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Abstract

Interaktive Theorembeweiser helfen nicht nur mathematische Beweise zu formal-
isieren, sondern stellen auch Werkzeuge zur Verfügung, welche Mathematiker:innen
in der Konstruktion und Validierung von mathematischen Beweisen unterstützen
sollen. Eine der entscheidenden Herausforderungen dieser Herangehensweise der
Konstruktion von Beweisen mit Hilfe einer dedizierten Programmiersprache ist es, die
Lesbarkeit und den einfachen Austausch mit Anderen, besonders mit Hilfe statischer
Medien, beizubehalten. In dieser Arbeit wird die Unterstützung des interaktiven
Lean 4 Theorembeweiser in Alectryon implementiert, einem Scripttool ursprünglich
entwickelt für den Coq Theorembeweiser, welches versucht genau diese Heraus-
forderungen anzugehen. Zusätzlich wird die Funktionalität von Alectryon erweitert,
um noch weitere Metainformationen in dessen Ausgabe darzustellen.

Interactive theorem provers do not only help to formalize mathematical proofs,
but they also provide tools to support mathematicians in the construction and
validation of mathematical proofs. One of the critical challenges of this approach
of constructing proofs using a dedicated programming language is maintaining the
readability and shareability of proofs, especially on static media. Therefore this
thesis implements support for the Lean 4 interactive theorem prover in Alectryon,
a script tool initially developed for the Coq theorem prover that tries to address
this challenge. Additionally, Alectryon’s functionality is extended to present more
meta-information in its output.
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1 Introduction
In this chapter, we take a high-level tour over the key topics we need to understand
for this thesis. We begin by looking at the history of mathematical proofs and how
interactive theorem provers can be used to formalize proofs. More specifically, we
make use of the Lean 4 theorem prover [1] and compare an informal and formal
representation of an proof. Meanwhile, we cover multiple aspects on why we aim for
this formalization of mathematical proofs. After that, we evaluate the challenges
this formalization raises, and in doing so, we motivate the problem we try to solve in
this thesis.

1.1 Formalizing mathematical proofs
The roots of mathematics were predominantly chaotic. Initially, there was no common
framework for describing math or even describing what math in itself is. As a result,
different cultures claimed different approaches to mathematical knowledge. However,
Greek philosophers began describing a logic framework in the early years of the
antique. One of the first known kinds of mathematical proof was a deductive method,
which Euclid later used around 300BC to construct an axiomatic framework for the
number system and fundamental geometry [2].

Philosophers and scientist all around the world built upon this fundamental logical
structure of argumentation in the centuries after. The formalization of mathematics
continued on from that point in history to the formalization we now know and use
every day. For example, the first-order logic model developed, which provides us
today with a base framework to construct a wide variety of logical proofs.
Especially in the mid 20th century, when the first computers were introduced

as basic computing machines, a whole new scientific research field was born that
attempted to make use of the computing power of these new machines. As a result,
computers are nowadays used specifically for computational heavy applications
and automation as they are much more efficient and less error-prone than humans
regarding basic mathematical computations. Nowadays, science uses applications
like computer algebra systems to solve computationally heavy problems in calculus,
algebra, or other fields.
Additionally, computers are based on our fundamental understanding of logic

by combining logical gates to produce more intricate functionality. So it was a
natural question to ask if we can use computers to solve logical problems such as
constructing proofs and verifying them [3]. Out of this idea, a handful of tools
originated. Automated theorem provers, also known as ATP, take a mathematical
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problem as their input and attempt to prove it using built-in heuristics by themselves
[4]. Another class of tools are interactive theorem provers, also known as proof
assistants [5]. The aspect that characterizes this class of tools is that instead of
trying to solve a problem solely on their own, they aid and work together with a
human to construct a proof for the problem. We will focus on this class of tools in
this thesis, especially on one implementation of this kind, the Lean 4 theorem prover
[1].

Formal vs Informal Proof
Understanding the difference between a formal and informal proof is a key aspect

for the topic of this thesis. Hence, we will compare both the formal and informal
version of a simple proof, on a high-level, and later in Chapter 2 in more detail. The
example proof may seem trivial at first, but by removing the burden of understanding
the proof itself, we can focus on the representation of the proof instead.

Example 1.1.1 ((Informal) Example Proof). Let A and B each be a statement or
proposition. Then the following statement holds:

A ∨B ⇐⇒ B ∨ A

Proof.
Case 1. Let us first show A ∨ B → B ∨ A. So we assume that A ∨ B is true.
Consequently, either A or B is true. So if A is true, then no matter if B is true,
B ∨A is fulfilled. We can use the same argument for the case that B is true, in order
to fulfill B ∨ A.
Case 2. For the opposite direction A ∨B ← B ∨ A, we can use the same approach
as above. We only have to swap A with B.

As an individual, who is familiar with the basics of mathematical notation, this
kind of proof should be fairly easy to read and follow through. It makes use of our
typical skill of reading sentences and logical understanding, as each case describes
the steps we need to take to achieve the goal in plain English sentences. However,
exactly this can often lead to ambiguity due to the ambiguity of the English language
itself.
Therefore, we strive to create either a framework, model, or even a whole lan-

guage without or with less ambiguity than our typical spoken or written languages.
Consequently, modern mathematics includes an intricate notation framework to
reduce the ambiguity of mathematical proofs. In computer science, programming
languages, specifically type-safe programming languages, are even more designed
towards reducing and ideally removing any ambiguity from a written program to
make sure the computer behaves exactly as expected.

Interactive theorem provers often define their interface by using a domain specific
programming language that reduces ambiguity and improves conciseness of its input.
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The Lean 4 theorem prover for example defines the Lean 4 language for constructing
and validating proofs. Here is the same proof as above, but formalized using the
Lean 4 theorem prover:
theorem exampleProof (a b : Prop) : a ∨ b ↔ b ∨ a := by

apply Iff.intro
. intro h

cases h
. apply Or.inr

assumption
. apply Or.inl

assumption
. intro h

cases h
. apply Or.inr

assumption
. apply Or.inl

assumption

Listing 1.1: Example proof formalized in Lean 4

The formalized representation of our example proof is less intuitive to understand.
This is mostly because being familiar with the fundamentals of Lean 4, which will
be introduced in Chapter 2, is a requirement to comprehend the proof itself.

1.2 Challenges of sharing and reading formal proofs
The formalized version of the proof in Lean 4 has many benefits over the informal
representation. First, it is less ambiguous and also more concise, as it follows a
standardized set of notation. The Lean 4 theorem prover also ensures that the
proof is valid and it provides additional tools to inspect or construct proofs. Finally,
implementing a proof in a formalized format in a computer, makes it easier to reuse
and to share a proof with others in form of source code or even a whole library or
framework. However, there are also some downsides to this representation of a proof.

• First, the readability of the proof is worse compared to the informal represen-
tation, especially for someone unfamiliar with the Lean 4 language. In order
to understand the proof, we first have to understand the concepts behind the
Lean 4 theorem prover, and we also need to be proficient in our knowledge
of the provided tactics and theorems of the language itself or of any external
dependency.

• Sharing the code with others is a benefit of the formalized approach, but it
also raises the requirement that the person receiving the source code has to
install both the correct Lean version and the same dependencies to make sure
the behavior of the proof is the same.
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These issues are increasingly present if the source code is shared only as a static
resource, for example, in a LATEX document or a website. In this case, running,
inspecting, and understanding the static version of the proof is even more difficult.
Previously either additional documentation in the source code was given to make it
more understandable, or the reader had to manually copy-and-paste the code to use
the interactive development environment of Lean 4, for example by using the Lean 4
Visual Studio Code extension1.

This is why we implement Alectryon support for Lean 4 in this thesis. Alectryon
is a tool, initially developed for the Coq theorem prover, that attempts to solve the
issue of sharing static instances of interactive theorem prover source code [6]. It
does so by analyzing the source code and embedding additional information into the
static representation of the source code. One of the primary use cases of Alectryon is
to generate an interactive website that allows others to read and inspect the source
code with additional information, without the need of a fully configured development
environment on their system. However, it also supports generating LATEX documents
and converting markup documents from and to source code [6], so called literate
programming [7].
An example of Alectryon and the Lean 4 support, which is implement in this

thesis, can be seen in Figure 1.1 on the next page. In this example, the proof source
code of Listing 1.1 was used to generate the interactive website. The website shows
intermediate information about the proof and gives hints about the Lean 4 version
that has been used to compile the code. The following chapters will go into more
detail about the functionality and features of Alectryon’s Lean 4 support.

1https://github.com/leanprover/vscode-lean4
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Figure 1.1: Website of our formalized Lean 4 example proof generated using Alec-
tryon and LeanInk.
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2 Fundamentals and related work
We now have a high-level understanding of the problem environment we are dealing
with in this thesis. However, we first have to build up the theoretical basics and
terminology of this environment in order to discuss the actual implementation and
our solution to the problem as layed out in Chapter 1.
Therefore, in this chapter, we look at the fundamentals of the Lean 4 theorem

prover [1] and its compiler. We introduce some language aspects of Lean 4 and
explain how proofs in Lean 4 are constructed and verified. Thereafter, we dive into
the structure of the Lean 4 compiler and the ideas it implements.

