Ablauf

- Einführung in PSE Zeit für Fragen
- Anmeldung und Zeitplan Zeit für Fragen
- 3. Themenvorstellung Zeit für Fragen

Eine Aufzeichnung der Veranstaltung findet sich später im ILIAS

Bei Fragen:


- ► Fragen im Chat stellen
- Fragen werden dann vorgelesen und beantwortet

Praxis der Softwareentwicklung – WS 2020/21

Prof. Dr. Gregor Snelting

LEHRSTUHL PROGRAMMIERPARADIGMEN

Ablauf

- 1. Einführung in PSE Zeit für Fragen
- 2. Anmeldung und Zeitplan Zeit für Fragen
- 3. Themenvorstellung Zeit für Fragen

Eine Aufzeichnung der Veranstaltung findet sich später im ILIAS

Bei Fragen:

- Fragen im Chat stellen
- Fragen werden dann vorgelesen und beantwortet

Praxis der Software-Entwicklung (PSE)

 Ziel: Entwicklung eines mittelgroßen Systems im Team mit objektorientierter Softwaretechnik

Praxis der Software-Entwicklung (PSE)

- Ziel: Entwicklung eines mittelgroßen Systems im Team mit objektorientierter Softwaretechnik
- Zielsystem: max 10kLOC objektorientierter Entwurf (UML), Implementierung (Java/C++/C#, ...), Qualitätssicherung (z. B. JUnit)

Praxis der Software-Entwicklung (PSE)

- Ziel: Entwicklung eines mittelgroßen Systems im Team mit objektorientierter Softwaretechnik
- Zielsystem: max 10kLOC objektorientierter Entwurf (UML), Implementierung (Java/C++/C#, ...), Qualitätssicherung (z. B. JUnit)
- Teilnehmer: 3. oder 4. Sem. BA Informatik
 Voraussetzung: Grundbegriffe der Informatik, Programmieren,
 Softwaretechnik I, Lineare Algebra I
- Empfehlung: PSE erst, wenn alle Module aus 1./2. Semester bestanden sind
- PSE wird jedes Semester angeboten

Umfang

Umfang: 9 LP,
 ≈ 270 Arbeitsstunden / Teilnehmer,
 ≈ 2 Arbeitstage / Woche / Teilnehmer

3

Teamarbeit in der Software-Entwicklung (TSE)

- Pflichtveranstaltung im Rahmen der Soft Skills (2 LP) kann nur zusammen mit PSE belegt werden
- soll PSE auf 9 LP bringen; explizite Lernziele Teamfähigkeit,
 Sprach-/Kommunikationskompetenz, Projektplanung/-management

PSE / Organisation

- Zeitplan: November 2020 März 2021; 17 Wochen Praktikumsbetrieb nach Absprache vorlesungsfreie Zeit muss zur Entzerrung genutzt werden, da sonst leicht Überlastung möglich
- 12 verschiedene Aufgabenstellungen von 11 Lehrstühlen
- objektorientiertes Phasenmodell verbindlich (vgl. Modulhandbuch)
- max. 30 Teams à 5-6 Studenten
 Wünsche zu Teamzusammensetzung / Aufgabe werden nach
 Möglichkeit berücksichtigt
- Englische Projekte sind freiwillig

PSE / Organisation

- Zeitplan: November 2020 März 2021; 17 Wochen Praktikumsbetrieb nach Absprache vorlesungsfreie Zeit muss zur Entzerrung genutzt werden, da sonst leicht Überlastung möglich
- 12 verschiedene Aufgabenstellungen von 11 Lehrstühlen
- objektorientiertes Phasenmodell verbindlich (vgl. Modulhandbuch)
- max. 30 Teams à 5-6 Studenten
 Wünsche zu Teamzusammensetzung / Aufgabe werden nach
 Möglichkeit berücksichtigt
- Englische Projekte sind freiwillig
- Eventuell stehen nicht genügend Teilnehmerplätze zur Verfügung ⇒ Warteliste für nächstes Semester
- Bitte Webseite beachten: http://pp.ipd.kit.edu/lehre/WS202021/pse/

Zulassungsverfahren

Es gibt folgendes Zulassungsverfahren:

- 1. Teilnehmer melden sich im PSE-Verwaltungssystem an.
- Gegenprüfung der formalen Voraussetzungen am IPD Snelting soweit möglich.
- 3. Rückmeldung an Betreuer, falls Gegenprüfung *nicht* erfolgreich.
- 4. Betreuer prüfen Notenspiegel der fraglichen Fälle.
- Umverteilung der Teams in 2. PSE-Woche, falls Teams auseinander fallen.

