
0

LEHRSTUHL PROGRAMMIERPARADIGMEN, KIT

Quis Custodiet Ipsos Custodes?
Gregor Snelting, Daniel Wasserrab, Andreas Lochbihler, Denis Lohner
funded by DFG Sn11/10, Sn11/12

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association http://pp.info.uni-karlsruhe.de/

Quis Custodiet Ipsos Custodes? [Juvenal]

1

Who will guard the Guards?
Many software security analysis algorithms are published without
soundness proof, some with a manual proof only

Vision of our Project:

provide machine-checked proofs for IFC algorithms
reaching a new level of reliability in Language Based Security
developing new techniques to validate the underlying language
description
integrating semantics, theorem provers and program analysis with
Language Based Security

Ultimate Goal: automatically generate an executable, completely
machine-verified, PDG-based IFC tool

Quis Custodiet Ipsos Custodes? [Juvenal]

1

Who will guard the Guards?
Many software security analysis algorithms are published without
soundness proof, some with a manual proof only

Vision of our Project:

provide machine-checked proofs for IFC algorithms
reaching a new level of reliability in Language Based Security
developing new techniques to validate the underlying language
description
integrating semantics, theorem provers and program analysis with
Language Based Security

Ultimate Goal: automatically generate an executable, completely
machine-verified, PDG-based IFC tool

Starting Point and Goals

2

Developed in earlier, long-standing projects:
TUM: Jinja, Isabelle formalization of realistic Java subset
includes type system, operational semantics, type safety proof,
verified JVM, verified compiler
all proofs machine checked
KIT: Joana, program dependence graph for full Java
flow-sensitive, context-sensitive, object-sensitive
scales to 100kLOC; Eclipse plug in GUI
+ IFC algorithm based on PDGs
+ manual correctness proof

Project Idea

1. verify the PDG-based IFC algorithm using Isabelle
2. support verification by innovative counter example generators

A tiny PDG

3

1 a = input ();
2 while (n>0) {
3 x = input ();
4 if (x>0)
5 b = a;
6 else
7 c = b;
8 }
9 z = c;

Slicing theorem:
No path x →∗ y =⇒ no information flow x → y guaranteed
∃ Path x →∗ y =⇒ information flow x → y possible

Backward slice: BS(y) = {x | x →∗ y}
Precise PDG construction for full Java is very complex
requires precise points-to analysis
Scalability: ca 100kLOC

Flow equations (intraprocedural)

4

S(x): security level for statement/variable x

Confidentiality: S(x) ≥ ⊔y∈pred(x) S(y)
Integrity: S(x) ≤

d
y∈pred(x) S(y)

required and provided levels R(x), P(x) (for I/O only): R(x) ≥ S(x)
and

S(x) =
{

P(x) t⊔y∈pred(x) S(y) if P(x) defined⊔
y∈pred(x) S(y) otherwise

for given PDG, P(x), R(x), S is computed by standard fixpoint
iteration
precise, interprocedural algorithm for full Java:
C. Hammer, G. Snelting: Flow-Sensitive, Context-Sensitive, and Object-sensitive
Information Flow Control Based on Program Dependence Graphs.

International Journal of Information Security, 8, 6, December 2009.

Implementation

5

JOANA Eclipse Plugin: slicing, definition of P(x), R(x), declassifications

displays security violations, flow through the program

Results in Karlsruhe

6

precise PDGs for full Java bytecode [PASTE ’04, Hamm ’09]
precise slicing of multithreaded programs
[FSE ’03, SCAM ’07, Hamm ’09, JASE ’09a]
path conditions in PDGs: precise, necessary conditions for
information flow, “witnesses”
[SAS ’96, ICSE ’02, TOSEM ’06, SCAM ’07, PLAS ’08, JASE ’09b]
IFC for full Java, based on PDGs and path conditions
[ISSSE ’06, ISOLA ’06, PLAS ’08, IJIS ’09]

Quis Custodiet: Isabelle proofs

1. Multiple Inheritance in C++ is Type Safe [OOPSLA ’06, AFP ’06]
2. PDG-based IFC is correct [TPHOLS ’08, PLAS ’09, VERIFY ’10]
3. Verified Compiler for Java Threads [FOOL ’08, ESOP ’10]

Results in Karlsruhe

6

precise PDGs for full Java bytecode [PASTE ’04, Hamm ’09]
precise slicing of multithreaded programs
[FSE ’03, SCAM ’07, Hamm ’09, JASE ’09a]
path conditions in PDGs: precise, necessary conditions for
information flow, “witnesses”
[SAS ’96, ICSE ’02, TOSEM ’06, SCAM ’07, PLAS ’08, JASE ’09b]
IFC for full Java, based on PDGs and path conditions
[ISSSE ’06, ISOLA ’06, PLAS ’08, IJIS ’09]

Quis Custodiet: Isabelle proofs

1. Multiple Inheritance in C++ is Type Safe [OOPSLA ’06, AFP ’06]
2. PDG-based IFC is correct [TPHOLS ’08, PLAS ’09, VERIFY ’10]
3. Verified Compiler for Java Threads [FOOL ’08, ESOP ’10]

7

C++ Multiple Inheritance is Type Safe

Multiple Inheritance in C++

8

A valid C++ program:

class A { int x; };
class B { int x; };
class C : virtual A, virtual B { int x; };
class D : virtual A, virtual B, C { };
...
D* d = new D();
d->x = 42;

but: gcc rejects it as ambiguous!
yet, other compilers (z.B. Intel) do accept it
problem: subobject-domination far from trivial