Finally, we explore the basic structure and functionality of Alectryon. We describe
how Alectryon uses custom drivers to retrieve its metadata and finally how it uses
this metadata to generate either an interactive or static representation of the input
source.

2.1 Interactive theorem provers
Interactive theorem provers (ITP), or proof assistants, are software tools that assist
a human specialist in constructing and verifying mathematical proofs [8]. This
is different compared to automated theorem provers, that attempt to verify and
construct solely on their own. An ITP therefore transforms the traditional way of
constructing proofs mainly with paper and pen, into an assisted approach of solving
a proof using a formalized format. Therefore they offer mathematicians a way to
formalize and prove mathematical theories.
ITPs often implement a small kernel program that verifies a given proof term.

These kernels are very small and usually easy to verify manually. Making sure that
the proof checker can be checked for correctness themselves, is one key aspect. An
ITP is just another program that may contain bugs, so verifying that the kernel
is correct is just as important. This separation of an ITP into a small kernel and
the rest of the ITPs implementation is known as de Brujin criterion [9]. It ensures
that we have to trust only a small part of the implementation to ensure the overall
soundness of the proof verification.

2.1.1 Interactive theorem provers and compilers
The formalization of a proof, when using an ITP, often comes in form of a program-
ming language. As a result, ITPs and programming languages are based on a similar
set of fundamentals.
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One common implementation of programming languages is a compiler. Compilers
are a complex systems that transform text into executable binaries that can be
understood by computers [10]. The input text comes in form of the source text based
on a programming language. Hereby, the compiler defines the language syntactically
and semantically using a lexical grammar and an additional set of rules.

A compiler can be partitioned into a sequence of phases from initial input to final
output. One common partition of its structure is: lexical analysis, syntactic analysis,
semantic analysis, transformation, optimization and code generation.

2.2 Lean 4 theorem prover
The Lean theorem prover project was initially launched in 2013 by Leonardo de
Moura at Microsoft Research [11]. Lean 4 is the fourth major version of the Lean
theorem prover, and this is the version of Lean we focus on in this thesis. The fourth
version of the Lean theorem prover is a reimplementation of the language using Lean
itself, and it now can be used both for general-purpose programming and interactive
theorem proving [1, 12]. We first take a look at the syntax of the Lean 4 language as
a programming language, and thereafter in form of the interactive theorem prover.

2.2.1 Fundamentals

namespace Thesis

structure Rectangle where
width : Nat
height : Nat

inductive Tree where
| leaf
| left (child : Tree)
| right (child : Tree)

def main (args: List String) : IO UInt32 := do
let string : String = "Hello World!"
IO.println string
return 0

def and : Bool -> Bool -> Bool
| true, true => true
| _, _ => false

/- Multiline comment
#check prints the type of the expression during compilation
-/

14
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#check and
-- #eval evaluates the expression during compilation
#eval 1+3
-- #print prints the value as a message during compilation
#print "Hello world"

Listing 2.1: Programming language primitives of Lean 4

The Lean 4 programming language is a functional and type-safe programming
language, based on dependent type theory [1]. Listing 2.1 presents the basic primitives
of Lean 4 as a programming language. Simple data structures in Lean 4 are defined
by the structure keyword. Furthermore, Lean 4 supports enumerate or inductive
types, which are defined using the inductive keyword. Inductive types are similar
to enums, however in contrast to enums, they also support additional parameters for
each of their cases.
The def keyword is used to define a function. In the example code we create

a main function, which takes a single parameter args of type List String. The
output type of the main function is IO UInt32, whereby IO is a monad for basic
input output operations and a return code in form of a UInt32. Within our main
function we define a immutable variable string using the let keyword.
The second function and implements the logical and operation by using pattern

matching and Lean 4 support for higher-order functions. In addition to these basic
language constructs, Lean 4 also has built-in support for hygienic macros, type
classes, meta programming and more.
theorem proof (a: Prop) : a = a := by

rfl

example (a: Prop) : a = a := proof

Listing 2.2: Proof assist primitives of Lean 4

Listing 2.2 presents the fundamental entry points of the language for implementing
proofs using Lean 4. The keywords example and theorem both define a proof within
Lean 4, whereby the latter defines a named proof instance, which therefore can be
used and referenced by other proofs.

We already introduced a more complicated implementation of a proof in Lean for
in Listing 1.1. In this example we use Lean’s "tactic mode" to construct our proof
[13]. The "tactic mode" can be accessed by using the by keyword at the start of our
proof implementation. Within tactic mode we can use tactics to construct our proofs
step-by-step. Tactic mode is a domain specific language (DSL) within Lean that
improves the readability and construction of proofs. We will now go into more detail
on how a proof in Lean 4 can be understood when using tactic mode.

2.2.2 Proofs in Lean 4
At first we come back to typical informal proof that we introduced in Chapter 1. We
then transform this informal proof into a formal proof using the Lean 4 theorem prover

15
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in order to understand the structure and semantics of the formalized representation.

Example 2.2.1 (Example Proof). Let A and B each be a statement or proposition.
Then the following statement holds:

A ∨B ⇐⇒ B ∨ A

Proof.

Case 1. Let us first show A ∨ B → B ∨ A. So we assume that A ∨ B is true.
Consequently, either A or B is true. So if A is true, then no matter if B is true,
B ∨A is fulfilled. We can use the same argument for the case that B is true, in order
to fulfill B ∨ A.

Case 2. For the opposite direction A ∨B ← B ∨ A, we can use the same approach
as above. We only have to swap A with B.

Formal proof (Proof Tree and Natural Deduction)
Before we can transform the informal version of our proof into the formalized

version using the Lean 4 theorem prover, we first take a look at a familiar concept:
proof trees and the framework of natural deduction [5]. We can use a proof tree and
natural deduction to represent the informal proof more formally:

(1)
A ∨B

(3)
A ∨Ir

B ∨ A

(3)
B ∨Il

B ∨ A (3)∨E
B ∨ A

(1)
B ∨ A

(2)
B ∨Ir

A ∨B

(2)
A ∨Il

A ∨B (2)∨E
A ∨B (1)↔I

A ∨B ↔ B ∨ A

This may seem overwhelming at first, but it will ease the initial learning curve of
understanding the formal proof in Lean 4.

Natural Deduction Rules
To make sense of the structure of this proof tree, we will introduce some high-level

concepts of natural deduction proof trees. Prominently, the root of our proof tree is
equivalent to the goal of our informal proof A ∨B ↔ B ∨ A. Above the line of our
root node are two hypotheses that we have to prove in order to prove our root node.
In this case, the hypotheses are defined by the rule ↔ I. As we can see every line
in our proof tree is annotated with either a rule name, index or both. The index
describes either the origin of a new assumption in our proof tree or the application
of an assumption we previously made in one of the steps in the proof tree. The rule
names specify the rule taken at the specific position in the tree. Natural deduction is
based on a set of rules of inference and elimination. However, we will only introduce
the rules we used in our example proof tree. The general structure of a rule is:

16
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H1, H2, H3, ... (Index),Name
G

Whereby Hn are hypotheses, or smaller proofs, that have to be fulfilled for our
goal G to be proven. The Index and Name are optional annotations that help
us understand the proof. For example, we may have to use the Index to fulfill an
assumption we made during the resolution of a rule.

Iff (Bi-Implication):

(1)
A
...
B

(1)
B
...
A (1)↔I

A↔ B
The ↔ I rule describes the proof of a bi-implication. It does so by splitting both

sides of the bi-implication into two new hypotheses that must be proven by using
the other side as an assumption. So in order to solve B we can use the assumption
that A is true and vice versa.
Other rules we are using in our proof are the following:

Disjunction:
D ∨ E

(1)
D
...
C

(1)
E
...
C (1)∨E

C

B ∨Ir
A ∨B

A ∨Il
A ∨B

These describe the rules for the logical disjunction operator ∨. Both ∨Ir and ∨Il

are fairly straightforward to understand, because the statement A∨B is true exactly
if either or both A or B is true. So we can prove the statement by using both ∨Ir

and ∨Il.
The ∨E is the so-called disjunction elimination rule. It allows us to prove our

goal C by using two assumptions that imply the following constraints D → C and
E → C. So in order to solve our proof, we have to make sure that our goal is true if
D or E is true. In the example proof tree above, we use this property to apply the
assumption we made during the ↔ I rule at the tree’s root.

Now that we understand the rules of the proof tree, we can start making sense of
its structure. We start at the root of our tree, the goal of our informal proof. We
use the ↔ I rule to split our goal into two subgoals A ∨ B and B ∨ A and their
respective assumptions. Furthermore, we then use the disjunction elimination to
apply these assumptions on the subgoals. We then use the assumption to prove
both sides of each subgoal using the ∨Ir and ∨Il rules and our assumption of the
disjunction elimination rule. As a result, we have proven all the hypotheses in the
proof tree, our initial goal.
Comparing our proof tree to the informal proof earlier, we see some similarities.