PSE / Übersicht

- moderne Softwaretechnik ist wichtig für alle BA-Absolventen!
- vollständige Entwicklung eines größeren Systems
- Phasenmodell:
 - 1. Pflichtenheft
 - 2. Entwurf
 - 3. Implementierung
 - Qualitätssicherung
 - 5. Abschlusspräsentation
- Phasenverantwortliche
- Teamarbeit (Teams à 5-6Teilnehmer)
- durchgehend Objektorientierung
- Toolunterstützung, z. B. Eclipse, JUnit, ...

1. Pflichtenheft

Phasenziel

detaillierte Festlegung der Leistungsmerkmale eines Systems

Grundprinzipien

- Präzision
- Vollständigkeit
- Konsistenz

Vorgehen

- Systemmodell (grobe Übersicht), Systemumgebung (Hard/Software)
- vollständige funktionale Anforderungen
- GUI-Entwürfe (manuell oder programmiert)
- ausführliche Testfallszenarien

verlangt wird

Abgabe des Pflichtenheftes nach 3 Wochen; Erläuterung im ersten Kolloquium

2. Entwurf

objektorientiert (UML)

Phasenziel

- Festlegung der Klassenstruktur
- Schnittstellendefinition der Klassen
- Beziehungen zw. Klassen (Vererbung, Assoziationen)
- Klassendiagramm, ausgewählte Sequenzdiagramme, evtl.
 Zustandsdiagramm
- Einsatz von Design Patterns, MVC

2. Entwurf

objektorientiert (UML)

Phasenziel

- Festlegung der Klassenstruktur
- Schnittstellendefinition der Klassen
- Beziehungen zw. Klassen (Vererbung, Assoziationen)
- Klassendiagramm, ausgewählte Sequenzdiagramme, evtl.
 Zustandsdiagramm
- Einsatz von Design Patterns, MVC

Grundprinzipien

- Geheimnisprinzip
- schwache Kopplung
- hohe Kohäsion
- Lokalitätsprinzip
- Wiederverwendbarkeit von Klassen/Subsystemen

2. Entwurf

objektorientiert (UML)

Phasenziel

- Festlegung der Klassenstruktur
- Schnittstellendefinition der Klassen
- Beziehungen zw. Klassen (Vererbung, Assoziationen)
- Klassendiagramm, ausgewählte Sequenzdiagramme, evtl.
 Zustandsdiagramm
- Einsatz von Design Patterns, MVC

Grundprinzipien

- Geheimnisprinzip
- schwache Kopplung
- hohe Kohäsion
- Lokalitätsprinzip
- Wiederverwendbarkeit von Klassen/Subsystemen
- OO: Vererbung/dynamische Bindung statt Fallunterscheidung

2. Entwurf / 2

Vorgehen

- Kombination von Top-Down und Bottom-Up Design
- Identifikation von Klassen, Vererbung, Assoziationen
- Festlegung der Schnittstellen aller Klassen
- informelle Beschreibung aller Klassen
- evtl. Einsatz von Entwurfsmetriken

2. Entwurf / 2

Vorgehen

- Kombination von Top-Down und Bottom-Up Design
- Identifikation von Klassen, Vererbung, Assoziationen
- Festlegung der Schnittstellen aller Klassen
- informelle Beschreibung aller Klassen
- evtl. Einsatz von Entwurfsmetriken

verlangt wird

- Abgabe der UML-Diagramme nebst informeller Beschreibung nach 4 Wochen; Verteidigung im zweiten Kolloquium
- Nachweis der Evolutionsfähigkeit (z. B. Lokalitätsprinzip)

