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Related work: formal compiler verification

sequential languages

m Verisoft: from CO to assembler [Leinenbach]
m single pass, no optimisations

B CompCERT: from Cminor to assembler [Leroy]
® many stages & optimisations

®m Jinja: from Java to byte code [Klein, Nipkow]
m two passes, no optimisations
concurrent languages

m parallel functional language [Rittri, Wand]
m pen and paper proofs

m Concurrent Cminor [Appel et al.]
m focus on separation logic
m no compiler verification reported
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Sequential compiler verification ﬂ(".
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o load 3

push 5
. e store 7
(xD (55

behaviour:
® result state / trace
® non-termination
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Simulation is not enough A\‘(IT

synchronized

synchronized (this (
1; this.x = 2

) | this) {
this.x = this.x + -
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Simulation is not enough

synchronized (this) {
this.x = this.x + 1;

aload 0

dup

astore 1
monitorenter

aload 0
dup
getfield x
iconst 1
iadd
putfield x

aload 1
monitorexit
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this.x = 0
synchronized (this) { synchronized (this) {
this.x = this.x + 1; this.x = 2; \\//
} } .
this.x = 2
this.x = 3
aload 0 aload 0
dup dup .
astore 1 astore 1 this.x = 0
monitorenter monitorenter
aload 0 aload 0 \\v//
dup iconst 2
getfield x putfield x this.x = 2
iconst 1 .
iadd thlS.X = 3
putfield x
aload 1 aload 1
monitorexit monitorexit
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Why does it work for sequential languages? ﬂ(“.
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Shared memory concurrency ﬂ(“.
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Jinja [Klein, Nipkow '00]
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Java features:
m classes, objects & fields
m inheritance & late binding
m exceptions
®m imperative features
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conc. small step Ml EEEV eIt concurrent VIV

. single-thread VM
A
stage 1 stage 2
small-step type
safety
v y
type safety bytecode verifier
source code I byte code
Java concurrency features: not modelled:
m arbitrary thread creation m (thread interruption)
®m synchronisation m java.util.concurrent

| join
m wait / notify
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Interleaving small-step semantics ﬂ(".

single-thread semantics multithreaded semantics

t = <x, h) ta, (X', h") {o, h) % (o', h")
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Interleaving small-step semantics A\‘(“.

single-thread semantics multithreaded semantics
ta VoL : : t VoL
t- <x, h) K (X', h") o, h) e (o', h")
4 new thread x ) /\ locks )
lock | / unlock | thread-local states
\_ wait w / notify w / ... Y, \_ wait sets )

ha=0DbjCfs P+ C < Thread P - C sees run() = body

NewThread body]
t = {(addr a).start(), h>[ ~ (Unit, h)
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correctness define (a1, h) = (02, h):
delay bisimulation = m locks and wait sets of o1 and o2 are
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(01, h) = (02, h) | (01, h)= (02, h) | |m thread-local states x1 and x. satisfy:
l.l. | ‘o s (X1, h) =t (X2, h)

(a4, h") Theorem

If =t is a single-thread delay bisimulation,
then = is a multithreaded delay bisimulation.

Observable steps
m heap access
®m synchronisation
m thread creation ~t ~t

® method calls source intermed byte
code anguag code
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Summary

m formal semantics for
Java threads

m verified a simple compiler to
byte code

Future work

m (deadlock & nontermination)
® Java memory model

m optimisations
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