The rules we apply in our proof tree are similar to the steps we take in the informal
proof. For example, in our informal proof, we first split our bi-implication problem
into two smaller implication problems and solved each of the two cases independently.
This is similar to the ↔ I rule we apply at the root node of the proof tree.

17
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Formal Proof (Lean 4)
Lean 4 follows the same idea as our proof tree. However, instead of drawing a

proof tree as we did above, Lean 4 is a programming language that lets us apply the
natural deduction using tactics [1].

Here is the same proof as above, but implemented using the Lean 4 theorem prover:
theorem exampleProof (a b : Prop) : a ∨ b ↔ b ∨ a := by

apply Iff.intro
. intro h

cases h
. apply Or.inr

assumption
. apply Or.inl

assumption
. intro h

cases h
. apply Or.inr

assumption
. apply Or.inl

assumption

Listing 2.3: Example proof formalized in Lean 4

The basic structure is similar to our proof tree. The first line defines the name
of our proof exampleProof our input parameters a, b and their type Prop (≈
proposition), as well as the goal we want to achieve a∨b↔ b∨a. The following lines
are the body of our theorem where we succinctly apply rules to achieve our goal. We
can see rules similar to the ones we used for our proof tree. For example, Iff.intro
is the ↔ I rule that splits our goal into two cases. The intro h introduces a new
assumption with the name h. By doing so, we implicitly apply the disjunction
elimination rule. Finally Or.inr and Or.inl are equivalent to the ∨Ir and ∨Il of
our proof tree, so naturally we also use our assumption to proof each of the cases.

2.2.3 Tools for Lean 4
In addition to the Lean 4 programming language, there are tools that ease the
development experience within the Lean environment. First, the Lean 4 ecosystem
provides a package and dependency manager Lake that supports sharing and using
external dependencies in ones own Lean 4 code. One example for this is the mathlib41

library that implements tactics and additional implementations for mathematical
constructs and theorems, that are useful when constructing ones own proof.

Another helpful tool offered by the Lean 4 ecosystem is the Lean 4 language server.
The Lean 4 language server can be accessed using emacs or the Visual Studio Code
extension for Lean 4. It offers similar support to what we are going to implement in
this thesis as it allows to explore and discover the Lean 4 source code interactively.

1https://github.com/leanprover-community/mathlib4
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However contrary to our problem domain, the Lean 4 server depends on a working
Lean 4 toolchain installation in order to resolve requests. It also resolves these
request, for example a hover event, just-in-time and only at the specific location
in the source. Our solution to the problem of this thesis on the other relies on a
ahead-of-time analysis of the full Lean 4 code, that makes it possible to share a static
analysis result with other tools.

2.2.4 Lean 4 Compiler
The Lean 4 compiler, itself implemented mostly using Lean 4, implements the Lean
4 programming language and transforms it into valid C code.

The first phase of the Lean 4 compiler combines both the lexical and syntactic
analysis. A recursive-descent parser checks the input source code for syntactic
correctness based on the Lean 4 grammar and generates an concrete syntax tree.
Thereafter, a macro expander implements the extensive macro system within Lean 4.

The third phase of the Lean 4 compiler is the elaboration phase. The elaboration
phase will be the main interaction point for the implementation of this thesis. An
elaborator enhances and extends the expanded syntax tree that it receives from the
macro expander, in order to make it easier for the Lean kernel to verify a proof [14].
The elaborator creates an Infotree with the additional metadata it gathered, which
can be seen as a attributed abstract syntax tree. During the elaboration phase, the
Lean 4 compiler also checks the well-formedness by doing a semantic analysis on the
input. This includes type checking to ensure type correctness of the Lean 4 program.

Finally, the elaborator generates terms that the small Lean 4 kernel subsequently
verifies.

Elaborator
The implementation of our solution will mainly interact with the elaborator and

its InfoTree. Hence a thorough introduction of the basic structure of the InfoTree
and the elaborator interface needs to be provided beforehand.

To access the elaboration phase from an external program we can use the frontend
interface of the elaborator. The interface offers a method Elab.runFrontend that
takes a Lean 4 input source and additional options as its parameters and then
runs the elaborator based on the settings. In order to access the InfoTree after
elaboration Lean offers the option trace.Elab.info to enable the output of the
InfoTrees. We will later inline this method to access the InfoTrees and messages
generated by the elaborator.

InfoTree
The InfoTree is a tree structure implemented using an inductive type in Lean.

So each node within the InfoTree has zero or more children nodes.
Access to the InfoTree is granted by access to the root node.

19



2.2. LEAN 4 THEOREM PROVER

inductive Info where
| ofTacticInfo (i : TacticInfo)
| ofTermInfo (i : TermInfo)
| ofCommandInfo (i : CommandInfo)
| ofMacroExpansionInfo (i : MacroExpansionInfo)
| ofFieldInfo (i : FieldInfo)
| ofCompletionInfo (i : CompletionInfo)
deriving Inhabited

inductive InfoTree where
-- The context object is created by ‘liftTermElabM‘ at ‘Command.lean‘
| context (i : ContextInfo) (t : InfoTree)
-- The children contains information for nested term elaboration and

tactic evaluation
| node (i : Info) (children : PersistentArray InfoTree)
-- For user data
| ofJson (j : Json)
-- The elaborator creates holes (aka metavariables) for tactics and

postponed terms
| hole (mvarId : MVarId)
deriving Inhabited

Listing 2.4: InfoTree implementation [15] in Lean 4

Listing 2.5 presents the implementation basis of the InfoTree in Lean 4. There
are four node types context, node, ofJson and hole. The two types of interest for
this thesis are node and context node. The context node is of interest because it
contains a child node with potential additional information and because it defines a
context that we have to use in order to resolve types in the InfoTree. The general
node type is however the most important of all, as it contains specialized info about
a specific part in the source. All of the info structures either extend the ElabInfo
structure or have their own property stx that allows to refer to the specific syntax
range of the input source.
structure TacticInfo extends ElabInfo where

mctxBefore : MetavarContext
goalsBefore : List MVarId
mctxAfter : MetavarContext
goalsAfter : List MVarId
deriving Inhabited

Listing 2.5: TacticInfo implementation [15]

Most notably the TacticInfo contains information about a specific tactic in a
proof. It specifies both a context and the goals before and after the application of
the tactic. Tactics can also appear nested in the InfoTree. One example for this is
the And.intro tactic that introduces two new subgoals. In this case, we can use the
. -combinator to create a new node that will appear as a nested tactic in one of the
child-trees that can be accessed via children property.
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The TermInfo describes properties about a term within the source text. Terms
are expressions that are literals or references to variables or functions and any
combination of them with additional binding operators. Similar to tactics, terms
can be nested. An example of this case is a simple arithmetic term expression 1
+ 2, whereby the expression is a term, as well as both literals 1 and 2. TermInfo
contains a expr property that can be used to analyze the elaborated term to retrieve
for example the type of the expression.

2.3 Alectryon
Alectryon is the script tool for which we are implementing Lean 4 support in
this thesis. Alectryon is a tool written in Python and developed by Clément Pit-
Claudel, that initially only supported the Coq theorem prover language [6, 9]. It is
a library and command-line tool that takes code snippets of proofs written using
an interactive theorem prover, analyses them and finally creates a representation of
them in a document like LATEX or HTML that can be statically presented without
the requirement of a working development stack on the same machine. In addition
to the source text, the generated output files also include helpful annotations of the
source text with information about goal states and messages. Finally it offers a set
of tools for literate programming with interactive theorem provers.

2.3.1 Literate Programming
Literate programming allows a user to simultaneously construct a proof while docu-
menting it in the same file using a another language, for example markup languages.
Both the programming language source code as well as the markup code are inter-
spersed within the same file. It was first introduced in 1984 by Donald Knuth within
the WEB programming system [7]. WEB supports embedding Pascal code into a
TeX formatted file. Alectryon implements literate programming by transforming
between both the theorem prover format and a markup language format. It provides
extensive support for the reStructuredText markup language, as well as basic support
for Markdown.
/-|
Literate programming
==================

The source code within these comment tags is content formatted
based on a markup language. In this case reStructuredText.
-/

theorem test (p q : Prop) (hp : p) (hq : q): p ∧ q ↔ q ∧ p := by
-- proof tactics

Listing 2.6: Literate programming: Lean 4 format
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Literate programming
==================

The source code within these comment tags is content formatted
based on a markup language. In this case reStructuredText.

.. lean4::

theorem test (p q : Prop) (hp : p) (hq : q): p ∧ q ↔ q ∧ p := by
-- proof tactics

Listing 2.7: Literate programming: reStructuredText format

An example of the literate programming support in Alectryon and with our
implementation is displayed in Listing 2.6 and Listing 2.7. Listing 2.6 shows the file
contents in the case of programming within a Lean 4 source file, while the latter
shows the contents in the format of reStructuredText. In the first case, the user can
then compile Listing 2.6 using the Lean 4 compiler.

