

Lehrstuhl für Programmierparadigmen

Joachim Breitner breitner@kit.edu

Denis Lohner denis.lohner@kit.edu

Besprechung: 29.06.2015

Semantik von Programmiersprachen – SS 2015

http://pp.ipd.kit.edu/lehre/SS2015/semantik

Blatt 12: Continuations

1. Welche der folgenden Aussagen sind richtig, welche falsch?	1.	Welche der	folgenden	Aussagen	sind	richtig,	welche	falsch?	(\mathbf{H})	()
---	----	------------	-----------	----------	------	----------	--------	---------	----------------	----

- (a) raise X; x := y z; try skip catch X skip ist ein While_X-Programm.
- (b) raise X und while (true) do skip sind semantisch äquivalent.
- (c) Alle partiellen Korrektheitseigenschaften sind zulässig.
- (d) Strikte Funktionen $\varphi :: (D, \sqsubseteq) \Rightarrow (\mathbb{B}, \leq)$ (wobei $\mathbf{ff} \leq \mathbf{tt}$) sind zulässige Prädikate

2. Kompositionalität der Fortsetzungsemantik (H)

In dieser Aufgabe sollen die Kompositionalitätsbetrachtungen für $\mathcal{D} \llbracket _ \rrbracket$ auf die Fortsetzungssemantik $\mathcal{C} \llbracket _ \rrbracket$ übertragen werden.

- (a) Erweitern Sie die Definition der Kontexte auf While $_X$. Passen Sie die Kontextfüllfunktion $_{-}$ [$_{-}$] an die Erweiterung an.
- (b) Definieren Sie die Fortsetzungssemantik $\overline{\mathcal{K}} \llbracket K \rrbracket$ eines Kontexts K analog zu $\mathcal{K} \llbracket K \rrbracket$.
- (c) Formulieren Sie ein Kompositionalitätstheorem für $\mathcal{C}[\![\]\!]$ und $\overline{\mathcal{K}}[\![\]\!]$ analog zu Thm. 38. Beweisen Sie es.

3. Semantik für ASM (Ü)

In Kap. 4.1 wurde eine Small-Step-Semantik für die idealisierte Assembler-Sprache ASM angegeben. In dieser Aufgabe sollen Sie nun eine denotationale Fortsetzungssemantik für ASM angeben. Dazu soll jeder Indexposition in der Instruktionsliste P eine Fortsetzung zugeordnet werden, die in einer Umgebung $|\mathsf{Env} = \mathbb{Z} \Rightarrow (\Sigma \to \Sigma)|$ gespeichert werden.

- (a) Geben Sie eine Funktion $\mathcal{I} \llbracket _, \ _ \rrbracket :: (\mathbb{Z} \times \mathsf{Asm}) \Rightarrow \mathsf{IEnv} \Rightarrow (\Sigma \rightharpoonup \Sigma)$ mit folgender Bedeutung an: Sind i eine Indexposition, I eine Instruktion und E eine Umgebung mit Fortsetzungen, dann beschreibt $\mathcal{I} \llbracket i, \ I \rrbracket E$ die Ausführung der Instruktion I mit Indexposition i zusammen mit der Forsetzung aus E(n), wobei n die Indexposition der Instruktion angibt, die nach I auszuführen wäre.
- (b) Geben Sie ein Funktional $F:: \mathsf{Asm}\ \mathit{list} \Rightarrow \mathsf{IEnv} \Rightarrow \mathsf{IEnv}$ an, das für eine Instruktionsliste P und einer Fortsetzungsumgebung E dieses E wie folgt erweitert: $F[\![P]\!]E$ enthält für jede Instruktionsposition n die Fortsetzung, die zuerst die Instruktion an Stelle n ausführt und danach mit der entsprechenden Fortsetzung aus E fortfährt. Verwenden Sie dazu die Funktion $\mathcal{I}[\![n]\!]$, $[\![n]\!]$.
- (c) Geben Sie die Semantik $\llbracket P \rrbracket$ einer Instruktionsliste P an, wobei $\llbracket _ \rrbracket$:: Asm $list \Rightarrow (\Sigma \rightharpoonup \Sigma)$. Verwenden Sie dazu den kleinsten Fixpunkt des Funktionals F.
- (d) Wie könnte man die Existenz und Eindeutigkeit dieses kleinsten Fixpunkts beweisen?
- (e) Ist diese Semantik kompositional? Diskutieren Sie!