Multiple Inheritance in C++

8

A valid C++ program:

class A { int x; };
class B { int x; };
class C : virtual A, virtual B { int x; };
class D : virtual A, virtual B, C { };
...
D* d = new D();
d->x = 42;

but: gcc rejects it as ambiguous!
yet, other compilers (z.B. Intel) do accept it
problem: subobject-domination far from trivial

Subobjects and Domination

9

necessary due to multiple inherits of the same super class
Subobject: entity with the fields of the resp. class
accessed via class path

class A { int x; };
class B { int x; };
class C : virtual A, virtual B { int x; };
class D : virtual A, virtual B, C { };
...
D* d = new D();
d->x = 42;

(D,[D.C])

(D,[A]) (D,[B])

(D,[D])

x x

x

one-step-“smaller”-relation on subobjects (reflexive transitive closure v):

repeated: smaller subobj. contains bigger one physically in the store
shared: smaller subobj. has pointer to bigger one

Domination: subobject “smaller” (w.r.t. v) than all others

Subobjects and Domination

9

necessary due to multiple inherits of the same super class
Subobject: entity with the fields of the resp. class
accessed via class path

class A { int x; };
class B { int x; };
class C : virtual A, virtual B { int x; };
class D : virtual A, virtual B, C { };
...
D* d = new D();
d->x = 42;

(D,[D.C])

(D,[A]) (D,[B])

(D,[D])

x x

x

one-step-“smaller”-relation on subobjects (reflexive transitive closure v):

repeated: smaller subobj. contains bigger one physically in the store
shared: smaller subobj. has pointer to bigger one

Domination: subobject “smaller” (w.r.t. v) than all others

Subobject Formalization

10

Label within a class: subobject identified via class and path:
types path = cname list
types subobj = cname × path

Object on the heap: path selects fields of the resp. subobject:
types subo = path × (var ⇀ val)
types obj = cname × subo set

this-pointer: path denotes the subobject on which it points:
types reference = addr × path
may be changed via explicit and implicit casts

v-Relation: compares path w.r.t. a class: P,C ` Cs v Cs’

Dynamic Lookup

11

collecting all subobjects (paths) of a class with method declaration:
(Cs,mthd) ∈ MethodDefs P C M, where mthd body of M in subobj. (C,Cs)
resolve domination:
P ` C has least M = mthd via Cs ≡ (Cs,mthd) ∈ MethodDefs P C M ∧

(∀ (Cs’,mthd’) ∈ MethodDefs P C M. P,C ` Cs v Cs’)

Multiple Inheritance problem: ambiguities possible at runtime!

A code example
class Top { int f(); };
class Left : Top { };
class Right : Top { };
class Bottom: Left , Right { };
...
Left* l = New Bottom ();
l->f();

statically everything ok
At runtime:

2 Top-subobjects
(via Left and Right)
implicit cast of the this-pointer
at call impossible!

Dynamic Lookup

11

collecting all subobjects (paths) of a class with method declaration:
(Cs,mthd) ∈ MethodDefs P C M, where mthd body of M in subobj. (C,Cs)
resolve domination:
P ` C has least M = mthd via Cs ≡ (Cs,mthd) ∈ MethodDefs P C M ∧

(∀ (Cs’,mthd’) ∈ MethodDefs P C M. P,C ` Cs v Cs’)

Multiple Inheritance problem: ambiguities possible at runtime!

A code example
class Top { int f(); };
class Left : Top { };
class Right : Top { };
class Bottom: Left , Right { };
...
Left* l = New Bottom ();
l->f();

statically everything ok
At runtime:

2 Top-subobjects
(via Left and Right)
implicit cast of the this-pointer
at call impossible!

Dynamic Lookup

11

collecting all subobjects (paths) of a class with method declaration:
(Cs,mthd) ∈ MethodDefs P C M, where mthd body of M in subobj. (C,Cs)
resolve domination:
P ` C has least M = mthd via Cs ≡ (Cs,mthd) ∈ MethodDefs P C M ∧

(∀ (Cs’,mthd’) ∈ MethodDefs P C M. P,C ` Cs v Cs’)

Multiple Inheritance problem: ambiguities possible at runtime!

A code example
class Top { int f(); };
class Left : Top { };
class Right : Top { };
class Bottom: Left , Right { };
...
Left* l = New Bottom ();
l->f();

statically everything ok
At runtime:

2 Top-subobjects
(via Left and Right)
implicit cast of the this-pointer
at call impossible!

Dynamic Lookup

12

If lookup ambiguous at runtime, static information is used (as C++ does)
collect minimal elements:
MinimalMethodDefs P C M ≡ (Cs,mthd) ∈ MethodDefs P C M ∧

(∀ (Cs’,mthd’) ∈ MethodDefs P C M. P,C ` Cs v Cs’ −→ Cs = Cs’)

determine minimal subobjects smaller than static lookup subobject:
(Cs,mthd) ∈ MethodDefs P S M, where S is the subobject of the caller
guarantee uniqueness of the minimal subobject:
P ` S has overrider M = mthd via Cs ≡

(Cs,mthd) ∈ MethodDefs P S M ∧ |MethodDefs P S M| = 1

Real dynamic lookup: P ` (C,Cs) selects M = mthd via Cs’

dyn. lookup unique: P ` C has least M = mthd via Cs

dyn. lookup ambiguous: P ` (C,Cs) has overrider M = mthd via Cs’

Dynamic Lookup

12

If lookup ambiguous at runtime, static information is used (as C++ does)
collect minimal elements:
MinimalMethodDefs P C M ≡ (Cs,mthd) ∈ MethodDefs P C M ∧