Both formats have the code of the other format embedded within the same source
file. The Lean 4 source code embeds the markup language contents in special
multiline comments: /-| -/. reStructuredText on the other hand allows embedding
of source code of other language by using directives. Directives are a standardized
language feature in the reStructuredText markup specification [16]. The directive
used in Listing 2.6 is .. lean4::, which is a custom specified directive with keyword
lean4 which Alectryon will use to identify the content language.

2.3.2 Processing Structure
In this chapter, we will outline the high-level structure of Alectryon’s implementation.
We then take a more detailed look at the two parts involved in this structure that
are relevant for the implementation of this thesis.

Figure 2.1 depicts the high level structure of Alectryon in form of a state diagram.
It describes each step that is involved from initial input of the source file to the
output file. However, this diagram only describes one usage example of Alectryon’s
processing structure, that is most common for our use case.

Command-line Interface
First, the command-line interface of Alectryon is called with an input source file,

either source code file or a literate document file, and additional arguments for
example the output type. Alectryon offers a wide range of options to configure the
processing of the input file, from configuring caching behavior to options for each
backend and frontend available in Alectryon. The command-line interface infers
the type of the input file based on its file extension and then defines the processing
pipeline based on the file type and the command-line options.
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Alectryon
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Driver

Is literate file

no
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Transform Pipeline
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Source File

Output File

Figure 2.1: Overview of Alectryon processing structure

Driver
In case of a literate file, for example a reStructuredText file, Alectryon first extracts

all code snippets from the source file before continuing with their specific drivers.
A driver within Alectryon is a class specialized for a certain language for example
Coq, that provides the necessary metadata for a chunk of code that it retrieves.
There are two kind of drivers in Alectryon at the moment. The first kind uses a
custom implementation and analyzes the a code-chunk on their own. The second
kind propagates the code-chunks it retrieves to an external compiler or command-line
program for a more complex analysis.

Transform Pipeline
After the driver completes its analysis of the source code, it returns the annotated

code chunk in the transform-pipeline data model described in Figure 2.2. The return
type is the source code partitioned into a list of Fragment where each Fragment is
either a Sentence or Text fragment. The latter hereby is the most simplest type
of Fragment as it describes a range of source text without any additional metadata.
The Sentence fragment on the other hand includes information about any Messages
or Goal information at the specific source text location. It is important to notice
that the actual raw string contents of the code-chunk are embedded within the list
of Fragment.
The list of Fragment is now propagated to Alectryon’s transform pipeline. The
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conclusion : String
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name : [String]
body : String
type : String

Figure 2.2: Overview of Alectryon transform pipeline data model

transform pipeline applies a sequence, of so-called transform functions, to the list.
These transforms implement tasks for example partitioning or merging adjacent
fragments or processing Alectryon IO annotations that are embedded within the
source code. The transform pipeline also enriches each occurrence of a Sentence
fragment with additional information it gathers during any transformations into a
RichSentence model.

Backend
Finally after the transform pipeline is complete, Alectryon will propagate its result

to the user-defined backend. A backend within Alectryon is a class that generates
the output file based on the list of transform Fragment it receives. Alectryon
currently offers a backend for HTML, LATEX , reStructuredText, and JSON for
caching purposes.
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3 Design and implementation
In this chapter, we finally take a look at the implementation of LeanInk1, the tool
we developed, to add support for Lean 4 in Alectryon.

We first describe the minimum implementation to get Lean 4 support on par with
the Coq support in Alectryon. By doing so, we take a look at how the source text
is transferred over to LeanInk, which then extracts the metadata from the Lean
4 compiler’s elaboration tree. After that, we discuss how we support source text
that depends on any third-party framework or source files. Finally, we inspect how
LeanInk annotates the source text with the extracted metadata to generate an output
format that can be used by Alectryon or any other tool.
The second part of this chapter, shows how we extended Alectryon’s data model

and transform pipeline to extract and visualize even more information from the
Lean 4 source file. This information enables Alectryon to display type information,
documentation, and adds support of semantic syntax highlighting.

3.1 Lean 4 support in Alectryon
Before we can process any Lean 4 source text in LeanInk, we first have to transfer the
source file from Alectryon to LeanInk. As described in Chapter 2, Alectryon defines
an abstract Driver class. A Driver defines a specific frontend implementation within
Alectryon. Its crucial aspects are that it provides information about the language
version used for analysis and implements a function that annotates a given collection
of input source chunks. These input source chunks depend on the initial file format
used as the input for Alectryon. A simple .lean source file will result in a single
chunk of code. A literate file, on the other, hand will provide a chunk for each code
block within the file. An example for the latter case is a reStructuredText file with
multiple ..lean4 code directives.
Alectryon also provides a more specific subclass of the Driver class, named

CLIDriver, specifically developed for a frontend that interacts with an external
command-line-based tool. Therefore, this class is natural for our Lean 4 driver, as
LeanInk is an external binary with a simple command-line interface.

To route the source input file to our Lean4 driver in Alectryon, we register support
for .lean source files and our Lean4 driver in Alectryon’s command-line interface
implementation. This ensures that Alectryon automatically infers .lean files with
our new Lean 4 driver. Additionally, we configure support for Alectryon’s literate

1https://github.com/insightmind/LeanInk
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programming support. We accomplish this by specifying the lean4 identifier for any
Lean 4 code directives in reStructuredText or Markdown, thus Alectryon recognizes
code blocks with this identifier in a literate file as a Lean 4 source code block and
therefore propagates the contents of the block as a chunk to our Lean 4 driver.
Further, we reuse the parser for Lean 3 comments already present in Alectryon as
the multiline-command syntax is unchanged between Lean 3 and Lean 4.

3.1.1 Lean 4 driver
Now that we have configured all steps within Alectryon that can propagate the source
input chunks to our Lean 4 driver, we can finally inspect the features of the Lean 4
driver. The Lean 4 driver is small and straightforward because LeanInk implements
most of the features.

For annotation, the driver first combines all chunks into a single EncodedDocument,
another helper class within Alectryon to combine and later recover the chunks from
their annotated versions. It then writes this document into a .lean file within a
temporary directory and calls LeanInk with the temporary file as its input. LeanInk
will output a .lean.leanInk file after successful analysis. The driver then reads this
file and parses the contents to Alectryon’s data model. The LeanInk output data
model uses the same data model as Alectryon proposes for its transform pipeline.
Thus the driver only needs to recover the chunks from the annotated response and
return them to Alectryon to continue with the next step.

The driver uses the leanVersion command in LeanInk’s command-line interface
to receive the Lean 4 version used for analysis.

3.1.2 LeanInk
Figure 3.1 on the next page depicts an overview of this structure within Alectryon.
Additionally, it provides some insight into the internals of LeanInk, that we are
covering in the following chapters. LeanInk uses a similar pipeline-based architecture
typical for script tools. The command-line interface decides the parameters and
structure of the pipeline based on the input it receives. Hence we first start describing
LeanInk’s command-line interface and then present each phases of the pipeline step-
by-step.

Command-line interface

LeanInk offers a total of four different commands, each of them with shorter aliases:

• help, -h <COMMAND>
The help command generates a useful help message for each command available.

• version, -v
The version command prints the semantic version of the LeanInk instance.
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Figure 3.1: Overview of LeanInk integration for Alectryon

• leanVersion, lv
The leanVersion command prints the Lean 4 version of this instance of LeanInk.
This version of Lean 4 is the version LeanInk was compiled with and the
supported Lean 4 version for any input.

• analyze, a <INPUT_FILES>
The analyze command is the most important command of LeanInk’s command
line interface (CLI). It takes one or more .lean files as its input. In addition
to that, it also defines a flag --verbose for verbose output of the analysis
and annotation pipeline and an optional environment field --lake, which
allows the caller to set a path to the lakefile.lean to discover and resolve
any external dependencies of the input files. We also extend the function-
ality of this command in the second part of our implementation by adding
three new flags --x-enable-type-info, to enable extraction of type info,
--x-enable-docStrings, to enable extraction of a docStrings for methods
and types and --x-enable-semantic-token, for semantic syntax highlighting.

A typical example for the default interaction with the LeanInk CLI is the following
command:

#!/bin/bash
leanInk analyze ExampleProof.lean --lake ../lakefile.lean

In this example, the user calls LeanInk with the ExampleProof.lean input file.
They specify the location of the lakefile as the input file has external dependencies.
We will go into more detail about the --lake environment in the next chapter.
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This call will result in a file called ExampleProof.lean.leanInk and its contents
represent the annotated input file enriched with additional metadata and formatted
using Alectryon’s data model.

Context Loading

Before LeanInk can analyze the input source, it first needs to set up the compile
environment for the input. The goal of the next step is to load all necessary search
paths based on the imports of the source file.

