
KIT - University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

IPD, PROGRAMMING PARADIGMS GROUP, COMPUTER SCIENCE DEPARTMENT

Verifying a Compiler for Java Threads

Andreas Lochbihler

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Related work: formal compiler verification

sequential languages
Verisoft: from C0 to assembler [Leinenbach]

single pass, no optimisations

CompCERT: from Cminor to assembler [Leroy]
many stages & optimisations

Jinja: from Java to byte code [Klein, Nipkow]
two passes, no optimisations

concurrent languages
parallel functional language [Rittri, Wand]

pen and paper proofs

Concurrent Cminor [Appel et al.]
focus on separation logic
no compiler verification reported

2

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification

behaviour:
result state / trace
non-termination

3

load 3
push 5
store 7
...compiler

=

;

x 5

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification

behaviour:
result state / trace
non-termination

3

load 3
push 5
store 7
...compiler

simulates

=

;

x 5

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification

behaviour:
result state / trace
non-termination

3

load 3
push 5
store 7
...compiler

B

simulates

=

;

x 5

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification

behaviour:
result state / trace
non-termination

3

load 3
push 5
store 7
...compiler

B B'

simulates

=

;

x 5

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification

behaviour:
result state / trace
non-termination

3

load 3
push 5
store 7
...compiler

B B'≈

simulates

=

;

x 5

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough

4

synchronized (this) {
 this.x = this.x + 1;
}

synchronized (this) {
 this.x = 2;
}

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough

4

synchronized (this) {
 this.x = this.x + 1;
}

synchronized (this) {
 this.x = 2;
}

this.x = 0

this.x = 2
this.x = 3

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough

4

synchronized (this) {
 this.x = this.x + 1;
}

synchronized (this) {
 this.x = 2;
}

this.x = 0

this.x = 2
this.x = 3

aload 0
dup
astore 1
monitorenter

aload 0
dup
getfield x
iconst_1
iadd
putfield x

aload 1
monitorexit

aload 0
dup
astore 1
monitorenter

aload 0
iconst_2
putfield x

aload 1
monitorexit

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough

4

synchronized (this) {
 this.x = this.x + 1;
}

synchronized (this) {
 this.x = 2;
}

this.x = 0

this.x = 2
this.x = 3

this.x = 0

this.x = 2
this.x = 3

aload 0
dup
astore 1
monitorenter

aload 0
dup
getfield x
iconst_1
iadd
putfield x

aload 1
monitorexit

aload 0
dup
astore 1
monitorenter

aload 0
iconst_2
putfield x

aload 1
monitorexit

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough

4

synchronized (this) {
 this.x = this.x + 1;
}

synchronized (this) {
 this.x = 2;
}

this.x = 0

this.x = 2
this.x = 3

this.x = 0

this.x = 2
this.x = 3

aload 0
dup
astore 1
monitorenter

aload 0
dup
getfield x
iconst_1
iadd
putfield x

aload 1
monitorexit

aload 0
dup
astore 1
monitorenter

aload 0
iconst_2
putfield x

aload 1
monitorexit

aload 1
monitorexit
aload 1
monitorenter

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough

4

synchronized (this) {
 this.x = this.x + 1;
}

synchronized (this) {
 this.x = 2;
}

this.x = 0

this.x = 2
this.x = 3

this.x = 0

this.x = 2
this.x = 3

this.x = 1

aload 0
dup
astore 1
monitorenter

aload 0
dup
getfield x
iconst_1
iadd
putfield x

aload 1
monitorexit

aload 0
dup
astore 1
monitorenter

aload 0
iconst_2
putfield x

aload 1
monitorexit

aload 1
monitorexit
aload 1
monitorenter

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Why does it work for sequential languages?

5

load 3
push 5
store 7
...compiler

simulates

=

;

x 5

determinism +

source
code

bisimulation=

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Why does it work for sequential languages?

5

load 3
push 5
store 7
...compiler

B'

simulates

=

;

x 5

determinism +

source
code

bisimulation=

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Why does it work for sequential languages?

5

load 3
push 5
store 7
...compiler

B B'

simulates

=

;

x 5

determinism +

source
code

bisimulation=

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Why does it work for sequential languages?

5

load 3
push 5
store 7
...compiler

B B'

simulates

=

;

x 5

determinism +

source
code

bisimulation=

≈ B''

simulates

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Why does it work for sequential languages?

5

load 3
push 5
store 7
...compiler

B B'

simulates

=

;

x 5

determinism +

source
code

bisimulation=

=≈ B''

simulates

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency

6

source
code

compiled
code

compiler

bisimulation

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency

behaviour:
result state / trace
non-termination
deadlock

6

source
code

compiled
code

compiler

bisimulation

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency

behaviour:
result state / trace
non-termination
deadlock

6

source
code

compiled
code

compiler

bisimulation

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency

behaviour:
result state / trace
non-termination
deadlock

6

source
code

compiled
code

compiler

bisimulation

optimisations

weak memory model

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency

behaviour:
result state / trace
non-termination
deadlock

6

source
code

compiled
code

compiler

bisimulation

no optimisations

interleaving semantics

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency

behaviour:
result state / trace
non-termination
deadlock

6

source
code

compiled
code

compiler

bisimulation

no optimisations

interleaving semantics

correctness
result

iff

source
code

B

compiled
code

B

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

source code

Jinja [Klein, Nipkow '06]

