
COMPILER CONSTRUCTION
William M. WaiteDepartment of Electrical EngineeringUniversity of ColoradoBoulder, Colorado 80309USAemail: William.Waite@colorado.eduGerhard GoosInstitut Programmstrukturen und DatenorganisationFakult�at f�ur InformatikUniversit�at KarlsruheD-76128 KarlsruheGermanyemail: ggoos@ipd.info.uni-karlsruhe.deCompiler Construction, a modern text written by two leaders in the in the�eld, demonstrates how a compiler is built. Describing the necessary toolsand how to create and use them, the authors compose the task into mod-ules, placing equal emphasis on the action and data aspects of compilation.Attribute grammars are used extensively to provide a uniform treatment ofsemantic analysis, competent code generation and assembly. The authorsalso explain how intermediate representations can be chosen automaticallyon the basis of attribute dependence. Thus, all aspects of the subject arepresented in terms of a uniform model subject to automation. This ap-proach imparts a vivid understanding of the compilation and the decisionsthat must be made when designing a compiler.From the back page of the printed book.All known errors from the �rst and second printing (1994 and 1995) have been �xed. While everyprecaution has been taken in preparation of this book, the authors assume no responsibility for errorsor omissions, or damages resulting from the use of the information contained here.c1984{1994 by Springer-Verlag, Berlin, New York Inc. ISBN 0-387-90821-8 and ISBN 3-540-90821c1995 by William M. Waite and Gerhard Goos.All rights reserved. No part of this book may be translated, reproduced, archived or sold in any formwithout written permission from one of the authors.The content of Compiler Construction is made available via the Web by permission of the authorsas a service to the community and only for educational purposes. The book may be accessed freelyvia Web browsers. The URL is ftp://i44ftp.info.uni-karlsruhe.de/pub/papers/ggoos/Compi-lerConstruction.ps.gz.Karlsruhe, 22nd February 1996

To all who know more than one language

PrefaceCompilers and operating systems constitute the basic interfaces between a programmer andthe machine for which he is developing software. In this book we are concerned with theconstruction of the former. Our intent is to provide the reader with a �rm theoretical basisfor compiler construction and sound engineering principles for selecting alternate methods,implementing them, and integrating them into a reliable, economically viable product. Theemphasis is upon a clean decomposition employing modules that can be re-used for many com-pilers, separation of concerns to facilitate team programming, and exibility to accommodatehardware and system constraints. A reader should be able to understand the questions hemust ask when designing a compiler for language X on machine Y, what tradeo�s are possible,and what performance might be obtained. He should not feel that any part of the design restson whim; each decision must be based upon speci�c, identi�able characteristics of the sourceand target languages or upon design goals of the compiler.The vast majority of computer professionals will never write a compiler. Nevertheless,study of compiler technology provides important bene�ts for almost everyone in the �eld.� It focuses attention on the basic relationships between languages and machines. Un-derstanding of these relationships eases the inevitable transitions to new hardware andprogramming languages and improves a person's ability to make appropriate tradeo�sin design and implementation.� It illustrates application of software engineering techniques to the solution of a signi�cantproblem. The problem is understandable to most users of computers, and involves bothcombinatorial and data processing aspects.� Many of the techniques used to construct a compiler are useful in a wide variety of appli-cations involving symbolic data. In particular, every man-machine interface constitutesa form of programming language and the handling of input involves these techniques.� We believe that software tools will be used increasingly to support many aspects ofcompiler construction. Much of Chapters 7 and 8 is therefore devoted to parser gen-erators and analyzers for attribute grammars. The details of this discussion are onlyinteresting to those who must construct such tools; the general outlines must be knownto all who use them. We also realize that construction of compilers by hand will remainan important alternative, and thus we have presented manual methods even for thosesituations where tool use is recommended.Virtually every problem in compiler construction has a vast number of possible solutions.We have restricted our discussion to the methods that are most useful today, and make noattempt to give a comprehensive survey. Thus, for example, we treat only the LL and LRparsing techniques and provide references to the literature for other approaches. Because wedo not constantly remind the reader that alternative solutions are available, we may sometimesappear overly dogmatic although that is not our intent.i

ii PrefaceChapters 5 and 8, and Appendix B, state most theoretical results without proof. Althoughthis makes the book unsuitable for those whose primary interest is the theory underlying acompiler, we felt that emphasis on proofs would be misplaced. Many excellent theoreticaltexts already exist; our concern is reduction to practice.A compiler design is carried out in the context of a particular language/machine pair.Although the principles of compiler construction are largely independent of this context, thedetailed design decisions are not. In order to maintain a consistent context for our majorexamples, we therefore need to choose a particular source language and target machine. Thesource language that we shall use is de�ned in Appendix A. We chose not to use an existinglanguage for several reasons, the most important being that a new language enabled us tocontrol complexity: Features illustrating signi�cant questions in compiler design could beincluded while avoiding features that led to burdensome but obvious detail. It also allowsus to illustrate how a compiler writer derives information about a language, and provides anexample of an informal but relatively precise language de�nition.We chose the machine language of the IBM 370 and its imitators as our target. Thisarchitecture is widely used, and in many respects it is a di�cult one to deal with. Theproblems are representative of many computers, the important exceptions being those (suchas the Intel 8086) without a set of general registers. As we discuss code generation andassembly strategies we shall point out simpli�cations for more uniform architectures likethose of the DEC PDP11 and Motorola 68000.We assume that the reader has a minimum of one year of experience with a block-structured language, and some familiarity with computer organization. Chapters 5 and 8use notation from logic and set theory, but the material itself is straightforward. Severalimportant algorithms are based upon results from graph theory summarized in Appendix B.This book is based upon many compiler projects and upon the lectures given by theauthors at the Universit�at Karlsruhe and the University of Colorado. For self-study, werecommend that a reader with very little background begin with Section 1.1, Chapters 2and 3, Section 12.1 and Appendix A. His objective should be to thoroughly understand therelationships between typical programming languages and typical machines, relationships thatde�ne the task of the compiler. It is useful to examine the machine code produced by existingcompilers while studying this material. The remainder of Chapter 1 and all of Chapter 4 givean overview of the organization of a compiler and the properties of its major data structures,while Chapter 14 shows how three production compilers have been structured. From thismaterial the reader should gain an appreciation for how the various subtasks relate to oneanother, and the important characteristics of the interfaces between them.Chapters 5, 6 and 7 deal with the task of determining the structure of the source program.This is perhaps the best-understood of all compiler tasks, and the one for which the mosttheoretical background is available. The theory is summarized in Chapter 5, and applied inChapters 6 and 7. Readers who are not theoretically inclined, and who are not concernedwith constructing parser generators, should skim Chapter 5. Their objectives should be tounderstand the notation for describing grammars, to be able to deal with �nite automata,and to understand the concept of using a stack to resolve parenthesis nesting. These readersshould then concentrate on Chapter 6, Section 7.1 and the recursive descent parse algorithmof Section 7.2.2.The relationship between Chapter 8 and Chapter 9 is similar to that between Chapter 5and Chapter 7, but the theory is less extensive and less formal. This theory also underliesparts of Chapters 10 and 11. We suggest that the reader who is actually engaged in com-piler construction devote more e�ort to Chapters 8-11 than to Chapters 5-7. The reason isthat parser generators can be obtained \o� the shelf" and used to construct the lexical andsyntactic analysis modules quickly and reliably. A compiler designer must typically devote

Preface iiimost of his e�ort to specifying and implementing the remainder of the compiler, and hencefamiliarity with Chapters 8-11 will have a greater e�ect on his productivity.The lecturer in a one-semester, three-hour course that includes exercises is compelled torestrict himself to the fundamental concepts. Details of programming languages (Chapter 2),machines (Chapter 3) and formal languages and automata theory (Chapter 5) can only becovered in a cursory fashion or must be assumed as background. The speci�c techniquesfor parser development and attribute grammar analysis, as well as the whole of Chapter 13,must be reserved for a separate course. It seems best to present theoretical concepts fromChapter 5 in close conjunction with the speci�c methods of Chapters 6 and 7, rather than asa single topic. A typical outline is:1. The Nature of the Problem 4 hours1.1. Overview of compilation (Chapter 1)1.2. Languages and machines (Chapters 2 and 3)2. Compiler Data Structures (Chapter 4) 4 hours3. Structural Analysis 10 hours3.1. Formal Systems (Chapter 5)3.2. Lexical analysis (Chapter 6)3.3. Parsing (Chapter 7)Review and Examination 2 hours4. Consistency Checking 10 hours4.1. Attribute grammars (Chapter 8)4.2. Semantic analysis (Chapter 9)5. Code Generation (Chapter 10) 8 hours6. Assembly (Chapter 11) 2 hours7. Error Recovery (Chapter 12) 3 hoursReview 2 hoursThe students do not write a compiler during this course. For several years it has beenrun concurrently with a practicum in which the students implement the essential parts of aLAX compiler. They are given the entire compiler, with stubs replacing the parts they are towrite. In contrast to project courses in which the students must write a complete compiler, thisapproach has the advantage that they need not be concerned with unimportant organizationaltasks. Since only the central problems need be solved, one can deal with complex languageproperties. At the same time, students are forced to read the environment programs and toadhere to interface speci�cations. Finally, if a student cannot solve a particular problem itdoes not cause his entire project to fail since he can take the solution given by the instructorand proceed.AcknowledgementsThis book is the result of many years of collaboration. The necessary research projects andtravel were generously supported by our respective universities, the Deutsche Forschungsge-meinschaft and the National Science Foundation.It is impossible to list all of the colleagues and students who have inuenced our work.We would, however, like to specially thank four of our doctoral students, Lynn Carter, BruceHaddon, Uwe Kastens and Johannes R�ohrich, for both their technical contributions and theirwillingness to read the innumerable manuscripts generated during the book's gestation. MaeJean Ruehlman and Gabriele Sahr also have our gratitude for learning more than they everwanted to know about computers and word processing as they produced and edited thosemanuscripts.

iv Preface

Contents
Preface iContents v1 Introduction and Overview 11.1 Translation and Interpretation . 11.2 The Tasks of a Compiler . 31.3 Data Management in a Compiler . 51.4 Compiler Structure . 61.5 Notes and References . 92 Properties of Programming Languages 112.1 Overview . 112.1.1 Syntax, Semantics and Pragmatics . 112.1.2 Syntactic Properties . 122.1.3 Semantic Properties . 142.2 Data Objects and Operations . 152.2.1 Elementary Types . 162.2.2 Composite Types . 182.2.3 Strings . 192.2.4 Pointers . 192.2.5 Type Equivalence . 202.3 Expressions . 212.4 Control Structures . 232.5 Program Environments and Abstract Machine States 252.5.1 Constants, Variables and Assignment 252.5.2 The Environment . 262.5.3 Binding . 312.6 Notes and References . 343 Properties of Real and Abstract Machines 373.1 Basic Characteristics . 373.1.1 Storage Classes . 383.1.2 Access Paths . 403.1.3 Operations . 423.2 Representation of Language Elements . 433.2.1 Elementary Objects . 433.2.2 Composite Objects . 453.2.3 Expressions . 483.2.4 Control Structures . 51v

vi Contents3.3 Storage Management . 553.3.1 Static Storage Management . 553.3.2 Dynamic Storage Management Using a Stack 563.3.3 Dynamic Storage Management Using a Heap 603.4 Mapping Speci�cations . 633.5 Notes and References . 644 Abstract Program Representation 694.1 Intermediate Languages . 694.1.1 Token Sequence . 694.1.2 Structure Tree . 704.1.3 Computation Graph . 734.1.4 Target Tree . 744.2 Global Tables . 774.2.1 Symbol Table . 774.2.2 Constant Table . 794.2.3 De�nition Table . 804.3 Notes and References . 815 Elements of Formal Systems 835.1 Descriptive Tools . 835.1.1 Strings and Rewriting Systems . 835.1.2 Grammars . 845.1.3 Derivations and Parse Trees . 865.1.4 Extended Backus-Naur Form . 895.2 Regular Grammars and Finite Automata . 915.2.1 Finite Automata . 915.2.2 State Diagrams and Regular Expressions 935.3 Context-Free Grammars and Pushdown Automata 965.3.1 Pushdown Automata . 975.3.2 Top-Down Analysis and LL(k) Grammars 985.3.3 Bottom-Up Analysis and LR(k) Grammars 1035.4 Notes and References . 1086 Lexical Analysis 1116.1 Modules and Interfaces . 1116.1.1 Decomposition of the Grammar . 1116.1.2 Lexical Analyzer Interface . 1126.2 Construction . 1136.2.1 Extraction and Representation . 1136.2.2 State Minimization . 1156.2.3 Programming the Lexical Analyzer . 1166.3 Notes and References . 1197 Parsing 1237.1 Design . 1237.1.1 The Parser Interface . 1237.1.2 Selection of the Parsing Algorithm . 1257.1.3 Parser Construction . 1267.2 LL(1) Parsers . 127

Contents vii7.2.1 Strong LL(k) Grammars . 1277.2.2 The Parse Algorithm . 1297.2.3 Computation of FIRST and FOLLOW Sets 1347.3 LR Parsers . 1367.3.1 The Parse Algorithm . 1377.3.2 SLR(1) and LALR(1) Grammars . 1387.3.3 Shift-Reduce Transitions . 1437.3.4 Chain Production Elimination . 1447.3.5 Implementation . 1467.4 Notes and References . 1488 Attribute Grammars 1538.1 Basic Concepts of Attribute Grammars . 1538.2 Traversal Strategies . 1588.2.1 Partitioned Attribute Grammars . 1588.2.2 Derived Traversals . 1608.2.3 Pre-Speci�ed Traversals . 1688.3 Implementation Considerations . 1728.3.1 Algorithm Coding . 1728.3.2 Attribute Storage . 1778.4 Notes and References . 1799 Semantic Analysis 1839.1 Description of Language Properties via Attribute Grammars 1839.1.1 Scope and Name Analysis . 1849.1.2 Types . 1899.1.3 Declarations . 1929.1.4 Expressions and Statements . 1969.2 Implementation of Semantic Analysis . 2019.3 Notes and References . 20610 Code Generation 21110.1 Memory Mapping . 21210.2 Target Attribution . 21410.2.1 Register Allocation . 21410.2.2 Targeting . 21810.2.3 Use of Algebraic Identities . 21910.3 Code Selection . 22610.3.1 Machine Simulation . 22610.3.2 Code Transformation . 23010.4 Notes and References . 23211 Assembly 23511.1 Internal Address Resolution . 23511.1.1 Label Value Determination . 23611.1.2 Span-Dependent Instructions . 23611.1.3 Special Problems . 24011.2 External Address Resolution . 24011.2.1 Cross-Referencing . 24111.2.2 Library Search . 243

viii Contents11.3 Instruction Encoding . 24311.3.1 Target Code . 24411.3.2 The Encoding Process . 24411.4 Notes and References . 24812 Error Handling 25312.1 General Principles . 25412.1.1 Errors, Symptoms, Anomalies and Limitations 25412.1.2 Responses . 25512.1.3 Communication with the User . 25612.2 Compiler Error Recovery . 25812.2.1 Semantic Errors . 25812.2.2 Syntactic Errors . 26012.2.3 Lexical Errors . 26512.3 Run-Time Errors . 26612.3.1 Static Error Location . 26612.3.2 Establishing the Dynamic Environment 26812.3.3 Debugging Aids . 26912.4 Notes and References . 26913 Optimization 27313.1 The Computation Graph . 27313.2 Local Optimization . 27713.2.1 Value Numbering . 27813.2.2 Coding . 28113.2.3 Peephole Optimization . 28213.2.4 Local Register Allocation . 28513.3 Global Optimization . 28613.3.1 Global Data Flow Analysis . 28613.3.2 Code Motion . 28813.3.3 Strength Reduction . 29013.3.4 Global Register Allocation . 29413.4 E�cacy and Cost . 29514 Implementation 29914.1 Implementation Decisions . 29914.1.1 Criteria . 29914.1.2 Pass Structure . 30014.1.3 Table Representation . 30214.2 Case Studies . 30314.2.1 GIER ALGOL . 30314.2.2 Z�urich Pascal . 30614.2.3 IBM FORTRAN H . 31114.3 Notes and References . 316A The Sample Programming Language LAX 319A.1 Basic Symbols . 319A.2 Program Structure . 320A.2.1 Programs . 320A.2.2 Visibility Rules . 321

Contents ixA.2.3 Blocks . 321A.2.4 Statement Lists . 322A.2.5 Iterations . 322A.2.6 Labels and Jumps . 322A.3 Declarations . 323A.3.1 Values, Types and Objects . 323A.3.2 Variable Declarations . 324A.3.3 Identity Declarations . 324A.3.4 Procedure Declarations . 324A.3.5 Type Declarations . 324A.4 Expressions . 324A.4.1 Evaluation of Expressions . 325A.4.2 Coercions . 325A.4.3 Operations . 326A.4.4 Names . 327A.4.5 Procedure Calls . 327A.4.6 Clauses . 328B Useful Algorithms For Directed Graphs 329B.1 Terminology . 329B.2 Directed Graphs as Data Structures . 332B.3 Partitioning Algorithms . 336B.3.1 Strongly Connected Components . 337B.3.2 Re�nement . 338B.3.3 Coloring . 340B.4 Notes and References . 343References 347

x Contents

Chapter 1Introduction and OverviewThe term compilation denotes the conversion of an algorithm expressed in a human-orientedsource language to an equivalent algorithm expressed in a hardware-oriented target language.We shall be concerned with the engineering of compilers { their organization, algorithms,data structures and user interfaces.1.1 Translation and InterpretationProgramming languages are tools used to construct formal descriptions of �nite computations(algorithms). Each computation consists of operations that transform a given initial stateinto some �nal state. A programming language provides essentially three components fordescribing such computations:� Data types, objects and values with operations de�ned upon them.� Rules �xing the chronological relationships among speci�ed operations.� Rules �xing the (static) structure of a program.These components together constitute the level of abstraction on which we can formulatealgorithms in the language. We shall discuss abstractions for programming languages in detailin Chapter 2.The collection of objects existing at a given point in time during the computation consti-tutes the state, s, of the computation at that time. The set, S, of all states that could occurduring computations expressed in the language is called the state space of the language. Themeaning of an algorithm is the (partially-de�ned) function f : S ! S by which it transformsinitial states to �nal states.Figure 1.1 illustrates the concept of a state. Figure 1.1a is a fragment of a programwritten in Pascal. Since this fragment does not declare the identi�ers i and j, we add thefact that both are integer variables. The values of i and j before the given fragment beginsto execute constitute the initial state; their values after execution ceases constitute the �nalstate. Figure1.1b illustrates the state transformations carried out by the fragment, startingfrom a particular initial state.Let f be the function de�ned by the state transformation of some particular algorithm A.If we are to preserve the meaning of A when compiling it to a new language then the statetransformation function f 0 of the translated algorithm A0 must, in some sense, `agree' with f .Since the state space, S0, of the target language may di�er from that of the source language,we must �rst decide upon a function, M , to map each state si 2 S to a subset M(s) of S0.The function f 0 then preserves the meaning of f if f 0(M(s)) is a subset of M(f(s)) for allallowable initial states s 2 S. 1

2 Introduction and Overviewwhile i 6= j doif i > j then i := i � j else j := j � i ;a) An algorithmInitial: i = 36 j = 24i = 12 j = 24Final: i = 12 j = 12b) A particular sequence of statesFigure 1.1: Algorithms and StatesFor example, consider the language of a simple computer with a single accumulator and twodata locations called I and J respectively (Exercise 1.3). Suppose that M maps a particularstate of the algorithm given in Figure 1.1a to a set of machine states in which I contains thevalue of the variable i, J contains the value of the variable j, and the accumulator containsany arbitrary value. Figure 1.2a shows a translation of Figure 1.1a for this machine; a partialstate sequence is given in Figure 1.2b.LOOP LOAD ISUB JJZERO EXITJNEG SUBISTORE IJUMP LOOPSUBI LOAD JSUB ISTORE JJUMP LOOPEXITa) An algorithmInitial: I = 36 J = 24 ACC = ?I = 36 J = 24 ACC = 36I = 36 J = 24 ACC = 12. . .Final: I = 12 J = 12 ACC = 0b) A sequence of states corresponding to Figure 1.1bFigure 1.2: A Translation of Figure 1.1In determining the state sequence of Figure 1.1b, we used only the concepts of Pascal asspeci�ed by the language de�nition. For every programming language, PL, we can de�nean abstract machine: The operations, data structures and control structures of PL becomethe memory elements and instructions of the machine. A `Pascal machine' is therefore animaginary computer with Pascal operations as its machine instructions and the data objectspossible in Pascal as its memory elements. Execution of an algorithm written in PL on sucha machine is called interpretation; the abstract machine is an interpreter.

1.2 The Tasks of a Compiler 3A pure interpreter analyzes the character form of each source language instruction everytime that instruction is executed. If the given instruction is only to be executed once, pureinterpretation is the least expensive method of all. Hence it is often used for job controllanguages and the `immediate commands' of interactive languages. When instructions areto be executed repeatedly, a better approach is to analyze the character form of the sourceprogram only once, replacing it with a sequence of symbols more amenable to interpretation.This analysis is simply a translation of the source language into some target language, whichis then interpreted.The translation from the source language to the target language can take place as eachinstruction of the program is executed for the �rst time (interpretation with substitution).Thus only that part of the program actually executed will be translated; during testing thismay be only a fraction of the entire program. Also, the character form of the source programcan often be stored more compactly than the equivalent target program. The disadvantage ofinterpretation with substitution is that both the compiler and interpreter must be availableduring execution. In practice, however, a system of this kind should not be signi�cantly largerthan a pure interpreter for the same language.Examples may be found of virtually all levels of interpretation. At one extreme are thesystems in which the compiler merely converts constants to internal form, �xes the meaningof identi�ers and perhaps transforms in�x notation to post�x (APL and SNOBOL4 are com-monly implemented this way); at the other are the systems in which the hardware, assistedby a small run-time system, forms the interpreter (FORTRAN and Pascal implementationsusually follow this strategy).1.2 The Tasks of a CompilerA compilation is usually implemented as a sequence of transformations (SL;L1); (L1; L2); : : : ;(Lk; TL), where SL is the source language and TL is the target language. Each languageLi is called an intermediate language. Intermediate languages are conceptual tools used indecomposing the task of compiling from the source language to the target language. Thedesign of a particular compiler determines which (if any) intermediate language programsactually appear as concrete text or data structures during compilation.Any compilation can be broken down into two major tasks:� Analysis: Discover the structure and primitives of the source program, determining itsmeaning.� Synthesis: Create a target program equivalent to the source program.This breakdown is useful because it separates our concerns about the source and targetlanguages.The analysis concerns itself solely with the properties of the source language. It convertsthe program text submitted by the programmer into an abstract representation embodyingthe essential properties of the algorithm. This abstract representation may be implementedin many ways, but it is usually conceptualized as a tree. The structure of the tree representsthe control and data ow aspects of the program, and additional information is attachedto the nodes to describe other aspects vital to the compilation. In Chapter 2 we reviewthe general characteristics of source languages, pointing out the properties relevant for thecompiler writer. Figure 1.3 illustrates the general idea with an abstraction of the algorithmof Figure 1.1a.Figure 1.3a describes the control and data ow of the algorithm by means of the `kthdescendant of' relation. For example, to carry out the algorithm described by a subtree

4 Introduction and Overview
#

>

-

asgn

exp

name

idn

name

name

idn

idnidn

name

exp

-

if

asgn

name

idn

idn

name

exp

name

idn

while

exp

name

idn

name

name

idn

idn

a) Control and data owNode Additional Informationidn identi�er corresponding declarationname type of the variableexp type of the expression valueb) Additional information about the source programNode Additional Informationname corresponding data locationif address of code to carry out the else partwhile address of the expression evaluation codec) Additional information about the target programFigure 1.3: An Abstract Program Fragmentrooted in a while node we �rst evaluate the expression described by the subtree that is the�rst descendant of the while node. If this expression yields true then we carry out thealgorithm described by the subtree that is the second descendant. Similarly, to evaluate theexpression described by an expression subtree, we evaluate the �rst and third descendantsand then apply the operator described by the second descendant to the results.The algorithm of Figure 1.1a is not completely characterized by Figure 1.3a. Informationmust be added (Figure 1.3b) to complete the description. Note that some of this information(the actual identi�er for each idn) is taken directly form the source text. The remainder isobtained by processing the tree. For example, the type of the expression value depends uponthe operator and the types of the operands.Synthesis proceeds from the abstraction developed during analysis. It augments the treeby attaching additional information (Figure 1.3c) that reects the source-to-target mappingdiscussed in the previous section. For example, the access function for the variable i inFigure 1.1a would become the address of data location I according to the mappingM assumedby Figure 1.2. Similarly, the address of the else part of the conditional was represented bythe label SUBI. Chapter 3 discusses the general characteristics of machines, highlightingproperties that are important in the development of source-to-target mappings.Formal de�nitions of the source language and the source-to-target mapping determine thestructure of the tree and the computation of the additional information. The compiler simplyimplements the indicated transformations, and hence the abstraction illustrated in Figure 1.3forms the basis for the entire compiler design. In Chapter 4 we discuss this abstraction indetail, considering possible intermediate languages and the auxiliary data structures used intransforming between them.Analysis is the more formalized of the two major compiler tasks. It is generally broken

1.3 Data Management in a Compiler 5down into two parts, the structural analysis to determine the static structure of the sourceprogram, and the semantic analysis to �x the additional information and check its consistency.Chapter 5 summarizes some results from the theory of formal languages and shows how theyare used in the structural analysis of a program. Two subtasks of the structural analysis areidenti�ed on the basis of the particular formalisms employed: Lexical analysis (Chapter 6)deals with the basic symbols of the source program, and is described in terms of �nite-stateautomata; syntactic analysis, or parsing, (Chapter 7) deals with the static structure of theprogram, and is described in terms of pushdown automata. Chapter 8 extends the theoreticaltreatment of Chapter 5 to cover the additional information attached to the components of thestructure, and Chapter 9 applies the resulting formalism (attribute grammars) to semanticanalysis.There is little in the way of formal models for the entire synthesis process, although al-gorithms for various subtasks are known. We view synthesis as consisting of two distinctsubtasks, code generation and assembly. Code generation (Chapter 10) transforms the ab-stract source program appearing at the analysis/synthesis interface into an equivalent targetmachine program. This transformation is carried out in two steps: First we map the algo-rithm from source concepts to target concepts, and then we select a speci�c sequence of targetmachine instructions to implement that algorithm.Assembly (Chapter 11) resolves all target addressing and converts the target machineinstructions into an appropriate output format. We should stress that by using the term`assembly' we do not imply that the code generator will produce symbolic assembly code forinput to the assembly task. Instead, it delivers an internal representation of target instructionsin which most addresses remain unresolved. This representation is similar to that resultingfrom analysis of symbolic instructions during the �rst pass of a normal symbolic assembler.The output of the assembly task should be in the format accepted by the standard link editoror loader on the target machine.Errors may appear at any time during the compilation process. In order to detect asmany errors as possible in a single run, repairs must be made such that the program isconsistent, even though it may not reect the programmer's intent. Violations of the rules ofthe source language should be detected and reported during analysis. If the source algorithmuses concepts of the source language for which no target equivalent has been de�ned in aparticular implementation, or if the target algorithm exceeds limitations of a speci�c targetlanguage interpreter (e.g. requires more memory than a speci�c computer provides), thisshould be reported during synthesis. Finally, errors must be reported if any storage limits ofthe compiler itself are violated.In addition to the actual error handling, it is useful for the compiler to provide extrainformation for run-time error detection and debugging. This task is closely related to errorhandling, and both are discussed in Chapter 12.A number of strategies may be followed in an attempt to improve the target programrelative to some speci�ed measure of cost. (Code size and execution speed are typical costmeasures.) These strategies may involve deeper analysis of the source program, more complexmapping functions, and transformations of the target program. We shall treat the �rst twoin our discussions of analysis and code generation respectively; the third is the subject ofChapter 13.1.3 Data Management in a CompilerAs with other large programs, data management and access account for many of the problemsto be solved by the design of a compiler. In order to control complexity, we separate the

6 Introduction and Overviewfunctional aspects of a data object from the implementation aspects by regarding it as aninstance of an abstract data type. (An abstract data type is de�ned by a set of creation,assignment and access operators and their interaction; no mention is made of the concreteimplementation technique.) This enables us to concentrate upon the relationships betweentasks and data objects without becoming enmeshed in details of resource allocation thatreect the machine upon which the compiler is running (the compiler host) rather than theproblem of compilation.A particular implementation is chosen for a data object on the basis of the relationshipbetween its pattern of usage and the resources provided by the compiler host. Most of thebasic issues involved become apparent if we distinguish three classes of data:� Local data of compiler tasks� Program text in various intermediate representations� Tables containing information that represents context-dependence in the program textStorage for local data can be allocated statically or managed via the normal stackingmechanisms of a block-structured language. Such strategies are not useful for the programtext, however, or for the tables containing contextual information. Because of memory lim-itations, we can often hold only a small segment of the program text in directly-accessiblestorage. This constrains us to process the program sequentially, and prevents us from rep-resenting it directly as a linked data structure. Instead, a linear notation that represents aspeci�c traversal of the data structure (e.g. pre�x or post�x) is often employed. Informationto be used beyond the immediate vicinity of the place where it was obtained is stored in ta-bles. Conceptually, this information is a component of the program text; in practice it oftenoccupies di�erent data structures because it has di�erent access patterns. For example, tablesmust often be accessed randomly. In some cases it is necessary to search them, a process thatmay require a considerable fraction of the total compilation time. For this reason we do notusually consider the possibility of spilling tables to a �le.The size of the program text and that of most tables grows linearly with the length ofthe original source program. Some data structures (e.g. the parse stack) only grow with thecomplexity of the source program. (Complexity is generally related to nesting of constructssuch as procedures and loops. Thus long, straight-line programs are not particularly complex.)Speci�cation of bounds on the size of any of these data structures leads automatically torestrictions on the class of translatable programs. These restrictions may not be onerous toa human programmer but may seriously limit programs generated by pre-processors.1.4 Compiler StructureA decomposition of any problem identi�es both tasks and data structures. For example, inSection 1.2 we discussed the analysis and synthesis tasks. We mentioned that the analyzerconverted the source program into an abstract representation and that the synthesizer ob-tained information from this abstract representation to guide its construction of the targetalgorithm. Thus we are led to recognize a major data object, which we call the structure treein addition to the analysis and synthesis tasks.We de�ne one module for each task and each data structure identi�ed during the decom-position. A module is speci�ed by an interface that de�nes the objects and actions it makesavailable, and the global data and operations it uses. It is implemented (in general) by acollection of procedures accessing a common data structure that embodies the state of themodule. Modules fall into a spectrum with single procedures at one end and simple dataobjects at the other. Four points on this spectrum are important for our purposes:

1.4 Compiler Structure 7� Procedure: An abstraction of a single "memoryless" action (i.e. an action with nointernal state). It may be invoked with parameters, and its e�ect depends only uponthe parameter values. (Example { A procedure to calculate the square root of a realvalue.)� Package: An abstraction of a collection of actions related by a common internal state.The declaration of a package is also its instantiation, and hence only one instance ispossible. (Example { The analysis or structure tree module of a compiler.)� Abstract data type: An abstraction of a data object on which a number of actions canbe performed. Declaration is separate from instantiation, and hence many instancesmay exist. (Example { A stack abstraction providing the operations push, pop, top,etc.)� Variable: An abstraction of a data object on which exactly two operations, fetch andstore, can be performed. (Example { An integer variable in most programming lan-guages.)Abstract data types can be implemented via packages: The package de�nes a data typeto represent the desired object, and procedures for all operations on the object. Objects arethen instantiated separately. When an operation is invoked, the particular object to which itshould be applied is passed as a parameter to the operation procedure.The overall compiler structure that we shall use in this book is outlined in Figures 1.4through 1.8. Each of these �gures describes a single step in the decomposition. The centralblock of the �gure speci�es the problem being decomposed at this step. To the left arethe data structures from which information is obtained, and to the right are those to whichinformation is delivered. Below is the decomposition of the problem, with boxes representingsubtasks. Data structures used for communication among these subtasks are listed at thebottom of the �gure. Each box and each entry in any of the three data lists corresponds toa module of the compiler. It is important to note that Figures 1.4 through 1.8 reect onlythe overall structure of the compiler; they are not owcharts and they do not specify moduleinterfaces. INPUT OUTPUTSource text Target CodeError ReportsCompilationAnalysis SynthesisLOCALStructure TreeFigure 1.4: Decomposition of the CompilerOur decomposition is based upon our understanding of the compilation problem and ourperception of the best techniques currently available for its solution. The choice of preciseboundaries is driven by control and data ow considerations, primarily minimization of owat interfaces. Speci�c criteria that inuenced our decisions will be discussed throughout thetext.The decomposition is virtually independent of the underlying implementation, and ofthe speci�c characteristics of the source language and target machine. Clearly these factors

8 Introduction and OverviewINPUT OUTPUTSource text Target CodeError ReportsAnalysisStructural Analysis Semantic AnalysisFigure 1.5: Decomposition of the Analysis Taskinuence the complexity of the modules that we have identi�ed, in some cases reducing themto trivial stubs, but the overall structure remains unchanged.INPUT OUTPUTSource text Error ReportsConnection SequenceStructural AnalysisLexical Analysis ParsingLOCALToken SequenceFigure 1.6: Decomposition of the Structural Analysis TaskIndependence of the modules from the concrete implementation is obtained by assumingthat each module is implemented on its own abstract machine, which provides the preciseoperations needed by the module. The local data structures of Figures 1.4-1.8 are thuscomponents of the abstract machine on which the given subproblem is solved.INPUT OUTPUTStructure Tree Error ReportsTarget CodeSynthesisCode Generation AssemblyLOCALTarget TreeFigure 1.7: Decomposition of the Synthesis TaskOne can see the degree of freedom remaining in the implementation by noting that ourdiagrams never prescribe the time sequence of the subproblem solutions. Thus, for exam-ple, analysis and synthesis might run sequentially. In this case the structure tree must becompletely built as a linked data structure during analysis, written to a �le if necessary, andthen processed during synthesis. Analysis and synthesis might, however, run concurrently

1.5 Notes and References 9and interact as coroutines: As soon as the analyzer has extracted an element of the structuretree, the synthesizer is activated to process this element further. In this case the structuretree will never be built as a concrete object, but is simply an abstract data structure; onlythe element being processed exists in concrete form.INPUT OUTPUTStructure Tree Error ReportsTarget TreeCode GenerationTarge Mapping Code SelectionLOCALComputation GraphFigure 1.8: Decomposition of the Code Generation TaskIn particular, our decomposition has nothing to do with the possible division of a com-piler into passes. (We consider a pass to be a single, sequential scan of the entire text ineither direction. A pass either transforms the program from one internal representation toanother or performs speci�ed changes while holding the representation constant.) The passstructure commonly arises from storage constraints in main memory and from input/outputconsiderations, rather than from any logical necessity to divide the compiler into several se-quential steps. One module is often split across several passes, and/or tasks belonging toseveral modules are carried out in the same pass. Possible criteria will be illustrated by con-crete examples in Chapter 14. Proven programming methodologies indicate that it is best toregard pass structure as an implementation question. This permits development of programfamilies with the same modular decomposition but di�erent pass organization. The aboveconsideration of coroutines and other implementation models illustrates such a family.1.5 Notes and ReferencesCompiler construction is one of the areas of computer science that early workers tried toconsider systematically. Knuth [1962] reports some of those e�orts. Important sources fromthe �rst half of the 60's are an issue of the Communications of the ACM 1961 the report of aconference sponsored by the International Computing Centre [ICC, 1962] and the collection ofpapers edited by Rosen [1967]. Finally, Annual Review in Automatic Programming containsa large number of fundamental papers in compiler construction.The idea of an algorithmic conversion of expressions to a machine-oriented form originatedin the work of Rutishauser [1952]. Although most of our current methods bear only a dis-tant resemblance to those of the 50's and early 60's, we have inherited a view of the descriptionof programming languages that provides the foundation of compiler construction today: In-termediate languages were �rst proposed as interfaces in the compilation process by a SHAREcommittee Mock et al. [1958]; the extensive theory of formal languages, �rst developed bythe linguist Noam Chomsky 1956, was employed in the de�nition of ALGOL 60 1963; the useof pushdown automata as models for syntax analysis appears in the work of Samelson andBauer [1960].The book by Randell and Russell [1964] remains a useful guide for a quick implemen-tation of ALGOL 60 that does not depend upon extensive tools. Grau et al. [1967] describe

10 Introduction and Overviewan ALGOL 60 implementation in an extended version of ALGOL 60. The books by Gries[1971], Aho and Ullman [1972, 1977] and Bauer and Eickel [1976] represent the state ofthe art in the mid 1970's.Recognition that parsing can be understood via models from the theory of formal lan-guages led to a plethora of work in this area and provided the strongest motivation for thefurther development of that theory. From time to time the impression arises that parsing isthe only relevant component of compiler construction. Parsing unquestionably represents oneof the most important control mechanisms of a compiler. However, while just under one thirdof the papers collected in Pollack's 1972 bibliography are devoted to parsing, there was notone reference to the equally important topic of code generation. Measurements [Horninget al., 1972] have shown that parsing represents approximately 9% of a compiler's code and11% of the total compilation time. On the other hand, code generation and optimizationaccount for 50-70% of the compiler. Certainly this discrepancy is due, in part, to the greatadvances made in the theory of parsing; the value of this work should not be underestimated.We must stress, however, that a more balanced viewpoint is necessary if progress is to bemaintained.Modular decomposition Parnas [1972, 1976] is a design technique in which intermedi-ate stages are represented by speci�cations of the external behavior (interfaces) of programmodules. The technique of data-driven decomposition was discussed by Liskov and Zilles[1974] and a summary of program module characteristics was given by Goos and Kastens[1978]. This latter paper shows how the various kinds of program modules are constructedin several programming languages. Our diagrams depicting single decompositions are looselybased upon some ideas of Constantine et al. [1974].Exercises1.1 Consider the Pascal algorithm of Figure 1.1a.(a) What are the elementary objects and operations?(b) What are the rules for chronological relations?(c) What composition rules are used to construct the static program?1.2 Determine the state transformation function, f , for the algorithm of Figure 1.1a. Whatinitial states guarantee termination? How do you characterize the corresponding �nalstates?1.3 Consider a simple computer with an accumulator and two data locations. The instruc-tion set is:LOAD d: Copy the contents of data location d to the accumulator.STORE d: Copy the contents of the accumulator to data location d.SUB d: Subtract the contents of data location d from the accumulator, leavingthe result in the accumulator. (Ignore any possibility of overow.)JUMP i: Execute instruction i next.JZERO i: Execute instruction i next if the accumulator contents are zero.JNEG i: Execute instruction i next if the accumulator contents are less thanzero.(a) What are the elementary objects?(b) What are the elementary actions?(c) What composition rules are used?(d) Complete the state sequence of Figure 1.2b.

Chapter 2Properties of ProgrammingLanguagesProgramming languages are often described by stating the meaning of the constructs (ex-pressions, statements, clauses, etc.) interpretively. This description implicitly de�nes aninterpreter for an abstract machine whose machine language is the programming language.The output of the analysis task is a representation of the program to be compiled interms of the operations and data structures of this abstract machine. By means of codegeneration and the run-time system, these elements are modeled by operation sequences anddata structures of the computer and its basic software (operating system, etc.)In this chapter we explore the properties of programming languages that determine theconstruction and possible forms of the associated abstract machines, and demonstrate thecorrespondence between the elements of the programming language and the abstract machine.On the basis of this discussion, we select the features of our example source language, LAX.A complete de�nition of LAX is given in Appendix A.2.1 OverviewThe basis of every language implementation is a language de�nition. (See the Bibliographyfor a list of the language de�nitions that we shall refer to in this book.) Users of the languageread the de�nition as a user manual: What is the practical meaning of the primitive elements?How can they be meaningfully used? How can they be combined in a meaningful way? Thecompiler writer, on the other hand, is interested in the question of which constructions arepermitted. Even if he cannot at the moment see any useful application of a construct, or ifthe construct leads to serious implementation di�culties, he must implement it exactly asspeci�ed by the language de�nition. Descriptions such as programming textbooks, which areoriented towards the meaningful applications of the language elements, do not clearly de�nethe boundaries between what is permitted and what is prohibited. Thus it is di�cult to makeuse of such descriptions as bases for the construction of a compiler. (Programming textbooksare also informal, and often cover only a part of the language.)2.1.1 Syntax, Semantics and PragmaticsThe syntax of a language determines which character strings constitute well-formed programsin the language and which do not. The semantics of a language describe the meaning of aprogram in terms of the basic concepts of the language. Pragmatics relate the basic concepts11

12 Properties of Programming Languagesof the language to concepts outside the language (to concepts of mathematics or to the objectsand operations of a computer, for example).Semantics include properties that can be deduced without executing the program as wellas those only recognizable during execution. Following Griffiths [1973], we denote theseproperties static and dynamic semantics respectively. The assignment of a particular propertyto one or the other of these classes is partially a design decision by the compiler writer. Forexample, some implementations of ALGOL 60 assign the distinction between integer and realto the dynamic semantics, although this distinction can normally be made at compile timeand thus could belong to the static semantics.Pragmatic considerations appear in language de�nitions as unelaborated statements ofexistence, as references to other areas of knowledge, as appeals to intuition, or as explicitstatements. Examples are the statements `[Boolean] values are the truth values denoted by theidenti�ers true and false' (Pascal Report, Section 6.1.2), `their results are obtained in the senseof numerical analysis' (ALGOL 68 Revised Report, Section 2.1.3.1.e) or `decimal numbers havetheir conventional meaning' (ALGOL 60 Report, Section 2.5.3). Most pragmatic propertiesare hinted at through a suggestive choice of words that are not further explained. Statementsthat certain constructs only have a de�ned meaning under speci�ed conditions also belongto the pragmatics of a language. In such cases the compiler writer is usually free to �x themeaning of the construct under other conditions. The richer the pragmatics of a language, themore latitude a compiler writer has for e�cient implementation and the heavier the burdenon the user to write his program to give the same answers regardless of the implementation.We shall set the following goals for our analysis of a language de�nition:� Stipulation of the syntactic rules specifying construction of programs.� Stipulation of the static semantic rules. These, in conjunction with the syntactic rules,determine the form into which the analysis portion of the compiler transforms the sourceprogram.� Stipulation of the dynamic semantic rules and di�erentiation from pragmatics. Thesedetermine the objects and operations of the language-oriented abstract machine, whichcan be used to describe the interface between the analysis and synthesis portions of thecompiler: The analyzer translates the source program into an abstract target programthat could run on the abstract machine.� Stipulation of the mapping of the objects and operations of the abstract machine ontothe objects and operations of the hardware and operating system, taking the pragmaticmeanings of these primitives into account. This mapping will be carried out partly bythe code generator and partly by the run-time system; its speci�cation is the basis forthe decisions regarding the partitioning of tasks between these two phases.2.1.2 Syntactic PropertiesThe syntactic rules of a language belong to distinct levels according to their meaning. Thelowest level contains the `spelling rules' for basic symbols, which describe the constructionof keywords, identi�ers and special symbols. These rules determine, for example, whetherkeywords have the form of identi�ers (begin) or are written with special delimiters ('BEGIN',.BEGIN), whether lower case letters are permitted in addition to upper case, and whichspellings (<=, .LE., 'NOT' 'GREATER') are permitted for symbols such as that cannot bereproduced on all I/O devices. A common property of these rules is that they do not a�ectthe meaning of the program being represented. (In this book we have distinguished keywordsby using boldface type. This convention is used only to enhance readability, and does notimply anything about the actual representation of keywords in program text.)

2.1 Overview 13The second level consists of the rules governing representation and interpretation of con-stants, for example rules about the speci�cation of exponents in oating point numbers orthe allowed forms of integers (decimal, hexadecimal, etc.) These rules a�ect the meanings ofprograms insofar as they specify the possibilities for direct representation of constant values.The treatment of both of these syntactic classes is the task of lexical analysis, discussed inChapter 6.The third level of syntactic rules is termed the concrete syntax. Concrete syntax rulesdescribe the composition of language contructs such as expressions and statements from basicsymbols. Figure 2.1a shows the parse tree (a graphical representation of the application ofconcrete syntax rules) of the Pascal statement `if a or b and c then : : : else : : : '. Becausethe goal of the compiler's analysis task is to determine the meaning of the source program,semantically irrelevant complications such as operator precedence and certain keywords canbe suppressed. The language constructs are described by an abstract syntax that speci�esthe compositional structure of a program while leaving open some aspects of its concreterepresentation as a string of basic symbols. Application of the abstract syntax rules can beillustrated by a structure tree (Figure 2.1b).
statement

if expression

simple expression

then

term

factor

variable

identifier

a

term

factor and

variable

identifier

b

factor

variable

identifier

c

else

......

or

a) Parse tree (application of concrete syntax rules)
term

factor

variable

identifier

a

statement

or

expression

term

factor and

variable

identifier

b

factor

variable

identifier

c

... ...

b) Structure tree (application of abstract syntax rules)Figure 2.1: Concrete and Abstract Syntax

14 Properties of Programming Languages2.1.3 Semantic PropertiesMost current programming languages specify algorithms operationally, in contrast to `veryhigh level' languages that allow the user to formally describe a problem and leave the imple-mentation to the compiler. Essential semantic elements of operational languages are -� Data objects and structures upon which operations take place� Operations and construction rules for expressions and other operative statements� Constructs providing ow of control, the dynamic composition of program fragmentsData objects appear as explicit constants, as values of variables and as results of opera-tions. At any point in the execution of a program the totality of variable values representsthe state of the abstract machine. This state constitutes the environment for execution offurther operations.Included in the set of operations are the access functions such as indexing of an array orselection of a �eld of a record, and operations such as the addition or comparison of two values.These operations do not alter the state of the abstract machine. Assignment is an exampleof an operation with a side e�ect that alters the contents of a variable, a component of thestate of the abstract machine. Most programming languages contain a large number of suchstate-changing operations, all of which may be regarded as assignment combined with otheroperations. Usually these operations are formulated as statements without results. MostCOBOL `verbs' designate such statements. Finally, operations include block entry and exit,procedure call and return, and creation of variables. These operations, which we associate withcontrol of the state, change the state by creating and deleting objects (variables, parameters,etc.) and altering the allowable access functions.Flow of control includes conditional expressions or statements, case selection, iteration,jumps and so forth. These elements appear in various forms in most programming languages,and frequently take into account some special implementation possibility or practice. Forexample, the conditional statementif truth_value then s1 else s2;and the case selectioncase truth_value of true : s1; false : s2 end;have identical e�ects in Pascal. As we shall see later, however, the two constructs wouldprobably be implemented di�erently.In considering semantic properties, it is important for the compiler writer to systematicallycollect the countless details such as properties of data objects, operations and side e�ects,possibilities for iteration, and so forth, into some schema. The clarity and adequacy of thisschema determines the quality of the compiler because the compiler structure is derived fromit. A shoddy schema makes well-nigh impossible a convincing argument that the compilertranslates the source language fully and completely.For many languages, including ALGOL 60, ALGOL 68, Pascal and Ada, good schemataare comparatively easy to obtain because the language de�nitions are suitably structured.Other language de�nitions take the form of a collection of language element descriptions withmany exception rules; a systematic treatment of such languages is often impossible.

2.2 Data Objects and Operations 152.2 Data Objects and OperationsThe most important characteristics of a programming language are the available data objectsand the operations that may be executed upon them. The term `object' means a concreteinstance of an abstract value. Many such instances of the same value may exist at the sametime. The set of values possible in a language, such as numbers, character strings, recordsand so forth, is usually in�nite although a given program naturally uses only a �nite numberof them.Objects and values may be classi�ed according to many criteria. For example, theirinternal (to the computer) or external representation, the algorithm used to access them, orthe access rights might be used. Each such classi�cation leads to an attribute of the object.The most important classi�cation is a partition of the set of values according to the applicableoperations; the corresponding attribute is called the type or mode of the value. Examples arethe numeric types integer and real, to which the basic arithmetic operations may be applied.(The special role of zero in division is not covered by this classi�cation.)A rough subdivision of object types can be made on the basis of the possible accessfunctions. If an object can be accessed only in its entirety we say that its type is elementary.If, however, the object consists of a collection of distinct components, which may be alteredindividually, then we say that its type is composite. Thus if a programming language were toexplain oating point operations in terms of updating operations on fraction and exponentindividually, oating point values would be composite. This is not usually done; the oatingpoint operations can only yield complete oating numbers, and hence real is an elementarytype.Every operation interprets its operands in a speci�ed manner. The assignment of a type toa value �xes this interpretation and admits only those operations for which this interpretationis meaningful. As usual with such attributes, there are many possible choices for the bindingtime { the point at which a particular attribute is ascribed to a particular object: If the typeis �rst �xed upon execution of an operation, and if practically any operation can be appliedto any object (so long as its length is appropriate), then we term the language typeless ortype-free; otherwise it is called a typed language. If the type of an object can be determinedexplicitly from the program text, we speak of manifest type; the type is latent if it cannot bedetermined until the program is executed. (A language whose types are manifest throughoutis sometimes called a strongly-typed language, while one whose types are latent is calledweakly-typed.) Objects with latent types must be provided with an explicit type indicationduring execution. Most assembly languages are examples of typeless languages. In contrast,ALGOL 60, FORTRAN and COBOL are languages with manifest types: All variables aredeclared (either explicitly or implicitly) to have values of a certain type, and there are di�erentforms of denotation for constants of di�erent types. SNOBOL4 has neither declarations norimplied type speci�cations for its variables; on the contrary, the type may change duringexecution. Thus SNOBOL4 has latent types. The union modes in ALGOL 68 and the variantrecords of Pascal and Ada take an intermediate position. A variable of such a `discriminatedunion' has a latent type, but the possible value types may only be drawn from an explicitly-stated set.In a typeless language, the internal representation (`coding') of an object is the concern ofthe programmer; the implementor of a typed language can �x the coding because he is fullyaware of all desired interpretations. Erroneous coding by the programmer is thus impossible.Further, inconsistent creation or use of a data object can be detected automatically andhence the class of automatically-detected errors is broadened. With manifest types sucherrors appear during compilation, with latent types they are �rst detected during execution.Moreover, in a language with latent types the erroneous creation of an object is only detected

16 Properties of Programming Languagesupon subsequent use and the necessary dynamic type checking increases the computationtime.2.2.1 Elementary TypesOur purpose in this section and the next is to give an overview of the types usually foundin programming languages and explore their `normal' properties. The reader should note inparticular how these properties may be deduced from the language de�nition.The elementary types can be partitioned according to the (theoretical) size of their valuesets. A type is called �nite if only a �xed number of values of this type exist; otherwise thetype is (potentially) in�nite.Finite types can be de�ned by enumeration of all of the values of the type. Examplesare the type Boolean whose value set is ftrue,falseg and the type character, with the entireset of characters permitted by an implementation as its value set. Almost all operationsand properties of a type with n values can be de�ned giving a 1-1 correspondence with thenatural numbers 0; : : : ; n� 1 and then de�ning operations using these ordinal numbers. Thispossibility does not imply that such a mapping is actually speci�ed in every language; on thecontrary, �nite types are introduced primarily to represent value sets for which a numericalinterpretation is meaningless. For example, the revised ALGOL 68 report de�nes no corre-spondence between truth values and the integers values, but leaves its precise speci�cation tothe implementor: `: : : this relationship is de�ned only to the extent that di�erent charactershave di�erent integral equivalents, and that there exists a "largest integral equivalent"' (Sec-tion 2.1.3.1.g). This speci�cation permits gaps in the sequence of corresponding integers, animportant point in many implementations.In principle the value set of a �nite type is unordered. If an ordering is needed, say tode�ne relational operators or a successor function, the ordering induced by the mapping tonatural numbers is used. For example, Pascal speci�es that the relation false < true holdsand thus demands the mapping false ! 0, true ! 1 (although the ordering of Booleanvalues is really irrelevant). Often the mere existence of an ordering is su�cient. For example,the ALGOL 68 speci�cation of character values permits the use of sorted tables or trees tospeed up searching, even though the user could not guarantee a particular ordering. Manyapplications demand that some particular ordering (collating sequence) be de�ned on the setof characters; the task of lexicographic ordering in a telephone book is a common example.Di�erent collating sequences may be appropriate for di�erent problems. COBOL recognizesthis fact by allowing the user to provide di�erent collating sequences for di�erent programsor for di�erent operations within the same program.The integers and oating point numbers belong to the class of in�nite types. Most lan-guage de�nitions rely upon the mathematical intuition of the reader for the de�nition of thesetypes. Some of our mathematical intuition is invalidated, however, because the machine rep-resentations of these types are necessarily �nite.The important characteristics of integer type are that a successor function is de�ned onthe values, and that exact arithmetic is available. In contrast, a real value has no de�nedsuccessor (although a total ordering is de�ned) and arithmetic is inexact. Some of the familiaraxioms fail { for example, associativity is lost. In the representation of a oating point numberas a pair (s; e) such that v = s � be is stored in a single word, additional range is obtainedat the cost of decreased precision. In comparison to the integer representation, the numberof signi�cant digits in s has been shortened to obtain space for the exponent e. The radix bis usually 2, 8, 10 or 16. Both a range and a precision must be speci�ed to characterize theoating point domain, while a range alone su�ces for the integer domain. The speci�cationsfor the two domains are independent of one another. In particular, it is often impossible to

2.2 Data Objects and Operations 17represent all valid integers exactly as oating point numbers because s is not large enough tohold all integer values.The number of signi�cant digits and the size of the exponent (and similar properties ofother types) vary from computer to computer and implementation to implementation. Sincean algorithm's behavior may depend upon the particular values of such parameters, the valuesshould be accessible. For this purpose many languages provide environment inquiries; somelanguages, Ada for example, allow speci�cations for the range and precision of numbers inthe form of minimum requirements.Restriction of the integer domain and similar speci�cation of subranges of �nite types isoften erroneously equated to the concept of a type. ALGOL 68, for example, distinguishes anin�nity of `sizes' for integer and real values. Although these sizes de�ne di�erent modes in theALGOL 68 sense, the Standard Environment provides identical operators for each; thus theyare indistinguishable according to the de�nition of type given at the beginning of Section 2.2.The distinction can only be understood by examination of the internal coding.The basic arithmetic operations are usually de�ned by recourse to the reader's mathe-matical intuition. Only integer division involving negative operands requires a more exactstipulation in a language de�nition. Number theorists recognize two kinds of integer division,one truncating toward zero (-3 divided by 2 yields -1) and the other truncating toward nega-tive in�nity (-3 divided by 2 yields -2). ALGOL 60 uses the �rst de�nition, which also formsthe basis for most hardware realizations.We have already seen that a correspondence between the values of a �nite type and asubset of the natural numbers can be de�ned. This correspondence may be speci�ed by thelanguage de�nition, or it may be described but its de�nition left to the implementor. Asa general principle, similar relationships are possible between the value sets of other types.For example, the ALGOL 68 Revised Report asserts that for every integer of a given lengththere is an equivalent real of that length; the FORTRAN Standard implies a relation betweeninteger and real values by its de�nition of assignment, but does not de�ne it precisely.Even if two values of di�erent types (say 2 and 2.0) are logically equivalent, they mustbe distinguished because di�erent operations may be applied to them. If a programmer is tomake use of the equivalence, the abstract machine must provide appropriate transfer (con-version) operations. This is often accomplished by overloading the assignment operator. Forexample, Section 4.2.4 of the ALGOL 60 Report states that `if the the type of the arithmeticexpression [in an assignment] di�ers from that associated with the variables and procedureidenti�ers [making up the left part list], appropriate transfer functions are understood to beautomatically invoked'. Another way of achieving this e�ect is to say that the operator indi-cation `:=' stands for one of a number of assignment operations, just as `+' stands for eitherinteger or real addition.The meaning of `:=' must be determined from the context in the above example. Anotherapproach to the conversion problem is to use the context to determine the type of valuedirectly, and allow the compiler to insert a transfer operation if necessary. We say thatthe compiler coerces the value to a type appropriate for the context; the inserted transferoperation is a coercion.Coercions are most frequently used when the conversion is de�ned for all values of the typebeing converted. If this is not the case, the programmer may be required to write an explicittransfer function. In Pascal, for example, a coercion is provided from integer to real but notfrom real to integer. The programmer must use one of the two explicit transfer functionstrunc or round in the latter case.Sometimes coercions are restricted to certain syntactic positions. ALGOL 68 has elaboraterules of this kind, dividing the complete set of available coercions into four classes and allowingdi�erent classes in di�erent positions. The particular rules are chosen to avoid ambiguity in

18 Properties of Programming Languagesthe program. Ada provides a set of coercions, but does not restrict their use. Instead, thelanguage de�nition requires simply that each construct be unambiguously interpretable.LAX provides Boolean, integer and real as elementary types. We omitted characters andprogrammer-de�ned �nite types because they do not raise any additional signi�cant issues.Integer division is de�ned to truncate towards zero to match the behavior of most hardware.Coercion from integer to real is de�ned, but there is no way to convert in the oppositedirection. Again, the reason for this omission is that no new issues are raised by it.2.2.2 Composite TypesComposite objects are constructed from a �nite number of components, each of which maybe accessed by a selector. A composite type is formed from the types of the components bya type constructor, which also de�nes the selectors. Programming languages usually providetwo sorts of composite objects: records (also known as structures) and arrays.Records are composite objects with a �xed number of components called �elds. Identi�ers,which cannot be computed by the program, are used as �eld selectors. The type of thecomposite object is given by enumeration of the types and selectors of the �elds. In somelanguages (such as COBOL and PL/1) the description of a record type is bound to a singleobject.A record is used to collect related items, for example the name, address, profession andother data about a single person. Often the number or form of the data may vary in suchcases. For example, the location of a point in space could be given in terms of rectangular(x; y; z) or cylindrical (r; phi; z) coordinates. In a record of type `point', variations in the formof the data are thus possible. Pascal allows such a record with variants to be constructed:type coordinates = (rectangular, cylindrical);point = recordz : real;case c : coordinates ofrectangular : (x ,y : real);cylindrical : (r ,phi : real);end;The �elds appearing in every record of the type are written �rst, followed by alternative setsof �elds; the c appearing in the case construct describes which alternative set is actuallypresent.A union mode in ALGOL 68 is a special case of a variant record, in which every variantconsists of exactly one �eld and the �xed part consists only of the variant selector. Syntacti-cally, the construct is not described as a record and the variant selector is not given explicitly.In languages such as APL or SNOBOL4, essentially all objects are speci�ed in this manner.An important question about such objects is whether the variant is �xed for the lifetime of aparticular object, or whether it forms a part of the state and may be changed.Arrays di�er from records in that their components may be selected via a computable,one-to-one function whose domain is some �nite set (such as any �nite type or a subrangep � i � q of the integers). In languages with manifest types, all elements of an array have thesame type. The operation a [e] (`select the component of a corresponding to e ') is calledindexing. Most programming languages also permit multi-dimensional rectangular arrays, inwhich the index set represents a Cartesian product I1� I2�� � �� In over a collection of indexdomains. Depending upon the time at which the number of elements is bound, we speak ofstatic (�xed at compile time), dynamic (�xed at the time the object is created) or exible(variable by assignment) arrays (cf. Section 2.5.3).

