4]}

Karlsruhe Institute of Technology

Verifying a Compiler for Java Threads

Andreas Lochbihler

IPD, PROGRAMMING PARADIGMS GROUP, COMPUTER SCIENCE DEPARTMENT

-hr.Trtrancl3p P s 3 8': multithreaded base.deadloc)
mexecd Tmthr.mthr.Trtrancl3p (J2JVM P) cs ttas' cs' A
multithreaded base.deadlock JVM final (mexecd (J2JVM P)) cs' A bisimJ2JVM P s8' cs' A

mMlasm

"y +hr : 13r g ;
-+ Jcs' ttas'.

hisimulation base. (+1s1mT2.JVM P
KIT - University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

\V,VAV,VAV,V; T all

Related work: formal compiler verification

sequential languages

m Verisoft: from CO to assembler [Leinenbach]
m single pass, no optimisations

B CompCERT: from Cminor to assembler [Leroy]
® many stages & optimisations

®m Jinja: from Java to byte code [Klein, Nipkow]
m two passes, no optimisations
concurrent languages

m parallel functional language [Rittri, Wand]
m pen and paper proofs

m Concurrent Cminor [Appel et al.]
m focus on separation logic
m no compiler verification reported

2 23 March 2010 Verifying a Compiler for Java Threads

Karisruhe Institute of Technology

IPD, programming paradigms group

Sequential compiler verification ﬂ(".

Karlsruhe Institute of Technology

o load 3

push 5
. e store 7
(xD (55

behaviour:
® result state / trace
® non-termination

3 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification ﬂ(".

Karisruhe Institute of Technology

o simulates oad 3

push 5
store 7

behaviour:
® result state / trace
® non-termination

3 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification ﬂ(".

Karisruhe Institute of Technology

o simulates oad 3

push 5
store 7

B

behaviour:
® result state / trace
® non-termination

3 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification ﬂ(".

Karisruhe Institute of Technology

o simulates oad 3

push 5
store 7

4 4

B B’

behaviour:
® result state / trace
® non-termination

3 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Sequential compiler verification ﬂ(".

Karisruhe Institute of Technology

o simulates oad 3

push 5
store 7

4 4

B B’

R

behaviour:
® result state / trace
® non-termination

3 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough A\‘(IT

synchronized

synchronized (this (
1; this.x = 2

) | this) {
this.x = this.x + -

4 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough

synchronized (this

}

4

this.Xx

23 March 2010

) {
= this.x + 1;

Verifying a Compiler for Java Threads

synchronized
this.x =

}

(
2

th
’

Karlsruhe Institute of Technology

this.x = 0
s) {

this.x = 2

this.x = 3

IPD, programming paradigms group

Simulation is not enough

synchronized (this) {
this.x = this.x + 1;

aload 0

dup

astore 1
monitorenter

aload 0
dup
getfield x
iconst 1
iadd
putfield x

aload 1
monitorexit

4 23 March 2010 Verifying a Compiler for Java Threads

synchronized (this)
this.x = 2;

aload 0

dup

astore 1
monitorenter

aload 0
iconst 2
putfield x

aload 1
monitorexit

SKIT

lsruhe Institute of Technology

this.x = 0

) 4

this.x = 2
this.x

Il
w

IPD, programming paradigms group

Simulation is not enough A\‘(IT

lsruhe Institute of Technology

this.x = 0
synchronized (this) { synchronized (this) {
this.x = this.x + 1; this.x = 2; \\//
} } .
this.x = 2
this.x = 3
aload 0 aload 0
dup dup .
astore 1 astore 1 this.x = 0
monitorenter monitorenter
aload 0 aload 0 \\v//
dup iconst 2
getfield x putfield x this.x = 2
iconst 1 .
iadd thlS.X = 3
putfield x
aload 1 aload 1
monitorexit monitorexit