(∀ (Cs’,mthd’) ∈ MethodDefs P C M. P,C ` Cs v Cs’ −→ Cs = Cs’)

determine minimal subobjects smaller than static lookup subobject:
(Cs,mthd) ∈ MethodDefs P S M, where S is the subobject of the caller
guarantee uniqueness of the minimal subobject:
P ` S has overrider M = mthd via Cs ≡

(Cs,mthd) ∈ MethodDefs P S M ∧ |MethodDefs P S M| = 1

Real dynamic lookup: P ` (C,Cs) selects M = mthd via Cs’

dyn. lookup unique: P ` C has least M = mthd via Cs

dyn. lookup ambiguous: P ` (C,Cs) has overrider M = mthd via Cs’

Type Safety Proof

13

Type Safety: Execution of a program statement e of type T in state s

either fully evaluated value v of type smaller than T

or controlled exception

Type Safety Theorem
wf_C_prog P P,E ` s

√
P,E ` e :: T D e bdom (lcl s)c

P,E ` 〈e,s〉 →∗ 〈e’,s’〉 @ e’’ s’’. P,E ` 〈e’,s’〉 → 〈e’’,s’’〉
(∃ v. e’ = Val v ∧ P,hp s’ ` v :≤ T) ∨
(∃ r. e’ = Throw r ∧ the_addr (Ref r) ∈ dom (hp s’))

Standard proof technique:
Progress: “the semantics cannot get stuck”

Preservation: “evaluating a well-typed statement results in
another well-typed statement with smaller type”

Proof invariant formulated as run-time type system

Type Safety Proof

13

Type Safety: Execution of a program statement e of type T in state s

either fully evaluated value v of type smaller than T

or controlled exception

Type Safety Theorem
wf_C_prog P P,E ` s

√
P,E ` e :: T D e bdom (lcl s)c

P,E ` 〈e,s〉 →∗ 〈e’,s’〉 @ e’’ s’’. P,E ` 〈e’,s’〉 → 〈e’’,s’’〉
(∃ v. e’ = Val v ∧ P,hp s’ ` v :≤ T) ∨
(∃ r. e’ = Throw r ∧ the_addr (Ref r) ∈ dom (hp s’))

Standard proof technique:
Progress: “the semantics cannot get stuck”

Preservation: “evaluating a well-typed statement results in
another well-typed statement with smaller type”

Proof invariant formulated as run-time type system

CoreC++ Outline

14

object-oriented core language with C++ multiple inheritance and
exceptions, bases on Jinja
big-step and small-step operational semantics with equivalence proof
type system with compiler checks
type safety proof of semantics w.r.t. type system
semantics and type system executable, i.e., we have an interpreter for
CoreC++ programs basing on the formal semantics
a small tool translates simple C++ programs in CoreC++ programs

Formalization Size
LoC Lemmas Definitions

14,727 505 82

15

Proving Slicing Correct

Slicing

16

Slicing bases on graphs
graphs independent of underlying concrete program syntax
Slicing itself reachability analysis
hence, basic slicing algorithm is language independent

Correctness of Slicing
At slicing node, all used variables have same value,
regardless if original or sliced program executed

Goal: correctness proof also language independent!
language independent framework for slicing
instantiantable with different (formal) language semantics
ideal starting point: abstract control flow graph

Slicing

16

Slicing bases on graphs
graphs independent of underlying concrete program syntax
Slicing itself reachability analysis
hence, basic slicing algorithm is language independent

Correctness of Slicing
At slicing node, all used variables have same value,
regardless if original or sliced program executed

Goal: correctness proof also language independent!
language independent framework for slicing
instantiantable with different (formal) language semantics
ideal starting point: abstract control flow graph

Abstract Control Flow Graph

17

defined in a context of function specifications and axioms
language instantiations provide concrete function definitions and
proofs that those fulfil axioms

functions the instantiations have to provide:

valid edges of the graph
valid nodes are source and target nodes of valid edges

semantic information of edges
two kinds, different effect when traversing this edge in a state

update edge: updates state
predicate edge: checks that predicate holds in state

def and use sets of nodes
which variables are defined and used in a node (statement)

axiomatization of control flow graph properties

structural properties: e.g., no multi-edges
well-formedness properties: e.g., semantic effect and def/use agree

Abstract Control Flow Graph

17

defined in a context of function specifications and axioms
language instantiations provide concrete function definitions and
proofs that those fulfil axioms
functions the instantiations have to provide:

valid edges of the graph
valid nodes are source and target nodes of valid edges

semantic information of edges
two kinds, different effect when traversing this edge in a state

update edge: updates state
predicate edge: checks that predicate holds in state

def and use sets of nodes
which variables are defined and used in a node (statement)

axiomatization of control flow graph properties

structural properties: e.g., no multi-edges
well-formedness properties: e.g., semantic effect and def/use agree

Abstract Control Flow Graph

17

defined in a context of function specifications and axioms
language instantiations provide concrete function definitions and
proofs that those fulfil axioms
functions the instantiations have to provide:

valid edges of the graph
valid nodes are source and target nodes of valid edges

semantic information of edges
two kinds, different effect when traversing this edge in a state

update edge: updates state
predicate edge: checks that predicate holds in state

def and use sets of nodes
which variables are defined and used in a node (statement)

axiomatization of control flow graph properties

structural properties: e.g., no multi-edges
well-formedness properties: e.g., semantic effect and def/use agree

