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Related work: formal compiler verification

sequential languages
Verisoft: from C0 to assembler [Leinenbach]

single pass, no optimisations

CompCERT: from Cminor to assembler [Leroy]
many stages & optimisations

Jinja: from Java to byte code [Klein, Nipkow]
two passes, no optimisations

concurrent languages
parallel functional language [Rittri, Wand]

pen and paper proofs

Concurrent Cminor [Appel et al.]
focus on separation logic
no compiler verification reported
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source code

Jinja [Klein, Nipkow '06]

Java features:
classes, objects & fields
inheritance & late binding
exceptions
imperative features

not modelled:
reflection & class loading
interfaces
threads
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source code

JinjaThreads

7

λ →

∀
=Isa

be
lle

β

α

HOL

small-step

byte code

bytecode verifiertype safety

big-step sequential VM

type
safety

interleaving semantics concurrent VMconc. small step

single-thread VM

Java concurrency features:
arbitrary thread creation
synchronisation
join
wait / notify

not modelled:
(thread interruption)
java.util.concurrent

veri fied
com piler

stage 1 stage 2
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ta

interleaving 

single-thread semantics

new thread x
lock l / unlock l

wait w / notify w / ...

multithreaded semantics

locks
thread-local states

wait sets

h a = Obj C fs       P ⊢ C ≤ Thread        P ⊢ C sees run() = body 

t ⊢〈(addr a).start(), h〉                        〈Unit, h〉
[NewThread body]
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Theorem

If ≈t is a single-thread delay bisimulation, 
then ≈ is a multithreaded delay bisimulation.
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Summary

formal semantics for
Java threads

verified a simple compiler to 
byte code

Future work
(deadlock & nontermination)

Java memory model

optimisations
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