3. Implementierung

Phasenziel: Programmierung des Systems

Grundprinzipien

- Programmierung in einer objektorientierten Sprache
- Umsetzung der Architektur

3. Implementierung

Phasenziel: Programmierung des Systems

Grundprinzipien

- Programmierung in einer objektorientierten Sprache
- Umsetzung der Architektur

Vorgehen

- Implementierungsplan vorher
- Implementierung der Methoden
- funktionaler Komponententest mit JUnit, evtl. Überdeckungstests; verschränkt mit Implementierung
- Realisation der Szenarien aus Pflichtenheft

verlangt wird

- Implementierungsplan; Implementierung;
- Implementierungskolloquium

4. Qualitätssicherung

Phasenziel: Test des Systems

Grundprinzipien

werkzeugunterstützte Qualitätssicherung

4. Qualitätssicherung

Phasenziel: Test des Systems

Grundprinzipien

werkzeugunterstützte Qualitätssicherung

Vorgehen

- Integrationstest, Robustheitstest
- Prüfen der Szenarien aus Pflichtenheft

verlangt wird

Testbericht; Systemabnahme (1 Woche vor Abschluss)

5. Abschlusspräsentation

- Abschlusspräsentation (Frühjahr 2021)
- Nach Möglichkeit mehrere Lehrstühle zusammen

image source: https://www.flickr.com/photos/svenwerk/506579282/

Allgemeine Hinweise und Tipps

20 Seiten Hinweise und Tipps (im Laufe der letzten Jahre entstanden) für Betreuer und Studierende als PDF gibt es auf der PSE-Webseite zum Download:

http://pp.ipd.kit.edu/lehre/WS202021/pse/

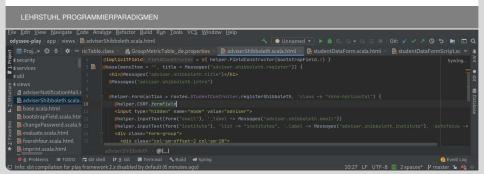
Ihre Beiträge dazu nehmen wir gerne hier entgegen: https://git.scc.kit.edu/IPDSnelting/pse-tipps/

Ablauf

- Einführung in PSE Zeit für Fragen
- Anmeldung und Zeitplan Zeit für Fragen
- 3. Themenvorstellung Zeit für Fragen

Eine Aufzeichnung der Veranstaltung findet sich später im ILIAS

Bei Fragen:


- Fragen im Chat stellen
- Fragen werden dann vorgelesen und beantwortet

Praxis der Softwareentwicklung – WS 2020/21

Auftaktveranstaltung, 5. November 2020

Prof. Dr. Gregor Snelting, Johannes Bechberger, Andreas Fried

Kommunikation

PSE-Homepage: http://pp.ipd.kit.edu/lehre/WS202021/pse/

E-Mail: pse-orga@lists.kit.edu

ILIAS: https://ilias.studium.kit.edu/goto.php?target=crs_1249351

Persönlich:

Johannes Bechberger

Andreas Fried

Prof. Dr.-Ing. Gregor Snelting

Allgemeine Fragen

- Keine Fragerunde im Anschluss an diese Präsentation
- ILIAS-Forum f
 ür allgemeine Fragen
- Personen-/Teambezogene Fragen an Betreuer und/oder pse-orga@lists.kit.edu

Einteilung der Teams

Die Teams werden in der nächsten Woche eingeteilt

URL: https://pse.informatik.kit.edu

Eintragungen sind ab 17:30 Uhr bis Sonntag möglich

Anmeldung mit KIT-Account (u????)

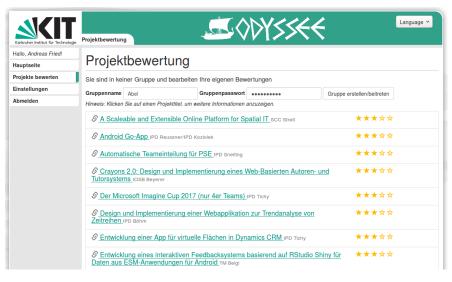
Gruppen $mit \le 5$ Teilnehmern sind möglich