Abstract Control Flow Graph

17

defined in a context of function specifications and axioms
language instantiations provide concrete function definitions and
proofs that those fulfil axioms
functions the instantiations have to provide:

valid edges of the graph
valid nodes are source and target nodes of valid edges

semantic information of edges
two kinds, different effect when traversing this edge in a state

update edge: updates state
predicate edge: checks that predicate holds in state

def and use sets of nodes
which variables are defined and used in a node (statement)

axiomatization of control flow graph properties

structural properties: e.g., no multi-edges
well-formedness properties: e.g., semantic effect and def/use agree

Abstract Control Flow Graph

17

defined in a context of function specifications and axioms
language instantiations provide concrete function definitions and
proofs that those fulfil axioms
functions the instantiations have to provide:

valid edges of the graph
valid nodes are source and target nodes of valid edges

semantic information of edges
two kinds, different effect when traversing this edge in a state

update edge: updates state
predicate edge: checks that predicate holds in state

def and use sets of nodes
which variables are defined and used in a node (statement)

axiomatization of control flow graph properties

structural properties: e.g., no multi-edges
well-formedness properties: e.g., semantic effect and def/use agree

Abstract Control Flow Graph

17

defined in a context of function specifications and axioms
language instantiations provide concrete function definitions and
proofs that those fulfil axioms
functions the instantiations have to provide:

valid edges of the graph
valid nodes are source and target nodes of valid edges

semantic information of edges
two kinds, different effect when traversing this edge in a state

update edge: updates state
predicate edge: checks that predicate holds in state

def and use sets of nodes
which variables are defined and used in a node (statement)

axiomatization of control flow graph properties

structural properties: e.g., no multi-edges
well-formedness properties: e.g., semantic effect and def/use agree

Program Dependence Graph

18

defined in proof context of abstract CFG

data dependence: “variable defined at one statement and used in a
subsequent one, without being redefined in between”

n influences V in n’ ≡ ∃ a’ as’. V ∈ Def n ∧ V ∈ Use n’ ∧
n -a’·as’→* n’ ∧ (∀ n’’∈set (srcs as’). V /∈ Def n’’)

control dependence: “a statement controls whether another statement is
executed” (e.g., if-branches or while-body)
needs postdominator: “every terminating execution at the parameter
statement has to execute the postdominating statement”

n’ postdominates n ≡ valid_node n ∧ valid_node n’ ∧
(∀ as. n -as→* Exit −→ n’ ∈ set (srcs as))

n controls n’ ≡ ∃ a a’ as. n -a·as→* n’ ∧ n’ /∈ set(srcs (a·as)) ∧
valid_edge a’ ∧ src a = n ∧ n’ postdominates (trg a) ∧
src a’ = n ∧ ¬ n’ postdominates (trg a’)

Slicing

19

Backward Slice: −→d* reflexive transitive closure of control −→cd and
data dependence −→dd
BS nc ≡ if valid_node nc then {n’ | n’ −→d* nc} else ∅

Sliced CFG: not eliminating nodes, but invalidating semantic effects!
if source node of an edge not in slice, no-op as semantic effect:

update with identity
predicates True or False

hence, traversing edge no effect, as if it were not there

Program execution: traversing control flow paths from Entry to Exit

in original CFG for executions in original program
in sliced CFG for executions in sliced program

Correctness Proof

20

Following Ranganath et al. [TOPLAS ’07] and Amtoft [IPL ’08]:
Weak Simulation Property between original and sliced CFG

graphs as labelled transition systems (LTS)
LTS state: (node,state) tuple
LTS label: edges with source node in slice
LTS transition: silent and observable moves

src a /∈ BS nc
valid_edge a pred (f a) s

transfer (f a) s = s’
nc,f ` (src a,s) -a→τ (trg a,s’)

src a ∈ BS nc
valid_edge a pred (f a) s

transfer (f a) s = s’
nc,f ` (src a,s) -a→ (trg a,s’)

Weak Simulation ∼ relation between (node,state) tuples

Proof: show that moves fulfil following simulation diagrams
(n,s) (nx,sx)

(n',s')

∼

∼

*

τ

(n,s) (nx,sx)

(n',s')

∼

∼

*

τ

(nx',sx')

Correctness Proof

20

Following Ranganath et al. [TOPLAS ’07] and Amtoft [IPL ’08]:
Weak Simulation Property between original and sliced CFG

graphs as labelled transition systems (LTS)
LTS state: (node,state) tuple
LTS label: edges with source node in slice
LTS transition: silent and observable moves

src a /∈ BS nc
valid_edge a pred (f a) s

transfer (f a) s = s’
nc,f ` (src a,s) -a→τ (trg a,s’)

src a ∈ BS nc
valid_edge a pred (f a) s

transfer (f a) s = s’
nc,f ` (src a,s) -a→ (trg a,s’)

Weak Simulation ∼ relation between (node,state) tuples
Proof: show that moves fulfil following simulation diagrams

(n,s) (nx,sx)

(n',s')

∼

∼

*

τ

(n,s) (nx,sx)

(n',s')

∼

∼

*

τ

(nx',sx')

Fundamental Property of Slicing

21

Correctness of Slicing
At slicing node, all used variables have same value,
regardless if original or sliced program executed

weak simulation property says nothing about executions!

When we have a semantics which agrees to executing the CFG:

Fundamental Property of Slicing

n , c 〈c,s〉 ⇒ 〈c’,s’〉
∃ n’ as. n -as→* n’ ∧ preds (slice_kinds n’ as) s ∧ n’ , c’ ∧

(∀ V ∈ Use n’. state_val (transfers (slice_kinds n’ as) s) V =
state_val s’ V)

transfers (slice_kinds n’ as) s:
execution of the sliced program of n’ in state s

Fundamental Property of Slicing

21

Correctness of Slicing
At slicing node, all used variables have same value,
regardless if original or sliced program executed

weak simulation property says nothing about executions!