In the first and simplest case, the source file only depends on the standard library
of Lean 4. Therefore LeanInk initializes the search paths for the compilation step
using Lean’s built-in Lean.initSearchPath helper method. This method ensures
that all required search paths to the Lean installation and the standard library
(internally called Init) are loaded.

The second case of source file imports supported by Lean 4 are local project
dependencies and third-party dependencies of external frameworks and libraries.
LeanInk requires a reference to the projects lakefile.lean to resolve the search
paths for both types of dependencies.
A lakefile.lean is a configuration file for the Lake2 (Lean Make) build system

and package manager. The configuration file specifies the project type, compilation
instructions, and any external dependencies used by the project. A user can provide
this lakefile.lean to the analyze command using the environment value --lake.
LeanInk uses this path to spawn two processes of Lake.
The first process makes sure that all external dependencies are loaded and con-

figured. LeanInk uses the configure command for Lake to download and build
all external dependencies defined in the lakefile. The results of this command are
usually cached and only required for a first configuration of the project. Therefore,
Lake automatically skips this step if the external dependencies and their respective
compiled .olean files are already available.
The second process that LeanInk spawns, uses Lake’s print-paths command.

This command takes the lakefile.lean path and all imported headers of our source
file as its arguments. This process results in a list of all search paths necessary to
build the source file. LeanInk uses the result to load the search paths for the compile
environment within LeanInk to ensure the analysis phase can succeed.

Now that LeanInk has configured all search paths necessary to compile our source
file, it moves to the actual analysis phase.

Analysis

The analysis phase consists of two steps. The first step traverses the Lean 4 InfoTree
and extracts and formats all metadata required for the output. The second step uses
the extracted metadata to generate a linear stream of annotated source text ranges
to simplify the implementation of the output generation.

2https://github.com/leanprover/lake
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InfoTree Traversal
The first step of the analysis is the elaboration tree traversal. It extracts all the

necessary metadata from the InfoTree and formats them using appropriate data
models. We already discussed the structure of the InfoTree in Chapter 2. Therefore,
we only describe LeanInk’s interaction with the tree in this chapter and then detail
the tree traversal algorithm we use to extract the metadata.
To receive the InfoTrees, LeanInk inlines the Elab.runFrontend method and

enables the trace.Elab.info option. Within the inlined method, the
IO.processCommands is called, which compiles the source code and returns a result
of type Frontend.State. LeanInk then accesses the generated list of InfoTrees for
each Command in the source input using the
Frontend.State.commandState.infoState.trees property, which it then analyzes
sequentially.

Identifying the metadata
To identify the location of our metadata in the elaboration tree, we first have to

look back at our example in Chapter 1 and the data structure of the elaboration
tree that we described in Chapter 2.
Formal proofs in Lean 4 are constructed using tactics. Tactics are command-like

building blocks that transform the initial parameters of the proof to the anticipated
goal type. Our goal is to present intermediate information for each of these tactics
in our proof. So in order to generate the Sentence data types that Alectryon
expects, we have to extract all goals and their hypotheses for each tactic step in
our proof. We can receive this information from the TacticInfo nodes in the
elaboration tree. Each TacticInfo node contains information about the goals
before (TacticInfo.goalsBefore) and after (TacticInfo.goalsAfter). For the
Alectryon integration, we specifically want to present all goals that still have to be
solved after the application of the tactic. Hence, we will use the information provided
by the TacticInfo.goalsAfter.

Looking back at the example in Chapter 1 demonstrates the information we want
to present for each tactic.
theorem exampleProof (a b : Prop) : a ∨ b ↔ b ∨ a := by

apply Iff.intro
/-
Hypotheses: a b : Prop
Goals:

- left-case: a ∨ b → b ∨ a
- right-case: b ∨ a → a ∨ b

-/

In this case, the built-in Iff.intro tactic is applied to the initial goal, resulting in
two new goals. Both goals share the same hypotheses. Another special case LeanInk
has to handle are tactics that fulfill a goal. Here the TacticInfo.goalsAfter prop-
erty is empty and LeanInk returns a goal that contains the text Goals accomplished!.
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In addition to the intermediate steps, Alectryon also supports visualizing any
messages that may occur during compilation:
#check Bool
-- Message: "Bool : Type"
-- or
#print "Hello World!"
-- Message: "Hello World!"

Other messages that may appear are error messages or warnings during compilation.
The commandState of Lean’s Frontend.State automatically returns all of these
messages in the Frontend.State.commandState.messages property.

Tree-traversal algorithm
The result of our metadata extraction algorithm is a list of Fragment structures

(Figure 3.2). A Fragment is an inductive type with either information about a tactic
or message. The list is sorted based on the head position of its syntax range, meaning
the list is sorted in order of the occurrence of the fragments in the source text. The
Fragments that contain information about a tactic are extracted during the tree
traversal. Ideally, the algorithm only extracts the most relevant information from the
InfoTree, the smallest possible TacticInfo in the tree. The smallest TacticInfo
at a specific position in the source text is the TacticInfo with the shortest syntax
range that still contains the source text position. However, due to the possibility of
nested tactics, we still have to extract every node with TacticInfo. LeanInk reduces
the information to the smallest possible information for each source text location in
the compound generation algorithm after the tree traversal.

LeanInk uses a depth-first-search approach to extract all Fragments with Tactic
information. It utilizes a property of the InfoTree to reduce the cost of having to
sort the list of Fragments. The property defines that the syntax-range of each parent
node in the tree contains all syntax ranges of its child nodes. Therefore, LeanInk
only has to merge the results of its recursive calls, which is possible in linear time.

Another case that needs to be handled by the tree-traversal algorithm is a check to
only extract tactic information of tactics that are not part of a macro. LeanInk does
not collect the information about macro tactics because it cannot match them to the
source text later. After all, the syntax ranges are expanded and non-existent in the
source text. Therefore the algorithm omits any TacticInfo, that is part of a macro.

• 1 We initialize the algorithm with the root node and the context of the root
node. We receive the root node for each command in our Lean 4 source file by
first calling the elaboration frontend of the Lean 4 compiler.

• 2 Whenever the current node is a context node LeanInk switches to the new
context and uses the only child of the context node to continue the recursion.

• 3 Whenever the current node is a node that is based on an info property
LeanInk can extract some metadata.
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Algorithm 1 Tree-traversal
1: function extract(treeNode, context) . 1
2: if treeNode.type == context then . 2
3: return extract(treeNode.child, treeNode.context)
4: else if treeNode.type == node then . 3
5: children := treeNode.children
6: context :=updateContext(treeNode)
7: fragments :=genFragment(treeNode, context) . 4
8: while ¬children.isEmpty do
9: child := children.dropF irst()

10: childFragments :=extract(child, context)
11: fragments := mergeLists(fragments, childFragments) . 5
12: return fragments
13: else
14: return [ ]

• 4 For the initial implementation of the tree-traversal algorithm, LeanInk only
extracts TacticInfo nodes. Because TacticInfo nodes can occur nested, it
first generates a fragment for the current node and then recursively for every
child node. It is important to mention that the genFragment method returns
a sorted list of fragments based on the information of the current node. For
the current implementation, this list only contains zero or one fragment. An
empty list is returned only if the type of the info property does not match
TacticInfo or the node is part of a macro expanded tactic.

• 5 LeanInk continues the traversal recursively for each child node of the current
node. It then merges the result of the recursive call with the current state of
the fragments list. The time complexity of the merge is linear because both
the result and the current fragments list are sorted. The recursion terminates
if the current node is a leaf node and therefore has no child nodes.

Finally, we merge the fragments from this algorithm with the messages that
appeared during compilation using the elaboration frontend. In order to do so,
we first transform each message we receive into an appropriate MessageFragment
model. We then sort the messages and merge them with the result of the algorithm.
Figure 3.2 provides a rough overview of the data model for both TacticFragment
and MessageFragment. Although the initial Alectryon support only requires the
information of goals after the application of the tactic, LeanInk still extracts the
goals before allowing the output generator to decide which metadata is needed.

Compound Generation
The second part of the analysis receives the sorted list of fragments from the

tree-traversal algorithm and transforms it into a linear stream of compounds of
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Figure 3.2: Fragment data models

CompoundFragment

headPos : String.Pos
tailPos : String.Pos
fragments : List Fragment

getTailPos : String.Pos

Figure 3.3: Data model of CompoundFragment

overlapping fragments. Because the list is only sorted based on the head position
of each fragment, it may still contain fragments that overlap. One case where an
overlap is non-avoidable is with nested tactics. In this case, the encapsulating tactic
fragment overlaps with every nested tactic.