2.2 Data Objects and Operations 19One-dimensional arrays of Boolean values (bit vectors) may also be regarded as tabularencodings of characteristic functions over the index set I. Every value of an array c corre-sponds to fi j c[i] = trueg. In Pascal such arrays are introduced as `sets' with type set ofindex set ; in Ada they are described as here, as Boolean arrays. In both cases, the opera-tions union (represented by + or or), intersection (*, and), set di�erence (-), equality (= and<>), inclusion (<, <=, >, >=) and membership (in) are de�ned on such sets. Di�cultiesarise in specifying set constants: The element type can, of course be determined by lookingat the elements of the constant. But if sets can be de�ned over a subrange of a type, it is notusually possible to determine the appropriate subrange just by looking at the elements. InPascal the problem is avoided by regarding all sets made up of elements of a particular scalartype to be of the same type, regardless of the subrange speci�ed as the index set. (Sets ofintegers are regarded as being over an implementation-de�ned subrange.) In Ada the indexset is determined by the context.Only a few programming languages provide operations (other than set operations) thatmay be applied to a composite object as a whole. (APL has the most comprehensive collectionof such operations.) Processing of composite objects is generally carried out componentwise,with �eld selection, indexing and component assignment used as access operations on thecomposite objects. It may also be possible to describe groups of array elements, for exampleentire rows or columns or even arbitrary rectangular index domains (a[i 1:i 2, j 1:j 2]in ALGOL 68); this process is called slicing.2.2.3 StringsStrings are exceptional cases in most programming languages. In ALGOL 60, strings arepermitted only as arguments to procedures and can thus ultimately be used only as datafor code procedures (normally I/O routines). ALGOL 68 considers strings as exible arrays,and in FORTRAN 77 or PL/1 the size can increase only to a maximum value �xed whenthe object is created. In both languages, single characters may be extracted by indexing; inaddition, comparison and concatenation may be carried out on strings whose length is known.These latter operations consider the entire string as a single unit. In SNOBOL4 strings arealways considered to be single units: Assignment, concatenation, conversion to a pattern,pattern matching and replacement are elementary operations of the language.We omitted strings from LAX because they do not lead to any unique problems in compilerconstruction.2.2.4 PointersRecords, arrays and strings are composite objects constructed as contiguous sequences ofelements. Composition according to the model of a directed graph is possible using pointers,with which one node can point to another. In all languages providing arrays, pointers can berepresented by indices in an array. Some languages (such as ALGOL 68, Pascal and PL/1)de�ne pointers as a new kind of type. In PL/1 the type of the object pointed to is notspeci�ed, and hence one can place an arbitrary interpretation upon the target node of thepointer. In the other languages mentioned, however, the pointer type carries the type of theobject pointed to.Pointers have the advantage of security over indices in an array: Indices can be confusedwith other uses of integers, pointers cannot. Above all, however, pointers can be used to ref-erence anonymous objects that are created dynamically. The number of objects thus createdneed not be known ahead of time. With indices the array bounds �x the maximum numberof objects (except when the array is exible).

20 Properties of Programming LanguagesPascal pointers can reference only anonymous objects, whereas in ALGOL 68 either namedor anonymous objects may be referenced. When named objects have at most a boundedlifetime, it is possible that a pointer to an object could outlive the object to which it points.Such dangling references will be discussed in Section 2.5.2.In addition to the technical questions of pointer implementation, the compiler writershould be concerned with special testing aids (such as printing programs that can traverse astructure, outputting links in some reasonable way). The reason is that programs containingpointers are usually more di�cult to debug than those not containing pointers.2.2.5 Type EquivalenceWhenever we use an object in a typed language (e.g. as an operand of an operation), wemust verify that the type of the object satis�es the requirements of the context and is thusadmissible. To do this we need a technique to compare types with one another and todetermine whether they are equivalent.The question of type equivalence is easy to answer as long as there are no type declarations,and no subranges of a type are treated as types. Under such circumstances we use textualequivalence: Two types are equivalent if their external representations are the same. Thusfor the elementary types Boolean, character, integer and real the same symbol is required.Array types are equivalent if they have equivalent element types and the same number ofdimensions; the values of the bounds are compared only in languages with static arrays.Pointers must point to objects of equivalent type. Procedures must have the same number ofparameters, and corresponding parameter and result types must be equivalent. For records,it is usually required that both types and �eld selectors be equivalent and appear in the sameorder. Therefore the following records are all of di�erent types:record a : real; b : integer endrecord x : real; y : integer endrecord y : integer; x : real endWhen type declarations and pointers are both allowed, textual equivalence is no longer auseful criterion. Attempting to extend the above de�nitions to recursive types leads to acycle in the test. For example, the equivalence of the following types depends upon theequivalence of the second �eld which, in turn, depends upon the equivalence of the originaltypes: typem = record x : real ; y : "m end;p = record x : real ; y : "p end;To break the cycle, we may generalize textual equivalence to either structural equivalence orname equivalence.Structural equivalence is used in ALGOL 68. In this case, each type identi�er (modeindication) is assumed to be a shorthand notation for the right side of the type declaration.Two types are equivalent if they are textually equivalent after all type identi�ers have beenreplaced by the right hand sides of their declarations. This process may introduce other typeidenti�ers, and the substitution must be repeated; clearly a recursive type has an in�nite tex-tual representation. In order to test for structural equivalence, these in�nite representationsmust be compared. In Section 9.2 we shall see that a practical decision procedure using �niterepresentations and working in polynomial time is available.Name equivalence states that two types are equivalent if and only if they are denotedby the same identi�er, which identi�es the same de�nition in each case. m and p above

2.3 Expressions 21are di�erent types under this de�nition, since m and p are distinct identi�ers. The righthand sides of the declarations of m and p are automatically di�erent, since they are nottype identi�ers. Name equivalence is obviously easy to check, since it only involves �xing theidentity of type declarations.Name equivalence seldom appears in pure form. On the one hand it leads to a ood of typedeclarations, and on the other to problems in linking to library procedures that have arrayparameters. However, name equivalence is the basis for the de�nition of abstract data types,where type declarations that carry the details of the representation are not revealed outside thedeclaration. This is exactly the e�ect of name equivalence, whereas structural equivalencehas the opposite result. Most programming languages that permit type declarations usean intermediate strategy. Euclid uses structural equivalence locally; as soon as a type is`exported', it is known only by a type identi�er and hence name equivalence applies.If the language allows subranges of the basic types (such as a subrange of integers inPascal) the question of whether or not this subrange is a distinct type arises. Ada allowsboth: The subrange can be de�ned as a subtype or as a new type. In the second case, thepre-de�ned operations of the base type will be taken over but later procedures requiringparameters of the base type cannot be passed arguments of the new type.The type equivalence rules of LAX embody a representative compromise. They requiretextual equivalence as discussed above, but whenever a type is denoted by an identi�er it isconsidered elementary. (In other words, if the compiler is comparing two type speci�cationsfor equality and an identi�er appears in one then the same identi�er must appear in the sameposition in the other.) Implementation of these rules illustrate the compiler mechanismsneeded to handle both structure and name equivalence.2.3 ExpressionsExpressions (or formulas) are examples of composite operations. Their structure resemblesthat of composite objects: They consist of a simple operation with operands, which are eitherordinary data objects or further expressions. In other words, an expression is a tree withoperations as interior nodes and data objects as leaves.An expression written in linear in�x notation may lead to distinct trees when interpretedaccording to di�erent language de�nitions (Figure 2.2). In low-level languages modeled uponPL/360, the operators are strictly left-associative with no operator precedence, and parenthe-ses are prohibited; APL uses right-associativity with no precedence, but permits grouping byparentheses. Most higher-level languages employ the normal precedence rules of mathematicsand associate operators of the same precedence to the left. FORTRAN 77 (Section 6.6.4) isan exception: `Once [a tree] has been established in accordance with [the precedence, associ-ation and parenthesization] rules, the processor may evaluate any mathematically equivalentexpression, provided that the integrity of parentheses is not violated.' The phrase `mathemat-ically equivalent' implies that a FORTRAN compiler may assume that addition is associative,even though this is not true for computer implementation of oating point arithmetic. (Theprogrammer can, however, always indicate the correct sequence by proper use of parentheses.)The leaves of an expression tree represent activities that can be carried out indepen-dently of all other nodes of the tree. Interior nodes, on the other hand, depend upon thevalues returned by their descendants. The entire tree may thus be evaluated by the followingalgorithm:

22 Properties of Programming Languages
*

+

*

a

d

c

ba) Left-associative (e.g. PL/360)
*

+a

*b

c db) Right-associative (e.g. APL)
*

a b c d

+

*

c) Normal precedence rulesFigure 2.2: Trees for a � b+ c � drepeatSelect an arbitrary leaf and carry out its designated activity (access to an object orexecution of an operation);if the selected leaf is the root then terminate;Transmit the result to the parent of the leaf and delete the leaf;until terminationThis evaluation algorithm performs the operations in some sequence permitted by the dataow constraints embodied in the tree, but does not specify the order in which operands areevaluated. It is based upon a principle known as referential transparency [Quine, 1960] thatholds in mathematics: The value of an expression can be determined solely from the values ofits subexpressions, and if any subexpression is replaced by an arbitrary expression with thesame value then the value of the entire expression remains unchanged.In programming languages, evaluation of an expression may additionally alter the stateof the underlying abstract machine through a side e�ect. If the altered state is used inanother part of the expression then the principle of referential transparency does not hold,and di�erent evaluation orders may yield di�erent results.Side e�ects are generally undesirable because they complicate program veri�cation andoptimization. Unfortunately, it is often impossible to mechanically guarantee that no side

2.4 Control Structures 23e�ects are present. In Euclid an attempt was made to restrict the possibilities to the pointwhere the compiler could perform such a check safely. These restrictions include prohibitionof assignments to result parameters and global variables in functions, and prohibition of I/Ooperations in functions.Some side e�ects do not destroy referential transparency, and are thus somewhat less dan-gerous. Section 6.6 of the FORTRAN 77 Standard formulates the weakest useful restrictions:`The execution of a function reference in a statement may not alter the value of any otherentity within the statement in which the function reference appears.'In some expressions the value of a subexpression determines that of the entire expression.Examples are: a and (� � �) when a = falseb or (� � �) when b = truec � (� � �) when c = 0If the remainder of the expression has no side e�ect, only the subexpression determining thevalue need be computed. The FORTRAN 77 Standard allows this short circuit evaluationregardless of side e�ects; the description is such that the program is unde�ned if side e�ectsare present, and hence it is immaterial whether the remainder of the expression is evaluated ornot in that case. The wording (Section 6.6.1) is: `If a statement contains a function referencein a part of an expression that need not be evaluated, all entities that would have becomede�ned in the execution of that reference become unde�ned at the completion of evaluationof the expression containing the function reference.'ALGOL 60, ALGOL 68 and many other languages require, in principle, the evaluationof all operands and hence preclude such optimization unless the compiler can guarantee thatno side e�ects are possible. Pascal permits short circuit evaluation, but only in Booleanexpressions (User Manual, Section 4a): `The rules of Pascal neither require nor forbid theevaluation of the second part [of a Boolean expression, when the �rst part �xes the value]'.Ada provides two sets of Boolean operators, one (and, or) prohibiting short circuit evaluationand the other (and then, or else) requiring it.LAX requires complete evaluation of operands for all operators except and and or. Theorder of evaluation is constrained only by data ow considerations, so the compiler mayassume referential transparency. This simpli�es the treatment of optimization. By requiringa speci�c short circuit evaluation for and and or, we illustrate other optimization techniquesand also show how the analysis of an expression is complicated by evaluation order rules.2.4 Control StructuresThere are three possibilities for the composition of several actions: serial, collateral andparallel. Serial execution is implied by any dependence of two actions upon one another.Such dependence occurs when (say) one action uses the result of another; more generally, itoccurs in any case where the outcome depends upon the sequence in which the actions occur.If the actions may be carried out serially or in parallel, or can be interleaved in time, thenwe speak of collateral execution. Finally, we use the term parallel when either simultaneousor interleaved execution is required.When actions are composed serially, the sequence may be prescribed either implicitly orexplicitly. Most programming languages use the sequence in which the statements are writtenas an implicit serial order. The semicolon separating two successive statements in ALGOL 60and its successors is thus often called the `sequence operator'. For explicit control, we havethe following possibilities:

24 Properties of Programming Languages� Conditional clause� Case clause� Iteration (with or without a count)� Jump, exit, etc.� Procedure callConditional clauses make the execution of a component S dependent upon ful�llment ofa Boolean condition. In many languages S may only take on one of a restricted number offorms { in the extreme case, S may only be a jump.The case clause is a generalization of the conditional clause in which the distinct values ofan expression are associated with distinct statements. The correspondence is either implicitas in ALGOL 68 (the statements correspond successively to the values 1,2,3,: : :), or explicitas in Pascal (the value is used as a case label for the corresponding statement). The latterconstruct allows one statement to correspond with more than one value and permits gaps inthe list of values. It also avoids counting errors and enhances program readability.Several syntactically distinct iteration constructs appear in many programming languages:with or without counters, test at the beginning or end, etc. The ine�cient ALGOL 60 rulesrequiring the (arbitrarily complex) step and limit expressions to be re-evaluated for eachiteration have been replaced in newer languages by the requirement that these expressions beevaluated exactly once. Another interesting point is whether the value of the counter maybe altered by assignment within the body of the iteration (as in ALGOL 60), or whether itmust remain constant (as in ALGOL 68). This last is important for many optimizations ofiterations, as is the usual prohibition on jumps into an iteration.Many programming languages allow jumps with variable targets. Examples are the useof indexing in an array of labels (the ALGOL 60 switch) and the use of label variables (theFORTRAN assigned GOTO). While COBOL or FORTRAN jumps control only the successionof statements, jumps out of blocks or procedures in ALGOL-like languages inuence theprogram state (see Section 2.5). Procedure calls also inuence the state.The ALGOL 60 and ALGOL 68 de�nitions explain the operation of procedure calls bysubstitution of the procedure body for the call (copy rule). This copying process couldform the basis for an implementation (open subroutines), if the procedure is not recursive.Recursion requires that the procedure be implemented as a closed subroutine, a model onwhich many other language de�nitions are based. Particular di�culties await the writer ofcompilers for languages such as COBOL, which do not distinguish the beginning and end ofthe procedure body in the code. This means that, in addition to the possibility of invokingthe procedure by means of a call (PERFORM in COBOL), the statements could be executedsequentially as a part of the main program.Parallel execution of two actions is required if both begin from the same initial state andalter this state in incompatible ways. A typical example is the parallel assignment x, y :=y, x , in which the values are exchanged. To represent this in a sequential program, thecompiler must �rst extend the state so that the condition `identical starting states for bothactions' can be preserved. This can be done here by introducing an auxiliary variable t , towhich x is assigned.Another case of parallel execution of two actions arises when explicit synchronization isembedded in these actions to control concurrent execution. The compiler must fall back uponcoroutines or parallel processing facilities in the operating system in order to achieve suchsynchronization; we shall not discuss this further.Collateral execution of two actions means that the compiler need not �x their sequenceaccording to source language constraints. It can, for example, exchange actions if this will

2.5 Program Environments and Abstract Machine States 25lead to a more e�cient program. If both actions contain identical sub-actions then it su�cesto carry out this sub-action only once; this has the same e�ect as the (theoretically possi-ble) perfectly-synchronized parallel execution of the two identical sub-actions. If a languagespeci�es collateral evaluation, the question of whether the evaluation of f (x) in the assign-ment a[i + 1] := f(x) + a[i + 1] can inuence the address calculation for a[i + 1] bymeans of a side e�ect is irrelevant. The compiler need only compute the address of a[i + 1]once, even if i were the following function procedure:function i : integer; begin k := k + 1; i := k end;In this case k will be incremented only once, a further illustration of side e�ects and themeaning of the paragraph from the FORTRAN 77 Standard quoted at the end of Section 2.3.2.5 Program Environments and Abstract Machine StatesThe operations of a programming language are applied to states of the abstract machine forthis language and transform those states. The state is represented by the combination of thedata objects and values existing at a particular point in time, the hierarchy of procedure callsnot yet completed, and the representation of the next operation in the program text. The setof data objects belonging to a state (independent of their values), together with the procedurecall hierarchy, constitute the environment (present in that state). We can thus distinguishthree distinct schemata for state transitions:� Specify a new successor operation (e.g. by means of a jump).� Change the value of an existing data object by means of an assignment.� Change the size of the state.We have already discussed the �rst possibility in Section 2.4.2.5.1 Constants, Variables and AssignmentThe data objects in a programming language either have constant values or are variable.Constants are either speci�ed by denotations (numbers, characters, strings) or are made tocorrespond to identi�ers by giving a declaration. The latter are called symbolic constants, andcontain the manifest constants as a subclass. The value of a manifest constant is permanently�xed and can be determined at compile time. A compiler could replace each occurrence of amanifest constant identi�er by its value, and then forget the identi�er completely. (The con-stant declarations of Pascal, for example, create manifest constants.) In addition to manifestconstants, a language may permit dynamic constants. These can be treated by the compileras variables to which a value is assigned when the variable is declared, and to which furtherassignments are prohibited. The following ALGOL 68 identity declaration creates a dynamicconstant c :int c = if p then 3 * x else y + 1 �;(If p , x and y are really manifest constants then the compiler could optimize by evaluating theconditional statement and then treating c as a manifest constant as well. This optimizationis called folding { see Chapter 13.)In the simplest case, variables are data objects with the following properties:� They are identi�ed either by an identi�er or a composite access path such as a pair(identi�er, index).

26 Properties of Programming Languages� They possess a value (from a domain determined by their type).� There exists an access function to use their value as an operand.� There exists an access function/assignment to alter their value.This model of an elementary variable explains the variable concepts in FORTRAN,COBOL, ALGOL 60, and partially explains that of Pascal.In many languages, the only assignment permitted to a variable of composite type is anassignment to a component. For example, ALGOL 60 does not allow assignment of an entirecomposite object and also prohibits composite objects as results of function procedures. Acomposite object must, however, be considered basically as a unit. Thus any assignment toa component is an assignment to the entire object.A variable does not always retain the last assigned value until a new value is assigned.Typical examples are the control variables in ALGOL 60 and FORTRAN iterations, whosevalues are unde�ned upon normal termination of the iteration. These rules permit the com-piler to advance the control variable either before or after the termination test. (Clearlythe two possibilities lead to di�erent results and hence the value of the controlled variablecannot be guaranteed. ALGOL 68 avoids this problem because the control variable is localto the iteration body.) Another example is the unde�nition of a COBOL record by the writeoperation. This permits implementation of the write operation by either changing the bu�erpointer or by transferring data. The FORTRAN 66 Standard gives (in Section 10.2.3.1) afurther list of situations in which variables become unde�ned. A compiler writer should care-fully examine the language de�nition for such rules, since they normally lead to optimizationpossibilities.The pointer objects discussed in Section 2.2.4 provide access paths to other objects. Byusing pointers, an arbitrary number of access paths to a given object can be created. In thespecial case of parameter transmission, additional access paths can be created even withoutpointers (see Section 2.5.3). The following identity declaration from ALGOL 68 is an exampleof the general case:ref m x = : : : ;Here the right hand side must give an access path to an object; x then identi�es a new accesspath to this object. In contrast to the ALGOL 60 name parameter, the identity of the objectis �xed at the time the identity declaration is executed. Some languages permit creation ofaccess paths with limited access rights: Assignments may be forbidden over certain accesspaths or in certain contexts. For example, assignments to global parameters are forbiddenin Euclid functions. If such restrictions exist, adherence to them must be veri�ed by thecompiler during semantic analysis.Existence of several access paths to the same object complicates the data ow analysis(analysis of assignment and use patterns) required to verify certain semantic constraints andto check for the applicability of certain optimizations. If the compiler writer wishes to delayan assignment, for example, he must be certain that an access to the new value will not beattempted over a di�erent access path. This complication is termed the aliasing problem.The LAX identity declaration allows creation of an arbitrary number of new access pathsto any variable. It is, however, the only mechanism by which new access paths can be created.This allows us to illustrate the aliasing problem in its full generality in one place, rather thanhaving it appear in several di�erent constructs with possibly di�erent constraints.2.5.2 The EnvironmentThe environment of a program fragment speci�es not only which objects exist, but alsothe access paths by which they may be reached. Changes in the accessibility (or visibility)

2.5 Program Environments and Abstract Machine States 27of objects are generally associated with procedure call and return, and for this reason theprocedure call hierarchy forms a part of the environment. We shall now consider questions oflifetime and visibility; the related topic of procedure parameter transmission will be deferredto Section 2.5.3.That part of the execution history of a program during which an object exists is calledthe extent of the object. The extent rules of most programming languages classify objects asfollows:� Static: The extent of the object is the entire execution history of the program.� Automatic: The extent is the execution of a speci�ed syntactic construct (usually aprocedure or block).� Unrestricted: The extent begins at a programmer-speci�ed point and ends (at leasttheoretically) at the end of the program's execution.� Controlled: The programmer speci�es both the beginning and end of the extent byexplicit construction and destruction of objects.Objects in COBOL and the blank common block of FORTRAN are examples of staticextent. Local variables in ALGOL 60 or Pascal, as well as local variables in FORTRAN sub-programs, are examples of automatic extent. (Labeled common blocks in FORTRAN 66 alsohave automatic extent, see Section 10.2.5 of the standard.) List elements in LISP and objectscreated by the heap generator of ALGOL 68 have unrestricted extent, and the anonymousvariables of Pascal are controlled (created by new and discarded by dispose).The possibility of a dangling reference arises whenever a reference can be created to anobject of restricted extent. To avoid errors, we must guarantee that the referenced objectexists at the times when references to it are actually attempted. A su�cient condition to makethis guarantee is the ALGOL 68 rule (also used in LAX) prohibiting assignment of referencesor procedures in which the extent of the right-hand side is smaller than the reference to whichit is assigned. It has the advantage that it can be checked by the compiler in many cases,and a dynamic run-time check can always be made in the absence of objects with controlledextent. When a language provides objects with controlled extent, as do PL/1 and Pascal,then the burden of avoiding dangling references falls exclusively upon the programmer.LAX constant are the only object having static extent. Variables are generally automatic,although it is possible to generate unrestricted variables. The language has no objects withcontrolled extent, because such objects do not result in any new problems for the compiler.Static variables were omitted because the techniques used to deal with automatic variablesapply to them essentially without change.By the scope of an identi�er de�nition we understand the region of the program withinwhich we can use the identi�er with the de�ned meaning. The scope of an identi�er de�nitionis generally determined statically by the syntactic construct of the program in which it isdirectly contained. A range is a syntactic construct that may have identi�er de�nitionsassociated with it. In a block-structured language, inner ranges are not part of outer ranges.Usually any range may contain at most one de�nition of an identi�er. Exceptions to thisrule may occur when a single identi�er may be used for distinct purposes, for example asan object and as the target of a jump. In ALGOL-like languages the scope of a de�nitionincludes the range in which it occurs and all enclosed ranges not containing de�nitions of thesame identi�er.Consider the �eld selection p.f . The position immediately following the dot belongsto the scope of the declaration of p 's record type. In fact, only the �eld selectors of thatrecord type are permitted in this position. On the other hand, although the statement sof the Pascal (or SIMULA) inspection with p do s also belongs to the scope of p 's record

28 Properties of Programming Languagestype declaration, the de�nitions from the inspection's environment remain valid in s unlessoverridden by �eld selector de�nitions. In COBOL and PL/1, f can be written in place ofp.f (partial quali�cation) if there is no other de�nition of f in the surrounding range.The concept of static block structure has the consequence that items not declared in aprocedure are taken from the static surrounding of the procedure. A second possibility is thatused in APL and LISP: Nonlocal items of functions are taken from the dynamic environmentof the procedure call.In the case of recursive procedure calls, identically-declared objects with nested extentsmay exist at the same time. Di�culties may arise if an object is introduced (say, by parametertransmission) into a program fragment where its original declaration is hidden by anotherdeclaration of the same identi�er. Figure 2.3 illustrates the problem. This program makestwo nested calls of p , so that two incarnations, q1 and q2, of the procedure q and two variablesi1 and i2 exist at the same time. The program should print the values 1, 4 and 1 of i2, i1and k . This behavior can be explained by using the contour model.procedure outer ;var n , k : integer;procedure p (procedure f ; var j : integer);label 1;var i : integer;procedure q ;label 2;begin (* q *)n := n + 1; if n = 4 then q ;n := n + 1; if n = 7 then 2 : j := j + 1;i := i + 1;end; (* q *)begin (* p *)i := 0;n := n + 1; if n = 2 then p (q , i) else j := j + 1;if n = 3 then 1 : f ;i := i + 1;writeln(' i = ', i :1);end; (* p *)procedure empty ; begin end;begin (* outer *)n := 1; k := 0;p (empty, k);writeln (' k = ', k :1);end; (* outer *)Figure 2.3: Complex Procedure Interactions in PascalThe contour model captures the state of the program execution as a combination ofthe (invariant) program text and the structured set of objects (state) existing at respectivepoints in time. Further, two pointers, ip and ep belong to the state. ip is the instructionpointer, which indicates the position in the program text. For block-structured languagesthe state consists of a collection of nested local environments called contours. Each contourcorresponds to a range and contains the objects de�ned in that range. If the environmentpointer ep addresses a contour c , then all of the objects declared in c and enclosing contours

2.5 Program Environments and Abstract Machine States 29are accessible. The contour addressed by ep is called the local contour. The object identi�edby a given identi�er is found by scanning the contours from inner to outer, beginning at thelocal contour, until a de�nition for the speci�ed identi�er is found.The structure of the state is changed by the following actions:� Construction or removal of an object.� Procedure call or range entry.� Procedure return or range exit.� Jump out of a range.When an object with automatic extent is created, it lies in a contour corresponding tothe program construct in which it was declared; static objects behave exactly like objectsdeclared in the main program with automatic extent. Objects with unrestricted extent andcontrolled objects lie in their own contours, which do not correspond to program constructs.Upon entry into a range, a new contour is established within the local contour and theenvironment pointer ep is set to point to it. Upon range exit this procedure is reversed: thelocal contour is removed and ep set to point to the immediately surrounding contour.Upon procedure call, a new contour c is established and ep set to point to it. In contrastto range entry, however, c is established within the contour c ' addressed by ep at the time ofprocedure declaration. We term c ' the static predecessor of c to distinguish it from c ", thedynamic predecessor, to which ep pointed immediately before the procedure call. The pointerto c " must be stored in c as a local object. Upon return from a procedure the local contourof the procedure is discarded and the environment pointer reset to its dynamic predecessor.To execute a jump into an enclosing range b , blocks and procedures are exited and thecorresponding contours discarded until a contour c corresponding to b is reached such thatc contained the contour of the jump. c becomes the new local contour, to which ep willpoint, and ip is set to the jump target. If the jump target is determined dynamically as aparameter or the content of a label variable, as is possible in ALGOL 60, then that parameteror variable must specify both the target address and the contour that will become the newlocal contour.Figures 2.4 and 2.5 show the contour model for the state existing at two points duringthe execution of the program of Figure 2.3. Notice that several contours correspond to thesame range when a procedure is called recursively. Further, the values of actual parametersof a procedure call should be computed before the environment pointer is altered. If this isnot done, the pointer for parameter computation must be restored (as is necessary for nameparameters in ALGOL 60).In order to unify the state manipulation, procedures and blocks are often processed iden-tically. A block is then a parameterless procedure called `on the spot'. The contour of a blockthus has a dynamic predecessor identical with its static predecessor. The lifetimes of localobjects in blocks can be determined by the compiler, and a static overlay structure for themcan be set up within the contour of the enclosing procedure. The main program is countedas a procedure for this purpose. The scope rules are not altered by this transformation. Con-tours for blocks can be dispensed with, and all objects placed in the contour of the enclosingprocedure. Arrays with dynamic bounds lead to di�culties with this optimization, since thebounds can be determined only at the time of actual block entry.The rules discussed so far do not permit description of either LISP or SIMULA. In LISP afunction f may have as its result a function g that accesses the local storage of f . Since thisstorage must also exist during the call of g , the contour of f must be retained at least untilg becomes inaccessible. Analogously, a SIMULA class k (an object of unrestricted extent)may have name parameters from the contour in which it was instantiated. This contour musttherefore be retained at least until k becomes inaccessible.

30 Properties of Programming Languages
n: 3

k: 0

p

Contour for procedure outer

empty Contour for procedure p
f =

j = k

q1

empty

Contour for procedure p
f = q1
j = i1
i2: 0
q2

ep

i1: 1

Note: Arrows show dynamic predecessorFigure 2.4: Contours Existing When Control Reaches Label 1 in Figure 2.3
k: 0

p

Contour for procedure outer

empty Contour for procedure p
f =

j = k

q1

empty

Contour for procedure p
f = q1
j = i1
i2: 0
q2

n: 7

i1: 2

qContour for procedure
ep

Figure 2.5: Contours Existing When Control Reaches Label 2 in Figure 2.3

2.5 Program Environments and Abstract Machine States 31We solve these problems by adopting a uniform retention strategy that discards an objectonly when that object becomes inaccessible. Accessibility is de�ned relative to the currentcontour. Whenever an object in a contour c references another object in a di�erent contour,c ', we implement that reference by an explicit pointer from c to c '. (Such references includethe dynamic predecessors of the contour, all reference parameters, and any explicit pointersestablished by the user.) A contour is accessible if it can be reached from the current contourby following any sequence of pointers or by a downhill walk. The dangling reference problemvanishes when this retention strategy is used.2.5.3 BindingAn identi�er b is termed bound (or local) in a range if this range contains a de�nition for b ;otherwise b is free (or global) in this range. As de�nitions we have:� Declarations of object identi�ers (including procedure identi�ers)� De�nitions: Label de�nitions, type de�nitions, FORTRAN labeled common blocks, etc.� Formal parameter de�nitionsIn the �rst and second cases the de�ned value along with all of its attributes is obviousfrom the de�nition. In the third case only the identi�er and type of the de�ned value areavailable via the program text. The actual parameter, the argument, will be associated withthe identi�er by parameter transmission at the time of the procedure call. We distinguish�ve essentially di�erent forms of parameter transmission:1. Value (as in ALGOL 60, SIMULA, Pascal, Ada, for example): The formal parameteridenti�es a local variable of the procedure, which will be initialized with the argumentvalue at the procedure call. Assignment to the parameter does not a�ect the caller.2. Result (Ada): The formal parameter identi�es a local variable of the procedure withunde�ned initial value. Upon return from the procedure the content of this local variableis assigned to the argument, which must be a variable.3. Value/Result (FORTRAN, Ada): The formal parameter identi�es a local variable ofthe procedure, which will be initialized with the argument value at the procedure call.Upon return from the procedure the content of this local variable is assigned to theargument if the argument is a variable. The argument variable may be �xed prior tothe call or redetermined upon return.4. Reference (FORTRAN, Pascal, Ada): A reference to the argument is transmitted tothe procedure. All operations on the formal parameter within the procedure are carriedout via this reference. (If the argument is an expression but not a variable, then theresult is placed in a temporary variable for which the reference is constructed. Somelanguages, such as Pascal, do not permit use of an expression as an argument in thiscase.)5. Name (ALGOL 60): A parameterless procedure p , which computes a reference to theargument, is transmitted to the procedure. (If the argument is an expression but not avariable then p computes the value of the expression, stores it in a temporary variableh , and yields a reference to h .) All operations on the formal parameter �rst invoke pand then operate via the reference yielded by p .Call by value is occasionally restricted to a strict value transmission in which the formalparameter identi�es not a local variable, but rather a local constant. Call by name is explainedin many language de�nitions by textual substitution of the argument for the parameter.