Ergebnis per E-Mail-Benachrichtigung und in Odyssee

ODYSSEE: Anmeldung

ODYSSEE: Prüfungen

Prüfungsordnung	SPO 2015		
	Erforderlich		
Klausurergebnisse	Übungsschein Grundbegriffe der Informatik	bestanden	
	Klausur Grundbegriffe der Informatik	bestanden	
	Abschlussaufgaben Programmieren	warte auf Ergebnis	
	Klausur Lineare Algebra I	bestanden	
	Übungsschein Softwaretechnik I	bestanden	
	Klausur Softwaretechnik I	warte auf mündliche Nachprüfung	
	Klausur Lineare Algebra II	warte auf Ergebnis	
	Klausur Höhere Mathematik I / Analysis I	bestanden	
	Klausur Höhere Mathematik II / Analysis II	bestanden	
	Klausur Algorithmen I	nicht begonnen/nicht bestanden	
Meine Kontaktdaten veröffentlichen	Adresse sehen können. Im Gegenzug wi angezeigt. Mit der Registrierung bestätigen Sie, dass Sie kein fi pro Student erlaubt. Mehrfachregistrierungen werder	en Sie zu, dass ihre Teammitglieder ihren Namen und ihre E-Mai erden ihnen die Namen und E-Mail-Adressen ihrer Teammitgliede alschen bzw. unwahren Angaben gemacht haben. Es ist nur ein K n nicht gedudet. Ein Verstoß gegen diese Regel oder das Angebe PSE-Administration bestraft werden und zum Ausschluss aus de	onto n


ODYSSEE: Prüfungen

Prüfungsordnung	SPO 2015		*
	Erforderlich		
Klausurergebnisse	Übungsschein Grundbegriffe der Informatik	bestanden	•
	Klausur Grundbegriffe der Informatik	bestanden	•
	Abschlussaufgaben Programmieren	warte auf Ergebnis	•
			¥
No	ite ≤ 4.0 ausgehän	gt	,
Eir	nsicht genommen,	Note ≤ 4.0	*
au ⁻	f der Klausur		*
■ Vo	rläufiges Ergebnis	< (4 0) im	¥
	mpus-System	<u> </u>	•
	standen		•
Meine Kontaktgaten	Staffucif Welling on these Option activieren, summ	en Sie zu, dass inre reammigneder mit	en Namen und Ihre E-Mail-
veröffentlichen	Adresse sehen können. Im Gegenzug w angezeigt.	erden Ihnen die Namen und E-Mail-Adre	ssen Ihrer Teammitglieder
	Mit der Registrierung bestätigen Sie, dass Sie kein f pro Student erlaubt. Mehrfachregistrierungen werde von falschen Informationen kann nach Ermessen de PSE führen.	n nicht geduldet. Ein Verstoß gegen dies	e Regel oder das Angeben
	Registrieren		
n der Helmholtz-Gemeinschaft			ODYSSEE (ec432dd) Impressum

ODYSSEE: Themen bewerten

ODYSSEE: Themen bewerten

Privacy-Crashcam-App für Android ₁osв веуегег	****
S Robot Health Monitoring JAR Astour	****
S Serveless System für mobile Internet der Dinge Anwendungen ™ Beigi	****
S Software Kompatibilität auf allen Ebenen IPD Tichy	****
Stromverbrauchsanalyse an einem realen HPC-System scc strett	****
Studienplanung als Generierung von Workflows mit Compliance-Anforderungen: Planerstellung und Visualisierung	****
© Werkzeug zur Analyse formaler Eigenschaften von Wahlverfahren ™ Beckert	****
& Werkzeug zur Spezifikation und Verifikation von Software für Produktionsanlager	****
S_Internet der Dinge" Web-Dashboard iosB Beyerer	****

Prüfungsanmeldung

Prüfungsanmeldung: über das KIT-Studierendenportal

https://campus.studium.kit.edu/

Anmeldezeitraum: 5. – 8. November (in Ausnahmen bis 11.12.)

Danach keine An- und Abmeldung mehr möglich.

⇒ Aussteiger bekommen 5.0 (Keine Ausnahmen!)

Schritte

- 1. TSE (Nr. 7500075) zu überfachlichen Qualifikationen hinzufügen
- 2. zu TSE (Nr. 7500075) anmelden
- 3. zu PSE (Nr. 7500076) anmelden

fehlende Noten?