When we have a semantics which agrees to executing the CFG:

Fundamental Property of Slicing

n , c 〈c,s〉 ⇒ 〈c’,s’〉
∃ n’ as. n -as→* n’ ∧ preds (slice_kinds n’ as) s ∧ n’ , c’ ∧

(∀ V ∈ Use n’. state_val (transfers (slice_kinds n’ as) s) V =
state_val s’ V)

transfers (slice_kinds n’ as) s:
execution of the sliced program of n’ in state s

Interprocedural Slicing

22

E

3 4

5
e

i ii

iii iv v

vi

2

6

71

E

3 4

5
e

i

iii iv v

vi

6

71

ii

2

new nodes for formal (in callee) and actual parameters (in caller)
new edges (dotted) in dependence graph:

call edges for calling procedures and
parameter-in and -out edges for argument passing

yet, simple reachability includes spurious nodes!

context-sensitivity can eliminate such spurious nodes

Interprocedural Slicing

22

E

3 4

5
e

i ii

iii iv v

vi

2

6

71

E

3 4

5
e

i

iii iv v

vi

6

71

ii

2

new nodes for formal (in callee) and actual parameters (in caller)
new edges (dotted) in dependence graph:

call edges for calling procedures and
parameter-in and -out edges for argument passing

yet, simple reachability includes spurious nodes!
context-sensitivity can eliminate such spurious nodes

Algorithm of Horwitz, Reps, Binkley (HRB)

23

standard for interprocedural context-sensitive slicing [TOPLAS ’90]

E

3 4

5
e

i ii

iii iv v

vi

2

6

71 3 4

E

5
e

i

iii iv v

vi

2 71

ii

6

2 phases: first only ascends to callee, second only descends to callers
context-sensitivity via summary edges (bold)
efficient computable [Reps et al.: SIGSOFT ’94]
but no correctness proof!

Summary Edges and HRB Slice

24

in actual algorithm: complex algorithm O(n3)
in formalization: simple declarative description

Summary Edge
If m formal in-parameter and m’ formal out-parameter node,
m −→d* m’ and n and n’ corresponding actual parameter
nodes at call site, then n −→sum n’

Formalizing the two phases of the HRB algorithm as sets:
sum_SDG_slice1 n = {n’. n’ −→{cd,dd,call,in,sum}* n}
sum_SDG_slice2 n = {n’. n’ −→{cd,dd,out,sum}* n}

HRB slice as combination of this two sets:

n’ ∈ sum_SDG_slice1 n
n’ ∈ HRB_slice n

n’’ ∈ sum_SDG_slice1 n
<n’’ is actual out-parameter node>

n’ ∈ sum_SDG_slice2 n’’
n’ ∈ HRB_slice n

Summary Edges and HRB Slice

24

in actual algorithm: complex algorithm O(n3)
in formalization: simple declarative description

Summary Edge
If m formal in-parameter and m’ formal out-parameter node,
m −→d* m’ and n and n’ corresponding actual parameter
nodes at call site, then n −→sum n’

Formalizing the two phases of the HRB algorithm as sets:
sum_SDG_slice1 n = {n’. n’ −→{cd,dd,call,in,sum}* n}
sum_SDG_slice2 n = {n’. n’ −→{cd,dd,out,sum}* n}

HRB slice as combination of this two sets:

n’ ∈ sum_SDG_slice1 n
n’ ∈ HRB_slice n

n’’ ∈ sum_SDG_slice1 n
<n’’ is actual out-parameter node>

n’ ∈ sum_SDG_slice2 n’’
n’ ∈ HRB_slice n

Summary Edges and HRB Slice

24

in actual algorithm: complex algorithm O(n3)
in formalization: simple declarative description

Summary Edge
If m formal in-parameter and m’ formal out-parameter node,
m −→d* m’ and n and n’ corresponding actual parameter
nodes at call site, then n −→sum n’

Formalizing the two phases of the HRB algorithm as sets:
sum_SDG_slice1 n = {n’. n’ −→{cd,dd,call,in,sum}* n}
sum_SDG_slice2 n = {n’. n’ −→{cd,dd,out,sum}* n}

HRB slice as combination of this two sets:

n’ ∈ sum_SDG_slice1 n
n’ ∈ HRB_slice n

n’’ ∈ sum_SDG_slice1 n
<n’’ is actual out-parameter node>

n’ ∈ sum_SDG_slice2 n’’
n’ ∈ HRB_slice n

Correctness Proof

25

using the same Weak Simulation Property
but: due to context-sensitivity we need call history

remembers call sites previously visited, but not returned to
we use a node stack

LTS state now (node stack,state) tuple
much more complicated definition of moves and simulation relation

But finally, same result as for intraprocedural slicing:

Fundamental Property of Slicing

n , c 〈c,s〉 ⇒ 〈c’,s’〉
∃ n’ as. n -as→* n’ ∧ preds (slice_kinds n’ as) s ∧ n’ , c’ ∧

(∀ V ∈ Use n’. state_val (transfers (slice_kinds n’ as) s) V =
state_val s’ V)

But much more effort...