32 Properties of Programming LanguagesALGOL 60 provides for argument evaluation in the environment of the caller through aconsistent renaming.The di�erent parameter mechanisms can all be implemented in terms of (strict) call byvalue, if the necessary kinds of data are available. For cases (2)-(4), the language mustprovide the concept of arbitrary references as values. Call by name also requires the conceptof procedures as values (of procedure variables). Only when these concepts are unavailable arethe transmission mechanisms (2)-(5) important. This is clear in the language SIMULA, which(in addition to the value and name calls inherited from ALGOL 60) provides call by referencefor classes and strings. A more careful study shows that in truth this could be handled byan ordinary value call for references. In ALGOL 68 the call by reference is stated in terms ofthe strict call by value, by using an identity declaration to make the formal parameter fp analias of the argument ap :ref int fp = apExpressions that do not yield references are not permitted as arguments if this explanationof call by reference is used, since the right hand side of the identity declaration must yield areference.LAX follows the style of ALGOL 68, explaining its argument bindings in terms of identitydeclarations. This provides a uniform treatment of all parameter mechanisms, and also elim-inates the parameter mechanism as a distinct means of creating new access paths. Finally,the identity declaration gives a simple implementation model.Many language de�nitions do not specify parameter transmission mechanisms explicitly.The compiler writer must therefore attempt to delineate the possibilities by a careful con-sideration of their e�ects. For example, both case (3) and case (4) satisfy the conditions ofthe FORTRAN 66 Standard, but none of the others do. Ada generally requires case (1), (2)or (3). For composite objects, however, case (4) is permitted as an alternative. Use of thisalternative is at the discretion of the implementor, and the programmer is warned that anyassumptions about the particular transmission mechanism invalidates the program.Programs whose results depend upon the parameter transmission mechanism are generallydi�cult to understand. The dependencies arise when an object has two access paths, say viatwo formal parameters or via a global variable and a formal parameter. This can be seen inthe program of Figure 2.6a, which yields the results of Figure 2.6b for the indicated parametermechanisms.In addition to knowing what value an identi�er is bound to, it is important to knowwhen the binding takes place. The parameter transmission di�erences discussed above can,to a large extent, be explained in terms of binding times. In general, we can distinguish thefollowing binding times (explained in terms of the identity declaration ref realx=a[i,j+3]):1. Binding at each access (corresponding to call by name): Upon each access to x the identityof a[i, j + 3] is re-determined.2. Binding at �rst access: Upon the �rst access to x the identity of a[i, j + 3] will bedetermined. All assignments to i and j up to that point will have an e�ect.3. Binding upon declaration (corresponding to call by reference): After elaboration of theidentity declaration the identity of a[i, j + 3] is �xed. In several languages theidenti�ers on the right-hand side must not be declared in the same range, to avoidcircular de�nitions.4. Static binding: The identity of a[i, j + 3] is �xed throughout the entire program. Inthis case a must have static extent and statically-determined size. The values of i andj must be de�ned prior to program execution and be independent of it (hence theymust be constants).

2.5 Program Environments and Abstract Machine States 33beginint m :=1, n ;proc p = (??? int j , ??? int k) int:begin j := j + 1 ; m := m + k; j + k end;n := p (m , m + 3)endNote: `???' depends upon the parameter mechanism.a) An ALGOL 68 programMechanism m n j k CommentValue 5 6 2 4 Strict value is not possible due to the assignment to j .Value/Result 2 6 2 4 Pure result is unreasonable in this example.Reference 6 10 6 4 Only j is a reference parameter because an expressionis illegal as a reference parameter in ALGOL 68. Hencek is a value parameter.Name 7 17 7 10Note: m and n were evaluated at the end of the main program, j and k at the end of p .b) The e�ect of di�erent parameter mechanismsFigure 2.6: Parameter TransmissionIn this spectrum call by result would be classi�ed as binding after access. Call by valueis a binding of the value, not of the reference.Determination of identity is least costly at run time for static binding and most costly forbinding at access. During the analysis of the program, the compiler writer is most concernedwith gathering as much information as possible, to bind as early as he can. For this reasonstatic binding breaks into two subcases, which in general depend not upon the language butupon other considerations:4a. Binding at compilation time. The identity of the bound values is determined duringcompilation.4b. Binding at program initialization: The identity of �les or of external procedures will bedetermined during a pre-process to program execution.In case 4a the knowledge of the bound values can be used in optimization. 4b permitsrepeated execution of the program with di�erent bindings without re-compilation.Free identi�ers, which are not de�ned in a procedure, must be explained in the context ofthe procedure so that their meaning can be determined. The de�nitions of standard identi�ers,which may be used in any program without further declaration, are �tted into this schemeby assuming that the program is embedded in a standard environment containing de�nitionsfor them.By an external entity we mean an entity identi�ed by a free identi�er with no de�nitionin either the program or the standard environment. A program with external entities cannotbe compiled and then directly executed. Another step, which obtains the objects associatedwith external entities from a program library, must be introduced. We shall discuss this step,the binding of programs, in Chapter 11. In the simplest case the binding can be separatedfrom the compilation as an independent terminal step. This separation is normally chosenfor FORTRAN implementations. One consequence is that the compiler has no completeoverview of the properties of external entities and hence cannot verify that they are usedconsistently. Thus in FORTRAN it is not usually possible for the compiler to determine

34 Properties of Programming Languageswhether external subprograms and functions are called with the correct number and typeof parameters. For such checking, but also to develop the correct accesses, the compilermust have speci�cations like those for formal parameters for every external entity. Manyimplementations of ALGOL 60, Pascal, etc. provide that such speci�cations precede or beincluded in independently compiled procedures. Since in these languages, as in many others,separate compilation of language units is not speci�ed by the language de�nition, the compilerwriter himself must design the handling of external values in conjunction with introductionof these possibilities. Ada contains a far-reaching speci�cation scheme for external entities.2.6 Notes and ReferencesWe draw our examples from a number of languages. In order to avoid the necessity forreferencing the proper de�nition each time a language property is discussed, we give anexhaustive list of the languages we use and their de�ning documents at the beginning of theBibliography.Descriptions of languages in the ALGOL family are interpretive, as are those of FORTRANand COBOL. The description of PL/1 with the help of the Vienna de�nition method (VDL[Lucas and Walk, 1969; Wegner, 1972]) is likewise interpretive. Other de�nition methodsare the axiomatic [Hoare andWirth, 1973] and the denotational [Gordon, 1979; Tennent,1981].Many languages are described by a given implementation. We have nothing against this,provided that the implementation is stated in an abstract form such as that of EVALQUOTE,the function that implements the kernel of LISP interpretively. Often, however, it is neverde�ned in a high-level manner and a new implementation of the same language is very di�-cult. The macro implementation of SNOBOL4, Griswold [1972] although highly successful,exhibits this problem.We have associated the concept of type with the set of operations possible on a value. Thisled us to conclude that size was a distinct property. Both ALGOL 68 and Pascal, however,treat values of distinct sizes as having distinct types. Habermann [1973] gives a criticalassessment of this philosophy and its e�ect in Pascal.We have only skimmed the properties of numeric types. Knuth [1969] presents thegeneral view of oating point numbers and shows how oating point operations relate tothe corresponding mathematical operations on real numbers. A machine-oriented model thatrelates the parameters of the number system to speci�c characteristics of the target machineis given by Brown [1977, 1981].The contour model was originally described by Dijkstra [1960, 1963] as an implemen-tation technique for ALGOL 60. Johnston [1971] coined the name and introduced thegraphical representation used here. A formal proof that the contour model is equivalent toconsistent renaming and the copy rule as used in the de�nition of ALGOL 60 was given byJones and Lucas [1971].Parallel processing, exception handling and some other features of modern languages havebeen intentionally omitted from the overview given in this chapter.Exercises2.1 [Housden, 1975;Morrison, 1982] Consider the manipulation of character string datain a general purpose programming language.

2.6 Notes and References 35(a) What set of operations should be available on strings?(b) Should strings be regarded as elementary or composite objects? Why?(c) Should strings be regarded as objects of a separate type (or types), or as arraysof characters? Support your position.2.2 Suppose that Pascal were changed so that the structural equivalence rule (Section 2.2.5)held for types and so that " could precede any type constructor. Show that the typesm and p given in the text are equivalent, and that they are also equivalent to the typeq de�ned as follows:type q = record x : real;y : "recordx : real;y : "qendend;2.3 Why is the Boolean expression (x � -1) and (sqrt (1 + x) > y) meaningless inPascal, FORTRAN or ALGOL 60? Consider only structurally equivalent expressionsin the various languages, making any necessary syntactic changes. Give a similarexpression in Ada that is meaningful.2.4 Give the rules for contour creation and destruction necessary to support the moduleconcept in Ada.2.5 Consider a block-structured language such as SIMULA, in which coroutines are allowed.Generalize the contour model with a retention strategy to handle the following situation:If n coroutines are started in block b , all have contour c as dynamic predecessor.By means of call-by-name parameters, a coroutine can obtain access to an object obelonging to c ; on the other hand, contour c can disappear (because execution of bhas terminated) long before termination of the coroutine. o is then nonexistent, butthe access path via the name parameter remains. What possible solutions do you seefor this problem?2.6 The retention strategy discussed in connection with SIMULA in Exercise 2.5 could beused to support parallel processing in ALGOL 68. Quote sections of the ALGOL 68Report to show that a simpler strategy can be used.2.7 What problems arise from result parameters in a language that permits jumps out ofprocedures?2.8 Consider a program in which several procedures execute on di�erent processors ina network. Each processor has its own memory. What parameter mechanisms areappropriate in such a program?

36 Properties of Programming Languages

Chapter 3Properties of Real and AbstractMachinesIn this chapter we shall discuss the target machine properties relevant for code generation,and the mapping of the language-oriented objects and operations onto objects and operationsof the target machine. Systematic code generation must, of course, take account of the pecu-liarities and weaknesses of the target computer's instruction set. It cannot, however, becomebogged down in exploitation of these special idiosyncrasies; the payo� in code e�ciency willnot cover the implementation cost. Thus the compiler writer endeavors to derive a model ofthe target machine that is not distorted by exceptions, but is as uniform as possible, to serveas a base for code generator construction. To this end some properties of the hardware maybe ignored, or gaps in the instruction set may be �lled by subroutine invocations or inlinesequences treated as elementary operations. In particular, the instruction set is extended bythe operations of a run-time system that interfaces input/output and similar actions to theoperating system, and attends to storage management.Further extension of this idea leads to construction of abstract target machines imple-mented on a real machine either interpretively or by means of a further translation. (Inter-pretive abstract machines are common targets of code generation for microprocessors due tothe need for space e�ciency.) We shall not attempt a systematic treatment of the goals, meth-ods and criteria for the design of abstract target machines here; see the Notes and Referencesfor further guidance.3.1 Basic CharacteristicsMost computers have machine languages that are typeless in the sense of Section 2.2: Theinterpretation of an object is determined by the operations applied to it. Exceptions arecomputers like the Burroughs 5000 and its descendants that associate `tag bits' with eachword. The extra bits reduce the number of possible interpretations of the word, or even makethat interpretation unique.Objects reside in storage of various classes. Access paths, characteristic of the particularstorage class, are used to access these objects as operands or results of operations. Storageclasses, access paths and operations together constitute a model de�ning the computer forcode generation purposes.In this section we shall survey typical storage classes, access paths and operations, andindicate how instructions may be encoded. The remainder of the chapter will show how thesefacilities can be used to implement the source language concepts presented in Chapter 2.37

38 Properties of Real and Abstract Machines3.1.1 Storage ClassesComputer storage can usually be classi�ed as follows for code generation purposes:� Main Storage: Randomly-accessible array of identically-sized locations.� Stack: Storage accessed in a last-in, �rst-out manner.� Integer Accumulator: Storage on which integer arithmetic instructions operate.� Floating point Accumulator: Storage on which oating point arithmetic instructionsoperate.� Base Register: Storage used in operand access functions to hold addresses.� Index Register: Storage used in operand access functions to hold integer o�sets.� Program Counter: Storage used to hold the address of the next instruction to be exe-cuted.� Condition Code: Storage used to hold the result of a comparison or test instruction.� Other Special Register (e.g. Stack Pointer, Programmable Boolean Flag).Examples of this classi�cation applied to typical machines are given in Figure 3.1.Every computer provides at least the main storage and program counter classes. (Whethermain storage is virtual or real is of no concern.) A particular storage component may belongto more than one class. For example, the base register and index register classes are identicalon most computers. On the IBM 370 these are the `general-purpose registers', which alsoserve as integer accumulators. Storage classes may also overlap without being identical, as inthe case of the Univac 1100 series. These computers have sixteen `index registers' belongingto the index and base register classes and sixteen `general-purpose registers' belonging to theinteger accumulator and oating point accumulator classes. However, the two storage classesoverlap, with four registers belonging to both. These four registers may be accessed as indexregisters or as general-purpose registers, and their properties depend upon the access pathused.Whether a particular storage class exists, and if so what its properties are, is partially adecision of the compiler writer. If, for example, he chooses to access a speci�c portion of themain memory of the Motorola 68000 only via stack operations relative to register A7 then thisportion of the memory belongs to the storage class `stack' and not the class `main storage'.Main storage.General registers R0,...,R15 serving as integer accumulators, base registers or index registers.Register pairs (R0,R1),(R2,R3),...,(R14,R15) serving as integer accumulators.Floating point registers F0,F2,F4,F6 serving as oating point accumulators.Program counterCondition code a) IBM 370Main storage Data registers D0,...,D7 serving as integer accumulators or index registers.Address registers A0,...,A7 serving as base or index registers.Program counter PCCondition codeStack pointer A7 b) Motorola 68000Figure 3.1: Storage Classes

3.1 Basic Characteristics 39(Such a decision can be made di�erently for the generated code and the run-time system,implying that the memory belongs to one class as far as the generated code is concerned andanother for the run-time system.) Also, since the properties of a storage class depend to acertain extent upon the available access paths, a Motorola 68000 stack will di�er from thatof a Burroughs 6700/7700.Most storage classes consist of a sequence of numbered elements, the storage cells. (Thenumbering may have gaps.) The number of a storage cell is called its address . Every accesspath yields an algorithm, the e�ective address of the access path, for computing the addressof the storage cell being accessed. We speak of byte-oriented computers if the cells in the mainstorage class have a size of 8 bits, otherwise (e.g. 16, 24, 32, 48 or 60 bits per cell) we termthe computer word-oriented . For a word-oriented computer the cell sizes in the main storageand register classes are usually identical, whereas the registers of a byte-oriented computer(except for some microprocessors) are 2, 4 or possibly 8 bytes long. In this case the storagecell of the integer accumulator class is usually termed a word.All storage is ultimately composed of bits. Some early computers (such as the IBM 1400series) used decimal arithmetic and addressing, and many current computers provide a packeddecimal (4 bits per digit) encoding. None of these architectures, however, consider decimaldigits to be atoms of storage that cannot be further decomposed; all have facilities for accessingthe individual bits of the digit in some manner.Single bits and bit sequences such as the decimal digits discussed above cannot be accesseddirectly on most machines. Instead, the bit sequence is characterized by a partial-word accesspath specifying the address of a storage cell containing the sequence, the position of thesequence from the left or right boundary of this unit, and the size of the sequence. Often thispartial word access path must be simulated by means of shifts and logical operations.Aggregates hold objects too large for a single storage cell. An aggregate will usually bespeci�ed by the address of its �rst storage cell, and the cells making up the aggregate by theiraddresses relative to that point. Often the address of the aggregate must be divisible by agiven integer, called the alignment. Figure 3.2 lists main storage operand sizes and alignmentsfor typical machines. Operand Size (bits) AlignmentByte 8 1Halfword 16 2Word 32 4Doubleword 64 8String up to 256 � 8 1a) IBM 370 - Storage cell is an 8-bit byteOperand Size (bits) AlignmentBit 1 -Digit 4 -Byte 8 1Word 16 2Doubleword 32 2b) Motorola 68000 - Storage cell is an 8-bit byteFigure 3.2: Operand SizesAggregates also appear in classes other than main storage. For example, the 16 generalpurpose registers of the IBM 370 form a storage class of 4-byte cells addressed by the numbers

40 Properties of Real and Abstract Machines0 through 15. Every register whose address is even forms the �rst element of a larger entity(a register pair) used in multiplication, division and shift operations. When a single-lengthoperand for such an operation is supplied, it should be placed in the proper register of apair rather than in an arbitrary register. The other register of the pair is then automaticallyreserved for the operation, and cannot be used for other purposes.The entities of a particular level in a hierarchy of aggregates may overlap. This occurs,for example, for the segments in the main storage class of the Intel 8086 (65536-byte blockswhose addresses are divisible by 16) or the 4096-byte blocks addressable via a base or indexregister in the IBM 370.Operations on registers usually involve the full register contents. When an object whosesize is smaller than that of a register is moved between a register and storage of some otherclass, a change of representation may occur. The value of the object must, however, remaininvariant. Depending upon the type of the object, it may be lengthened by inserting leadingor trailing zeros, or by inserting leading or trailing copies of the sign. When it is shortened,we must guarantee that no signi�cant information is lost. Thus the working length of anobject must be distinguished from the storage length.3.1.2 Access PathsAn access path describes the value or location of an operand, result or jump target. Weclassify an instruction as a 0-, 1-, 2-, or 3-address instruction according to the number ofaccess paths it speci�es. Very seldom are there more than three access paths per instruction,and if more do exist then they are usually implicit. (For example, in the MVCL instructionof the IBM 370 the two register speci�cations R1 and R2 actually de�ne four operands inregisters R1, R1+1, R2 and R2+1 respectively.)Each access path speci�es the initial element of an operand or result in a storage class.Access paths to some of the storage classes (such as the stack, program counter, conditioncode and special registers) are not normally explicit in the instruction. They will appear onlywhen there is some degree of freedom associated with their use, as in the PDP11 where anyregister can be used as a stack pointer.The most common explicit access paths involve one of the following computations:� Constant. The value appears explicitly in the instruction.� Register. The content of the register is taken as the value.� Register+constant. The sum of the content of the register and a constant appearingexplicitly in the instruction is taken as the value.� Register+register. The sum of the contents of two registers is taken as the value.� Register+register+constant. The sum of the contents of two registers and a constantappearing in the instruction is taken as the value.The computed value may itself be used as the operand (immediate), it may be used as thee�ective address of the operand in main storage (direct), or it may be used as the address ofan address (indirect). On some machines the object fetched from main storage in the thirdcase may specify another computation and further indirection, but this feature is rarely usedin practice. Figure 3.3 illustrates these concepts for typical machines.The addresses of registers must almost always appear explicitly as constants in the instruc-tion. In special cases they may be supplied implicitly, as when the content of the (unspeci�ed)program counter is added to a constant given in the instruction (relative addressing). If thecomputed value is used as an address then the registers must belong to the base registeror index register class; the sum of the (unsigned) base address and (signed) index is often

3.1 Basic Characteristics 41i: Operand is the byte i from the instruction.d(m,n): Operand is the 24-bit value obtained by (Rm)+(Rn)+d. Only the low-order 24 bits of eachregister are used, and the value is interpreted as positive. Overow in the addition is ignored.If m or n is 0 then the content of the register is assumed to be 0; the actual content of generalregister 0 is not used.m: Operand is the content of general register Rm.m: Operand is the content of general register pair (Rm,Rm+1).m: Operand is the content of oating point register Fm.d(m,n): Operand is the content of a memory area whose address is the value computed as discussedabove.Implicit access to the condition code and program counter.Note: 0 � i < 28, 0 � d < 212, 0 � m;n < 24a) IBM 370=i16: Operand is the word following the instruction.=i32: Operand is the doubleword following the instruction.i16: Operand is the value (PC)+i16.i8(Am): Operand is the value (PC)+(Am)+i8.i8(Dn): Operand is the value (PC)+(Dn)+i8.Am: Operand is the content of address register Am.Dn: Operand is the content of data register Dn.(Am): Operand is the content of a memory area whose address is the content of address register Am.i16(Am): Operand is the content of a memory area whose address is the value of (Am)+i16.i8(Am,Dn): Operand is the content of a memory area whose address is the value of (Am)+(Dn)+i8.(Am)+: Operand is the content of a memory area whose address is the content of Am. Am is thenincremented by the operand length. The increment is never less than 2 for A7.-(Am): Am is decremented by the operand length. Operand is then the content of a memory areawhose address is the content of Am. The decrement is never less than 2 for A7.Implicit access to the condition code and program counter.b) Motorola 68000Figure 3.3: Access Pathsinterpreted modulo the address size. The values of constants in instructions are frequently re-stricted to nonnegative values, and often their maximum values are far less than the maximumaddress. (An example is the restriction to the range [0,4095] of the IBM 370.)Not all computers allow every one of the access paths discussed above; restrictions in thecombination (operation, access path) can also occur. Many of these restrictions arise fromthe properties of the machine's registers. We distinguish �ve architectural categories basedupon register structure:� Storage-to-storage. All operands of a computational operation are taken from mainstorage, and the result is placed into main storage (IBM 1400 series, IBM 1620). Storage-to-storage operations appear as a supplementary concept in many processors.� Stack. All operands of a computational operator are removed from the top of the stack,and the result is placed onto the top of the stack (Burroughs 5000, 6000 and 7000 series,ICL 2900 family). The stack appears as a supplementary concept in many processors.� Single Accumulator. One operand of a computational operator is taken from the accu-mulator, and the result is placed into the accumulator; all other registers, including anyaccumulator extension, have special tasks or cannot participate in all operations (IBM7040/7090, Control Data 3000 series, many process-control computers, Intel 8080 andmicroprocessors derived from it).� Multiple Accumulator. One operand of a computational operator is taken from one ofthe accumulators, and the result is returned to that accumulator; long operands and

42 Properties of Real and Abstract Machinesresults are accommodated by pairing the accumulators (DEC PDP11, Motorola 68000,IBM 370, Univac 1100)� Storage Hierarchy. All operands of a computational operator are taken from accumula-tors, and the result is returned to an accumulator (Control Data 6000, 7000 and Cyberseries). This architecture is identical to the storage-to-storage architecture if we viewthe accumulators as primary storage and the main storage as auxiliary storage.3.1.3 OperationsUsually the instruction set of a computer provides four general classes of operation:� Computation: Implements a function from n-tuples of values to m-tuples of values. Thefunction may a�ect the state. Example: A divide instruction whose arguments are asingle-length integer divisor and a double-length integer dividend, whose results are asingle-length integer quotient and a single-length integer remainder, and which mayproduce a divide check interrupt.� Data transfer: Copies information, either within one storage class or from one storageclass to another. Examples: A move instruction that copies the contents of one registerto another; a read instruction that copies information from a disc to main storage.� Sequencing: Alters the normal execution sequence, either conditionally or uncondition-ally. Examples: A halt instruction that causes execution to terminate; a conditionaljump instruction that causes the next instruction to be taken from a given address if agiven register contains zero.� Environment control: Alters the environment in which execution is carried out. Thealteration may involve a transfer of control. Examples: An interrupt disable instruc-tion that prohibits certain interrupts from occurring; a procedure call instruction thatupdates addressing registers, thus changing the program's addressing environment.It is not useful to attempt to assign each instruction unambiguously to one of these classes.Rather the classes should be used as templates to evaluate the properties of an instructionwhen deciding how to implement language operations (Section 3.2.3).It must be possible for the control unit of a computer to determine the operation andall of the access paths from the encoding of an instruction. Older computer designs usuallyhad a single instruction size of, say, 24 or 36 bits. Fixed sub�elds were used to specify theoperation and the various access paths. Since not all instructions require the same accesspaths, some of these sub�elds were unused in some cases. In an information-theoretic sense,this approach led to an ine�cient encoding.Coding e�ciency is increased in more modern computers by using several di�erent instruc-tion sizes. Thus the IBM 370 has 16, 32 and 48 bit (2, 4 and 6 byte) instructions. The �rstbyte is the operation code, which determines the length and layout of the instruction as wellas the operation to be carried out. Nearly all microprocessors have variable-size operationcodes as well. In this case the encoding process carried out by the assembly task may requirelarger tables, but otherwise the compiler is not a�ected. Variable-length instructions mayalso lead to more complex criteria of optimality.On some machines one or more operation codes remain unallocated to hardware functions.Execution of an instruction specifying one of these operation codes results in an interrupt,which can be used to activate a subprogram. Thus these unde�ned operations can be givenmeaning by software, allowing the compiler writer to extend the instruction set of the targetmachine. Such programmable extension of the instruction set is sometimes systematicallysupported by the hardware, in that the access paths to operands at speci�c positions are

3.2 Representation of Language Elements 43placed at the disposal of the subprogram as parameters. The XOP instruction of the TexasInstruments 990 has this property. (TRAP allows programmable instruction set extension onthe PDP11, but does not make special access path provisions.)3.2 Representation of Language ElementsIn this and following sections we shall discuss the mapping of the language elements of Chap-ter 2 onto the machine elements of Section 3.1. This mapping is really the speci�cation ofthe tasks of the code generator and the run-time system, and must be performed for eachlanguage/machine pair.3.2.1 Elementary ObjectsA combination of space and instruction questions must be answered in order to determine themapping of elementary types such as integer, real, character, Boolean and other enumerations.Implementation of the relevant basic operations is particularly important for Boolean values.For integers, the �rst decision is whether to use a decimal (4 bits/digit) or binary encoding.Decimal encoding implies that decimal operations exist (as on the IBM 370), or at least thatthere is a facility to detect a carry (result digit>9) and to increment the next higher position(as on many microprocessors). The values of variables have varying size with this encoding,which complicates assignment operations. Decimal encoding is worth considering if very fewoperations take place on each value (the cost of the translation from decimal to binary on inputand the reverse translation on output is greater than the expected gain from using binaryoperations internally), or if the numeric incompatibility of binary and decimal arithmetic isa signi�cant problem (as with some �nancial applications).Binary encodings are normally �xed-length, and hence when a binary encoding is chosenwe must �x the length of the representation in terms of the maximum source language integer.Since most programming languages leave the range of integer values unspeci�ed, we fall backupon the rule of thumb that all addresses be representable as integers. This causes us toconsider integer representations of 16, 24 or 32 bits. The representation must at least includeall conceivable indexes; 16 bits will su�ce for this purpose on small machines. We mustalso consider available instructions. For example, on the IBM 370 we would rule out 16 bitsbecause no divide instruction is included for 16 bit operands and because the test to determinewhether intermediate 32-bit results could be represented in 16 bits would slow executionconsiderably. The extra instructions would, in many cases, wipe out the savings resultingfrom the 16-bit representation. Similar reasoning would eliminate the 24-bit representationon most computers.A binary encoding with n bits can represent 2n distinct values, an even number. Anyrange of integers symmetric about 0, however, contains an odd number of values. Thisbasic mismatch leads to anomalous behavior of machine arithmetic. The exact nature of theanomaly depends upon the representation chosen for negative numbers. A sign-magnitude ordiminished-radix complement (e.g. 1's-complement) representation results in two zero values,one positive and the other negative; a radix complement (e.g. 2's-complement) representationresults in a `most negative' number that has no positive counterpart. The extra-zero anomalyis usually the more di�cult of the two for the compiler writer. It may involve additionalinstructions to ensure that comparisons yield the correct result, or complicated analysis toprove that these instructions need not be generated.Comparisons may prove di�cult if they are not provided as machine instructions. Arith-metic instructions must then be used, and precautions taken against erroneous results due