LeanInk generates a list of CompoundFragments to resolve this issue and simplify
the implementation of the output generation. A CompoundFragment defines two
properties (Figure 3.3). First, a headPos and tailPos property of the compound,
describes the location in the source text the contained information takes effect. The
third property is the list of overlapping fragments starting from the headPos location.
Figure 3.4 describes the effect of the algorithm visually. The algorithm’s input is
shown above the arrow, displaying seven fragments that overlap at some positions
in the syntax range. Below the arrow is the output of the compound generation
algorithm. The result is a list of non-overlapping CompoundFragments. Therefore,
this representation describes a partition of the source text with metadata annotations
at each interval of a compound fragment. This property is helpful for the output
generation of LeanInk because it ensures that the output generator can work linearly
and does not have to care about annotating the same source text multiple times
for multiple metadata annotations. It also allows the output generator to pick the
required metadata at a specific position directly instead of searching through the
complete list of fragments.
Algorithm 2 outlines the implementation of the compound generation algorithm
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Figure 3.4: Input and output of compound generation

that achieves the transformation from an input of overlapping Fragments into a list
of non-overlapping CompoundFragments.

• 1 The algorithm first creates a sorted list of indexed events from the
fragments input list. More specifically, it creates a HeadEvent and a
TailEvent for each fragment and assigns them their respective position and
an index to identify a pair of head and tail events later. An example for the
indexes is shown in Figure 3.4, where the order of the input list derives the
index. The genFragmentEvents method then sorts the list of tail events and
merges both lists into a single list of fragment events. However, this point in the
implementation could benefit from future optimization by directly outputting a
list of events instead of a list of Fragments in the tree traversal algorithm. The
result is a list of events sorted in ascending order based on the event’s position.
After that, LeanInk initializes a first empty compound with the position set to
the start of the source text. It then iterates over the list of fragment events.

• 2 For each event, the algorithm first creates a copy of the previous compound
and adjusts its position to the position of the current event.

• 3 In the case of a HeadEvent, it inserts the fragment of the event to the
newly generated CompoundFragment. In the case of a TailEvent, it removes
the fragment of the event from the newly generated CompoundFragment. The
insert and remove operations use the index of the event to identify the fragment
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Algorithm 2 Compound Generation
1: function generateCompounds(fragments)
2: events :=genFragmentEvents(fragments) . 1
3: compounds := [genEmptyCompound]
4: while ¬events.isEmpty do
5: event := events.dropF irst()
6: compound := compound.last.copy() . 2
7: compound.pos = event.pos
8: if event.type = HeadEvent then . 3
9: compound.insertFragment(event)

10: else
11: compound.removeFragment(event)
12: if compounds.last.headPos 6= event.pos then . 4
13: compounds.last.fragments := compound.fragment
14: else
15: compounds.append(compound)
16: return compounds

in the compound. Otherwise, it could not remove a previously inserted fragment
as it could not identify it in the list of fragments of the previous compound.

• 4 Finally, the algorithm updates the previous compound if the event’s position
is the same as the position of the previous compound. Otherwise, it appends
the new compound to the compounds list. This check prevents more than one
CompoundFragment from appearing at the same source text position, which
would violate the partitioning property of the result.

For any compound in the list, the compound’s tailPos is either the headPos of
the next compound or the last tailPos of any of its fragments, whichever comes
first. The last compound fragment is implicitly bound by the end of the source text.
The algorithm’s runtime is O(n log n+ 2n), whereby O(n log n) is due to the initial
sorting of the TailEvent list.

Output Generation
The final step in LeanInk receives a list of CompoundFragments and generates the

output based on the specified Output method. LeanInk currently only supports a
single Output method for use with Alectryon. However, implementing an additional
Output method requires only a function that takes the list of CompoundFragment as
its input. To use the new method, the user has to specify this function in an instance
of the type Output and hand it over to the runAnalysis method in LeanInk.
In the case of the Alectryon Output method, we iterate over each compound

fragment and transform it into an Alectryon.Fragment, introduced in Figure 2.2.
LeanInk generates a Text instance whenever the list of fragments of a
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CompoundFragment is empty. If the list is not empty, it generates a Sentence instance
and populates it with the provided list of Fragments. Each MessageFragment, adds
a Message to the messages property of the Sentence instance. Resolving the list of
goals and hypotheses requires using the TacticFragment.smallest? function that
returns the smallest TacticFragment used to populate the data in the instance. The
smallest TacticFragment is the TacticFragment with the shortest syntax range.
We extract the raw source text using each compound’s headPos and tailPos.

Finally, the respective JSON-based .lean.leanInk file is generated by adopting the
ToJson class and then outputted in the same folder of the input file. Alectryon then
reads and processes it using the Lean 4 driver as described earlier.

3.2 Alectryon extension
Now that we have a fundamental understanding of how LeanInk works and how it
implements the support of the base feature set for Lean 4 in Alectryon, we take a look
at how we extended this functionality even more. We first detail which additional
features we implement to make Alectryon more useful. We then present our additions
to LeanInk to support the extraction of the additional metadata necessary to support
the features. Finally, we describe our changes to Alectryon’s transform pipeline, data
model, and backends.

3.2.1 User interface
The extension of Alectryon’s functionality includes the following additional features.

The first new feature is support for displaying additional token information. This
information includes type information about variables, functions, and more, as well as
support for displaying documentation, also called docStrings, of functions, classes,
and other types. Both metadata information helps a user to explore a proof. The
type metadata gives hints about how the proof is structured and about what the
proof attempts to prove. The docStrings improve the discoverability of the proof
as it allows the user to dig deeper into what specific tactics or function calls do.
Lastly, we add support for semantic syntax highlighting for Lean 4. Semantic

syntax highlighting improves the overall readability of the proof, as it highlights
specific tokens in the source text more accurately and therefore implicitly conveys
semantic meaning to the reader.

Both additional features also improve the readability of general-purpose program-
ming snippets because they offer a way to interact with the code similar to typical
code editors.
Figure 3.5 presents an example with both features enabled. Semantic syntax

highlighting accentuates tokens using different colors based on their semantic mean-
ing. In addition to that, Alectryon now displays popovers above the source text
tokens containing the new metadata. This example presents multiple hover events
simultaneously. The first two hover events present the type information for the test
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Figure 3.5: Additionally information popups and semantic syntax highlighting

Figure 3.6: Update Alectryon header with hover settings

theorem and the parameter p. The last hover event displays the docString for the
exact tactic call. One downside of the popovers is that the representation of the
proof can become polluted and therefore harder to read, especially for tokens that
both display the additional information alongside the tactic popovers. To resolve
this issue, we add a new Hover-Settings section into Alectryon’s header, as seen in
Figure 3.6. This new section allows the user to either activate or deactivate both
types of popovers in Alectryon’s HTML presentation. Alectryon deactivates the new
type of popover by default o preserve the old behavior.

3.2.2 Implementation design
To implement support for all of these new features, adjustments to the internal data
model of Alectryon are necessary. Figure 3.6 reveals the adjustments to the data
model. Comparing this class diagram to the initial data model described in Figure 2.2
exposes the key difference in the Fragment interface. Instead of storing a String
attribute for the contents of each Fragment, we now store a list of Token. The Token
class stores information about the raw source text (raw attribute) and additional, but
optional, other attributes. The link property defines a clickable link to an external
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contents 1

1..*

typeInfo
1 0..1

TypeInfo

name : String
type : String

Token

raw : String
link : String [0..1]
docString : String [0..1]
semanticType: String [0..1]

Fragment

Text

Figure 3.7: Updated data model of Alectryon

source. The docString and typeinfo attribute store the additional metadata as
described earlier. Finally, the semanticType property store the Pygments TokenType
of the token. Pygments3 is the syntax highlighting framework used by Alectryon to
support basic syntax highlighting for code snippets.

However, changing the contents field from a String type to our more complicated
list of Tokens is not a straightforward task. The change becomes increasingly more
difficult because Alectryon’s transform pipeline heavily depends on various str and
Regex operations to search and modify the fragments returned from the drivers.
On the other hand, processing the additional metadata via an external data queue
instead of propagating it through the transform pipeline would not be feasible because
we would later have to reassign the metadata to a transformed source text. This is
the key reason for changing the Fragments contents property from a simple string
to a list of tokens.
To ensure that the data model change does not break the existing pipeline, a

wrapper data class around our Token list is introduced that implements specific str
and Regex operations. In addition to this, a suite of unit tests is implemented to
make sure the newly introduced operations behave as expected. This is especially
important in the Python programming language as it is not a statically typed
language. All occurrences of operations for the previous contents type are replaced
with the new operations of the new data class. Finally, a new step is added that
makes sure the input array of Fragments uses the new data model for the rest of
the pipeline, so all other drivers are automatically migrated to the new data model,
requiring no changes to the drivers themselves.

3https://pygments.org
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The final step to implement the support for the new metadata is to adjust
Alectryon’s Backends. Each Backend previously expected that the content property
of a Fragment is of type str. This case previously called Pygments to highlight
the source text and output it in a valid format. However, to integrate the new
data class into the Backends a new function, gen_token, is added in Alectryon’s
backend interface. gen_token is called once for each token in the token array of each
Fragment.
In the case of the HTML backend, the gen_token also calls an internal function

gen_typeinfo that generates the new popovers above the source text. We reuse
the existing CSS implementation in Alectryon to implement the styling of the new
popovers and their contents. Additionally, we implement the new header settings
in the generated website using JavaScript bindings and two new CSS classes called
type-info-hidden and output-hidden each hiding one kind of popover.