Falls Noten noch nicht eingetragen sind oder Nachprüfungen anstehen:

- 1. Auf jeden Fall in Odyssee anmelden
- 2. Mail an pse-orga@lists.kit.edu
- 3. Notenauszug an Betreuer schicken
- 4. Campus-Anmeldung schnellstmöglich nachholen

Erstes Kolloquium zwischen 14.12. und 18.12.

⇒ Anmeldeschluss 11.12.

Bis 8. November Campus-Anmeldung oder E-Mail Sonst keine Einteilung!

Erstes Gruppentreffen

- Das erste Treffen mit den Betreuern findet in der übernächsten Woche statt.
- Der genaue Termin und die Art variieren von Gruppe zu Gruppe.
- Entweder: Informationen stehen in der Projektbeschreibung/Webseite
- Oder: Ein Betreuer kontaktiert Sie per E-Mail

Fragen Sie im Zweifelsfall bei den Betreuern für ihr Thema nach.

Terminübersicht (exemplarisch)

Phase	von – bis	Dauer
Auftaktveranstaltung	05.11.	
Anmeldung/Einteilung	05.11. – 11.11.	
Erstes Gruppentreffen	16.11. – 20.11.	
Pflichtenheft	23.11. – 11.12.	3 Wochen
Entwurf	14.12. – 22.01.	4 Wochen
Implementierung	25.01. – 19.02.	4 Wochen
z.B. Klausurpause	22.02. – 05.03.	
Qualitätssicherung	08.03. – 26.03.	3 Wochen
interne Abnahme	29.03. – 02.04.	
Abschlusspräsentation	05.04. – 09.04.	

Terminübersicht (exemplarisch)

Phase	von – bis	Dauer
Auftaktveranstaltung	05.11.	
Anmeldung/Einteilung	05.11. – 11.11.	
Erstes Gruppentreffen	16.11. – 20.11.	
Pflichtenheft	23.11. – 11.12.	3 Wochen
Entwurf	14.12. – 22.01.	4 Wochen
Implementierung	25.01. – 19.02.	4 Wochen
z.B. Klausurpause	22.02. – 05.03.	
Qualitätssicherung	08.03 26.03.	3 Wochen
interne Abnahme	29.03. – 02.04.	
Abschlusspräsentation	05.04. – 09.04.	

Terminübersicht (exemplarisch)

Phase	von – bis	Dauer
Auftaktveranstaltung	05.11.	
Anmeldung/Einteilung	05.11. – 11.11.	
Erstes Gruppentreffen	16.11. – 20.11.	
Pflichtenheft	23.11. – 11.12.	3 Wochen
Entwurf	14.12. – 22.01.	4 Wochen
Implementierung	25.01. – 19.02.	4 Wochen
z.B. Klausurpause	22.02. – 05.03.	
Qualitätssicherung	08.03. – 26.03.	3 Wochen
interne Abnahme	29.03. – 02.04.	
Abschlusspräsentation	05.04. – 09.04.	

In jeder Gruppe: Verbindliche wöchentliche Treffen mit den Betreuern!

Allgemeine Tipps & Tricks

Unverbindliche Tipps & Tricks gibt es auf der PSE-Homepage zum Download:

http://pp.ipd.kit.edu/lehre/WS202021/pse/

- Versionskontrolle?
- UML-Tool?
- Dokumente schreiben?
- ...

Aktualisierungen oder Ergänzungen? Pull-Request!

https://git.scc.kit.edu/IPDSnelting/pse-tipps

Weitere Fragen: ILIAS-Forum

Ablauf

- Einführung in PSE Zeit für Fragen
- Anmeldung und Zeitplan Zeit für Fragen
- 3. Themenvorstellung Zeit für Fragen

Eine Aufzeichnung der Veranstaltung findet sich später im ILIAS

Bei Fragen:

- ► Fragen im Chat stellen
- Fragen werden dann vorgelesen und beantwortet

Themenübersicht I

Lehrstuhl	Thema	Teams
Fraunhofer IOSB	Toolkit zur Bewertung interpretierbarer Kl- Methoden (XAI) auf Klassifikatoren für Zeit- reihendaten	1
IAR Asfour	Developer and Visualization Tools for Robot Bus Systems	1
IES / Fraunho- fer IOSB	Video Reality 4D	1
IES / Fraunho- fer IOSB	Re-Build 4D	1
IES / Fraunho- fer IOSB	Intelligent Video Sampler 3D	1
IPD Snelting	Visualisierung von Typinferenz	2
IVD Dachsba- cher	Computergrafik in der Spieleentwicklung	1