44 Properties of Real and Abstract Machinesto over- and underow. For example, consider a machine with integers in the range [-32767,32767]. If a > b is implemented as (a � b) > 0 then an overow will occur whencomparing the values a = 16384 and b = �16384. The comparison code must either antici-pate and avoid this case, or handle the overow and interpret the result properly. In eithercase, a long instruction sequence may be required. Underow may occur in oating pointcomparisons implemented by a subtraction when the operand di�erence is small. Since manymachines deliver 0 as a result, without indicating that an underow has occurred, anticipationand avoidance are required.Actually, the symptom of the oating point underow problem is that a comparison assertsthe equality of two numbers when they are really di�erent. We could argue that the inherentinaccuracy of oating point operations makes equality testing a risky business anyway. Theprogrammer must thoroughly understand the algorithm and its interaction with the machinerepresentation before using equality tests, and hence we can inform him of the problem andthen forget about it. This position is defensible provided that we can guarantee that acomparison will never yield an incorrect relative magnitude (i.e. it will never report a > bwhen a is less than b, or vice-versa).If, as in Pascal, subranges m::n of integers can be speci�ed as types, the compiler writermust decide what use to make of this information. When the usual integer range can beexceeded (not possible in Pascal) this forces the introduction of higher-precision arithmetic(in the extreme case, of variable-length arithmetic). For small subranges the size of therange can be used to reduce the number of bits required in the representation, if necessaryby replacing the integer i by (i� lower bound), although this last is not recommended. Theimportant question is whether arithmetic operations exist for the shorter operands, or at leastwhether the conversion between working length and storage length can easily be carried out.(Recall that no signi�cant bits may be discarded when shortening the representation.)The possibilities for mapping real numbers are constrained by the oating point operationsof the hardware or the given subroutine package. (If neither is available on the target machinethen implementation should follow the IEEE standard.) The only real choice to be madeinvolves the precision of the signi�cand. This decision must be based upon the milieu inwhich the compiler will be used and upon numeric problems whose discussion is beyond thescope of this book.For characters and character strings the choice of mapping is restricted to the speci�cationof the character code. Assuming that this is not �xed by the source language, there are twochoices: either a standard code such as the ISO 7-bit code (ASCII), or the code acceptedby the target computer's operating system for input/output of character strings (EBCDICor other 6- or 8-bit code; note that EBCDIC varies from one manufacturer to another).Since most computers provide quite e�cient instructions for character translation, use of thestandard code is often preferable.The representation of other �nite types reduces to the question of suitably representingthe integers 0::n � 1, which we have already discussed. One exception is the Boolean valuesfalse and true. Only a few machines are provided with instructions that access single bits.If these instructions are absent, bit operations must be implemented by long sequences ofcode (Figure 3.4). In such cases it is appropriate to implement Boolean variables and valuesas bytes or words. Provided that the source language has not constrained their coding, thechoice of representation depends upon the realization of operations with Boolean operands orBoolean results. In making this decision, note that comparison and relational operations occuran order of magnitude more frequently than all other Boolean operations. Also, the operandsof and and or are much more frequently relations than Boolean variables. In particular, theimplementation of and and or by jump cascades (Section 3.2.3) introduces the possibilities(false = 0, true 6= 0) and (false � 0, true0) or their inverses in addition to the classical

3.2 Representation of Language Elements 45(false = 0; true = 1). These possibilities underscore the use of more than one bit to representa Boolean value.1 Bit The bit position is speci�ed by two masks, M0=B'0...010...0' andM1=B'1...101...1'.1 Byte Let 0 represent false, K represent true.a) Possible representations for Boolean valuesConstruct Code, depending on representationByte BitTM M0,pBO L1NI M1,qq := p MVC q,p B L2L1 OI M0,qL2 continuationp := not p XI K,p XI M0,pTM M0,pq := q or p OC q,p BZ L1OI M0,qL1 continuationTM M0,pq := q and p NC q,p BO L1NI M0,qL1 continuation(The masks M0 and M1 are those appropriate to the second operand of the instruction in which they appear.)b) Code using the masks from (a)Figure 3.4: Boolean Operations on the IBM 3703.2.2 Composite ObjectsFor composite objects, we are interested in the properties of the standard representation andthe possibilities for reducing storage requirements.An object a : array [m .. n] of M will be represented by a sequence of (n - m + 1)components of type M . The address of element a[i] becomes:address (a[m]) + (i - m) * |M| = address (a[0]) + i * |M|Here |M| is the size of an element in address units and address (a [0]) is the `�c-titious starting address' of the array. The address of a[0] is computed from the locationof the array in storage; such an element need not actually exist. In fact, address (a [0])could be an invalid address lying outside of the address space.The usual representation of an object b : array [m1 .. n1,: : : , mr .. nr] of Moccupies k1 � k2 � ::: � kr � jM j contiguous memory cells, where kj = nj �mj + 1, j = 1; : : : ; r.The address of element b[i1; : : : ; ir] is given by the following storage mapping function whenthe array is stored in row-major order :address (b[m1; : : : ;mr]) + (i1 �m1) � k2 � � � � � kr � jM j+ � � �+ (ir �mr) � jM j= address (b[0; : : : ; 0]) + i1 � k2 � ::: � kr � jM j+ � � �+ ir � jM jBy appropriate factoring, this last expression can be rewritten as:address (b[0; : : : ; 0]) + ((: : : (i1 � k2 + i2) � k3 + � � �+ ir) � jM j

46 Properties of Real and Abstract MachinesIf the array is stored in column-major order then the order of the indices in the polynomialis reversed:address (b[0; : : : ; 0]) + ((: : : (ir � kr�1 + ir�1) � kr�2 + � � �+ i1) � jM jThe choice of row-major or column-major order is a signi�cant one. ALGOL 60 does notspecify any particular choice, but many ALGOL 60 compilers have used row-major order.Pascal implicitly requires row-major order, and FORTRAN explicitly speci�es column-majororder. This means that Pascal arrays must be transposed in order to be used as parametersto FORTRAN library routines. In the absence of language constraints, make the choice thatcorresponds to the most extensive library software on the target machine.Access to b[i1; :::; ir] is unde�ned if the relationship mj � ij � nj is not satis�ed for somej = 1; : : : ; r. To increase reliability, this relationship should be checked at run time if thecompiler cannot verify it in other ways (for example, that ij is the controlled variable of aloop and the starting and ending values satisfy the condition). To make the check, we needto evaluate a storage mapping function with the following �xed parameters (or its productwith the size of the single element):r; address (b[0; : : : ; 0]);m1; :::;mr ; n1; :::; nrTogether, these parameters constitute the array descriptor. The array descriptor must bestored explicitly for dynamic and exible arrays, even in the trivial case r = 1. For staticarrays the parameters may appear directly as immediate operands in the instructions forcomputing the mapping function. Several array descriptors may correspond to a single array,so that in addition to questions of equality of array components we have questions of equalityor identity of array descriptors.An r dimensional array b can also be thought of as an array of r � 1 dimensional arrays.We might apply this perception to an object c : array[1::m; 1::n] of integer, representing it asm one-dimensional arrays of type t = array[1::n] of integer. The �ctitious starting addressesof these arrays are then stored in an object a : array[1::m] of" t. To be sure, this descriptortechnique raises the storage requirements of c from m � n to m � n+m locations for integersor addresses; in return it speeds up access on many machines by replacing the multiplicationby n in the mapping function address (c[0; 0]) + (i � n+ j) � jintegerj by an indexed memoryreference. The saving may be particularly signi�cant on computers that have no hardwaremultiply instruction, but even then there are contraindications: Multiplications occurring inarray accesses are particularly amenable to elimination via simple optimizations.The descriptor technique is supported by hardware on Burroughs 6700/7700 machines.There, the rows of a two-dimensional array are stored in segments addressed by special seg-ment descriptors. The segment descriptors, which the hardware can identify, are used toaccess these rows. Actual allocation of storage to the rows is handled by the operating sys-tem and occurs at the �rst reference rather than at the declaration. The allocation process,which is identical to the technique for handling page faults, is also applied to one-dimensionalarrays. Each array or array row is divided into pages of up to 256 words. Huge arrays canbe declared if the actual storage requirements are unknown, and only that portion actuallyreferenced is ever allocated.Character strings and sets are usually implemented as arrays of character and Booleanvalues respectively. In both cases it pays to pack the arrays. In principle, character stringvariables have variable length. Linked lists provide an appropriate implementation; each listelement contains a segment of the string. List elements can be introduced or removed at will.Character strings with �xed maximum length can be represented by arrays of this length.When an array of Boolean values is packed, each component is represented by a single bit,even when simple Boolean variables are represented by larger storage units as discussed above.A record is represented by a succession of �elds. If the �elds of a record have alignmentconstraints, the alignment of the entire record must be constrained also in order to guarantee

3.2 Representation of Language Elements 47that the alignment constraints of the �elds are met. An appropriate choice for the alignmentconstraint of the record is the most stringent of the alignment constraints of its �elds. Thusa record containing �elds with alignments of 2, 4 and 8 bytes would itself have an alignmentof 8 bytes. Whenever storage for an object with this record type is allocated, its startingaddress must satisfy the alignment constraint. Note that this applies to anonymous objectsas well as objects declared explicitly.The amount of storage occupied by the record may depend strongly upon the order ofthe �elds, due to their sizes and alignment constraints. For example, consider a byte-orientedmachine on which a character variable is represented by one byte with no alignment constraintand an integer variable occupies four bytes and is constrained to begin at an address divisibleby 4. If a record contained an integer �eld followed by a character �eld followed by a secondinteger �eld then it would occupy 12 bytes: There would be a 3-byte gap following thecharacter �eld, due to the alignment constraint on integer variables. By reordering the �elds,this gap could be eliminated. Most programming languages permit the compiler to do suchreordering.Records with variants can be implemented with the variants sharing storage. If it isknown from the beginning that only one variant will be used and that the value of the variantselector will never change, then the storage requirement may be reduced to exactly thatfor the speci�ed variant. This requirement is often satis�ed by anonymous records; Pascaldistinguishes the calls new(p) and new(p; variant selector) as constructors for anonymousrecords. In the latter case the value of the variant selector may not change, whereas in theformer all variants are permitted.The gaps arising from the alignment constraints on the �elds of a record can be eliminatedby simply ignoring those constraints and placing the �elds one after another in memory. Thispacking of the components generally increases the cost in time and instructions for �eldaccess considerably. The cost almost always outweighs the savings gained from packing asingle record; packing pays only when many identical records are allocated simultaneously.Packing is often restricted to partial words, leaving objects of word length (register length)or longer aligned. On byte-oriented machines it may pay to pack only the representation ofsets to the bit level.Packing alters the access function of the components of a composite object: The selectormust now specify not only the relative address of the component, but also its position withinthe storage cell. On some computers extraction of a partial word can be speci�ed as part of anoperand address, but usually extra instructions are required. This has the result that packedcomponents of arrays, record and sets may not be accessible via normal machine addresses.They cannot, therefore, appear as reference parameters.Machine-dependent programs sometimes use records as templates for hardware objects.For example, the assembly phase of a compiler might use a record to describe the encoding ofa machine instruction. The need for a �xed layout in such cases violates the abstract natureof the record, and some additional mechanism (such as the representation speci�cation ofAda) is necessary to specify this. If the language does not provide any special mechanism,the compiler writer can overload the concept of packing by guaranteeing that the �elds of apacked record will be allocated in the order given by the programmer.Addresses are normally used to represent pointer values. Addresses relative to the be-ginning of the storage area containing the objects are often su�cient, and may require lessstorage than full addresses. If, as in ALGOL 68, pointers have bounded lifetime, and thecorrectness of assignments to reference variables must be checked at run time, we must addinformation to the pointer from which its lifetime may be determined. In general the startingaddress of the activation record (Section 3.3) containing the reference object serves this pur-pose; reference objects of unbounded extent are denoted by the starting address of the stack.

48 Properties of Real and Abstract MachinesA comparison of these addresses for relative magnitude then represents inclusion of lifetimes.3.2.3 ExpressionsBecause of the diversity of machine instruction sets, we can only give the general principlesbehind the mapping of expressions here. An important point to remember throughout thediscussion, both here and in Section 3.2.4, is that the quality of the generated code is deter-mined by the way it treats cases normally occurring in practice rather than by its handlingof the general case. Moreover, local code characteristics have a greater impact than any op-timizations on the overall quality. Figure 3.5 shows the static frequencies of operations ina large body of Pascal text. Note the preponderance of memory accesses over computation,but remember that indexing generally involves both multiplication and addition. Rememberalso that these are static frequencies; dynamic frequencies might be quite di�erent becausea program usually spends about 90% of its time in heavily-used regions accounting for lessthan 10% of the overall code.Structure Tree Operator Percent of All OperatorsAccess a variable 27Assign 13Select a �eld of a record 9.7Access a value parameter 8.1Call a procedure 7.8Index an array (each subscript) 6.4Access an array 6.1Compare for equality (any operands) 2.7Access a variable parameter 2.6Add integers 2.3Write a text line 1.9Dereference a pointer variable 1.9Compare for inequality (any operands) 1.3Write a single value 1.2Construct a set 1.0not 0.7and 0.7Compare for greater (any operands) 0.5Test for an element in a set 0.5or 0.4All other operators 3.8Figure 3.5: Static Frequencies of Pascal Operators [Carter, 1982]Single target machine instructions directly implement operations appearing in the struc-ture tree only in the simplest cases (such as integer arithmetic). A node of the structuretree generally corresponds to a sequence of machine instructions, which may appear eitherdirectly in the generated code or as a subroutine call. If subroutines are used then they maybe gathered together into an interpreter consisting of a control loop containing a large casestatement. The operations are then simply selectors used to choose the proper case, andmay be regarded as instructions of a new (abstract) machine. This approach does not reallyanswer the question of realizing language elements on a target machine; it merely changes thetarget machine, hopefully simplifying the problem.A closed sequence is invariably slower than the corresponding open sequence because of

3.2 Representation of Language Elements 49the cost of the transfers in and out. It would therefore be used only if commensurate savingsin space were possible. Some care must be taken in evaluating the tradeo�s, because bothopen and closed sequences usually involve setup code for the operands. It is easy to overlookthis code, making erroneous assumptions about the operand locations, and thereby arrive atthe wrong decision. Recall from Section 3.1.3 that it is sometimes possible to take advantageof unused operation codes to access closed instruction sequences. Depending upon the detailsof the hardware, the time overhead for this method may be either higher or lower than thatof a conventional call. It is probably most useful for implementing facilities that might beprovided by hardware. The typical example is oating point arithmetic on a microprocessorwith integer operations only. A oating point operation usually involves a long sequence ofinstructions on such a machine (which may not even be capable of integer multiplication ordivision), and thus the entry/exit overhead is negligible. If the user later adds a oating-point chip, and controls it with the previously unused operation codes, no changes to thecode generator are required. Even when di�erent operation codes are used the changes areminimal.An object, label or procedure is addressable if its e�ective address can be expressed bythe relevant access path of an instruction. For entities that are not addressable, additionaloperations and temporary storage are required to compute the e�ective address. The allow-able combinations of operation and access function exert a very strong inuence upon thecode generation process because of this. On the Motorola 68000, for example, speci�cationof the operation can be largely separated from selection of the access path, and operand ad-dressability is almost independent of the operator. Many IBM 370 instructions, on the otherhand, work only when the second operand is in a register. In other cases memory access ispossible, but only via a base register without indexing. This leads to the problem that anoperand may be addressable in the context of one operation but not in the context of another.When an instruction set contains such asymmetries, the simplest solution is to de�ne theabstract machine for the source-to-target mapping with a uniform access function, reservingthe resources (usually one or two registers) needed to implement the uniform access functionfor any instruction. Many code sequences require additional resources internally in any event.These can often be standardized across the code sequences and used to provide the uniformaccess function in addition. The only constraint on resources reserved for the uniform accessfunction is that they have no inter-sequence meaning; they can be used arbitrarily within asequence.Consider the tree for an expression. The addressability of entities described by leavesis determined by the way in which the environment is encoded in the machine state. (Weshall discuss possibilities for environment encoding in Section 3.3.) For entities described byinterior nodes, however, the addressability depends upon the code sequence that implementsthe node. It is often possible to vary a code sequence, without changing its cost, to meetthe addressability requirements of another node. Figure 3.6 shows a typical example. Herethe constraints of the IBM 370 instruction set require that a multiplicand be in the odd-numbered register of a pair, and that the even-numbered register of that pair be free. Similarly,the optimum mechanism for converting a single-length value to double-length requires itsargument to be in the even register of the pair used to hold its result. An important part ofthe source-to-target mapping design is the determination of the information made availableby a node to its neighbors in the tree, and how this information a�ects the individual codesequences.Interior nodes whose operations yield addresses, such as indexing and �eld selection nodes,may or may not result in code sequences. Addressability is the key factor in this decision:No code is required if an access function describing the node's result can be built, and ifthat access function is acceptable to the instruction using the result. The richer the set of

50 Properties of Real and Abstract MachinesL R1,IA R1,J Result in R1M R0,K Multiplicand from R1, product to (R0,R1)D R0,L Dividend from (R0,R1)a) Code for the expression ((i+ j) � k=l)L R0,IA R0,JA R0,K Result in R0SRDA R0,32 Extend to double, result in (R0,R1)D R0,L Dividend from (R0,R1)b) Code for the expression ((i+ j + k)=l)Figure 3.6: Optimum Instruction Sequences for the IBM 370access functions, the more nodes can be implemented simply by access function restructuring.In fact, it is often possible to absorb nodes describing normal value operations into accessfunctions that use their result. Figure 3.7 is a tree for b[i+12]. As we shall see in Section 3.3,the local byte array b might have access function 36(13) on an IBM 370 (here register 13 givesthe base address of the local contour, and 36 is the relative byte location of b within thatcontour). After loading the value of i into register 1, the e�ects of the index and additionnodes can be combined into the access function 48(13,1). This access function (Figure 3.3a)can be used to obtain the second argument in any RX-format instruction on the IBM 370.
+

i 12

b

INDEX

Figure 3.7: Tree for a Typical Array AccessSome machines incorporate automatic incrementing or decrementing of a register contentinto certain access functions. These facilities are easy to use in source-to-target mappings forspecial purposes such as stack manipulation. Their general use, for example in combining theincrement of a loop control variable with the last use of that variable as an index, is muchmore di�cult because it leads to `combinatorial explosion' in the number of cases that thecode generator must examine. Such optimizations should be provided by a separate process(peephole optimization), rather than being incorporated into the source-to-target mapping.Many Boolean expressions occur in contexts such as conditional statements and loops,where the result is used only to determine the ow of control. Moreover, most of these ex-pressions either are relations themselves or are composed of relations. On the majority ofcomputers a relation is evaluated by performing a comparison or arithmetic operation andthen executing a transfer of control based upon the result. The upshot is that such expres-sions can be implemented most conveniently by omitting Boolean computations completely!Figure 3.8 illustrates the concept, which is called a jump cascade.The concept of a jump cascade is completely independent of the concept of short-circuitevaluation discussed in Section 2.3. It appears that Figure 3.8 is performing short-circuitevaluation because, for example, c is not fetched unless the value of a is less than that of

3.2 Representation of Language Elements 51b. But fetching a simple variable has no side e�ect, and hence the short-circuit evaluationis not detectable. If c were a parameterless function with a side e�ect then it should beinvoked prior to the start of the code sequence of Figure 3.8b, and the c in that code sequencewould represent temporary storage holding the function result. Thus we see that questionsof short-circuit evaluation a�ect only the relative placement of code belonging to the jumpcascade and code for evaluating the operands of the relations.if (a < b) and (c = d) or (e > f) then statement;a) A conditionalL R1,aC R1,bBNL L10 Note condition reversal hereL R1,cC R1,dBEQ L1 Condition is not reversed hereL10 L R1,eC R1,fBNH L2 ReversedL1 : : : Code for statementL2 : : : Code following the conditionalb) IBM 370 code corresponding to (a)Figure 3.8: Jump Cascades3.2.4 Control StructuresA node representing a control structure generally results in several disjoint code sequencesrather than a single code sequence. The meanings of and relationships among the sequencesdepend primarily upon the source language, and hence general schemata can be used tospecify them. Each of the disjoint sequences then can be thought of as an abstract machineoperation with certain de�ned properties and implemented individually.The goto statement is implemented by an unconditional jump instruction. If the jumpleaves a block or procedure then additional operations, discussed in Section 3.3, are needed toadjust the state. In expression-oriented languages, a jump out of an expression may requireadjustment of a hardware stack used for temporary storage of intermediate values. Thisadjustment is not necessary when the stack is simply an area of memory that the compilermanages as a stack, computing the necessary o�sets at compile time. (Unless use of a hardwarestack permits cheaper access functions, it should be avoided for this reason.)Schemata for common control structures are given in Figure 3.9. The operation `condi-tion(expression,truelabel,falselabel)' embodies the jump cascade discussed in Section 3.2.3.The precise mechanism used to implement the analogous `select' operation depends upon theset k1 : : : km. Let kmin be the smallest and kmax the largest values in this set. If `most' ofthe values in the range [kmin; kmax] are members of the set then `select' is implemented asshown in Figure 3.10a. Each element of target that does not correspond to an element ofk1 : : : km is set to `L0'. When the selector set is sparse and its span is large (for example, theset 0; 5000; 10000), a decision tree or perfect hash function should be used instead of an array.The choice of representation is strictly a space/time tradeo�, and must be made by the code

52 Properties of Real and Abstract Machinesgenerator for each case clause. The source-to-target mapping must specify the parameters tobe used in making this choice.condition(e, L1, L2)L1: clauseL2: a) if e then clause ;condition(e, L1, L2)L1: clause1GOTO LL2: clause2L: b) if e then clause1 else clause2;select(e, k1, L1,: : : , kn, Ln, L0)L1: clause1GOTO L: : :Ln: clausenGOTO LL0: clause0L:c) case e of k1: clause1; : : : ; kn: clausen else clause0;GOTO LL1: clauseL: condition(e, L1, L2)L2: d) while e do clause ;L1: clausecondition(e, L2, L1)L2: e) repeat clause until eforbegin(i, e1, e2, e3)clauseforend(i, e2, e3)f) for i := e1 by e2 to e3 do clause ;Figure 3.9: Implementation Schemata for Common Control StructuresBy moving the test to the end of the loop in Figure 3.9d, we reduce by one the number ofjumps executed each time around the loop without changing the total number of instructions

3.2 Representation of Language Elements 53required. Further, if the target machine can execute independent instructions in parallel, thisschema provides more opportunity for such parallelism than one in which the test is at thebeginning.`Forbegin' and `forend' can be quite complex, depending upon what the compiler candeduce about the bounds and step, and how the language de�nition treats the controlledvariable. As an example, suppose that the step and bounds are constants less than 212, thestep is positive, and the language de�nition states that the value of the controlled variable isunde�ned on exit from the loop. Figure 3.10b shows the best IBM 370 implementation forthis case, which is probably one of the most common. (We assume that the body of the loopis too complex to permit retention of values in registers.) Note that the label LOOP is de�nedwithin the `forbegin' operation, unlike the labels used by the other iterations in Figure 3.9.If we permit the bounds to be general expressions, but specify the step to be 1, the generalschema of Figure 3.10c holds. This schema works even if the value of the upper bound is thelargest representable integer, since it does not attempt to increment the controlled variableafter reaching the upper bound. More complex cases are certainly possible, but they occuronly infrequently. It is probably best to implement the abstract operations by subroutinecalls in those cases (Exercise 3.9).target : array[kmin .. kmax] of address ;k : integer ;k := e ;if k � kmin and k � kmax then goto target [k] else goto L0;a) General schema for `select' (Figure 3.9c)LA 1, e1 e1 = constant < 212LOOP ST 1,i: : : Body of the clauseL 1,iLA 2,e2 e2 = constant < 212LA 3,e3 e3 = constant < 212BXLE 1,2,LOOPb) IBM 370 code for special-case forbegin : : : forendi := e1; t := e3;if i > t then goto l3 else goto l2;l1 : i := i+ 1;l2 : : : : (* Body of the clause *)if i < t then goto l1;l3 :c) Schema for forbegin...forend when the step is 1Figure 3.10: Implementing Abstract Operations for Control StructuresProcedure and function invocations are control structures that also manipulate the state.Development of the instruction sequences making up these invocations involves decisionsabout the form of parameter transmission, and the construction of the activation record { thearea of memory containing the parameters and local variables.A normal procedure invocation, in its most general form, involves three abstract opera-tions:Callbegin: Obtain access to the activation record of the procedure.

54 Properties of Real and Abstract MachinesTransfer: Transfer control to the procedure.Callend: Relinquish access to the activation record of the procedure.Argument computation and transmission instructions are placed between `callbegin' and`transfer'; instructions that retrieve and store the values of result parameters lie between`transfer' and `callend'. The activation record of the procedure is accessible to the callerbetween `callbegin' and `callend'.In simple cases, when the procedure calls no other procedures and does not require complexparameters, the activation record can be deleted entirely and the parameters treated as localvariables of the environment statically surrounding the procedure declaration. The invocationthen reduces to a sequence of assignments to these variables and a simple subroutine jump. If,as in the case of elementary functions, only one or two parameters are involved then they canbe passed in registers. Note that such special treatment leads to di�culties if the functionsare invoked as formal parameters. The identity of the procedure is not �xed under thosecircumstances, and hence special handling of the call or parameter transmission is impossible.Invocations of formal procedures also cause problems if, as in ALGOL 60, the numberand types of the parameters is not statically speci�ed and must be veri�ed at execution time.These dynamic checks require additional instructions not only at the call site, but also at theprocedure entry. The latter instructions must be avoided by a normal call, and therefore itis useful for the procedure to have two distinct entry points { one with and one without thetests.Declarations of local variables produce executable code only when some initialization isrequired. For dynamic arrays, initialization includes bounds computation, storage allocation,and construction of the array descriptor. Normally only the bounds computation would berealized as in-line code; a library subroutine would be invoked to perform the remaining tasks.At least for test purposes, every variable that is not explicitly initialized should be im-plicitly assigned an initial value. The value should be chosen so that its use is likely to leadto an error report; values recognized as illegal by the target machine hardware are thus best.Under no circumstances should 0 be used for implicit initialization. If it is, the programmerwill too easily overlook missing explicit initialization or assume that the implicit initializationis a de�ned property of the language and hence write incorrect programs.Procedure and type declarations do not usually lead to code that is executed at the siteof the declaration. Type declarations only result in machine instructions if array descriptorsor other variables must be initialized. As with procedures, these instructions constitute asubprogram that is not called at the point of declaration.ALGOL 68 identity declarations of the form mid = expression are consistently replacedby initialized variable declarations mid0 := expression. Here id0 is a new internal name, andevery applied occurrence of id is consistently replaced by id0 ". The initialization remains theonly assignment to id0. Simpli�cation of this schema is possible when the expression can beevaluated at compile time and all occurrences of id replaced by this value.The same schema describes argument transmission for the reference and strict value mech-anisms, in particular in ALGOL 68. Transmission of a reference parameter is implementedby initialization of an internal reference variable: ref m parameter = argument becomes refm variable := argument .We have already met the internal transformation used by the value and name mechanismsin Section 2.5.3. In the result and value/result mechanisms, the result is conveniently assignedto the argument after return. In this way, transmission of the argument address to theprocedure is avoided. When implementing value/result transmission for FORTRAN, oneshould generate the result assignment only in the case that the argument was a variable.(Note that if the argument address is transmitted to the procedure then the caller must

3.3 Storage Management 55always treat the argument as a variable. If the programmer uses a constant, the compilermust either ag it as an error or move the constant value to a temporary storage locationand transmit the address of that temporary.)For function results, the compiler generally produces temporaries of suitable type at thecall site and in the function. Within the function, the result is assigned to the local temporary.Upon return, as in the case of a result parameter, the local temporary is copied into the globaltemporary. The global temporary is only needed if the result cannot be used immediately.(An example of this case is the value of cos(x) in cos(x) + sin(y).)Results delivered by function procedures can, in simple cases, be returned in registers. (Forcompatibility with jump cascades, it may be useful for a Boolean function to encode its resultby returning to two di�erent points.) Transmission of composite values as function resultscan be di�cult, especially when these are arrays whose sizes are not known to the caller. Thismeans that the caller cannot reserve storage for the result in his own environment a priori;as a last resort such objects may be left on the heap (Section 3.3.3).3.3 Storage ManagementUntil now we have dealt with the representation of single objects in memory; in this section weshall discuss management of storage for collections of objects, including temporary variables,during their lifetimes. The important goals are the most economical use of memory and thesimplicity of access functions to individual objects. Source language properties govern thepossible approaches, as indicated by the following questions (see also Section 2.5.2):� Is the exact number and size of all objects known at compilation time?� Is the extent of an object restricted, and what relationships hold between the extentsof distinct objects (e.g. are they nested)?� Does the static nesting of the program text control a procedure's access to global objects,or is access dependent upon the dynamic nesting of calls?3.3.1 Static Storage ManagementWe speak of static storage management if the compiler can provide �xed addresses for allobjects at the time the program is translated (here we assume that translation includesbinding), i.e. we can answer the �rst question above with `yes'. Arrays with dynamic bounds,recursive procedures and the use of anonymous objects are prohibited. The condition isful�lled for languages like FORTRAN and BASIC, and for the objects lying on the outermostcontour of an ALGOL 60 or Pascal program. (In contrast, arrays with dynamic bounds canoccur even in the outer block of an ALGOL 68 program.)If the storage for the elements of an array with dynamic bounds is managed separately,the condition can be forced to hold in this case also. That is particularly interesting when wehave additional information that certain procedures are not recursive, for example becauserecursivity must be noted specially (as in PL/1) or because we have determined it fromanalysis of the procedure calls. We can then allocate storage statically for contours otherthan the outermost.Static storage allocation is particularly valuable on computers that allow access to anylocation in main memory via an absolute address in the instruction. Here, static storage cor-responds exactly to the class of objects with direct access paths in the sense of Section 3.2.2.If, however, it is unknown during code generation whether or not an object is directly ad-dressable (as on the IBM 370) because this depends upon the �nal addressing carried outduring binding, then we must also access statically-allocated objects via a base register. The

56 Properties of Real and Abstract Machinesonly advantage of static allocation then consists of the fact that no operations for storagereservation or release need be generated at block or procedure entry and exit.3.3.2 Dynamic Storage Management Using a StackAs we have already noted in Section 2.5.2, all declared values in languages such as Pascal andSIMULA have restricted lifetimes. Further, the environments in these languages are nested:The extent of all objects belonging to the contour of a block or procedure ends before that ofobjects from the dynamically enclosing contour. Thus we can use a stack discipline to managethese objects: Upon procedure call or block entry, the activation record containing storage forthe local objects of the procedure or block is pushed onto the stack. At block end, procedurereturn or a jump out of these constructs the activation record is popped o� of the stack. (Theentire activation record is stacked, we do not deal with single objects individually!)An object of automatic extent occupies storage in the activation record of the syntacticconstruct with which it is associated. The position of the object is characterized by the baseaddress, b, of the activation record and the relative location o�set), R, of its storage withinthe activation record. R must be known at compile time but b cannot be known (otherwisewe would have static storage allocation). To access the object, b must be determined at runtime and placed in a register. R is then either added to the register and the result usedas an indirect address, or R appears as the constant in a direct access function of the form`register+constant'.Every object of automatic extent must be decomposable into two parts, one of which hasa size that can be determined statically. (The second part may be empty.) Storage for thestatic parts is allocated by the compiler, and makes up the static portion of the activationrecord. (This part is often called the �rst order storage of the activation record.) When ablock or procedure is activated, the static part of its activation record is pushed onto thestack. If the activation record contains objects whose sizes must be determined at run time,this determination is carried out and the activation record extended. The extension, whichmay vary in size from activation to activation, is often called the second order storage of theactivation record. Storage within the extension is always accessed indirectly via informationheld in the static part; in fact, the static part of an object may consist solely of a pointer tothe dynamic part.An array with dynamic bounds is an example of an object that has both static anddynamic parts. In most languages, the number of dimensions of an array is �xed, so the sizeof the array descriptor is known at compile time. Storage for the descriptor is allocated by thecompiler in the static part of the activation record. On encountering the declaration duringexecution, the bounds are evaluated and the amount of storage needed for the array elementsis determined. The activation record is extended by this amount and the array descriptor isinitialized appropriately. All accesses to elements of the array are carried out via the arraydescriptor.We have already noted that at compile time we do not know the base address of anactivation record; we know only the range to which it belongs. From this we must determinethe base address, even in the case where recursion leads to a number of activation recordsbelonging to the same range. The range itself can be speci�ed by its block nesting depth, bnd,de�ned according to the following rules based on the static structure of the program:� The main program has bnd = 1.� A range is given bnd = t+1 if and only if the immediately enclosing range has bnd = t.Bnd = t indicates that during execution of the range the state consists of a total of tnested contours.