3.2.3 LeanInk extension
We are now looking back at how to implement the support of these new features in
LeanInk. First, we describe how we extract the type information and docStrings
from the Lean 4 compiler. We introduce LeanInks internal data structure enhance-
ments to support the more fine-grained data. Finally, we describe the extraction
process for the support for semantic syntax highlighting.
All new features are deactivated by default to prevent usage until the changes

in Alectryon are merged. As a result, the command-line interface of LeanInk now
offers three new flags. Each flag enables the output and extraction of one of the
three new metadata types. --x-enable-type-info enables the output of type
information of tokens within the input source text. For example, parameters of a
function or variables contain information about their type that LeanInk extracts.
--x-enable-docStrings enables the extraction of docStrings. docStrings are
special comments within Lean code to document a specific part in the code. Finally
--x-enable-semantic-token enables the extraction of semantic token information.
Alectryon uses that to implement semantic syntax highlighting. LeanInk defaults to
the old data model of Alectryon if no flags are set because the changes in Alectryon
automatically ensure that the new data model is used within the transform pipeline
and to support older versions of Alectryon.

InfoTree traversal adjustments
The initial implementation of LeanInk made sure that the InfoTree traversal

algorithm only required a single pass-through. Therefore, the metadata extraction of
the type information, docStrings, and semantic types is implemented in the same
tree traversal pass. In addition to saving a list of Fragments based on TacticInfo,
we introduce a list of TokenInfos, that stores the new metadata. LeanInk uses
the new list for the additional metadata. As per definition, a Fragment or Tactic
may span over multiple Tokens. So separating both types during extraction allows
LeanInk to independently process both types of metadata.
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Token

headPos : String.Pos
tailPos : String.Pos

TypeTokenInfo

type : String [0..1]
docString : String [0..1]

SemanticTokenInfo

semanticType : String [0..1]

Figure 3.8: New token data model

Figure 3.8 depicts the data model for the new metadata information. A Token is
similar to a Fragment defined by only a syntax-range. It describes a specific property
in a small range of the source text. A subclass of Token then provides the additional
metadata. In this case, Token currently has two subclasses, TypeTokenInfo and
SemanticTokenInfo. The TypeTokenInfo contains the docString if available and
the additional metadata about the tokens type. The SemanticTokenInfo provides
information about the semantic type used for semantic syntax highlighting. Addi-
tional metadata can be extracted for future features by implementing another Token
implementation.

Instead of only receiving our information from TacticInfo nodes, LeanInk now also
extracts data from TermInfo and FieldInfo nodes. To populate the TypeTokenInfo,
we extract the metadata from the smallest TermInfo or FieldInfo node for each
branch in the tree. Again, we define the smallest node at a specific position in the
source text as the node with the shortest syntax range that still contains the position.
We also require this node to not be part of an expanded macro. LeanInk uses the
property of the InfoTree to implement the comparison of the smallest node. A
parent nodes syntax range includes all syntax ranges of child nodes. So if a child
node is used to populate a TypeTokenInfo, the parent can no longer be the smallest
node.

For the SemanticTypeTokenInfo we analyze the referenced syntax for each node
in the tree. We use the stx property of each node to extract the ranges of semantic
tokens in the source text.

The implementation of the new metadata extraction is contained only within the
genFragments method. This method now returns both a list of generated Fragments
and generated Tokens, instead of a single list of Fragments.
Finally, we propagate this new data with the list of fragments to the compound

generation step.
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Annotation

fragment : CompoundFragment
tokens : CompoundToken [0...1]

Figure 3.9: New return model of compound generation

Compound generation adjustments
The compound generation algorithm now receives a list of Fragments and another

list of Tokens. As a result, the return model of LeanInk’s compound generation
also required an adjustment. Figure 3.9 displays the new model returned by the
compound generation algorithm. It now returns a list of Annotation instances.
An Annotation instance contains a single CompoundFragment based on the

Fragment type. This property is equivalent to the early implementation of the
algorithm. However, in addition to the fragment property, the instance also contains
a new tokens property. The tokens property defines a list of compounds based on
the new Token type. It contains all Tokens in the source text range of the fragment.
Additionally, the list is also transformed into a list of compounds to resolve overlaps
of, for example, SemanticTokenInfos and TypeTokenInfos.
LeanInk now uses the algorithm to generate a compound list for the Fragments

and afterward matches the new list of Tokens to each compound using the same
algorithm again.

Output generation adjustments
The Alectryon output method only requires changes in generating the contents

field of each Alectryon.Fragment. Instead of directly extracting the source text
based on the syntax range of each CompoundFragment, it now has to extract the
source text based on the list of token compounds in the fragment. For each token
compound, LeanInk first searches for the smallest token information within this
compound to retrieve the smallest TypeTokenInfo and SemanticTokenInfo. This is
more difficult then the previous tactic info search because the syntax range is bound
by the enclosing CompoundFragment and the token compound. As a result, LeanInk
has to fill ranges that do not have any token compounds and trim the Token range
that overlaps with the syntax range of its enclosing CompoundFragment.
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4 Evaluation
This chapter evaluates the implementation, described in Chapter 3. First, a thorough
analysis of an example .html output file, generated using Alectryon and LeanInk,
outlines the improvements in readability of Lean 4 source code. Finally, an evalua-
tion of both the performance and the filesize of Alectryon’s output and LeanInks
intermediate output reveals drawbacks and opportunity for improvements of the
current implementation.

4.1 Output evaluation
Before evaluating the performance and filesize, this chapter first analyzes the visual
output and readability improvements of an example .html output file generated by
Alectryon and LeanInk. The example input file contains the following Lean 4 code:
/-|
Hello World!
-/
#print "Hello World!"

/-|
A literate comment!
-/

theorem exampleTheorem (p q : Prop) (hp : p) (hq : q) : p ∧ q ∧ p := by
apply And.intro
. exact hp
. sorry

The resulting output website is presented in Figure 4.1. In this figure the hover
events are manually triggered by the browser to show the variety of different kinds
of information the output is able to display. As a result, in a normal use case, only
a single popover is visible at a time. Starting from the top of the output file, the
interleaved reStructuredText output is visible. The literate programming support
that enables this feature, improves the readability of comments in the source text.
However, the additional formatting features of reStructuredText outperform the
standard comments syntax of LeanInk, hence a more natural and clearly structured
document can be generated.
Messages, for example caused by print, are easily discoverable by the user.

Especially the use of sorry is clearly marked as red within the source text, visualizing
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Figure 4.1: Example output
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Configuration timefull ± σ timetrav ± σ timecg ± σ

b 1.194 s± 0.012 s 1.178 s± 0.017 s 1.303 s± 0.056 s
b+t 1.426 s± 0.016 s 1.348 s± 0.015 s 1.427 s± 0.020 s
b+t+d 1.444 s± 0.030 s 1.354 s± 0.021 s 1.403 s± 0.012 s
b+t+s 1.476 s± 0.017 s 1.367 s± 0.016 s 1.443 s± 0.017 s
b+t+d+s 1.478 s± 0.019 s 1.379 s± 0.029 s 1.441 s± 0.016 s

Table 4.1: LeanInk benchmark results

Configuration timeexec ± σ

o-b 1.839 s± 0.022 s
n-b 1.827 s± 0.016 s
n-b+t 2.843 s± 0.040 s
n-b+t+d 2.877 s± 0.032 s
n-b+t+s 2.981 s± 0.035 s
n-b+t+d+s 3.002 s± 0.028 s

Table 4.2: Alectryon + LeanInk benchmark results

a warning of its usage.
In addition to this, semantic syntax highlighting improves the readability by

coloring tokens of a specific category in the output. An example for this is the
coloring of all variables and parameters that are defined by the theorem using the
color orange. Hence, the user can implicitly recognizes the category of a token within
the source text. Furthermore, with the support of semantic syntax highlighting, new
keywords and future changes to the syntax of Lean 4, are automatically adapted by
LeanInk, without the need to adjust the static syntax highlighter.
Finally the available popovers improve the discoverability of the source text.

Type popovers allow the inspection of the source code and give more insights into
the behavior of the implementation. On the other hand, tactic popovers display
intermediate information of each step in the proof. In the example the tactic popover
at apply And.intro displays all hypotheses at the location and both cases that are
required for the proof to be completed. Lastly, the accomplishment of all goals is
indicated by a short message Goals accomplished!.