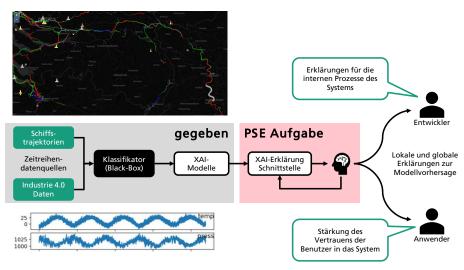
Themenübersicht II

Fraunhofer IOSB	Verteilte und transitive Spracherkennung mit Open-Source Frameworks	1
Fraunhofer	Modulare Web-Visualisierung für Industrie	1
IOSB	4.0 Anlagen	
Fraunhofer IOSB	Generator für Verwaltungsschalen-Modelle aus diversen Ausgangsmodellen	1
TM Abeck	Healthcare Asset Management	1
Fraunhofer	FR ² A: Ein App-Framework für den Kulturgü-	1
IOSB	terschutz	'
IPD Koziolek	Skalierbarer Git-Client	1
SCC	Building a computer game 'from scratch'.	1
SCC Streit	WebApp for the monitoring of stratospheric ozone	1

Themenübersicht III

IPD Reussner, IFV Vortisch	Code Your Mobility: Entwicklung einer Web- plattform zur Konfiguration von Verkehrs- nachfragesimulationen	1
SCC	OIDC/OAuth2-WebDAV CSI for Kubernetes	1
ITEC Tahoori	Virtueller Konferenzsimulator mit Telepräsenz	1
ITEC	Graphical editor for "Liberty" files	1
TM	An Interactive Data Collection and Labeling Web-Tool with Meta-Learning	2
ITI Beckert, ITI Sinz	Entwicklung eines digitalen Klassenbuchs für den Einsatz an Schulen	1
ITEC	Broadcasting Webservice for Smart TVs	2
IPD Reussner, IPD Koziolek	Write Your Own Android App	3

Themenübersicht IV


ITI Beckert, ITI Sinz	Erstellung und Training von Neuronalen Netzen durch visuelle Interaktion für den Schulunterricht	1	
ТМ	Entwicklung eines 3D-Chatbots zur Emotionsregulation in Stresssituationen.	2	

Fraunhofer IOSB

Toolkit zur Bewertung interpretierbarer KI-Methoden (XAI) auf Klassifikatoren für Zeitreihendaten

Toolkit zur Bewertung interpretierbarer KI-Methoden (XAI) auf Klassifikatoren für Zeitreihendaten

Toolkit zur Bewertung interpretierbarer KI-Methoden (XAI) auf Klassifikatoren für Zeitreihendaten

7iel

Entwicklung einer Applikation zur Verwaltung, Anwendung,
 Visualisierung und Bewertung von XAI-Erklärungen für Klassifikatoren von Zeitreihen

Aufgaben

- Entwicklung eines Systems zur Ausführung von XAI-Modellen auf Zeitreihendaten und zur intuitiven Darstellung der Ergebnisse
- Entwicklung einer Schnittstelle zur Auswertung von XAI-Erklärungen
- Verwendung von modell-agnostischen Verfahren zur Wiederverwendbarkeit auf neuen Modellen
- Web-basierte Benutzeroberfläche + Back-End-Entwicklung

IAR Asfour

Developer and Visualization Tools for Robot Bus Systems

Developer and Visualization Tools for Robot Bus Systems

- Robots like ARMAR-6 use bus systems to read sensor values and control motors
- Problem: Sporadic bus failures which are hard to debug Various potential reasons: hardware failure, software bugs, link losses, ...
- Goal: Develop a tool to monitor, log and visualize the status of the bus system in a robot
 - Display current status measurements (e.g. number of incoming/dropped messages)
 - Display bus topology (structure and status of connections)
 - Report useful error states and messages
 - Visualize the status and errors
 - Should be easy to use for new robots

ARMAR-6

KIT Gripper

Developer and Visualization Tools for Robot Bus Systems

Karlsruhe Institute of Technolog

Goal: Develop a tool to monitor, log and visualize the status of the bus system in a robot