3.3 Storage Management 57If, as in all ALGOL-like languages, the scopes of identi�ers are statically nested thenat every point in the execution history of a program there is at most one activation recordaccessible at a given nesting depth. The base address of a particular activation record canthen be found by noting the corresponding nesting depth at compile time and setting up amapping s : nestingdepth! baseaddress during execution. The position of an object in the�xed part of the activation record is fully speci�ed by the pair (bnd;R); we shall thereforespeak of `the object (bnd;R)'.The mapping s changes upon range entry and exit, procedure call and return, and jumpsout of blocks or procedures. Updating s is thus one of the tasks (along with stack pointerupdating and parameter or result transmission) of the state-altering operations that we metin Section 2.5.2. We shall describe them semi-formally below, assuming that the stack isdescribed by:k : array[0 .. upper limit] of storage cell ; k top : 0 .. upper limit ;We assume further that a storage cell can hold exactly one address, and we shall treat addressvariables as integer variables with which we can index k.The contour nesting and pointer to dynamic predecessor required by the contour modelare represented by address values stored in each activation record. Together with the re-turn address, and possibly additional information depending upon the implementation, theyconstitute the `administrative overhead' of the activation record. A typical activation recordlayout is shown in Figure 3.11; the corresponding state change operations are given in Figure3.12. We have omitted range entry/exit operations. As noted in Section 2.5.2, procedures andblocks can be treated identically by regarding a block as a parameterless procedure called `onthe spot', or contours corresponding to blocks can be eliminated and objects lying upon themcan be placed on the contour of the enclosing procedure. If blocks are to be given separateactivation records, the block entry/exit operations are identical to those for procedures exceptthat no return address is saved on entry and ip is not set on exit. Jumps out of blocks aretreated exactly as shown in Figure 3.12c in any case. Second-order storage
2 Return Address1 Pointer to Dynamic Predecessor First-order storage0 Pointer to Static PredecessorFigure 3.11: Typical Activation Record LayoutThe procedure and jump addresses indicated by the comments in Figures 3.12a and care supplied by the compiler; the environment pointers must be determined at run time. Ifa procedure is invoked directly, by stating its identi�er, then it must lie within the currentenvironment and its static predecessor can be obtained from the stack by following the chainof static predecessors until the proper block nesting depth is reached:environment := ep ;for i := bndcaller downto bndprocedure doenvironment := k [environment];

58 Properties of Real and Abstract MachinesThe value (bndcaller - bndprocedure) compile time and is usually small, so the loop issometimes `unrolled' to a �xed sequence of environment := k [environment] operations.k[k top] := (* static predecessor of the procedure *);k[k top+ 1] := ep; (* dynamic predecessor *)k[k top+ 2] := ip; (* return address *)ep := k top; (* current environment *)k top := k top+ "size"; (* �rst free location *)ip := (* procedure code address *)a) Procedure entryk top := ep;ep := k[k top+ 1]; (* back to the dynamic predecessor *)ip := k[k top+ 2]; b) Procedure exitk top := ep;ep := (* target environment of the jump *);while k[k top+ 1] 6= ep dok top := k[k top+ 1]; (* leave all intermediate environments *)ip := (* target address of the jump *);c) Jump out of a procedureFigure 3.12: Environment Change OperationsWhen a procedure is passed as a parameter and then the parameter is called, the staticpredecessor cannot be obtained from the stack because the called procedure may not be inthe environment of the caller. (Figures 2.3 and 2.5 illustrate this problem.) Thus a procedureparameter must be represented by a pair of addresses: the procedure entry point and theactivation record address for the environment statically enclosing the procedure declaration.This pair is called a closure . When a procedure parameter is invoked, the address of thestatic predecessor is obtained from the closure that represents the parameter. Figure 3.13shows the stack representing the contours of Figure 2.5; note the closures appearing in theactivation records for procedure p.Jumps out of a procedure also involve changing the state (Figure 3.12c). The mechanismis essentially the same as that discussed above: If the label is referenced directly then it lies inthe current environment and its environment pointer can be obtained from the stack. A labelvariable or label parameter, however, must be represented by a closure and the environmentpointer obtained from that closure.Access to any object in the environment potentially involves a search down the chain ofstatic predecessors for the pointer to the activation record containing that object. In order toavoid the multiple memory accesses required, a copy of the addresses can be kept in an array,called a display, indexed by the block nesting depth. Access to the object (bnd;R) is thereforeprovided by display[bnd]+R; we need only a single memory access, loading display[bnd] intoa base register, to set up the access function.The Burroughs 6000/7000 series computers have a 32-register display built into the hard-ware. This limits the maximum block nesting depth to 32, which is no limitation in practice.Even a restriction to 16 is usually no problem, but 8 is annoying. Thus the implementationof a display within the register set of a multiple-register machine is generally not possible,because it leads to unnatural restrictions on the block nesting depth. The display can be

3.3 Storage Management 5922 location after 1 : f12 Activation record for procedure q19 5i = 011 (reference to i)5 (q's environment)entry point address for q Activation record for procedure plocation after p(q; i)512 0i = 24 (reference to k)0 (empty 's environment)entry point address for empty Activation record for procedure plocation after p(empty; k)05 0k = 0n = 70 Activation record for procedure outer00 0Note: k top = 22ep = 19ip = address of label 2Figure 3.13: Stack Con�guration Corresponding to Figure 2.5allocated to a �xed memory location, or we might keep only a partial display (made up of theaddresses of the most-frequently accessed activation records) in registers. Which activationrecord addresses should be kept is, of course, program-dependent. The current activationrecord address and that of the outermost activation record are good choices in Pascal; thelatter should probably be replaced with that of the current module in an implementation ofany language providing modules.If any sort of display, partial or complete, is used then it must be kept up to date as thestate changes. Figure 3.14 shows a general procedure for bringing the display into synchronismwith the static chain. It will alter only those elements that need alteration, halting when theremainder is guaranteed to be correct. In many cases the test for termination takes moretime than it saves, however, and a more appropriate strategy may be simply to reload theentire display from the static chain.Note that the full generality of update display is needed only when returning from a pro-cedure or invoking a procedure whose identity is unknown. If a procedure at level bndnew inthe current addressing environment is invoked, the single assignment display[bndnew] := asu�ces. (Here a is the address of the new activation record.) Display manipulation canbecome a signi�cant overhead for short procedures operating at large nesting depths. Recog-nition of special cases in which this manipulation can be avoided or reduced is therefore an

60 Properties of Real and Abstract Machinesimportant part of the optimization of such procedures.procedure update_display (bndnew, bndold : integer; a : address) :(* Make the display consistent with the static chainOn entry -bndnew = nesting depth of the new activation recorda = address of the new activation recordbndold = nesting depth of the current activation recordOn exit -The display specifies the environment of the new contour*)vari : integer;h : address;begin (* update_display *)i := bndnew;h := a ;while display[i] 6= h or i < bndold dobegindisplay[i] := h ;i := i - 1; h := k[h] ;endend; (* update_display *)Figure 3.14: Setting the DisplayIn SIMULA and Ada, as in all languages that contain coroutines and concurrently-executing tasks, activation record creation and destruction need not follow a strict stackdiscipline. Each coroutine or task corresponds to a set of activation records, and these setsare growing and shrinking independently. Thus each coroutine or task requires an indepen-dent stack, and these stacks themselves follow a stack discipline. The result is called a tree orcactus stack and is most easily implemented in a segmented virtual memory. Implementationin a linear memory is possible by �xing the sizes of the component stacks, but this can onlybe done when limitations can be placed upon recursion depth and spawning of further tasks.3.3.3 Dynamic Storage Management Using a HeapIf none of the questions stated at the beginning of Section 3.3 lead to su�cient reduction in thelifetime and visibility of objects, the last resort is to allocate storage on a heap: The objectsare allocated storage arbitrarily within an area of memory. Their addresses are determined atthe time of allocation, and they can only be accessed indirectly. Examples of objects requiringheap storage are anonymous objects such as those created by the Pascal new function andobjects whose size changes unpredictably during their lifetime. (Linked lists and the exiblearrays of ALGOL 68 belong to the latter class.)Notice that the static and dynamic chain pointers were the only interconnections amongthe activation records discussed in Section 3.3.2. The use of a stack storage discipline is notrequired, but simply provides a convenient mechanism for reclaiming storage when a contouris no longer relevant. By storing the activation records on a heap, we broaden the possibilitiesfor specifying the lifetimes of objects. This is the way in which the uniform retention strategymentioned at the end of Section 2.5.2 is implemented. Storage for an activation record is

3.3 Storage Management 61released only if the program fragment (block, procedure, class) to which it belongs has beenleft and no pointers to objects within this activation record exist.Heap allocation is particularly simple if all objects required during execution can �t intothe designated area at the same time. In most cases, however, this is not possible. Eitherthe area is not large enough or, in the case of virtual storage, the working set becomes toolarge. A detailed discussion of heap storage management policies is beyond the scope of thisbook (see Section 3.5 for references to the relevant literature). We shall only sketch threepossible recycling strategies for storage and indicate the support requirements placed uponthe compiler by these strategies.If a language provides an explicit `release' operation, such as Pascal's dispose or PL/1'sfree, then heap storage may be recycled by the user. This strategy is simple for the compilerand the run-time system, but it is unsafe because access paths to the released storage maystill exist and be used eventually to access recycled storage with its earlier interpretation.The release operation, like the allocation operation, is almost invariably implemented as acall on a support routine. Arguments that describe the size and alignment of the storage areamust be supplied to these calls by the compiler on the basis of the source type of the object.Automatic reclamation of heap storage is possible only if the designers of a languagehave considered this and made appropriate decisions. The key is that it must be possibleto determine whether or not a variable contains an address. For example, only a variableof pointer type may contain an address in a Pascal program. A special value, nil, indicatesthe absence of a pointer. When a pointer variable is created, it could be initialized to nil.Unfortunately, Pascal also provides variant records and does not require such records to havea tag �eld indicating which variant is in force. If one variant contains a pointer and anotherdoes not, it is impossible to determine whether or not the corresponding variable contains apointer. Detailed discussion of the tradeo�s involved in such a decision by a language designeris beyond the scope of this text.Storage can be recycled automatically by a process known as garbage collection, whichoperates in two steps:� Mark. All accessible objects on the heap are marked as being accessible.� Collect. All heap storage is scanned. The storage for unmarked objects is recycled, andall marks are erased.This has the advantage that no access paths can exist to recycled storage, but it requiresconsiderable support from the compiler and leads to periodic pauses in program execution. Inorder to carry out the mark and collect steps, it must be possible for the run-time system to�nd all pointers into the heap from outside, �nd all heap pointers held within a given objecton the heap, mark an object without destroying information, and �nd all heap objects on alinear sweep through the heap. Only the questions of �nding pointers a�ect the compiler;there are three principal possibilities for doing this:1. The locations of all pointers are known beforehand and coded into the marking algo-rithm.2. Pointers are discovered by a dynamic type check. (In other words, by examining astorage location we can discover whether or not it contains a pointer.)3. The compiler creates a template for each activation record and for the type of everyobject that can appear on the heap. Pointer locations and (if necessary) the objectlength can be determined from the template.

62 Properties of Real and Abstract MachinesPointers in the stack can also be indicated by linking them together into a chain, but thiswould certainly take too much storage on the heap.Most LISP systems use a combination of (1) and (2). For (3) we must know the target typeof every pointer in order to be able to select the proper template for the object referenced.This could be indicated in the object itself, but storage would be saved if the template carriedthe number or address of the proper template as well as the location of the pointer. In thismanner we also solve the problem of distinguishing a pointer to a record from the pointer toits �rst component. Thus the template for an ALGOL 68 structure could have the followingstructure:� Length of the structure (in storage units)� For each storage unit, a Boolean value `reference'� For each reference, the address of the template of the referenced type.If dynamic arrays or variants are allowed in records then single Boolean values indicatingthe presence of pointers are no longer adequate. In the �rst case, the size and number ofcomponents are no longer known statically. The template must therefore indicate the locationof descriptors, so that they can be interpreted by the run-time system. In the second case theposition of the variant selector and the di�erent interpretations based upon its value must beknown. If, as in Pascal, variant records without explicit tag �elds are allowed, then garbagecollection is no longer possible.Garbage collection also requires that all internal temporaries and registers that can containreferences must be identi�ed. Because this is very di�cult in general it is best to arrange thegenerated code so that, whenever a garbage collection might occur, no references remain intemporaries or registers.The third recycling strategy requires us to attach a counter to every object in the heap.This counter is incremented whenever a reference to the object is created, and decrementedwhenever a reference is destroyed. When the counter is decremented to its initial value of 0,storage for the object can be recycled because the object is obviously inaccessible. Mainte-nance of the counters results in higher administrative and storage costs, but the overheads aredistributed. The program simply runs slower overall; it does not periodically cease normaloperation to reclaim storage. Unfortunately, the reference counter method does not solve allproblems:� Reference counts in a cyclic structure will not become 0 even after the structure as awhole becomes inaccessible.� If a counter overows, the number of references to the object is lost.A complete solution requires that the reference counters be backed up by a garbage col-lector.To support storage management by reference counting, the compiler must be able to iden-tify all assignments that create or destroy references to heap objects. The code generated forsuch assignments must include appropriate updating of the reference counts. Di�culties arisewhen variant records may contain references, and assignments to the tag �eld identifying thevariant are allowed: When such an assignment alters the variant, it destroys the referenceeven though no direct manipulation of the reference has taken place. Similar hidden destruc-tion occurs when there is a jump out of a procedure that leads to deletion of a number ofactivation records containing references to heap objects. Creation of references is generallyeasier to keep track of, the most di�cult situation probably being assignment of a compositevalue containing references as minor components.

3.4 Mapping Speci�cations 633.4 Mapping Speci�cationsThe results of the analysis discussed in the earlier sections of this chapter should be em-bodied in a document called a mapping speci�cation (Figure 3.15) for the particular sourcelanguage/target machine pair. It should not only give the �nal results, but also the reasoningthat led to them. Even when a particular choice was obvious, a brief statement of its basisshould be made. For example, one normally chooses the representation of integer values tobe that assumed by the hardware `add integer' instruction; a single sentence stating this factshould appear in the speci�cation.L TO M MAPPING SPECIFICATION1 The Abstract M1.1 Storage ClassesOne subsection per storage class (see Section 3.1.1).1.2 Access PathsOne subsection per access path (see Section 3.1.2).1.3 InstructionsOne subsection per operation class (see Section 3.1.3).2 Storage Mapping2.1 Primitive Data TypesOne subsection per primitive data type of L (see Section 3.2.1).2.2 Composite Data TypesOne subsection per composite data type of L (see Section 3.2.2).2.3 Computation StateOne subsection describing register usage, one describing the use of space for codeand constants, and one per storage area type (e.g. static, stack, heap - see Sec-tion 3.3) required by L.3 Operation Mapping3.1 Routine InvocationOne subsection per operation (e.g. procedure call, procedure entry, formal call,jump out of a procedure) required by L. Block entry/exit should also be coveredwhen L requires that these operations manipulate the computation state.3.2 Control StructuresOne subsection per control structure of L (see Section 3.2.4).3.3 Expressions3.3.1 AttributesInformation to be exchanged among the nodes of an expression (see Sec-tion 3.2.3).3.3.2 EncodingsEncoding of each L operation as a sequence of instructions and access pathsfrom the abstract M , as a function of the information exchanged among ex-pression nodes.Figure 3.15: Outline of a Mapping Speci�cation

64 Properties of Real and Abstract MachinesSection 1 of the mapping speci�cation relies heavily on the manufacturer's manual forthe target machine. It describes the machine as it will be seen by the code generator, withanomalies smoothed out and omitted operations (to be implemented by code sequences orsubroutines) in place. The actual details of realizing the abstraction might be included, or thisinformation might be the subject of a separate speci�cation. We favor the latter approach,because the abstraction should be almost entirely language-independent. It is clear thatthe designer must decide which facilities to include in the abstract machine and which toimplement as part of the operation mapping. We cannot give precise criteria for making thischoice. (The problem is one of modular decomposition, with the abstraction constituting amodule and the operation encoding using the facilities of that module.)The most di�cult part of Section 2 of the mapping speci�cation is Section 2.3, whichis tightly coupled to Section 3.1. Procedure mechanisms advocated by the manufacturerare often ill-suited to the requirements of a given language. Several alternative mechanismsshould be explored, and detailed cost estimates prepared on the basis of some assumptionsabout the relative numbers of calls at various static nesting depths and accesses to variables.It is imperative that these assumptions be carefully stated, even though there is only tenuousjusti�cation for them; unstated assumptions lead to conicting judgements and usually toa suboptimal design. Also, if measurements later indicate that the assumptions should bechanged, the dependence of the design upon them is clearly stated.Control structure implementation can be described adequately using notation similar tothat of Figure 3.9. When a variety of information is exchanged among nodes of an expres-sion, however, description of the encoding for each node is complicated. The best notationavailable seems to be the extended-entry decision table, which we discuss in this context inSection 10.3.2.A mapping speci�cation is arrived at by an iterative process, one that should be allottedsu�cient time in scheduling a compiler development project. The cost is dependent uponthe complexities of both the source language and the target machine. In one speci�c case,involving a Pascal implementation for the Motorola 68000, two man-months of e�ort wasrequired over a six-month period. One person should be responsible for the speci�cation, butat least one other (and preferably several) should be involved in frequent critical reviews. Theobjective of these reviews should be to test the reasoning based upon the stated assumptions,making certain that it has no aws. Challenging the assumptions is less important unlessspeci�c evidence against them is available.Sections 2.1 and 2.2 of the mapping speci�cation should probably be written �rst. Theyare usually straightforward, and give a basis on which to build. Sections 2.3 and 3.1 should benext. As indicated earlier, these sections interact strongly and involve di�cult decisions. Theremainder of Section 3 is tedious, but should be carried out in full detail. It is only by beingvery explicit here that one learns the quirks and problems of the machine, and discovers theaws in earlier reasoning about storage mapping. Section 1 should be done last, not becauseit is the least important, but because it is basically a modi�cation of the machine manual inthe light of the needs generated by Section 3.3.5 Notes and ReferencesThe question of mapping programming language constructs onto hardware has been con-sidered piecemeal by a number of authors. Tanenbaum [1976] gives a good overview of theissues involved, and further information can be gleaned from speci�c abstract machine designsRichards [1971]; Tanenbaum [1978]; Haddon and Waite [1978]. Floating point abstrac-tions are discussed by Brown [1977, 1981] and Cody and Waite [1980] and a standard

3.5 Notes and References 65has been de�ned by a committee of IEEE [Stevenson, 1981]. McLaren [1970] provides acomprehensive discussion of data structure packing and alignment. Randell and Russell[1964] detail the implementation of activation record stacks and displays in the context ofALGOL 60; Hill [1976] updates this treatment to handle the problems of ALGOL 68.Static storage management is not the only possible strategy for FORTRAN implementa-tions. Both the 1966 and 1978 FORTRAN standards restrict the extent of objects, and thuspermit dynamic storage management via a stack. We have not pursued the special storage al-location problems of COMMON blocks and EQUIVALENCE statements here; the interestedreader is referred to Chapter 10 of the book by Aho and Ullman [1977] and the originalliterature cited there.Our statements about the probability of access to objects at various nesting depths aredebatable because no really good statistics exist. These probabilities are dependent upon thehierarchical organization of the program, and may vary considerably between applicationsand system programs.The fact that a procedure used as a parameter must carry its environment with it ap-pears in the original treatment of LISP [McCarthy, 1960]. Landin [1964] introduced theterm `closure' in connection with his mechanization of Lambda expressions. More detaileddiscussions are given by Moses [1970] and Waite [1973a]. Hill [1976] applied the samemechanism to the problem of dynamic scope checking in ALGOL 68.An overall treatment of storage management is beyond the scope of this book. Knuth[1968a] provides an analysis of the various general strategies, and a full discussion of mostalgorithms known at the time. A general storage management package that permits a widerange of adaptation was presented by Ross [1967]. The most important aspect of this packageis the interface conventions, which are suitable for most storage management modules.Both general principles of and algorithms for garbage collection and compaction (theprocess of moving blocks under the user's control to consolidate the free space into a singleblock) are covered by Waite [1973a]. Wegbreit [1972] discusses a speci�c algorithm withan improved worst-case running time.Several authors [Deutsch and Bobrow, 1976; Barth, 1977; Morris, 1978] have shownhow to reduce the cost of reference count systems by taking special cases into account. Clarkand Green [1977] demonstrated empirically that over 90% of the objects n typical LISPprograms never have reference counts greater than 1, a situation in which the techniqueoperates quite e�ciently.Exercises3.1 List the storage classes and access paths available on some machine with which you arefamiliar. Did you have di�culty in classifying any of the machine's resources? Why?3.2 Consider access to data occupying a part of a word on some machine with which youare familiar. Does the best code depend upon the bit position within the word? Uponthe size of the accessed �eld? Try to characterize the set of `best' code sequences. Whatinformation would you need to choose the proper sequence?3.3 [Steele, 1977] Consider the best code for implementing multiplication and division ofan integer by a power of 2 on some machine with which you are familiar.(a) Would multiplication by 2 best be implemented by an add, a multiply or a shift?Give a detailed analysis, taking into account the location and possible values ofthe multiplicand.

66 Properties of Real and Abstract Machines(b) If you chose to use a shift for division, would the proper result be obtained whenthe dividend was negative? Explain.(c) If your machine has a condition code that is set as a side e�ect of arithmeticoperations, would it be set correctly in all of the cases discussed above?3.4 For some computer with which you are familiar, design encodings for the elementarytypes boolean , integer , real of Pascal. Carefully defend your choice.3.5 Consider the representation of a multi-dimensional array.(a) In what manner can a user of ALGOL, FORTRAN or Pascal determine whetherthe elements are stored in row- or column-major order?(b) Write optimum code for some computer with which you are familiar that imple-ments the following doubly-nested loop over an object of type array [1::m; 1::n]of integer stored in row-major order. Do not alter the sequence of assignmentsto array elements. Compare the result with the same code for an array stored incolumn-major order. for i := 1 to m dofor j := 1 to n doa [i, j] := 0;(c) Explain why a test that the a�ective address of an array element falls withinthe storage allocated to the array is not su�cient to guarantee that the access isde�ned.3.6 Carefully describe the implementation of the access function for an array element (Sec-tion 3.2.2) in each of the following cases:(a) The �ctitious starting address lies outside of the address space of the computer.(b) The computer provides only base registers (i.e. the registers involved in the accesscomputation of Section 3.1.3 cannot hold signed values).3.7 Consider a computer requiring certain data items to be stored with alignment 2, whileothers have no alignment constraints. Give an algorithm that will rearrange any arbi-trary record to occupy minimum storage. Can this algorithm be extended to a machinewhose alignment constraints require addresses divisible by 2, 4 and 8?3.8 Give a mapping of a Pascal while statement that places the condition at the begin-ning and has the same number of instructions as Figure 3.9d. Explain why there isless opportunity for parallel execution in your mapping than in Figure 3.9d. Underwhat circumstances would you expect your expansion to execute in less time than Fig-ure 3.9d? What information would the compiler need in order to decide between theseschemata on the basis of execution time?3.9 Consider the mapping of a BASIC FOR statement with the general form:FOR I= e1 TO e2 STEP e3: : :NEXT IGive implementations of forbegin and forend under each of the following conditions:(a) e1=1, e2=10, e3=1(b) e1=1, e2=10, e3=7

3.5 Notes and References 67(c) e1=10, e2=1, e3=-3(d) e1=10, e2=1, e3=1(e) e1=A, e2=B, e3=CDoes your answer to (e) work when A is the largest negative integer representable onthe target machine? When B is the largest positive representable integer? If not, whatis the cost of repairing this defect? Would you consider this cost acceptable in the lightof the probability of such bounds?3.10 For some machine with which you are familiar, compare the cost of access to statically-allocated objects, objects allocated at �xed locations in an activation record, elementsof dynamic arrays and objects allocated on the heap. Be sure to account for anynecessary base register loads.3.11 The state change operations summarized in Figure 3.12 are actually implemented by acombination of code at the call site, code in the procedure or block, and common codein system subprograms. Consider their realization on some machine with which youare familiar.(a) Operations at the call site should be minimized, at least when the procedure iscalled directly. What is the minimum code you can use? (You may change theactivation record layout of Figure 3.11 arbitrarily to suit your implementation.)(b) How do you handle the fact that a given procedure may be called either directly oras a parameter? Show that the environment is properly initialized in both cases.(c) Compare the cost of using a display with that of using simply static and dynamicpointers. On the basis of your answer to Exercise 3.8, determine the break-evenpoint for a display in terms of number of variable accesses.3.12 Code the display update routine of Figure 3.4 for some machine with which you arefamiliar. What average nesting depth constitutes the break-even point for the earlytermination test? On the basis of your own experience, should the test be included ornot?3.13 Under what circumstances is it impossible to compare the extents of two objects bycomparing their addresses?3.14 For some machine with which you are familiar, design a schema for representing typetemplates. Be sure to handle variant records and dynamic arrays.3.15 Suppose that a machine provides no `unde�ned' value. What values would you proposeto use as implicit initializations for Pascal boolean, integer and real variables? Explainyour choices.3.16 Under what circumstances would you consider transmitting arguments and results inregisters? Illustrate your answer with several real machines.3.17 Consider the following LAX fragment:declareprocedure p (a : array [] of integer); ...;procedure q : array [] of integer; ...begin p (q) end;

68 Properties of Real and Abstract Machines(a) Explain why this fragment is illegal.(b) Suppose that the fragment were legal, and had the obvious e�ect: Procedure qcreates an array, which is then passed to procedure p. Discuss a storage man-agement strategy for the array elements. Where should the storage be allocated?Can we avoid copying the array? What tradeo�s are involved?