Correctness Proof

25

using the same Weak Simulation Property
but: due to context-sensitivity we need call history

remembers call sites previously visited, but not returned to
we use a node stack

LTS state now (node stack,state) tuple
much more complicated definition of moves and simulation relation

But finally, same result as for intraprocedural slicing:

Fundamental Property of Slicing

n , c 〈c,s〉 ⇒ 〈c’,s’〉
∃ n’ as. n -as→* n’ ∧ preds (slice_kinds n’ as) s ∧ n’ , c’ ∧

(∀ V ∈ Use n’. state_val (transfers (slice_kinds n’ as) s) V =
state_val s’ V)

But much more effort...

Instantiations

26

While: standard while language with procedures

source code language
complex CFG construction (label semantics)
proving conditions mainly by inductive reasoning

Jinja byte code: quite sophisticated object-oriented language
features exception throwing and catching
fully object oriented
but: no points-to analysis yet
=⇒ far from precise (“heap as a whole”)

byte code language
“simple” CFG construction
proving conditions mainly by reasoning by case distinction

Application to Information Flow Control

27

IFC: check if secret information may leak to public output
variables partitioned in H (secret) and L (public)
Low Equality =L: two states agree in values of all L variables
Classical Noninterference: ∀s s′.s =L s′ −→ JcKs =L JcKs′

differing values in initial H variables no effect on final L values

Proof that Slicing guarantees Classical Noninterference:
enhance CFG by adding two nodes:

High immediately after Entry, defines all H variables
Low immediately before Exit, uses all L variables

additional nodes also appear in Dependence Graph
if High /∈ BS Low, no influence from High to Low

Application to Information Flow Control

27

IFC: check if secret information may leak to public output
variables partitioned in H (secret) and L (public)
Low Equality =L: two states agree in values of all L variables
Classical Noninterference: ∀s s′.s =L s′ −→ JcKs =L JcKs′

differing values in initial H variables no effect on final L values

Proof that Slicing guarantees Classical Noninterference:
enhance CFG by adding two nodes:

High immediately after Entry, defines all H variables
Low immediately before Exit, uses all L variables

additional nodes also appear in Dependence Graph
if High /∈ BS Low, no influence from High to Low

Application to Information Flow Control

28

E

2'

1h
h

43

 2
 1l
l

e

y

x

2

iii iii

1H L

2

 2
 1h
h

3'

l
l

1

2

x

yx

2'

1h
h

43

 2
 1l
l

e

y

x

2

iii iii

H L

2

 2
 1h
h

3'

l
l

1

2

x

yx

1

E

No influence from High to Low.

Slicing Guarantees Noninterference
s1 =L s2 High /∈ HRB_slice Low initial n n , c

final n’ n’ , c’ 〈c,s1〉 ⇒ 〈c’,s1’〉 〈c,s2〉 ⇒ 〈c’,s2’〉
s1’ =L s2’

Proof mainly by Correctness of Slicing

Application to Information Flow Control

28

E

2'

1h
h

43

 2
 1l
l

e

y

x

2

iii iii

1H L

2

 2
 1h
h

3'

l
l

1

2

x

yx

2'

1h
h

43

 2
 1l
l

e

y

x

2

iii iii

H L

2

 2
 1h
h

3'

l
l

1

2

x

yx

1

E

No influence from High to Low. Noninterferent?

Slicing Guarantees Noninterference
s1 =L s2 High /∈ HRB_slice Low initial n n , c

final n’ n’ , c’ 〈c,s1〉 ⇒ 〈c’,s1’〉 〈c,s2〉 ⇒ 〈c’,s2’〉
s1’ =L s2’

Proof mainly by Correctness of Slicing

Application to Information Flow Control

28

E

2'

1h
h

43

 2
 1l
l

e

y

x

2

iii iii

1H L

2

 2
 1h
h

3'

l
l

1

2

x

yx

2'

1h
h

43

 2
 1l
l

e

y

x

2

iii iii

H L

2

 2
 1h
h

3'

l
l

1

2

x

yx

1

E

No influence from High to Low. Noninterferent!

Slicing Guarantees Noninterference
s1 =L s2 High /∈ HRB_slice Low initial n n , c

final n’ n’ , c’ 〈c,s1〉 ⇒ 〈c’,s1’〉 〈c,s2〉 ⇒ 〈c’,s2’〉
s1’ =L s2’

Proof mainly by Correctness of Slicing

Slicing Outline

29

language-independent framework for slicing via dependence graphs
dynamic, static intra- and interprocedural slicing proved correct
two instantiations:

a simple While source code language and
a sophisticated object-oriented byte code language

first proof that slicing can guarantee classical noninterference

Formalization Size Intraprocedural Slicing
LoC Lemmas Definitions

Framework 6,872 209 43
Instantiations

While 3,177 51 17
Jinja 5,517 100 27

IFC Noninterference
Proof 558 15 2
CFG lifting 1,470 12 3

Total 17,594 387 92

Slicing Outline

30

Formalization Size Interprocedural Slicing
LoC Lemmas Definitions

Framework 18,988 579 104
Instantiations
(w/o semantics)

While 6,758 127 29
Jinja 3,429 64 30

IFC Noninterference
Proof 1,502 20 2
CFG lifting 2,025 8 10

Total 32,702 798 175

Ongoing and future work

31

Points-to analysis:

language: Jinja (byte code)
bases on abstract dataflow framework [Kildall ’73] formalization
Goals:

1. verify Correctness (machine checked)
2. improve precision of PDG formalization

IFC: formalization of
suitable noninterference definition (supporting I/O)
the PDG-based IFC algorithm [IJIS ’09]
(without declassification)

language independent
bases on slicing framework
Goal: verify Correctness of the algorithm

32

JinjaThreads

Jinja [Klein, Nipkow ’06]