Tasks & Requirements:

- Monitoring bus system interface
 - Work with bus system standard EtherCAT
 - Use library SOEM [1] in C/C++
- User application in GUI framework Qt 5 (C++)
 - Display status, messages, ...
 - Interactive data visualization (graphs, plots, topology, ...)
- Basic knowledge of C/C++ recommended

ARMAR-6

KIT Gripper

^[1] Simple Open EtherCAT Master, https://openethercatsociety.github.io/

IES / Fraunhofer IOSB

Video Reality 4D

Video Reality 4D

- CACTUS-3D ist ein Softwarewerkzeug zur Generierung und Co-Registrierung von 3D Modellen aus Bilddaten
 - 3D Umgebungsmodelle, Tiefenkarten mittels neuronaler Netze, etc.
 - Bereits verfügbar aus früherem PSE (WS'15) + 5 Jahre Weiterentwicklung

Aufgabenstellung

- Mehrere zusammengesetzte 2D Videos sollen wieder erlebbar werden
- Mit Video Reality 4D soll ein Werkzeug entstehen, welches 3D Rekonstruktionen von Umgebungsmodellen, monokularen Tiefenkarten sowie 3D Modelle von Personen über die Zeit animiert.
- Videos sollen über eine Zeitleise synchronisiert werden
 - wie bei Filmschnitt-Tools
- Interaktive Wiedergabe in 4D mit Zeitslider
- Echtzeit VR Anbindung 4D Szene mittels OpenVR

Team 1: Video Reality 4D

- Ziele
 - Effizientes Laden von 3D Modellen, Tiefenkarten, etc.
 - Effizientes Abspielen der 3D Modelle über die Zeit => 4D Animation
 - Möglichkeit zur manuellen Synchronisierung von verschiedenen zeitgleichen Videos
 - Gerenderte Szene als Video speichern
 - Manuelle Festlegung eines virtuellen Kamerapfad durch Szene mittels Keyframes
 - VR Modus
- Implementierung in C++
- Bibliotheken: Qt, OpenSceneGraph, OpenVR, QML

Beispiel: Final Cut Pro

Thomas Pollok, M. Sc. thomas.pollok@iosb.fraunhofer.de
Max Herrmann, M. Sc. max.herrmann@iosb.fraunhofer.de
Typ: Teilpräsenz, aber größtenteils Online über MS Teams

IES / Fraunhofer IOSB

Re-Build 4D

Team 2: Re-Build 4D

- Ziele
 - Erzeugung eines interaktiven 3D Szenengraphen
 - Hinzufügen und entfernen von Objekten
 - Primitive Objekte oder fertige 3D Modelle
 - Beliebiges Platzieren, Rotieren und Skalieren
 - 3D Modellierung nach Grundriss Plan
 - Texturierung von Objekten und Platzierung von Lichtquellen
 - Animation von Objekten mittels Keyframes
 - 7.B. Roboterarm
- Implementierung in C++
- Bibliotheken: Qt, OpenSceneGraph, QML

Grundriss

Beispiel: SimLab

Thomas Pollok, M. Sc. thomas.pollok@iosb.fraunhofer.de Max Herrmann, M. Sc. max.herrmann@iosb.fraunhofer.de Typ: Teilpräsenz, aber größtenteils Online über MS Teams

IES / Fraunhofer IOSB

Intelligent Video Sampler 3D

Team 3: Intelligent Video Sampler 3D

Ziele

- Werkzeug soll schnelles Zerlegen eines Videos in relevante Einzelbilder um eine Structure from Motion basierte 3D Rekonstruktion zu ermöglichen
 - Linear z.B. jedes n-te Frame, Visual-SLAM
 Basiert, GPS Metadaten-Basiert (Bei Drohne)
- Verwendung von semantischen KI Verfahren zum Erkennen von Vordergrund und Hintergrund
 - Dynamische Szenen sind schlechter als statische
- Automatisches erkennen von verschwommenen Bildern
- Ändern der Zielauflösung z.B. 4K => FullHD
- Implementierung in C++ Bibliotheken: Qt, OpenSceneGraph, QML

Nicht jedes Bild liefert neue, relevante Informationen um eine Szene zu rekonstruieren