⊥ ⊥⊥ v fix ⊥
Antisymm

fix ⊥ = ⊥

Statement: fix > = >

>fix > v >
fix >; > (fix >) ; >

β
> v fix >

Antisymm
fix > = >

Statement: fix (> 7→ ⊥) = ⊥

⊥
⊥ v fix (> 7→ ⊥)

>
fix (> 7→ ⊥) v >

fix (> 7→ ⊥) ; (> 7→ ⊥) (fix (> 7→ ⊥)) ; ⊥
β

fix (> 7→ ⊥) v ⊥
Antisymm

fix (> 7→ ⊥) = ⊥
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Alternative:

⊥
⊥ v fix (> 7→ ⊥)

>⊥ v >
(> 7→ ⊥) ⊥; ⊥

β
(> 7→ ⊥) ⊥ v ⊥

⊥ < >
(> 7→ ⊥) > < >

Fix
fix (> 7→ ⊥) v ⊥

Antisymm
fix (> 7→ ⊥) = ⊥

Statement: fix (⊥ 7→ >) = >

(⊥ 7→ >) maps everything to >

fix (⊥ 7→ >) ; (⊥ 7→ >) (fix (⊥ 7→ >)) ; >
β

> v fix (⊥ 7→ >)
>

fix (⊥ 7→ >) v >
Antisymm

fix (⊥ 7→ >) = >

Statement: fix (> 7→ >) = >

(> 7→ >) maps everything to >

fix (> 7→ >) ; (> 7→ >) (fix (> 7→ >)) ; >
β

> v fix (> 7→ >)
>

fix (> 7→ >) v >
Antisymm

fix (> 7→ >) = >
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