33 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

source code

Jinja [Klein, Nipkow '06]

Java features:
classes, objects & fields
inheritance & late binding
exceptions
imperative features

not modelled:
reflection & class loading
interfaces
threads

7

small-step

byte code

byte code verifiertype safety

big-step sequential VM

type
safety

veri fied
com piler

stage 1 stage 2

Java features not modelled
classes, objects & fields reflection & class loading
inheritance & late binding interfaces
exceptions threads
imperative features

JinjaThreads

34 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

source code

JinjaThreads

7

small-step

byte code

byte code verifiertype safety

big-step sequential VM

type
safety

interleaving semantics concurrent VMconc. small-step

sequential VM

Java concurrency features:
arbitrary thread creation
synchronisation
join
wait / notify

not modelled:
(thread interruption)
java.util.concurrent

veri fied
com piler

stage 1 stage 2

Java concurrency features not modelled
dynamic thread creation java.util.concurrent
synchronisation Java Memory Model
wait / notify
join & thread interruption

Interleaving small-step semantics

35

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics

8

t ⊢〈x, h〉!〈x', h'〉ta 《", h》!《"', h'》t
ta

interleaving

single-thread semantics

NewThread x
Lock l / Unlock l

Wait w / notify w / ...

multithreaded semantics

locks
thread-local states

wait sets

typeofh a = Class C P ⊢ C # Thread P ⊢ C sees run() = body

t ⊢〈(addr a).start(), h〉 〈Unit, h〉[NewThread body]

Type safety

36
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Zusatzmaterial

12

P⊢(!, h)✓ ¬ final !

∃t ta !' h'. 《!, h》"《!', h'》
ta
t

P⊢(!, h)✓ 《!, h》"《!', h'》

P⊢(!', h')✓
ta
t

progress preservation

Deadlock

all unfinished threads wait for
locks held by other threads
unfinished other threads
notification from wait set

independent of concrete
single-thread semantics
coinductive characterisation

Generic preservation lemma

If single-thread semantics
preserves prop. thread-locally,

⇒ multithreaded semantics
preserves property globally.

Type safety

36
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Zusatzmaterial

12

P⊢(!, h)✓ ¬ final !

∃t ta !' h'. 《!, h》"《!', h'》
ta
t

P⊢(!, h)✓ 《!, h》"《!', h'》

P⊢(!', h')✓
ta
t

progress preservation

Deadlock

all unfinished threads wait for
locks held by other threads
unfinished other threads
notification from wait set

independent of concrete
single-thread semantics
coinductive characterisation

Generic preservation lemma

If single-thread semantics
preserves prop. thread-locally,

⇒ multithreaded semantics
preserves property globally.

Type safety

36
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Zusatzmaterial

12

P⊢(!, h)✓ ¬ final ! (!, h)∉deadlock

∃t ta !' h'. 《!, h》"《!', h'》
ta
t

P⊢(!, h)✓ 《!, h》"《!', h'》

P⊢(!', h')✓
ta
t

progress preservation

Deadlock

all unfinished threads wait for
locks held by other threads
unfinished other threads
notification from wait set

independent of concrete
single-thread semantics
coinductive characterisation

Generic preservation lemma

If single-thread semantics
preserves prop. thread-locally,

⇒ multithreaded semantics
preserves property globally.

Deadlock characterisation

37

thr σ t = bxc t ` 〈x, h〉 →
∀ta. t ` 〈x, h〉 ta→ =⇒ ∃lt ∈ ta. ∃t ′ ∈ deadlocked (σ, h). must-wait σ t t ′ lt

t ∈ deadlocked (σ, h)
==

σ t = bxc t ∈ wait-sets σ ∀t /∈ deadlocked (σ, h). final (σ t)

t ∈ deadlocked (σ, h)
===

deadlock = { (σ, h) | ∀t . final (σ t) ∨ t ∈ deadlocked (σ, h) }

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

The correctness proof

9

source
code

byte
code

stage 1 stage 2intermed.
language

! !

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

delay bisimulation !

The correctness proof

9

source
code

byte
code

stage 1 stage 2intermed.
language

! !

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

delay bisimulation !

The correctness proof

9

("1, h) ! ("2, h)

("'1, h')

!

source
code

byte
code

stage 1 stage 2intermed.
language

! !

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

delay bisimulation !

The correctness proof

9

("1, h) ! ("2, h)

("'1, h')

!

! ("'2, h')*
!

source
code

byte
code

stage 1 stage 2intermed.
language

! !

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

delay bisimulation !

The correctness proof

9

("1, h) ! ("2, h)

("'1, h')

!

! ("'2, h')*
!

("1, h) ! ("2, h)

("'1, h')

o

source
code

byte
code

stage 1 stage 2intermed.
language

! !

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

delay bisimulation !

The correctness proof

9

! ("'2, h')
o
!
*

("1, h) ! ("2, h)

("'1, h')

!

! ("'2, h')*
!

("1, h) ! ("2, h)

("'1, h')

o

source
code

byte
code

stage 1 stage 2intermed.
language

! !

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Observable steps
heap access
synchronisation
thread creation
external method calls

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

delay bisimulation !

The correctness proof

9

! ("'2, h')
o
!
*

("1, h) ! ("2, h)

("'1, h')

!

! ("'2, h')*
!

("1, h) ! ("2, h)

("'1, h')

o

source
code

byte
codestage 1 stage 2intermed.

language

! !