Chapter 4Abstract Program RepresentationDecomposition of the compilation process leads to interfaces speci�ed by abstract data types,and the basic purposes of these interfaces are largely independent of the source language andtarget machine. Information crossing an interface between major compilation tasks consti-tutes a representation of the program in an intermediate language. This representation mayor may not be embodied in a concrete data structure, depending upon the structure and goalsof a particular compiler. Similarly, the characteristics of a particular compiler may make ituseful to summarize the properties of objects in tables stored separately from the programtext.The general characteristics of each interface stem from the modular decomposition of thecompiler discussed in Chapter 1. In this chapter we consider several important intermediatelanguages and tables in detail. By determining the content and possible realization of theseinterfaces, we place more concrete requirements upon the major compilation tasks.4.1 Intermediate LanguagesOur decomposition leads to four intermediate languages: the token sequence, the structuretree, the computation graph and the target tree. A program is transformed from one to theother in the order given, and they will be presented here in that order.4.1.1 Token SequenceChapter 2 pointed out that a source program is composed of a sequence of basic symbols.These basic symbols, rather than the characters from which they are formed, are the relevantunits of the source text. We shall use the term symbol to denote the external representationof a basic symbol (or an encoding thereof); a token is the internal representation.LAX symbols are described in Section A.1. Production A.1.0.1 classi�es them as identi-�ers, denotations and delimiters respectively. Comments are not basic symbols, and thereforedo not appear in the token sequence.We can characterize the information carried by one token in terms of the type declarationsshown in Figure 4.1. Location encodes the information required to relate an error messageto the source language listing. Section 12.1.3 discusses error reporting mechanisms in detail,and hence we leave the speci�cation of the type coordinates open until then.Most syntactic classes (encoded by members of the enumerated type tokens) contain onlya single symbol. Tokens representing such symbols need specify only the syntactic class. Onlyidenti�ers and denotations require additional information.69

70 Abstract Program Representationtypetokens = ((* classi�cation of LAX tokens *)identifier , (* A.1.0.2 *)integer denotation , (* A.1.0.6 *)floating point denotation , (* A.1.0.7 *)plus , : : : , equivalent , (* specials: A.1.0.10 *)and kw , : : : , while kw); (* keywords: A.1.0.11 *)abstract token = recordlocation : coordinates; (* for error reports *)case classification : tokens ofidentifier : (sym : symbol);integer denotation : (intv : integer value);floating point denotation : (fptv : real value);end; Figure 4.1: LAX Abstract TokenA LAX identi�er has no intrinsic meaning that can be determined from the character stringconstituting that identi�er. As a basic symbol, therefore, the only property distinguishingone identi�er from another is its external representation. This property is embodied in thesym �eld of the token. Section 4.2.1 will consider the type symbol , and explain how theexternal representation is encoded.The �eld intv or fptv is a representation of the value denoted by the source languagedenotation that the token abstracts. There are several possibilities, depending upon the goalsof the particular compiler; Section 4.2.2 considers them in detail.4.1.2 Structure TreeA structure tree is a representation of a compilation unit in terms of source concepts. It is anordered tree (in the sense of Section B.1) whose structure is that of an abstract syntax of thesource language. Additional information is attached to the nodes during semantic analysis andthe beginning of code generation. We call this information attributes, and, to emphasize theattribution, the augmented tree is sometimes termed an attributed structure tree. Importantattributes are the identity of the internal object corresponding to an identi�er, the typesof the operands and result of an expression, or the operation corresponding to an operatorindication (e.g. the distinction between integer and real addition, both originally speci�ed by`+').Each node of the structure tree corresponds to a rule of the language de�nition. Becausethe structure tree follows the abstract rather than the concrete syntax, some rules will neverhave corresponding nodes in any structure tree. Furthermore, the concrete syntax may useseveral names for a single construct of the abstract syntax. Figure 4.2 illustrates these con-cepts with an example from LAX. The nodes of the tree have been labelled in Figure 4.2awith the corresponding rules from Appendix A. A single rule in Appendix A may incorporatemany de�nitions for the same construct, and we have appended lower-case letters to the rulenumber in order to distinguish these de�nitions. Thus `A.4.0.9b' is the second alternative forrule A.4.0.9 { sum ::= sum addop term . Expression , assignment , disjunction , and soforth are di�erent names appearing in the concrete syntax for the expression construct of the

4.1 Intermediate Languages 71abstract syntax. This means that any node corresponding to a rule de�ning any of these willhave the attributes of an expression attached to it. Figure 4.2b indicates which of the namesde�ned by rules used in Figure 4.2a are associated with the same abstract syntax construct.
A.4.0.16a

A.1.0.2

A.4.0.2

A.4.0.9b

A.4.0.10a A.4.0.16aA.4.0.16a

A.1.0.2 A.1.0.2a) Structureexpression, assignment, disjunction, conjunction,comparison, relation, sum , term , factor , primary:primode, postmode: entityname :mode : entityeqop , relop , addop , mulop , unop :rator : operationidentifier:sym : symbolent : entity b) AttributesFigure 4.2: Structure Tree for x := y + zThe sym attribute of an identi�er is just the value of the sym �eld of the correspondingtoken (Figure 4.1). This attribute is known as soon as the node to which it is attached iscreated. We call such attributes intrinsic. All of the other attributes in the tree must becomputed. The details of the computations will be covered in Chapters 8 and 9; here wemerely sketch the process.Ent characterizes the object (for example, a particular integer variable) corresponding tothe identi�er sym . It is determined by the declarations valid at the point where the identi�eris used, and gives access to all of the declarative information. Section 4.2.3 discusses possiblerepresentations for an entity .The mode attribute of a name is the type of the object named. In our example it canbe obtained directly from the declarative information made accessible by the ent attributeof the descendant node. In any case, it is computed on the basis of attributes appearingin the `A.4.0.16a' node and its descendants. The term synthesized is used to describe suchattributes.Two types are associated with each expression node in the tree. The �rst, primode , is thetype determined without regard to the context in which the expression is embedded. Thisis a synthesized attribute, and in our example the primode of an expression de�ned by an`A.4.0.15b' node is simply the mode of the name below it. The second type, postmode , is the

72 Abstract Program Representationtype demanded by the context in which the expression is embedded. It is computed on thebasis of attributes of the expression node, its siblings, and its ancestors. Such attributes arecalled inherited.If primode 6= postmode then either a semantic error has occurred or a coercion is neces-sary. For example, if y and z in Figure 4.2 were declared to be of types boolean and realrespectively then there is an error, whereas if they were declared to be integer and realthen a coercion would be necessary.Three classes of operation, creation, access and assignment are necessary to manipulatethe structure tree. A creation operation establishes a new node of a speci�ed type. Assignmentoperations are used to interconnect nodes and to set attribute values, while access operationsare used to extract this information. With these operations we can build trees, traverse themcomputing attribute values, and alter their structure. Structure tree operations are invokedas the source program is parsed, constructing the tree and setting intrinsic attribute values.One or more additional traversals of the completed tree may be necessary to establish allattribute values. In some cases the structure of the tree may be altered during attributecomputation. Chapter 8 explains how the necessary traversals of the structure tree can bederived from the dependence relations among the attributes. (Figure 4.3 shows some basictraversal strategies.) process node A;if node A is not a leaf thenprocess all subtrees of A from left to right;a) Pre�x traversalif node A is not a leaf thenprocess all subtrees of A from left to right;process node A;b) Post�x Traversalprocess node A;while subtrees of A remain dobeginprocess next (to the right) subtree of A;process node A;end; c) Hybrid traversalFigure 4.3: Traversal StrategiesThe result of processing a structure tree is a collection of related information. It maybe possible to produce this result without ever actually constructing the tree. In that case,the structure and attributes of the tree were e�ectively embedded in the processing code.Another possibility is to have an explicit data structure representing the tree. Implementationconstraints often prevent the compiler from retaining the entire data structure in primarymemory, and secondary storage must be used. If the secondary storage device is randomly-addressable, only the implementation of the structure tree operations need be changed. Ifit is sequential, however, constraints must be placed upon the sequences of invocations thatare permitted. An appropriate set of constraints can usually be derived rather easily from aconsideration of the structure tree traversals required to compute the attributes.Any of the traversal strategies described by Figure 4.3 could be used with a sequentialstorage device: In each case, the operation `process node A' implies that A is the currently-

4.1 Intermediate Languages 73accessible element of the device. It may be read, altered, and written to another device.The remaining operations advance the device's `window', making another element accessible.Figure 4.4 illustrates the correspondence between the tree and the sequential �le. The lettersin the nodes of Figure 4.4a stand for the attribute information. In Figures 4.4b and 4.4c, theletters show the position of this information on the �le. Figure 4.4d di�ers from the othersin that each interior node is associated with several elements of the �le. These elementscorrespond to the pre�x encounter of the node during the traversal (agged with `('), somenumber of in�x encounters (agged with `,'), and the post�x encounter (agged with `)').Information from the node could be duplicated in several of these elements, or divided amongthem.
a

e

cb

d f

g ha) A treed e b g h f c ab) Post�x linearizationa b d e c f g hc) Pre�x linearizationa b d b e b a c f g f h f c a((,) , ((,)))d) Hybrid linearizationFigure 4.4: Linearization by Tree TraversalThe most appropriate linearization of the tree on the basis of tree traversals and treetransformations is heavily dependent upon the semantic analysis, optimization and code gen-eration tasks. We shall return to these questions in Chapter 14. Until then, however, we shallassume that the structure tree may be expressed as a linked data structure.4.1.3 Computation GraphA computation graph is an abstract representation of a compilation unit in terms of targetconcepts. It is a directed graph whose nodes correspond to target operations and whose edgesdescribe control and data ow. The access to identi�ed variables and intermediate results arenot represented.Each node of the computation graph speci�es a single abstract target machine operation.In addition to the operation, the node speci�es its successor(s) and an appropriate set ofoperands. An operand may be another computation graph node (indicating the result ofthat node's computation), an identi�ed variable (indicating the address of that variable), or aconstant (indicating the value of that constant). Figure 4.5 is a computation graph describingthe algorithm of Figure 1.1a in terms of an abstract target machine based on Exercise 1.3.Note that the accumulator is never mentioned in Figure 4.5. This is indicative of the ab-

74 Abstract Program Representationstract nature of the computation graph: It uses target operations, but not target instructions,separating operations from access paths. Moreover, the concept of a value has been separatedfrom that of a variable. As we shall see in Chapter 13, this is a crucial point for commonsubexpression recognition.

STORE STORE

SUB

JNEG

JZERO

j

i
j

i

exit

SUB

i
j

SUB

i
j

SUB

i
j

Figure 4.5: A Computation GraphFigure 4.1.3 describes the array assignment a[i] := a[j], assuming a byte-addressed targetmachine and an array with 4-byte elements. The address computation described at thebeginning of Section 3.2.2 appears explicitly. Address (a[0]) is represented by the identi�era and the PA operation adds an integer to an address, yielding an address.Computation graphs are often linearized as sequences of tuples. The tuples are implicitlylinked in the order of the sequence, and hence the last �eld of the nodes in Figures 4.5 and 4.1.3can be dropped. An explicit JMP operation is introduced to allow arbitrary linkage. `Triples'(Figure 4.6) and `quadruples' are examples of this technique. The only di�erence betweenthem is that in the latter the node identi�cation is given explicitly while in the former it isassumed to be the index of the node in the sequence. Figure 4.7 shows a more convenientnotation for human consumption.4.1.4 Target TreeThe target tree forms the interface between code generation and assembly. Its structureand most of the attribute values for its nodes are established during code generation; someattribute values may be added during assembly. The structure of the tree embodies codesequence information, while the attributes specify particular machine instructions and address

4.1 Intermediate Languages 75

MUL

VAL VAL

ADR ADR

STI

PAPA

LDI

MUL
i j

a

4 4

a

Note: PA adds an integer to an address, yielding an addresscaptionConstant Operations and Array AccessTriple Operation Operands1 VAL i2 VAL j3 SUB (1) (2)4 JZERO (3) (19)5 VAL j6 VAL i7 SUB (5) (6)8 JNEG (7) (14)9 VAL j10 VAL i11 SUB (9) (10)12 STORE j (11)13 JMP (1)14 VAL i15 VAL j16 SUB (14) (15)17 STORE i (16)18 JMP (1)Note: (t) is a reference to triple tFigure 4.6: Triple Representation of Figure 4.5

76 Abstract Program Representationt1 : i " t4 : j "t2 : t1 � 4 t5 : t4 � 4t3 : a+ t2 t6 : a+ t5t7 : t3 := t6Figure 4.7: Human-Readable Representation of Figure 4.1.3computations. These characteristics are largely independent of both the source language andthe target computer.The operations necessary to manipulate the target tree fall into the same classes as thosenecessary to manipulate the structure tree. As with the structure tree, memory constraintsmay require that the target tree be placed in secondary memory. The most reasonable lin-earization to use in this case is one corresponding closely to the structure of a normal symbolicassembly language.Figure 4.8 gives a typical layout for a target tree node. Machine op would be a variantrecord that could completely describe any target computer instruction. This record mighthave �elds specifying the operation, one or more registers, addresses and addressing modes.Similarly, constant specification must be capable of describing any constant representableon the target computer. For example, the speci�cation of a literal constant would be similarto that appearing in a token (Figure 4.1 and Section 4.2.2); an address constant would bespeci�ed by a pointer to an expression node de�ning the address. In general, the amount ofspace to be occupied by the constant must also be given.typeinstructions = ((* Classi�cation of target abstractions *)operation , (* machine instruction *)constant , (* constant value *)label , (* address de�nition *)sequence , (* code sequence *)expression); (* address expression *)target node = " t node block ;t node block = recordlink : target node;case classification : instructions ofoperation : (instr : machine op);constant : (value : constant specification);label : (addr : address);sequence : (seq , origin : target node);expression : (rator : expr op ; rand 2 : target node);end; Figure 4.8: Target Code NodeA label is an address constant. The label node is placed in a code sequence at somearbitrary point, and represents the address at that point. When this address is used as anoperand in an address expression, one of the operands of the expression node is a pointer tothe label node. The addr �eld is an example of an attribute whose value is established duringassembly: It speci�es the actual machine address, in a form that can be used as an expression

4.2 Global Tables 77operand. It is important to stress that this attribute is not set by the code generator; thecode generator is responsible only for establishing the label node and any linkages to it.A target program may consist of an arbitrary number of code sequences, each of whichconsists of instructions and/or data placed contiguously in the target computer memory. Eachsequence appears in the target tree as a list of operation, constant and label nodes rootedin a sequence node. If the origin �eld of the sequence node speci�es an address expressionthen the sequence begins at the address which is the value of that expression. Thus theplacement of a sequence can be speci�ed relative to another sequence or absolutely in thetarget computer memory. In the absence of an origin expression, a sequence will be placedin an arbitrary position that guarantees no overlap between it and any other sequence notbased upon it. (A sequence s1 is based upon a sequence s2 when the origin expression of s1depends upon a label node in s2 or in some sequence based upon s2.) Related code sequenceswhose origin expressions result in gaps between them serve to reserve uninitialized storage,while overlapping sequences indicate run-time overlays.Address expressions may contain integers and machine addresses, combined by the fourbasic integer operations with the normal restrictions for subexpressions having machine ad-dresses as operands. The code generator must guarantee that the result of an address ex-pression will actually �t into the �eld in which it is being used. For some machines, thisguarantee cannot be made in general. As a result, either restrictions must be placed upon theexpressions used by the code generator or the assembler must take over some aspects of thecode generation task. Examples of the latter are the �nal selection of an instruction from aset whose members di�er only in address �eld size (e.g. short vs. long jumps), and selectionof a base register from a set used to access a block of memory. Chapter 11 will consider suchproblems in detail.4.2 Global TablesWe extract speci�c information from the token sequence, structure tree, computation graph ortarget tree and represent it in special tables to simplify the program representation, to speedup search processes, or to avoid many repetitions of the same data. In particular, we oftenreplace variable-length data by �xed-length keys and thereby simplify storage management.4.2.1 Symbol TableThe purpose of the symbol table is to provide a unique, �xed-length encoding for the identi�ers(and possibly the keywords) occurring in a program. In most programming languages thenumber of possible identi�ers, and hence the length of the encoding, is very large. Since onlya tiny fraction of the possible identi�ers occur in any particular program, a much shorterencoding su�ces and the symbol table must uniquely map the identi�ers into this encoding.If the entire set of identi�ers is not known a priori then such a mapping can be achieved onlyby comparing each input character string against those already encountered.A symbol table module provides three basic operations:� initialize: Enter the standard identi�ers.� give symbol (identi�er string) symbol : Obtain the encoding of a speci�ed identi�er.� give string (symbol) identi�er string : Obtain the identi�er having a speci�ed encoding.Additional operations for delivering identi�ers in alphabetical order are necessary if cross-reference tables are to be produced.

78 Abstract Program RepresentationAlthough the symbol table is used primarily for identi�ers, we advocate inclusion of key-words as well. No separate recognition procedure is then required for them. With thisunderstanding, we shall continue to speak of the symbol table as though its only contentswere identi�ers.The symbol is used later as a key to access the identi�er's attributes, so it is often encodedas a pointer to a table containing those attributes. A pointer is satisfactory hen only one suchtable exists and remains in main storage. Positive integers provide a better encoding whenseveral tables must be combined (as for separate compilation in Ada) or moved to secondarystorage. In the simplest case the integers chosen would be 1,2,: : :Identi�ers may be character strings of any length. Since it may be awkward to storea table of strings of various lengths, many compilers either �x the maximum length of anidenti�er or check only a part of the identi�er when computing the mapping. We regardeither of these strategies as unacceptable. Clearly the �nite size of computer memory willresult in limitations, but these should be placed on the total number of characters ratherthan the length of an individual identi�er. Failure to check the entire identi�er may result inincorrect analysis of the source program with no indication to the programmer.The solution is to implement the symbol table as two distinct components: a string tableand a lookup mechanism. The string table is simply a very large, packed array of characters,capable of holding all of the distinct identi�ers appearing in a program. It is implementedusing a conventional virtual storage scheme (Exercise 4.4), which provides for allocation ofstorage only as it is needed. The string forms of the identi�ers are stored contiguously in thisarray, and are speci�ed by initial index and length.In view of the large number of entries in the symbol table (often resulting mainly fromstandard identi�ers), hash techniques are preferable to search trees for implementing thelookup mechanism. The length of the hash table must be speci�ed statically, before thenumber of identi�ers is known, so we choose the scheme known as `open hashing' or `hashwith chaining': A computation is performed on the string to select one of M lists, which isthen searched sequentially. If the computation distributes the strings uniformly over the lists,then the length of each will be approximately (number of distinct identi�ers)/M . By makingM large enough the lengths of the lists can be reduced to one or two items.The �rst decision to be made is the choice of hash function. It should yield a relativelysmooth distribution of the strings across the M lists, evaluation should be rapid, and it mustbe expressible in the implementation language. One computation that gives good results isto express the string as an integer and take the residue modulo M . M should be a primenumber not close to a power of the number of characters in the character set. For example,M = 127 would not be a good choice if we were dealing with a 128-character set; M = 401,on the other hand, should prove quite satisfactory.There are two problems with the division method: It is time-consuming for strings whoseinteger representations exceed the single-length integer range of the implementation language,and it cannot be expressed at all if the implementation language is strongly typed. To solvethe former, we generally select some substring for the hash computation. Heads or tails ofthe string are poor choices because they tend to show regularities (SUM1, SUM2, SUM3or REDBALL, BLUEBALL, BLACKBALL) that cause the computation to map too manystrings into the same list. A better selection is the center substring:if jsj � n then s else substr (s; (jsj � n) div 2; n);(Here s is the string, jsj is the length of s and n is the length of the longest string representableas a single-length integer. The function substr (s; f; l) yields the l-character substring of sbeginning at the f th character.)The constraints of a strongly-typed implementation language could be avoided by provid-ing a primitive transfer function to convert a su�ciently short string into an integer for type

4.2 Global Tables 79checking purposes. It is important that this transfer function not involve computation. Forexample, if the language provides a transfer function from characters to integers, a transferfunction from strings to integers could be synthesized by a loop. This approach defeats thewhole purpose of the hashing function, however, by introducing a time-consuming computa-tion. It would probably be preferable to use a single character to select the list in this caseand accept a longer search!Comparison of the input identi�er with the symbols already present in the table can bespeeded up by a variety of quick checks, the simplest of which is comparison of string lengths.Whether or not such checks are useful depends upon the precise costs of string comparisonand string table access.In a multi-pass compiler, the lookup mechanism may be discarded after the lexical analysishas converted identi�ers to symbols. The string table must, however, be retained for latertasks such as module linking.4.2.2 Constant TableLiteral constant values appearing in the program must be retained and possibly manipulatedduring compilation. Compile-time computation involving numeric operations must be carriedout using the semantics of the target machine. In other words, integer operations mustconform to the range of the target machine's integer arithmetic, and oating point operationsmust conform to its radix, range, precision and rounding characteristics. Because of this,we regard the constant table as an abstract data type: It de�nes a set of values, and anycomputations involving these values must be carried out by operations that the constant tableprovides.We distinguish three conceptually distinct representations of a constant: the characterrepresentation appearing in the source program, the internal representation de�ned by theconstant table, and the representation required by the target machine. The constant tablemodule provides conversion operations to accept source representations and return inter-nal representations, and to accept internal representations and return target representations.Source-to-internal conversions are invoked during lexical analysis, while internal-to-target con-versions are invoked during assembly. Although the three representations are conceptuallydistinct, two or more of them may be physically identical in a particular compiler. For exam-ple, a LAX oating point constant might have identical internal and target representations.The constant table module could use a string table of the form introduced in the previoussection to store string constants. Since identical string constants occur rarely in a program,no search is needed to enter strings into the table; each is simply inserted as it is encountered.A �xed-length encoding then consists of a string table index and length, which the constanttable module delivers as the internal value of the constant. In a multi-pass compiler the stringtable could reside in secondary storage except during lexical analysis and assembly.In addition to conversions, the constant table module must provide computational andcomparison operations for the internal representations. These operations are used not onlyfor manipulating denotations that appear in the source program, but also for carrying out allcomputations and comparisons of program-de�ned values during semantic analysis and codegeneration. For example, consider the Pascal type constructor array [l::u] of m. Duringsemantic analysis, constant table operations are used to verify that the lower bound does notexceed the upper; during code generation they are used to compute the size and alignmentof the array.The requirements of semantic analysis and code generation determine the set of operationsthat must be provided. In general, these operations should duplicate the behavior of theequivalent operations on the target machine. For example, a character comparison should

80 Abstract Program Representationfollow the target machine collating sequence. The range of integer values, however, mustnormally be larger than that of the target machine. Suppose that we compile a programcontaining the type constructor of the previous paragraph for the PDP11 (maxint = 32767).Suppose further that l = �5000, u = 5000 and m is real. This is a perfectly legal declarationof an array that will easily �t into the 65536-byte memory of the PDP11, but computationof its size in bytes (40004) overows the PDP11's integer range.If the compiler is being executed on the target machine, this requirement for increasedrange implies that the computational and comparison operations of the constant table mustuse a multiple-precision representation. Knuth [1969] describes in detail how to implementsuch a package.Although, as shown above, overow of the target machine's arithmetic range is legitimatein some cases, it is often forbidden. When the user writes an expression consisting only ofconstants, and that expression overows the range of the target machine, the overow mustbe detected if the expression is evaluated by the compiler. This leads to a requirement thatthe constant table module provide an overow indicator that is set appropriately by eachcomputational operator to indicate whether or not the computation would overow on thetarget machine. Regardless of the state of the overow indicator, however, the constant tableshould yield the (mathematically) correct result.In most programming languages, a particular numeric value can be expressed in manydi�erent ways. For example, each of the following LAX oating point numbers expresses thevalue `one thousand':1000000E-3 1.0E3 .001E6 1000.0The source-to-internal conversion operators of the constant module should accept onlya standardized input format. Nonzero integers are normally represented by a sequence ofdigits, the �rst of which is nonzero. A suitable representation for nonzero oating pointnumbers is the pair (signi�cand, exponent), in which the signi�cand is a sequence of digitswithout leading or trailing zeros and the exponent is suitably adjusted. The signi�cand can beinterpreted either as an integer or a normalized decimal fraction. `One thousand' would thenbe represented either as ('1',3) or as ('1',4) respectively. A fractional signi�cand is preferablebecause it can be truncated or rounded without changing the exponent. Zero is representedby ('0',0). In Section 6.2 we shall show how the standardized format is obtained by the lexicalanalyzer.If no oating point arithmetic is provided by the constant table then the signi�cand canbe stored in a string table. The internal representation is the triple (string table index,signi�cand length, adjusted exponent). When compile-time oating point operations areavailable, oating point numbers are converted to an internal representation of appropriateaccuracy for which the arithmetic of the target machine can be simulated exactly. (Note thatdecimal arithmetic is satisfactory only if the target machine also uses decimal arithmetic.)4.2.3 De�nition TableTypes, variables, procedures and parameters are examples of entities: components of theprogram whose attributes are established by declaration. Most of the leaves of the structuretree represent uses of entities, at which the entity's attributes must be made available. Ade�nition table abstracts the entities, avoiding the need to explicitly reproduce all of theattributes of an entity at each of the leaves representing its uses. There is one de�nitiontable entry for each declared entity, and this entry holds all attributes of that entity. A leafrepresenting the use of an entity contains a reference to the de�nition table.We must emphasize that a de�nition table merely restates structure tree information ina more compact and accessible form. (Section 8.3.2 will show how to partially automate the

4.3 Notes and References 81choice of information to be included in a de�nition table.) Thus each form of the structuretree has, at least conceptually, an associated de�nition table. Transformations of the structuretree imply corresponding transformations of the de�nition table. Whether the de�nition tableis actually transformed, or a new de�nition table is built from the transformed tree, is animplementation decision that depends upon two factors:� The relative costs of transformation and reconstruction.� The relationship between the traversal needed to reconstruct the information and thetraversal using that information.When assessing the relative costs, we must be certain to consider the extra storage requiredduring the transformation as well as the code involved.The second factor mentioned above may require some elaboration: Consider the de�nitiontable used during semantic analysis and that used during code generation. Although thestructure tree may be almost the same for these two processes, the interesting attributes ofde�ned objects are usually quite di�erent. During semantic analysis we are concerned withsource properties; during code generation with target properties. Thus the de�nition tablesfor the two processes will di�er. Suppose further that our code generation strategy requiresa single depth-�rst, left-to-right traversal of the structure tree given that the de�nition tableis available.If the de�nition table can be rebuilt during a single depth-�rst, left-to-right traversal of thestructure tree, and every attribute becomes available before it is needed for code generation,then rebuilding can be combined with code generation and the second factor noted abovedoes not lead to increased costs. When this condition is not satis�ed, the second factor doesincrease the rebuilding cost and this must be taken into account. It may then be cheaper totransform the de�nition table between the last semantic analysis traversal and the �rst codegeneration traversal. (The attribute dependency analysis presented in Section 8.2 is used todecide whether the condition is satis�ed.)A de�nition table is generally an unstructured collection of entries. Any arbitrary entrycan be accessed via a pointer in order to read an attribute or assign a new value. In a one-passcompiler, a stack strategy could also be used: At every de�nition a new entry is pushed ontothe top of the stack, and at the end of a range all de�nitions found in the range are popped.This organization has the advantage that only relevant entries must be held in storage.Copies of some of the more-frequently accessed attributes of an entity may be included ineach leaf representing a use of that entity. The choice of such attributes depends upon theparticular compiler design; we shall return to this question several times, in Chapters 9, 10and 14. It may be that these considerations lead to including all attributes in the leaf. Thede�nition table then ceases to exist as a separate data structure.4.3 Notes and ReferencesPost�x, triples, and quadruples are often discussed in isolation as `internal forms' of theprogram, without reference to the structures they represent (see Gries [1971] for example).Such discussions tend to bog down in a morass of special cases and extensions once they movebeyond the treatment of arithmetic expressions. We believe that thinking in terms of a treehelps the compiler designer to concentrate on the important relationships present in the textand to arrive at a more coherent representation. Once this has been derived, a variety oflinearizations may be used depending upon the particular compiler design.Most authors lump the various tables discussed in Section 4.2 into a single dictionary,which they often call `the symbol table' [Gries, 1971; Bauer and Eickel, 1976; Aho and

82 Abstract Program RepresentationUllman, 1977]. The concept of separate tables seems to be restricted to descriptions of multi-pass compilers, as a mechanism for reducing main storage requirements [Naur, 1964]. Thisis not invariably true, however, especially when one considers the literature on ALGOL 68[Peck, 1971] In his description of a multi-pass Pascal compiler, Hartmann [1977] uses sep-arate tables both to reduce core requirements and to provide better compiler structure.Lookup mechanisms have concerned a large number of authors; the most comprehensivetreatment is that of Knuth. Knuth [1973] He gives details of a variety of mechanisms,including hashing, and shows how they compare for di�erent applications. It appears thathashing is the method of choice for symbol table implementation, but there may be somecircumstances in which binary trees are superior [Palmer et al., 1974]. For symbol tableswith a �xed number of known entries (e.g. keywords) Cichelli [1980] and Cercone et al.[1982] describe a way of obtaining a hash function that does not have any collisions and hencerequires no collision resolution.Exercises4.1 [Sale, 1971; McIlroy, 1974] Specify abstract tokens for FORTRAN 66.4.2 Specify a target node (Figure 4.1.3) suitable for some machine with which you arefamiliar.4.3 Is a symbol table needed to map identi�ers in a compiler for Minimal Standard BASIC?Explain.4.4 Implement a string table module, using a software paging scheme: Statically allocate anarray of pointers (a `page table') to blocks of �xed size (`pages'). Initially no additionalblocks are allocated. When a string must be stored, try to �t it into a currently-allocated page. If this cannot be done, dynamically allocate a new page and place apointer to it in the page table. Carefully de�ne the interface to your module.4.5 Implement a symbol table module that provides a lookup mechanism, and uses themodule of Exercise 4.4 to store the identi�er string.4.6 Identi�er strings are speci�ed in the module of Exercise 4.5 by the pair (string tableindex, length). On a computer like the DEC PDP11, this speci�cation occupies 8 bytes.Comment on the relative merits of this scheme versus one in which identi�er stringsare stored directly if they are no longer than k bytes, and a string table is used forthose whose length exceeds k. What should the value of k be for the PDP11? Wouldthis scheme be appropriate for a multipass compiler?4.7 Consider the FORTRAN expression `X * 3.1415926535897932385 * Y'. Assume thatno explicit type has been given for X, and that Y has been declared DOUBLE PRE-CISION.(a) Should the constant be interpreted as a single or double precision value? Explain.(b) For some machine with which you are familiar, estimate the relative errors in thesingle and double precision representations of the constant.(c) Explain the relevance of this example to the problem of selecting the internalrepresentation to be provided by the constant table for oating point numbers.