4 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough A\‘(IT

lsruhe Institute of Technology

this.x = 0
synchronized (this) { synchronized (this) {
this.x = this.x + 1; this.x = 2; \\//
} } .
this.x = 2
this.x = 3
aload 0 aload 0
dup dup .
astore 1 astore 1 this.x = 0
monitorenter monitorenter
aload 0 aload 0 \\v//
dup aload 1 iconst 2
getfieldx<monitorexit putfield x this.x = 2
iconst_1 aload 1 :
iadd monitorenter this.x = 3
putfield x
aload 1 aload 1
monitorexit monitorexit

4 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Simulation is not enough ._\\‘(IT

lsruhe Institute of Technology

this.x = 0
synchronized (this) { synchronized (this) {
this.x = this.x + 1; this.x = 2; \\//
} } .
this.x = 2
this.x = 3
aload 0 aload 0
dup dup .
astore 1 astore 1 this.x = 0
monitorenter monitorenter
aload 0 aload 0 \/
dup aload 1 iconst 2
getfleldx<mon1torex1t putfield x this.x = 2
iconst 1 aload 1 :
iadd monitorenter this.x = 3
putfield x this.x = 1
aload 1 aload 1
monitorexit monitorexit

4 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Why does it work for sequential languages? ﬂ(“.

5

23 March 2010

Karlsruhe Institute of Technology

determinism +

source
code

4

bisimulation

Verifying a Compiler for Java Threads

simulates

load 3
push 5
store 7

IPD, programming paradigms group

Why does it work for sequential languages? ﬂ(“.

5

23 March 2010

Karlsruhe Institute of Technology

determinism +

source
code

4

bisimulation

Verifying a Compiler for Java Threads

simulates

load 3
push 5
store 7

) 4

Bl

IPD, programming paradigms group

Why does it work for sequential languages? ﬂ(“.

5

Karlsruhe Institute of Technology

B

23 March 2010

source
code
determinism + = bisimulation
simulates oad 3
push 5
store 7

Verifying a Compiler for Java Threads

) 4

Bl

IPD, programming paradigms group

Why does it work for sequential languages? ﬂ(“.

5

Karlsruhe Institute of Technology

determinism +

source
code

4

bisimulation

B

23 March 2010

Verifying a Compiler for Java Threads

simulates

simulates

0

load 3
push 5
store 7

) 4

B" Bl

IPD, programming paradigms group

Why does it work for sequential languages? ﬂ(“.

5

Karlsruhe Institute of Technology

determinism +

source
code

4

bisimulation

B

23 March 2010

Verifying a Compiler for Java Threads

simulates

simulates

0

load 3
push 5
store 7

A A 4

B" — Bl

IPD, programming paradigms group

Shared memory concurrency ﬂ(“.

Kartsruhe Institute of Technology

bisimulation

com

code 0]

6 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency ﬂ(“.

Kartsruhe Institute of Technology

bisimulation

compi
cod

code

behaviour:

m result state / trace
® non-termination
® deadlock

6 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency ﬂ(“.

Karlsruhe Institute of Technology
-) bisimulation
compll

source
code cod

behaviour:

m result state / trace
® non-termination
® deadlock

6 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency ﬂ(".

Karlsruhe Institute of Technology

bisimulation

compiled
code

source
code

optimisations

weak memory model

<—<—<—<—
<<—<—<—<—

behaviour:

m result state / trace
® non-termination
® deadlock

6 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency ﬂ(".