!t !t

define ("1, h) ! ("2, h):
locks and wait sets of "1 and "2 are
the same
thread-local states x1 and x2 satisfy:

(x1, h) !t (x2, h)

Compiler correctness

38
23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Observable steps
heap access
synchronisation
thread creation
external method calls

correctness statement

result states
nontermination

deadlock

source
code

B

compiled
code

Biff

delay bisimulation !

The correctness proof

9

! ("'2, h')
o
!
*

("1, h) ! ("2, h)

("'1, h')

!

! ("'2, h')*
!

("1, h) ! ("2, h)

("'1, h')

o

source
code

byte
codestage 1 stage 2intermed.

language

! !

!t !t

Theorem

If !t is a single-thread delay bisimulation,
then ! is a multithreaded delay bisimulation.

define ("1, h) ! ("2, h):
locks and wait sets of "1 and "2 are
the same
thread-local states x1 and x2 satisfy:

(x1, h) !t (x2, h)

Statistics

39

Formalisation
LoC lemmas definitions

60,225 2812 463

⇒ 3 times the size of Jinja

Build times:
4GB, 1×2.6GHz, x86: 3:30h

40GB, 1×2.53GHz, x86_64: 1:30h
40GB, 8×2.53GHz, x86_64: 0:30h

Essential Isabelle features:
Isar
locales as a module system
(co-)inductive definitions and proofs by (co-)induction

JinjaThreads hits the limits
locales and parallelisation devour lots of memory
very little support for refactoring

Statistics

39

Formalisation
LoC lemmas definitions

60,225 2812 463

⇒ 3 times the size of Jinja

Build times:
4GB, 1×2.6GHz, x86: 3:30h

40GB, 1×2.53GHz, x86_64: 1:30h
40GB, 8×2.53GHz, x86_64: 0:30h

Essential Isabelle features:
Isar
locales as a module system
(co-)inductive definitions and proofs by (co-)induction

JinjaThreads hits the limits
locales and parallelisation devour lots of memory
very little support for refactoring

Statistics

39

Formalisation
LoC lemmas definitions

60,225 2812 463

⇒ 3 times the size of Jinja

Build times:
4GB, 1×2.6GHz, x86: 3:30h

40GB, 1×2.53GHz, x86_64: 1:30h
40GB, 8×2.53GHz, x86_64: 0:30h

Essential Isabelle features:
Isar
locales as a module system
(co-)inductive definitions and proofs by (co-)induction

JinjaThreads hits the limits
locales and parallelisation devour lots of memory
very little support for refactoring

Statistics

39

Formalisation
LoC lemmas definitions

60,225 2812 463

⇒ 3 times the size of Jinja

Build times:
4GB, 1×2.6GHz, x86: 3:30h

40GB, 1×2.53GHz, x86_64: 1:30h
40GB, 8×2.53GHz, x86_64: 0:30h

Essential Isabelle features:
Isar
locales as a module system
(co-)inductive definitions and proofs by (co-)induction

JinjaThreads hits the limits
locales and parallelisation devour lots of memory
very little support for refactoring

JinjaThreads summary

40

formal small-step semantics for multithreaded Java
source code and byte code
type system and type safety proof
verified compiler from source code to byte code

available in the Archive of Formal Proofs
http://afp.sourceforge.net/entries/JinjaThreads.shtml

Current and future work:
Java Memory Model
extract executable Java interpreter

http://afp.sourceforge.net/entries/JinjaThreads.shtml

JinjaThreads summary

40

formal small-step semantics for multithreaded Java
source code and byte code
type system and type safety proof
verified compiler from source code to byte code

available in the Archive of Formal Proofs
http://afp.sourceforge.net/entries/JinjaThreads.shtml

Current and future work:
Java Memory Model
extract executable Java interpreter

http://afp.sourceforge.net/entries/JinjaThreads.shtml

41

Conclusion

Ongoing work in Quis Custodiet

42

Isabelle proof for full algorithm from [IJIS ’09] incl. points-to, threads
requires generalized noninterference (cmp. [Askarov ’08])
proof will require > 100000 LOC Isabelle text
extend compiler formalization/proof with memory model

automatically generate an executable, completely machine-verified,
PDG-based IFC tool (?!)

Quis Custodiet Ipsos Custodes?
Isabelle!

Ongoing work in Quis Custodiet

42

Isabelle proof for full algorithm from [IJIS ’09] incl. points-to, threads
requires generalized noninterference (cmp. [Askarov ’08])
proof will require > 100000 LOC Isabelle text
extend compiler formalization/proof with memory model
automatically generate an executable, completely machine-verified,
PDG-based IFC tool (?!)

Quis Custodiet Ipsos Custodes?
Isabelle!

Ongoing work in Quis Custodiet

42

Isabelle proof for full algorithm from [IJIS ’09] incl. points-to, threads
requires generalized noninterference (cmp. [Askarov ’08])
proof will require > 100000 LOC Isabelle text
extend compiler formalization/proof with memory model
automatically generate an executable, completely machine-verified,
PDG-based IFC tool (?!)

Quis Custodiet Ipsos Custodes?

Isabelle!

Ongoing work in Quis Custodiet

42

Isabelle proof for full algorithm from [IJIS ’09] incl. points-to, threads
requires generalized noninterference (cmp. [Askarov ’08])
proof will require > 100000 LOC Isabelle text
extend compiler formalization/proof with memory model
automatically generate an executable, completely machine-verified,
PDG-based IFC tool (?!)

Quis Custodiet Ipsos Custodes?
Isabelle!

	Overview
	C++ Multiple Inheritance is Type Safe
	Proving Slicing Correct
	JinjaThreads
	Conclusion