Java features:
classes, objects & fields
inheritance & late binding
exceptions
imperative features

not modelled:
reflection & class loading
interfaces
threads

7

λ →

∀
=Isa

be
lle

β

α

HOL

small-step

byte code

bytecode verifiertype safety

big-step sequential VM

type
safety

veri fied
com piler

stage 1 stage 2

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

source code

JinjaThreads

7

λ →

∀
=Isa

be
lle

β

α

HOL

small-step

byte code

bytecode verifiertype safety

big-step sequential VM

type
safety

interleaving semantics concurrent VMconc. small step

single-thread VM

Java concurrency features:
arbitrary thread creation
synchronisation
join
wait / notify

not modelled:
(thread interruption)
java.util.concurrent

veri fied
com piler

stage 1 stage 2

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics

8

t ⊢〈x, h〉→〈x', h'〉ta 《σ, h》→《σ', h'》t
ta

interleaving

single-thread semantics multithreaded semantics

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics

8

t ⊢〈x, h〉→〈x', h'〉ta 《σ, h》→《σ', h'》t
ta

interleaving

single-thread semantics multithreaded semantics

locks
thread-local states

wait sets

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics

8

t ⊢〈x, h〉→〈x', h'〉ta 《σ, h》→《σ', h'》t
ta

interleaving

single-thread semantics

new thread x
lock l / unlock l

wait w / notify w / ...

multithreaded semantics

locks
thread-local states

wait sets

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics

8

t ⊢〈x, h〉→〈x', h'〉ta 《σ, h》→《σ', h'》t
ta

interleaving

single-thread semantics

new thread x
lock l / unlock l

wait w / notify w / ...

multithreaded semantics

locks
thread-local states

wait sets

h a = Obj C fs P ⊢ C ≤ Thread P ⊢ C sees run() = body

t ⊢〈(addr a).start(), h〉 〈Unit, h〉
[NewThread body]

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics

8

t ⊢〈x, h〉→〈x', h'〉ta 《σ, h》→《σ', h'》t
ta

interleaving

single-thread semantics

new thread x
lock l / unlock l

wait w / notify w / ...

multithreaded semantics

locks
thread-local states

wait sets

single thread

source
code

intermed.
language

byte
code

multithreaded

stage 1 stage 2

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness
source
code

B

compiled
code

Biff

The correctness proof

9

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

⇑

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

⇑

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

≈ (σ'2, h')*
τ

⇑

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

≈ (σ'2, h')*
τ

(σ1, h) ≈ (σ2, h)

(σ'1, h')

o

⇑

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

≈ (σ'2, h')
o
τ
*

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

≈ (σ'2, h')*
τ

(σ1, h) ≈ (σ2, h)

(σ'1, h')

o

⇑

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

≈ (σ'2, h')
o
τ
*

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

≈ (σ'2, h')*
τ

(σ1, h) ≈ (σ2, h)

(σ'1, h')

o

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Observable steps
heap access
synchronisation
thread creation
method calls

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

≈ (σ'2, h')
o
τ
*

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

≈ (σ'2, h')*
τ

(σ1, h) ≈ (σ2, h)

(σ'1, h')

o

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

≈t ≈t

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Observable steps
heap access
synchronisation
thread creation
method calls

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

≈ (σ'2, h')
o
τ
*

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

≈ (σ'2, h')*
τ

(σ1, h) ≈ (σ2, h)

(σ'1, h')

o

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

≈t ≈t

define (σ1, h) ≈ (σ2, h):
locks and wait sets of σ1 and σ2 are
the same
thread-local states x1 and x2 satisfy:

(x1, h) ≈t (x2, h)

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Observable steps
heap access
synchronisation
thread creation
method calls

correctness
source
code

B

compiled
code

Biff

delay bisimulation ≈

The correctness proof

9

≈ (σ'2, h')
o
τ
*

(σ1, h) ≈ (σ2, h)

(σ'1, h')

τ

≈ (σ'2, h')*
τ

(σ1, h) ≈ (σ2, h)

(σ'1, h')

o

source
code

byte
codestage 1 stage 2intermed.

language

≈ ≈

≈t ≈t

Theorem

If ≈t is a single-thread delay bisimulation,
then ≈ is a multithreaded delay bisimulation.

define (σ1, h) ≈ (σ2, h):
locks and wait sets of σ1 and σ2 are
the same
thread-local states x1 and x2 satisfy:

(x1, h) ≈t (x2, h)

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2
stuck

byte code

stuck

intermediate language

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2
stuck

untypeable

intermediate language

stuck

untypeable

source code

stuck

untypeable

byte code

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2
stuck

untypeable

intermediate language

stuck

untypeable

source code

stuck

untypeable

byte code

type safety type safety type safety

type
preservation

type
preservation

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2

stuck stuck
stuck

aggressive
semantics

defensive
semantics

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs

10

stuck

source code

stuck

byte code

stage 1
stuck

intermediate language

stage 2

stuck stuck
stuck

= bytecode verifier

aggressive
semantics

defensive
semantics

23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Summary

formal semantics for
Java threads

verified a simple compiler to
byte code

Future work
(deadlock & nontermination)

Java memory model

optimisations

11

source
code

byte
codestage 1 stage 2intermed.

language

≈t ≈t

≈ ≈

=