Karlsruhe Institute of Technology

bisimulation

compiled
code

source
code

no optimisations

interleaving semantics

<—<—<—<—
<<—<—<—<—

behaviour:

m result state / trace
® non-termination
® deadlock

6 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Shared memory concurrency

source
code

<—<—<—<—

behaviour:

m result state / trace
B non-termination
m deadlock

bisimulation

no optimisations

interleaving semantics

SKIT

Karlsruhe Institute of Technol

compiled
code

<<—<—<—<—

source
code

g

B

correctness
result

Iff

compiled
code

&

B

6 23 March 2010 Verifying a Compiler for Java Threads

IPD, programming paradigms group

Jinja [Klein, Nipkow '00]

7

Karisruhe Institute of Technology

Java features:
m classes, objects & fields
m inheritance & late binding
m exceptions
®m imperative features

23 March 2010 Verifying a Compiler for Java Threads

big-step C\Z)erg gﬁgr sequential VM
¢ stage 1 stage 2 Atyp e
small-step
safety
v
type safety bytecode verifier
source code byte code

not modelled:
m reflection & class loading
m interfaces
m threads

IPD, programming paradigms group

JinjaThreads ﬂ(".

Karlsruhe Institute of Technology

conc. small step Ml EEEV eIt concurrent VIV

. single-thread VM
A
stage 1 stage 2
small-step type
safety
v y
type safety bytecode verifier
source code I byte code
Java concurrency features: not modelled:
m arbitrary thread creation m (thread interruption)
®m synchronisation m java.util.concurrent

| join
m wait / notify

7 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics ﬂ(".

single-thread semantics multithreaded semantics

t = <x, h) ta, (X', h") {o, h) % (o', h")

8 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics A\‘(IT

single-thread semantics multithreaded semantics

t= <{x, h) ta, (X', h") (o, h) % (o', h')
/\ locks)

thread-local states

\ walt sets /

8 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics A\‘(II

single-thread semantics multithreaded semantics

t = <x, h) ta, (X', h") {o, h) % (o', h")

A b
4 new thread X) locks)

lock | / unlock | thread-local states
_ wait w / notify w / ...) _ wait sets)

8 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics A\‘(“.

single-thread semantics multithreaded semantics
ta VoL : : t VoL
t- <x, h) K (X', h") o, h) e (o', h")
4 new thread x) /\ locks)
lock | / unlock | thread-local states
_ wait w / notify w / ... Y, _ wait sets)

ha=0DbjCfs P+ C < Thread P - C sees run() = body

NewThread body]
t = {(addr a).start(), h>[~ (Unit, h)

8 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Interleaving small-step semantics ﬂ(".

Karlsruhe Institute of Technology

single-thread semantics multithreaded semantics

t = <x, h) ta, (X', h") {o, h) % (o', h")

A b
/ new thread X \ locks)

lock | / unlock | thread-local states
_ wait w / notify w / ...) _ wait sets Y,

multithreaded

single thread

source intermed. byte
code language code

8 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

The correctness proof

source
code

|
V

B

correctness

compiled
code

&

Iff B

9 23 March 2010

Verifying a Compiler for Java Threads

source
code

intermed
anguag code

AT

Karlsruhe Institute of Technology

byte

IPD, programming paradigms group

The correctness proof

correctness
source compiled
code code
AL I
l
B Iff B
N

delay bisimulation =

source
code

9

23 March 2010

Verifying a Compiler for Java Threads

intermed
anguag code

AT

Karlsruhe Institute of Technology

byte

IPD, programming paradigms group

The correctness proof

correctness
source compiled
code code
oL I
l
B Iff B
N

delay bisimulation =

(01, h) = (02, h)

Ir

(0%, h')

source
code

9

23 March 2010

Verifying a Compiler for Java Threads

intermed
anguag code

AT

Karlsruhe Institute of Technology

byte

IPD, programming paradigms group

The correctness proof

source
code

|
V

B

correctness

compiled
code

&

B

delay bisimulation =

(01, h) =

Ir

(01, h') = (0'2,*h')

(02, h)

T

v

AT

Karlsruhe Institute of Technology

source
code

intermed byte
anguag code

9

23 March 2010

Verifying a Compiler for Java Threads

IPD, programming paradigms group

The correctness proof A“(".

