Prof. Dr.-Ing. Gregor Snelting (Koordinator)

WS 09/10

 Ziel: Entwicklung eines mittelgroßen Systems im Team mit moderner Softwaretechnik

- Ziel: Entwicklung eines mittelgroßen Systems im Team mit moderner Softwaretechnik
- Zielsystem: max 10kLOC objektorientierter Entwurf (UML), Implementierung (Java/C++/C#), Qualitätssicherung (zB Jcov, Junit)

- Ziel: Entwicklung eines mittelgroßen Systems im Team mit moderner Softwaretechnik
- Zielsystem: max 10kLOC objektorientierter Entwurf (UML), Implementierung (Java/C++/C#), Qualitätssicherung (zB Jcov, Junit)
- Teilnehmer: 3. Sem BA Informatik
 Voraussetzung: Grundbegriffe der Informatik,
 Programmieren, Algorithmen 1, Softwaretechnik 1
- Empfehlung: PSE erst, wenn alle Module aus 1./2. Semester bestanden sind

- Ziel: Entwicklung eines mittelgroßen Systems im Team mit moderner Softwaretechnik
- Zielsystem: max 10kLOC objektorientierter Entwurf (UML), Implementierung (Java/C++/C#), Qualitätssicherung (zB Jcov, Junit)
- Teilnehmer: 3. Sem BA Informatik
 Voraussetzung: Grundbegriffe der Informatik,
 Programmieren, Algorithmen 1, Softwaretechnik 1
- Empfehlung: PSE erst, wenn alle Module aus 1./2. Semester bestanden sind
- ► Umfang: 6LP, ≈ 200 Arbeitsstunden / Teilnehmer, ≈ 1.5 Arbeitstage/Woche/Teilnehmer

PSE / Organisation

- Zeitplan: Mitte Oktober 2009 Mitte März 2010;
 15 Wochen Praktikumsbetrieb nach Absprache
- ca. 20 verschiedene Aufgabenstellungen von 15 Lehrstühlen
- objektorientiertes Phasenmodell verbindlich (vgl. Modulhandbuch)
- ca. 40 Teams a 5-6 Studenten
 Wünsche zu Teamzusammensetzung / Aufgabe werden nach Möglichkeit berücksichtigt

PSE / Organisation

- Zeitplan: Mitte Oktober 2009 Mitte März 2010;
 15 Wochen Praktikumsbetrieb nach Absprache
- ca. 20 verschiedene Aufgabenstellungen von 15 Lehrstühlen
- objektorientiertes Phasenmodell verbindlich (vgl. Modulhandbuch)
- ca. 40 Teams a 5-6 Studenten
 Wünsche zu Teamzusammensetzung / Aufgabe werden nach Möglichkeit berücksichtigt
- Auftaktveranstaltung, Aufgabenvorstellung, endgültige Teamzusammenstellung: Di 20.10.09, 15:45, HSaF
- Bitte auch Webseite beachten: http://pp.info.uni-karlsruhe.de/lehre/WS200910/pse/

PSE / Übersicht

- moderne Softwaretechnik ist wichtig für alle BA-Absolventen!
- vollständige Entwicklung eines größeren Systems
- Phasenmodell: Pflichtenheft, Entwurf, Spezifikation, Implementierung, Validierung
- Abschlusspräsentation
- Teamarbeit (Teams a 5-6 Teilnehmer)
- durchgehend Objektorientierung
- ► Toolunterstützung, zB Eclipse, Rational Architect, JUnit, JCov, ...

Pflichtenheft

Phasenziel

detaillierte Festlegung der Leistungsmerkmale eines Systems **Grundprinzipien**

- Präzision
- Vollständigkeit
- Konsistenz

Vorgehen

- Systemmodell (grobe Übersicht), Systemumgebung (Hard/Software)
- vollständige funktionale Anforderungen
- ► GUI-Entwürfe (manuell oder programmiert)
- ausführliche Testfallszenarien

verlangt wird

Abgabe des Pflichtenheftes nach 2 Wochen; Erläuterung im ersten Kolloquium

Entwurf & Spezifikation

objektorientiert (UML)

Phasenziel

- Festlegung der Klassenstruktur
- Schnittstellendefinition der Klassen
- ▶ Beziehungen zw. Klassen (Vererbung, Assoziationen)
- Klassendiagramm, ausgewählte Sequenzdiagramme, evtl. Zustandsdiagramm
- Einsatz von Design Patterns, MVC

Entwurf & Spezifikation

objektorientiert (UML)

Phasenziel

- Festlegung der Klassenstruktur
- Schnittstellendefinition der Klassen
- ▶ Beziehungen zw. Klassen (Vererbung, Assoziationen)
- Klassendiagramm, ausgewählte Sequenzdiagramme, evtl. Zustandsdiagramm
- Einsatz von Design Patterns, MVC

Grundprinzipien

- Geheimnisprinzip
- schwache Kopplung
- hohe Kohäsion
- Lokalitätsprinzip
- Wiederverwendbarkeit von Klassen/Subsystemen

Entwurf & Spezifikation

objektorientiert (UML)

Phasenziel

- Festlegung der Klassenstruktur
- Schnittstellendefinition der Klassen
- Beziehungen zw. Klassen (Vererbung, Assoziationen)
- Klassendiagramm, ausgewählte Sequenzdiagramme, evtl. Zustandsdiagramm
- Einsatz von Design Patterns, MVC

Grundprinzipien

- Geheimnisprinzip
- schwache Kopplung
- hohe Kohäsion
- Lokalitätsprinzip
- Wiederverwendbarkeit von Klassen/Subsystemen
- OO: Vererbung/dynamische Bindung statt Fallunterscheidung

Entwurf & Spezifikation / 2

Vorgehen

- Kombination von Top-Down und Bottom-Up Design
- Identifikation von Klassen, Vererbung, Assoziationen
- Festlegung der Schnittstellen aller Klassen
- informale Beschreibung aller Klassen
- evtl. Einsatz von Entwurfsmetriken (JMetrics)

Entwurf & Spezifikation / 2

Vorgehen

- Kombination von Top-Down und Bottom-Up Design
- Identifikation von Klassen, Vererbung, Assoziationen
- Festlegung der Schnittstellen aller Klassen
- informale Beschreibung aller Klassen
- evtl. Einsatz von Entwurfsmetriken (JMetrics)

verlangt wird

- Abgabe der UML-Diagramme nebst informeller Beschreibung nach 4 Wochen;
 Verteidigung im zweiten Kolloquium
- Nachweis der Evolutionsfähigkeit (zB Lokalitätsprinzip)

Implementierung & Validierung

Phasenziel

Programmierung und Test des Systems

Grundprinzipien

- Programmierung in Java (evtl. C#, C++)
- Umsetzung der Architektur
- werkzeugunterstützte Qualitätssicherung

Implementierung & Validierung

Phasenziel

Programmierung und Test des Systems

Grundprinzipien

- Programmierung in Java (evtl. C#, C++)
- Umsetzung der Architektur
- werkzeugunterstützte Qualitätssicherung

Vorgehen

- Implementierung der Methoden
- funktionaler Komponententest mit Junit, evtl.
 Überdeckungstests (zB JCov); verschränkt mit Implementierung
- Integrationstest, Robustheitstest
- Realisation der Szenarien aus Pflichtenheft

Implementierung & Validierung / 2

verlangt wird

- Implementierungsplan; Implementierung;
- Implementierungskolloquium (2 Wochen vor Abschluss)
- Testbericht; Systemabnahme (1 Woche vor Abschluss)
- Abschlusspräsentation (Februar/März 2010)