All these additional features and information help the user to understand a proof
or code snippet of Lean. Additionally, the website can now be shared and published
on the internet, making it easy to both update the content later if necessary, while
also making to content accessible to anyone.
However, although all these features improve the readability of the source code,

the fundamental knowledge of the basic syntax and functionality of Lean is still
required to fully comprehend the proof.
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4.2 Performance
After evaluating the readability improvements, the following paragraphs now analyze
the performance of both the implementation of LeanInk as well as the extension of
Alectryon. The test device that runs the performance benchmarks in this chapter
is a MacBook Pro (13-inch, 2018) with a 2.7 GHz (Turbo Boost of 4.5 GHz) Quad-
Core Intel Core i7 8559U with 16 GB of 2133 MHz LPDDR3 memory. The operating
system installed on this test device is macOS Monterey 12.3 (21E230). hyperfine[17]
is the benchmarking command-line tool that benchmarks and collects the sample
data for the performance analysis. Each LeanInk configuration runs with a warmup
of five cycles, and a subsequent total of 50 cycles for data collection. Following the
data collection, it then calculates the mean (x) and standard deviation (σ) based on
the collected samples.
The LeanInk instance is compiled and based on the Lean 4 version

4.0.0-nightly-2022-03-07 [15]. Additionally, the Alectryon instance runs on
Python 3.9.10.
The input for all test runs is the Nat implementation file Basic.lean which is

located in the Lean 4 compiler repository under lean4/src/Init/Data/Nat/ [15]. It
is a relatively large Lean 4 file spanning 669 lines, which implements basic theorems
and implementations for the Nat datatype bundled with the Lean 4 Init library.
Table 4.1 and Figure 4.2 depict the results of the performance benchmark for

LeanInk. The configuration defines the usage of the analyze command. b describes
the default behavior of the analyze command without any additional flags set. t
sets the --x-enable-type-info flag, d sets the --x-enable-docStrings flag, and
s sets the --x-enable-semantic-token flag. Therefore each of them enables one
class of additional metadata, that is being extracted by LeanInk.

In addition to the overall mean runtime timefull, both the mean runtime of timetrav
and timecg are depicted. timetrav is the mean runtime that includes the InfoTree
traversal. timecg includes the InfoTree traversal and the compound generation,
however not the output generation.
The b configuration is the fastest configuration of LeanInk. This is because

it only extracts the metadata for tactics and goals within a proof. Therefore, the
configuration skips the additional compound generation for Tokens and the additional
extraction steps during the InfoTree traversal. Analysis of the call stack show, the
majority (≈ 70 %) of the execution time is due to the Lean.Elab.processHeader
and IO.processCommands method calls, hence the compilation of the source file.

However, in the case of all other configurations both additional steps are required
during analysis. In all theses configurations the actual difference only lies in the
amount of Tokens that are extracted during the InfoTree traversal. These config-
urations show an overall increase of about 0.2 s compared to the b configuration.
However the increase of metadata extracted only slightly increase the runtime. Fur-
ther analysis of the execution shows, the actual increase of execution time, is caused
by the Meta.ppExpr pretty printer method call, which LeanInk uses to generate
a readable output string of the inferred type of a Token. This discovery explains
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Figure 4.2: LeanInk benchmark
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Figure 4.3: Alectryon and LeanInk benchmark
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Configuration Basic.lean.leanInk Basic.html

o-b 177 kB 394 kB
n-b 177 kB 412 kB
n-b+t 886 kB 1.404 kB
n-b+t+d 916 kB 1.466 kB
n-b+t+s 992 kB 1.482 kB
n-b+t+d+s 1.037 kB 1.566 kB

Table 4.3: LeanInk + Alectryon filesize benchmark results

why the increase in runtime is similar for all non-default configurations, instead of
scaling linearly with the amount of extracted Tokens. Consequently, the compound
generation algorithm only has a minor influence in the overall runtime of LeanInk.
The performance analysis of Alectryon and its integration with LeanInk uses

the same nomenclature for the configuration. Additionally, the o field defines the
previous implementation of Alectryon mentioned in the first half of Chapter 3
with only support for the b configuration. This implementation did not alter the
implementation and behavior of Alectryon’s transform pipeline. Finally, the n field
defines the new version of Alectryon, which includes the support for the new metadata
and the changes to the transform pipeline and data model.

Table 4.2 and Figure 4.3 show the results of this analysis. The results clearly show
no significant difference in execution time between the o-b and n-b configuration.
Consequently, the changes to the transform pipeline and data model had no impact
in the overall performance of Alectryon’s default behavior. A reason for the similar
behavior is the implementation design of Alectryon’s new Token type. The execution
of Alectryon using its default behavior, results only in a single Token for each
Fragment, which is equivalent to the old implementation of a single String per
Fragment.

All other configurations show a increased execution time compared to the default
behavior. However, in addition to this, the execution time overhead caused by
the increase of metadata is more significant than the difference in LeanInk shown
by Figure 4.3. The significant increase in execution time in Alectryon is therefore
only partially due to the increase of execution time of LeanInk. Another significant
portion is caused by Alectryon’s transform pipeline and backend implementations.
Both modules have at least linear time complexity, hence their impact on the runtime
scales at least linearly with the increase of metadata.

4.3 Filesize
In this last chapter, the filesize of Alectryon’s and LeanInk’s output formats are evalu-
ated. Table 4.3 presents the filesize for each configuration. The Basic.lean.leanInk
file is the output file generated by LeanInk. The other output file Basic.html is the
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output file generated by Alectryon and LeanInk using Alectryon’s HTML backend.
The diagram clearly shows the significant increase of filesize caused by the additional

metadata. The filesize of LeanInk’s output increases by the factor of 5 when compared
to the configurations n-b and n-b+t. All other subsequent increases of metadata
similarly scale LeanInk’s and Alectryon’s output.
One final observation is the difference of filesize in Alectryon’s output of o-b in

comparison to n-b. Although LeanInk’s output size stays similar between both
configuration, Alectryon’s HTML backend still causes an increase of filesize. This is
due to data model change in Alectryon. The backend now receives a list of Tokens
instead of a single str instance. As a result the HTML backend wraps the content
of each Token into a separate <div> in the HTML output file.
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5 Conclusion and future work

The final chapter concludes this thesis by taking into account the initial problem
domain and comparing it to the results of the evaluation in Chapter 4. Finally,
it points out opportunities for future work to expand the current functionality of
LeanInk and Alectryon, and their integration with other tools.

5.1 Conclusion

Chapter 4 shows that the implementation of Lean support for Alectryon greatly im-
proves the shareability and readability of Lean 4 code. Literate programming enables
users to use proofs written in Lean 4 directly in a text document. Additionally, the
presented Lean code in this document is highly discoverable and rich in information.
One major benefit of this approach is, that the shared code, does not require a

working development environment and is therefore independent of a runtime. Hence,
the code can easily be uploaded to a webserver and shared to other people all around
the world. This greatly lowers the initial burden of writing proofs in Lean and
submitting the code to other fellow mathematicians. In addition to this, the code
contains additional information and hints about the functionality and implementation
of the proof.

However, due to the extension of Alectryon, sharing code with other Lean developers
is also an area that sees great improvements with this integration. Similar to
mathematicians, they can easily share code snippets with other. The additional
metadata about type information and semantic syntax highlighting allows them to
understand the code without the need of running it.

As a result, the initial problem domain mentioned in Chapter 1 greatly decreases in
severity. Although not all issues and problems have been resolved by the integration of
LeanInk in Alectryon, the burden of overcoming these issues has dropped significantly.

5.2 Future work

There are some additional features and future work to improve the current imple-
mentation of LeanInk and its integration with other tools.
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5.2.1 Integration with doc-gen4
Doc-gen41 is another tool currently in development for the Lean 4 theorem prover. It
analyzes the compiled Lean 4 .olean object files of a project to generate a reference
website containing all classes, structures, inductive types, and methods and their
respective documentation in the Lean code. Additionally, it creates links between all
references, making it easy to generate a helpful documentation reference for Lean 4
projects. A future ambition of doc-gen4 is to implement integration with LeanInk
to improve the readability of proofs in its output. For this use case implementing
another additional Output method in LeanInk would be a good starting point,
allowing doc-gen4 to receive the necessary information it needs by using LeanInk as
a dependency.

5.2.2 Lean-based document generation
Another future extension of LeanInk capabilities is a Lean 4 based document generator.
In this case, LeanInk itself would generate an HTML file or similar output on its own
instead of relying on Alectryon’s implementation. A apparent downside of this is the
loss of functionality and feature-set that Alectryon provides. However, on the other
side, this addition would allow features that are more closely bound to the Lean 4
environment, for example, support for Lean 4 widgets.

5.2.3 Support of additional metadata in LATEX backend
The extension of Alectryon’s feature set described in Chapter 3 is currently not
supported by the LATEX backend, as this was out-of-scope for this thesis. Imple-
menting the support for the LATEX backend only requires changes to the LATEX
backend itself, as the rest of the pipeline already supports the new features. One
major issue with supporting the additional metadata is that LATEX does not allow
any interaction of popovers similar to HTML. Therefore the LATEX backend should
include an extension of Alectryon’s IO annotations feature set to allow the user to
then define which additional information should be visible in the generated output
to prevent a cluttered and thus a hardly readable output file.

1https://github.com/leanprover/doc-gen4
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