Karlsruhe Institute of Technology

correctness
source compiled
code code
oL I
l
B Iff B
N

delay bisimulation =

(01, h) = (02, h) (01, h) = (02, h)

lT T 10
o 'V* ' o source intermed byte
(0%, h') = (02, h') (o1, h') code anguag code

9 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

The correctness proof A“(".

Karlsruhe Institute of Technology

correctness
source compiled
code code
oL I
l
B Iff B
N

delay bisimulation =

(01, h) = (02, h) (01, h) = (02, h)

. v U
T T o) V’b

o 'V* ' o 'v ' source intermed byte
(0%, h') = (02, h') (01, h') = (02, h') code anguag code

9 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

The correctness proof

correctness

delay bisimulation =

(01, h) = (o2, h)

lT T
v

*

(01, h') = (0%, h')

(01, h) = (02, h)

v L
@ Va

\

(o1, h') = (o2, h')

9

23 March 2010

Verifying a Compiler for Java Threads

source
code

AT

Karlsruhe Institute of Technology

intermed byte
code

anguag

IPD, programming paradigms group

The correctness proof ﬂ(".

Karlsruhe Institute of Technology

correctness

delay bisimulation =
(01, h) = (02, h) (o1, h) = (02, h)

: [
L S B O

¥y v

(0%, h') = (0%, h') | (0%,) = (02, h)

Observable steps
m heap access
®m synchronisation
m thread creation

m method calls source intermed byte
code anguag code

9 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

The correctness proof

correctness

delay bisimulation =
(01, h) = (02, h) (o1, h) = (02, h)

: v
L L B O

¥y v

(0%, h') = (0%, h') | (0%,) = (02, h)

define (o1, h) = (02, h):

m locks and wait sets of o1 and o2 are
the same
m thread-local states x1 and x2 satisfy:

(X1, h) = (x2, h)

Observable steps
m heap access
®m synchronisation
m thread creation
m method calls

9 23 March 2010 Verifying a Compiler for Java Threads

source intermed byte
code anguag code

IPD, programming paradigms group

The correctness proof ﬂ(".

Karlsruhe Institute of Technology

correctness define (a1, h) = (02, h):
delay bisimulation = m locks and wait sets of o1 and o2 are
the same
(01, h) = (02, h) | (01, h)= (02, h) | |m thread-local states x1 and x. satisfy:
l.l. | ‘o s (X1, h) =t (X2, h)

(a4, h") Theorem

If =t is a single-thread delay bisimulation,
then = is a multithreaded delay bisimulation.

Observable steps
m heap access
®m synchronisation
m thread creation ~t ~t

® method calls source intermed byte
code anguag code

9 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(“.

Karlsruhe Institute of Technology

source code intermediate language byte code

J4=d=4

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(“.

Karlsruhe Institute of Technology

source code intermediate language byte code

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(“.

Karlsruhe Institute of Technology

source code intermediate language byte code

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(“.

Karlsruhe Institute of Technology

source code intermediate language byte code

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(“.

Karlsruhe Institute of Technology

source code intermediate language byte code

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(".

Karlsruhe Institute of Technology

source code intermediate language byte code

type type
preservation preservation

IJ} ypea e

type safety type safety type safety

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(“.

Karlsruhe Institute of Technology

source code intermediate language byte code

aggressive
semantics

defensive
semantics

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Stuck programs ﬂ(".

Karlsruhe Institute of Technology

source code intermediate language byte code

aggressive
semantics

1 bytecode verifier

v

defensive
semantics

10 23 March 2010 Verifying a Compiler for Java Threads IPD, programming paradigms group

Summary

m formal semantics for
Java threads

m verified a simple compiler to
byte code

Future work

m (deadlock & nontermination)
® Java memory model

m optimisations

11 23 March 2010 Verifying a Compiler for Java Threads

AT

Karlsruhe Institute of Technology

source
code

intermed byte
anguag code

IPD, programming paradigms group