Chapter 5Elements of Formal SystemsFormal grammars, in particular context-free grammars, are the tools most frequently usedto describe the structure of programs. They permit a lucid representation of that structurein the form of parse trees, and one can (for the most part mechanically) specify automatathat will accept all correctly-structured programs (and only these). The automata are easyto modify so that they output any convenient encoding of the parse tree.We limit our discussion to the de�nitions and theorems necessary to understand and usetechniques explained in Chapters 6 and 7, and many theorems are cited without proof. In thecases where we do sketch proofs, we restrict ourselves to the constructive portions upon whichpractical algorithms are based. (We reference such constructions by giving the number of theassociated theorem.) A formally complete treatment would exceed both the objectives of andsize constraints on this book. Readers who wish to delve more deeply into the theoreticalaspects of the subject should consult the notes and references at the end of this chapter.5.1 Descriptive ToolsIn this section we �rst review the standard mathematical notation used to describe sets ofstrings. We then introduce some formal systems for the production of such sets and with thesede�ne certain classes of languages. Finally, we discuss the representation of the structure ofstrings by means of trees and give a complete example.5.1.1 Strings and Rewriting SystemsWe begin with a vocabulary (or alphabet), V : A �nite, nonempty set of symbols having nodiscernible structure. (At least we take no notice of further structure on the level of abstractionwe are considering.) One example of a vocabulary is the set of characters available on aparticular computer, others are the set of basic symbols de�ned by a particular language (e.g.identi�er, integer, +, begin) and the set of syntactic terms we use to describe the structureof a program. We may attach semantic signi�cance to some of the symbols in the vocabulary,without explaining them further by means of the formal systems introduced in this chapter.The set of all �nite strings x1 : : : xn, n � 1, formed by concatenating elements of V isdenoted by V +. V � denotes V + augmented by adding the empty string (which contains nosymbols). We shall denote the empty string by �; it is both a left and right identity forconcatenation: �� = �� = �, � 2 V �. The count, n, of symbols in a string � = x1 : : : xn iscalled the length of �, and is denoted by j�j. Thus j�j = 0.83

84 Elements of Formal Systems5.1 DefinitionLet � = �!; �; ! 2 V �. The string � is called a head, and the string ! a tail, of �. If � 6= �(! 6= �) then it is a proper head (tail) of �. �Each subset of V � is called a language over vocabulary V . The elements of a language arecalled sentences. Interesting languages generally contain in�nitely many sentences, and hencecannot be de�ned by enumeration. We therefore de�ne each such language, L, by specifyinga process that generates all of its sentences, and no other elements of V �. This process maybe characterized by a binary, transitive relation)+ over V �, such that L = f� j �)+ �gfor a distinguished string � 2 V �. We term the relation)+ a derivative relation.5.2 DefinitionA pair (V;)+) consisting of a vocabulary V and a derivative relation)+, is called a formalsystem. �A derivative relation usually cannot be de�ned by enumeration either. We shall concernourselves only with relations that can be described by a �nite set of pairs (�; �) of stringsfrom V �. We call such pairs productions, and write them as � ! � . The transitive closure ofthe �nite relation described by these productions yields a derivative relation. More precisely:5.3 DefinitionA pair (V; P), consisting of a vocabulary V and a �nite set, P , of productions � ! � (�; � 2V �) is called a general rewriting (or Semi-Thue) system. �5.4 DefinitionA string � is directly derivable from a string � (symbolically �) �) by a general rewritingsystem (V; P) if there exist strings �, � , �, � 2 V � such that � = ���, � = ��� and � ! �is an element of P . �5.5 DefinitionA string � is derivable from a string � (symbolically �)+ �) by a general rewriting system(V; P) if there exist strings �0; : : : ; �n 2 V �(n � 1) such that � = �0, �n = � and �i�1) �i,i = 1; : : : ; n. The sequence �0; : : : ; �n is called a derivation of length n. �We write �)� � to indicate that either � = � or �)+ �. If � is (directly) derivable from�, we also say that � is (directly) reducible to �. Without loss of generality, we shall assumethat derivations �)+ � of a string from itself are impossible.5.1.2 GrammarsUsing the general rewriting system de�ned by Figure 5.1, it is possible to derive from Eevery correct algebraic expression consisting of the operators + and �, the variable i, andthe parentheses (). Many other strings can be derived also, as shown in Figure 5.2. In theremainder of this chapter we shall concentrate on rewriting systems in which the vocabulary ismade up of two disjoint subsets: T , a set of terminals, and N , a set of nonterminals (syntacticvariables). We will ultimately be interested only in those strings derivable from a distinguishednonterminal (the axiom or start symbol) and consisting entirely of terminals. (Thus we speakof generative systems. One could instead consider analytic systems in which the axiom isderived from a string of terminals. We shall return to this concept with De�nitions 5.12and 5.20.)

5.1 Descriptive Tools 85fE; T; F;+; �; (;); iga) The vocabulary VfE ! T , E ! E + T ,T ! F , T ! T � F ,F ! i, F ! (E)gb) The productions PFigure 5.1: A General Rewriting System (V; P)E) TT) T � FT � F) T � ia) Some immediate derivationsE)� T � i (length 3)E)� i+ i � i (length 8)T iE)� iii (length 5)T iE)� T iE (length 0)E)� T (length 1)b) Additional derivationsFigure 5.2: Derivations5.6 DefinitionA quadrupleG = (T;N; P; Z) is called a grammar for the language L(G) = f� 2 T � j Z)� �gif T and N are disjoint, (T [N;P) is a general rewriting system, and Z is an element of N .We say that two grammars G and G0 are equivalent if L(G) = L(G0). �Figure 5.3 illustrates these concepts with two grammars that generate algebraic expressionsin the variable i. These grammars are equivalent according to De�nition 5.6.Grammars may be classi�ed by the complexity of their productions:5.7 Definition (Chomsky Hierarchy)The grammar G = (T;N; P; Z) is atype 0 grammar if each production has the form � ! � , � 2 V + and � 2 V �.type 1 (context-sensitive) grammar if each production has the form �A� ! ���, �; � 2 V �,A 2 N and � 2 V +.type 2 (context-free) grammar if each production has the form A! �, A 2 N and � 2 V �.type 3 (regular) grammar if each production has either the form A ! a, A 2 N and a 2T [f�g or the form A! aB, A;B 2 N and a 2 T . �If a grammar that generates a language is context-sensitive (context-free, regular), then wealso term the language itself context-sensitive (context-free, regular). Regular and context-free grammars are the most interesting to compiler writers. The former are usually used todescribe the basic symbols (e.g. identi�ers, constants) of a language, while the latter describethe structure of a program. From now on, we restrict our attention to these two grammarclasses.Although we admit �-productions (productions whose right-hand side consists of the emptystring) in context-free grammars, we are interested only in languages that do not include the

86 Elements of Formal SystemsT =f+; �; (;); igN=fE; T; FgP =fE ! T , E ! E + T ,T ! F , T ! T � F ,F ! i, F ! (E)gZ= Ea) A grammar incorporating (V; P) from Figure 5.1T=f+; �; (;); igN=fE;E0; T; T 0; FgP=fE ! T , E ! TE0,E0 !+T , E0 !+TE0,T ! F , T ! FT 0,T 0 !*F , T 0 !*FT 0,F ! i, F ! (E)gZ= Eb) A grammar incorporating another general rewriting systemFigure 5.3: Equivalent Grammarsempty string. Such languages can always be described by �-free grammars { grammars without�-productions. Therefore �-productions will only be used when they result in more convenientdescriptions.We assume further that every symbol in the vocabulary will appear in the derivation ofat least one sentence. Thus the grammar will not contain any useless symbols. (This isnot always true for actual descriptions of programming languages, as illustrated by the LAXde�nition of Appendix A.)5.1.3 Derivations and Parse TreesEach production in a regular grammar can have at most one nonterminal on the right-handside. This property guarantees { in contrast to the context-free grammars { that each sen-tence of the language has exactly one derivation when the grammar is unambiguous (De�ni-tion 5.11).Figure 5.4a is a regular grammar that generates the non-negative integers and real numbersif n represents an arbitrary sequence of digits. Three derivations according to this grammarare shown in Figure 5.4b. Each string except the last in a derivation contains exactly onenonterminal, from which a new string must be derived in the next step. The last string consistsonly of terminals. The sequence of steps in each derivation of this example is determined bythe derived sentence.The situation is di�erent for context-free grammars, which may have any number of non-terminals on the right-hand side of each production. Figure 5.5 shows that several derivations,di�ering only in the sequence of application of the productions, are possible for a given sen-tence. (These derivations are constructed according to the grammar of Figure 5.3a.)In the left-hand column, a leftmost derivation was used: At each step a new string wasderived from the leftmost nonterminal. Similarly, a rightmost derivation was used in theright-hand column. A nonterminal was chosen arbitrarily at each step to produce the centerderivation.A grammar ascribes structure to a string not by giving a particular sequence of derivationsteps but by showing that a particular substring is derived from a particular nonterminal.

5.1 Descriptive Tools 87T = fn; :;+;�; EgN = fC;F; I;X; S; UgP = fC ! n, C ! nF , C ! :I,F ! :I, F ! ES,I ! n, I ! nX,X ! ES,S ! n, S ! +U , S ! �U ,U ! ngZ = Ca) A grammar for real constantsC C Cn :I nF:n n:In:nXn:nESn:nE + Un:nE + nb) Three derivations according to the grammar of (a)Figure 5.4: Derivations According to a Regular GrammarFor example, in Figure 5.5 the substring i � i is derived from the single nonterminal T . Weinterpret this property of the derivation to mean that i � i forms a single semantic unit: aninstance of the operator � applied to the i's as operands. It is important to realize that thegrammar was constructed in a particular way speci�cally to ascribe a semantically relevantstructure to each sentence in the language. We cannot be satis�ed with any grammar thatde�nes a particular language; we must choose one reecting the semantic structure of eachsentence. For example, suppose that the rules E ! E + T and T ! T � F of Figure 5.3ahad been replaced by E ! E � T and T ! T +F respectively. The modi�ed grammar woulddescribe the same language, but would ascribe a di�erent structure to its sentences: It wouldimply that additions should take precedence over multiplications.E E EE + T E + T E + TT + T E + T � F E + T � FF + T T + T � F E + T � ii+ T T + F � F E + F � ii+ T � F T + F � i E + i � ii+ F � F F + F � i T + i � ii+ i � F i+ F � i F + i � ii+ i � i i+ i � i i+ i � iFigure 5.5: Derivations According to a Context-Free GrammarSubstrings derived from single nonterminals are called phrases:5.8 DefinitionConsider a grammar G = (T;N; P; Z). The string � 2 V + is a phrase (for X) of ��� if andonly if Z)� �X�)+ ��� (�; � 2 V �, X 2 N). It is a simple phrase of ��� if and only ifZ)� �X�) ���. �Notice that a phrase need not consist solely of terminals.

88 Elements of Formal SystemsEach of the three derivations of Figure 5.5 identi�es the same set of simple phrases. Theyare therefore equivalent in the sense that they ascribe identical phrase structure to the stringi + i � i. In order to have a single representation for the entire set of equivalent derivations,one that makes the structure of the sentence obvious, we introduce the notion of a parse tree(see Appendix B for the de�nition of an ordered tree):5.9 DefinitionConsider an ordered tree (K;D) with root k0 and label function f : K !M . Let k1; : : : ; kn,(n > 0) be the immediate successors of k0. (K;D) is a parse tree according to the grammar(T;N; P; Z) if the following conditions hold:(a) M � V [f�g(b) f(k0) = Z(c) Z ! f(k1) : : : f(kn) 2 P(d) if f(ki) 2 T , or if n = 1 and f(ki) = �, then ki is a leaf(e) if f(ki) 2 N then ki is the root of a parse tree according to the grammar (T;N; P; f(ki))�Figure 5.6 is a tree for i+ i � i according to the grammar of Figure 5.3a, as can be shown byrecursive application of De�nition 5.9.
E

E + T

T T * F

F F

i

i

iFigure 5.6: The Parse Tree for i+ i � iWe can obtain any string in any derivation of a sentence from the parse tree of thatsentence by selecting a minimum set of nodes, removal of which will break all root-to-leafpaths. (Such a set of nodes is called a cut { see De�nition B.8.) For example, in Figure 5.6the set fT;+; T; �; Fg (the third row of nodes, plus `+' from the second row) has this propertyand T + T � F is the fourth step in the center derivation of Figure 5.5.5.10 TheoremIn a parse tree according to a grammar G = (T;N; P; Z), a set of nodes (k1; : : : ; kn) is a cutif and only if Z)� f(k1) : : : f(kn). �A parse tree speci�es the phrase structure of a sentence. With the grammars given so far,only one parse tree corresponds to each sentence. This may not always be true, however, asillustrated by Figure 5.7. The grammar of Figure 5.7a describes the same language as thatof Figure 5.3a, but many sentences have several parse trees.5.11 DefinitionA sentence is ambiguous if its derivations may be described by at least two distinct parse trees(or leftmost derivations or rightmost derivations). A grammar is ambiguous if there is at leastone ambiguous sentence in the language it de�nes; otherwise the grammar is unambiguous.�

5.1 Descriptive Tools 89T = f+; �; igN = fEgP = fE ! E +E;E ! E � E;E ! igZ = Ea) An ambiguous grammar
E E

E

E E i

ii

+

*

E

E

E

E

i

i i

* E

+

b) Two parse trees for i+ i � iFigure 5.7: AmbiguityFigure 5.7b shows two parse trees for i + i � i that are essentially di�erent for our purposesbecause we associate two distinct sequences of operations with them. If we use an ambiguousgrammar to describe the language (and this may be a useful thing to do), then either theambiguity must involve only phrases with no semantic relevance or we must provide additionalrules for removing the ambiguity.5.1.4 Extended Backus-Naur FormAppendix A uses a notation known as extended Backus-Naur form (EBNF) to describe LAX.This notation allows us to describe a grammar in a more compact form. Moreover, as we shallsee in Chapter 7, a parser can be derived easily from the speci�cation of a language writtenin EBNF. In this section we illustrate the techniques we have been discussing by giving aformal de�nition of EBNF; an informal description appears at the beginning of Appendix A.Figure 5.8a is the grammar for EBNF. When a speci�cation is written in EBNF, characterstrings are used to represent the elements of T as indicated in Figure 5.8b. A completespeci�cation for EBNF itself appears in Figure 5.8c. Given a speci�cation such as that ofFigure 5.8c, we can derive one or more grammars that de�ne the same language. In thismanner we establish the `meaning' of the speci�cation.The derivation proceeds from a parse tree (K;D) of the given speci�cation according tothe grammar of Figure 5.8a. In addition to the label function f from De�nition 5.9, we de�neh : K ! L[I, where L is the set of identi�ers and literals appearing in the speci�cation andI is a set of unique identi�ers. L and I are disjoint; h associates an element of L with everyleaf of K and an element of I with every non-leaf node. An element of L may be associatedwith any number of leaves, but there is a 1-1 correspondence between non-leaf nodes andelements of I.L[I is the vocabulary of the grammar that we shall derive from the EBNF speci�cation.All elements of I are nonterminals of the grammar, as are identi�ers appearing on the leftof `::=' in an EBNF rule. All literals and identi�ers not appearing on the left of `::=' areterminals. Formally:R = fh(k) j (k0; k) 2 D; f(k0) = rule ; f(k) = identifiergT = L�RN = R [I

90 Elements of Formal SystemsT =fidentifier , literal , is , or , lpn , rpn , lbk , rbk , plus , star ,period , separatorgN=fspecification , rule , expression , tertiary , secondary , primary ,unit , atom gP =fspecification ! rule , specification ! specification rule ,rule ! identifier is expression period ,expression ! tertiary , expression ! expression separator atom ,tertiary ! secondary , tertiary ! tertiary or secondary ,secondary ! primary , secondary ! secondary primary ,primary ! unit , primary ! unit star , primary ! unit plus ,primary ! lbk expression rbk ,unit ! atom , unit ! lpn expression rpn ,atom ! identifier , atom ! literal gZ= specification a) Grammar for EBNFidentifier : Sequence of letters, digits and underscores.literal : String delimited by apostrophes.lpn : (rpn :) lbk : [rbk :] is : ::=or : j star : * plus : + period : . separator : jjb) Representation used in this book for EBNF terminalsspecification ::= rule + .rule ::= identifier '::=' expression '.' .expression ::= (primary + jj 'j') j expression 'jj' atom .primary ::= unit ['*' j '+'] j '[' expression ']' .unit ::= atom j '(' expression ')' .atom ::= identifier jliteral .c) A possible EBNF speci�cation for EBNFFigure 5.8: Extended Backus-Naur FormHere R is the set of rule identi�ers. If the EBNF speci�cation is well-formed then there willbe exactly one element of R that does not appear on the right of `::=' in any rule. Thiselement is the axiom of the derived grammar:Z = r 2 (R � fh(k) j (k0; k) 2 D; f(k0) = atomg)A set of productions can be derived from every non-leaf node of the parse tree, and P isthe union of those sets. Consider each subtree formed from a non-leaf node k0 and its orderedimmediate successors k1; k2; : : : ; kn. The derived productions depend upon the structure ofthe subtree (given by a production of Figure 5.8a) and the labels of the nodes in the subtreeas follows:For subtree derive the production setrule ! identifier is expression period fh(k1)! h(k3)gexpression! expression separator atom fh(k0)! h(k1), h(k0)! h(k0)h(k3)h(k1)gtertiary ! tertiary or secondary fh(k0)! h(k1), h(k0)! h(k3)gsecondary ! secondary primary fh(k0)! h(k1)h(k2)gprimary ! unit star fh(k0)! �, h(k0)! h(k0)h(k1)gprimary ! unit plus fh(k0)! h(k1), h(k0)! h(k0)h(k1)gprimary ! lbk expression rbk fh(k0)! �, h(k0)! h(k2)gunit ! lpn expression rpn fh(k0)! h(k2)gDerive the empty set of productions for any subtree with h(k0) = specification, andderive fh(k0)! h(k1)g for any subtree not yet mentioned.

5.2 Regular Grammars and Finite Automata 91The grammar derived from Figure 5.8c by this process will have more productions thanFigure 5.8a. The extra productions can be removed by a simple substitution: If B 2 Noccurs exactly twice in a grammar, once in a production of the form A ! �B� and oncein a production of the form B ! � (�; �; � 2 V �), then B can be eliminated and the twoproductions replaced by A! ���. After all such substitutions have been made, the resultinggrammar will di�er from Figure 5.8a only in the representation of vocabulary symbols.5.2 Regular Grammars and Finite AutomataA grammar speci�es a process for generating sentences, and thus allows us to give a �nitedescription of an in�nite language. The analysis phase of the compiler, however, must recog-nize the phrase structure of a given sentence: It must parse the sentence. Assuming that thelanguage has been described by a grammar, we are interested in techniques for automaticallygenerating a recognizer from that grammar. There are two reasons for this requirement:� It provides a guarantee that the language recognized by the compiler is identical to thatde�ned by the grammar.� It simpli�es the task of the compiler writer.We shall use automata, which we introduce as special cases of general rewriting systems,as models for the parsing process. In this section we develop a theoretical basis for regularlanguages and �nite automata, and then extend the concepts and algorithms to context-freelanguages and pushdown automata in Section 5.3. The implementation of the automata iscovered in Chapters 6 and 7.5.2.1 Finite Automata5.12 DefinitionA �nite automaton (�nite state acceptor) is a quintuple A = (T;Q;R; q0; F), where Q is anonempty set, (T [Q;R) is a general rewriting system, q0 is an element of Q and F is asubset of Q. The sets T and Q are disjoint. Each element of R has the form qt! q0, whereq and q0 are elements of Q and t is an element of T . We say that A accepts a set of stringsL(A) = f� 2 T � j q0�)� q; q 2 Fg. Two automata, A and A0 are equivalent if and only ifL(A) = L(A0). �We can conceive of the �nite automaton as a machine that reads a given input string out of abu�er one symbol at a time and changes its internal state upon absorbing each symbol. Q isthe set of internal states, with q0 being the initial state and F the set of �nal states. We saythat a �nite automaton is in state q when the current string in the derivation has the formq� . It makes a transition from state q to state q0 if � = t� and qt ! q0 is an element of R.Each state transition removes one symbol from the input string.5.13 TheoremFor every regular grammar, G, there exists a �nite automaton, A, such that L(A) = L(G).�The proof of this theorem is an algorithm to construct A, given G = (T;N; P; Z). LetA = (T;N [ffg; R; Z; F), f =2 N . R is constructed from P by the following rules:1. If X ! t (X 2 N; t 2 T) is a production of P then let Xt! f be a production of R.2. If X ! tY (X;Y 2 N; t 2 T) is a production of P then let Xt! Y be a production ofR.

92 Elements of Formal SystemsT =fn; :;+;�; EgQ=fC;F; I;X; S; U; qgR=fCn! q, Cn! F , C:! I,F:! I, FE ! S,In! q, In! X,XE ! S,Sn! q, S+! U , S� ! U ,Un! qgq0= CF =fqgFigure 5.9: An Automaton Corresponding to Figure 5.4aFurther, F = ffg [fX j X ! � 2 Pg. Figure 5.9 is an automaton constructed by thisprocess from the grammar of Figure 5.4a.One can show by induction that the automaton constructed in this manner has the follow-ing characteristic: For any derivation Z��)� X�)� q (�; � 2 T �;X 2 N; �� 2 L(A); q 2F), the state X speci�es the nonterminal symbol of G that must have been used to derivethe string �. Clearly this statement is true for the initial state Z if �� belongs to L(G). Itremains true until the �nal state q, which does not generate any further symbols, is reached.With the help of this interpretation it is easy to prove that each sentence of L(G) also belongsto L(A) and vice-versa.Figure 5.9 is an unsatisfactory automaton in practice because at certain steps { for exam-ple in state I with input symbol n { several transitions are possible. This is not a theoreticalproblem since the automaton is capable of producing a derivation for any string in the lan-guage. When implementing this automaton in a compiler, however, we must make somearbitrary decision at each step where more than one production might apply. An incorrectdecision requires backtracking in order to seek another possibility. There are three reasonswhy backtracking should be avoided if possible:� The time required to parse a string with backtracking may increase exponentially withthe length of the string.� If the automaton does not accept the string then it will be recognized as incorrect. Aparse with backtrack makes pinpointing the error almost impossible. (This is illustratedby attempting to parse the string n:nE ++n with the automaton of Figure 5.9 tryingthe rules in the sequence in which they are written.)� Other compiler actions are often associated with state transitions. Backtracking thenrequires unraveling of actions already completed, generally a very di�cult task.In order to avoid backtracking, additional constraints must be placed upon the automatathat we are prepared to accept as models for our recognition algorithms.5.14 DefinitionAn automaton is deterministic if every derivation can be continued by at most one move. �A �nite automaton is therefore deterministic if the left-hand sides of all rules are distinct. Itcan be completely described by a state table that has one row for each element of Q and onecolumn for each element of T . Entry (q; t) contains q0 if and only if the production qt! q0 isan element of R. The rows corresponding to q0 and to the elements of F are suitably marked.Backtracking can always be avoided when recognizing strings in a regular language:

5.2 Regular Grammars and Finite Automata 935.15 TheoremFor every regular grammar, G, there exists a deterministic �nite automaton, A, such thatL(A) = L(G). �Following construction 5.13, we can derive an automaton from a regular grammar G =(T;N; P; Z) such that, during acceptance of a sentence in L(G), the state at each pointspeci�es the element of N used to derive the remainder of the string. Suppose that the pro-ductions X ! tU and X ! tV belong to P . When t is the next input symbol, the remainderof the string could have been derived either from U or from V . If A is to be deterministic,however, R must contain exactly one production of the form Xt ! q0. Thus the state q0must specify a set of nonterminals, any one of which could have been used to derive theremainder of the string. This interpretation of the states leads to the following inductivealgorithm for determining Q, R and F of a deterministic automaton A = (T;Q;R; q0; F). (Inthis algorithm, q represents a subset Nq of N [ffg; f =2 N):1. Initially let Q = fq0g and R = ;, with Nq0 = fZg.2. Let q be an element of Q that has not yet been considered. Perform steps (3)-(5) for eacht 2 T .3. Let next(q; t) = fU j 9X 2 Nq such that X ! tU 2 Pg.4. If there is an X 2 Nq such that X ! t 2 P then add f to next(q; t) if it is not alreadypresent; if there is an X 2 Nq such that X ! � 2 P then add f to Nq if it is not alreadypresent.5. If next(q; t) 6= ; then let q0 be the state representing Nq0 = next(q; t). Add q0 to Q andqt! q0 to R if they are not already present.6. If all states of Q have been considered then let F = fq j f 2 Nqg and stop. Otherwisereturn to step (2).You can easily convince yourself that this construction leads to a deterministic �niteautomaton A such that L(A) = L(G). In particular, the algorithm terminates: All statesrepresent subsets of N [ffg, of which there are only a �nite number.To illustrate this procedure, consider the construction of a deterministic �nite automatonthat recognizes strings generated by the grammar of Figure 5.4a. The state table for thisgrammar, showing the correspondence between states and sets of nonterminals, is given inFigure 5.10a. You should derive this state table for yourself, following the steps of thealgorithm. Begin with a single empty row for q0 and work across it, �lling in each entrythat corresponds to a valid transition. Each time a distinct set of nonterminal symbols isgenerated, add an empty row to the table. The algorithm terminates when all rows have beenprocessed.5.16 TheoremFor every �nite automaton, A, there exists a regular grammar, G, such that L(G) = L(A).�Theorems 5.15 and 5.16 together establish the fact that �nite automata and regular grammarsare equivalent. To prove Theorem 5.16 we construct the production set P of the grammarG = (T;Q; P; q0) from the automaton (T;Q;R; q0; F) as follows:P = fq ! tq0 j qt! q0 2 Rg [fq ! � j q 2 Fg5.2.2 State Diagrams and Regular ExpressionsThe phrase structure of the basic symbols of the language is usually not interesting, and infact may simply make the description harder to understand. Two additional formalisms, both

94 Elements of Formal Systemsn : + � Eq0 q1 q2 fCgq1 q2 q3 ff; Fgq2 q4 fIgq3 q5 q6 q6 fSgq4 q3 ff;Xgq5 ffgq6 q5 fUga) The state tableT = fn; :;+;�; EgQ = fq0; q1; q2; q3; q4; q5; q6gP = fq0n! q1, q0:! q2,q1:! q2, q1E ! q3,q2n! q4,q3n! q5, q3+! q6, q3� ! q6,q4E ! q3,q6n! q5gF = fq1; q4; q5gb) The complete automatonFigure 5.10: A Deterministic Automaton Corresponding to Figure 5.4aof which avoid the need for irrelevant structuring, are available for regular languages. The�rst is the representation of a �nite automaton by a directed graph:5.17 DefinitionLet A = (T;Q;R; q0; F) be a �nite automaton, D = f(q; q0) j 9t; qt ! q0 2 Rg, and f :(q; q0)! ft j qt! q0 2 Rg be a mapping from D into the powerset of T . The directed graph(Q;D) with edge labels f((q; q0)) is called the state diagram of the automaton A. �Figure 5.11a is the state diagram of the automaton described in Figure 5.10b. The nodescorresponding to elements of F have been represented as squares, while the remaining nodesare represented as circles. Only the state numbers appear in the nodes: 0 stands for q0, 1 forq1, and so forth.In a state diagram, the sequence of edge labels along a path beginning at q0 and ending ata state in F is a sentence of L(A). Figure 5.11a has exactly 12 such paths. The correspondingsentences are given in Figure 5.11b.A state diagram speci�es a regular language. Another characterization is the regularexpression:5.18 DefinitionGiven a vocabulary V , and the symbols E, �, +, �, (and) not in V . A string � overV [fE; �;+; �; (;)g is a regular expression over V if1. � is a single symbol of V or one of the symbols E or �, or if2. � has the form (X + Y), (XY) or (X)� where X and Y are regular expressions. �

5.2 Regular Grammars and Finite Automata 95
n

En

E nn

2

1 3 6

54

0 + -

a) State diagramn .n n.nnEn nE+n nE-n.nEn .nE+n .nE-nn.nEn n.nE+n n.nE-nb) PathsFigure 5.11: Another Description of Figure 5.10bEvery regular expression results from a �nite number of applications of rules (1) and (2). Itdescribes a language over V : The symbol E describes the empty language, � describes thelanguage consisting only of the empty string, v 2 V describes the language fvg, (X + Y) =f! j ! 2 X or ! 2 Y g, (XY) = f� j � 2 X; 2 Y g. The closure operator (�) is de�ned bythe following in�nite sum: X� = �+X +XX +XXX + : : :As illustrated in this de�nition, we shall usually omit parentheses. Star is unary, and takespriority over either binary operator; plus has a lower priority than concatenation. ThusW +XY � is equivalent to the fully-parenthesized expression (W + (X(Y �))).Figure 5.12 summarizes the algebraic properties of regular expressions. The distinct rep-resentations for X� show that several regular expressions can be given for one language.X + Y = Y +X (commutative)(X + Y) + Z = X + (Y + Z) (associative)(XY)Z = X(Y Z)X(Y + Z) = XY +XZ (distributive)(X + Y)Z = XZ + Y ZX +E = E +X = X (identity)X� = �X = XXE = EX = E (zero)X +X = X (idempotent)(X�)� = X�X� = �+XX�X� = X +X��� = �E� = �Figure 5.12: Algebraic Properties of Regular ExpressionsThe main advantage in using a regular expression to describe a set of strings is that itgives a precise speci�cation, closely related to the `natural language' description, which canbe written in text form suitable for input to a computer. For example, let l denote any singleletter and d any single digit. The expression l(l + d)� is then a direct representation of thenatural language description `a letter followed by any sequence of letters and digits'.

96 Elements of Formal SystemsThe equivalence of regular expressions and �nite automata follows from:5.19 TheoremLet R be a regular expression that describes a subset, S, of T �. There exists a deterministic�nite automaton, A = (T;Q; P; q0; F) such that L(A) = S. �The automaton is constructed in much the same way as that of Theorem 5.15: We create anew expression R0 by replacing the elements of T occurring in R by distinct symbols (multipleoccurrences of the same element will receive distinct symbols). Further, we pre�x anotherdistinct symbol to the altered expression; if R = E, then R0 consists only of this startingsymbol. (As symbols we could use, for example, natural numbers with 0 as the startingsymbol.) The states of our automaton correspond to subsets of the symbol set. The setcorresponding to the initial state q0 consists solely of the starting symbol. We inspect thestates of Q one after another and add new states as required. For each q 2 Q and each t 2 T ,let q0 correspond to the set of symbols in R0 that replace t and follow any of the symbols ofthe set corresponding to q. If the set corresponding to q0 is not empty, then we add qt ! q0to P and add fq0g to Q if it is not already present. The set F of �nal states consists of allstates that include a possible �nal symbol of R0.Figure 5.13 gives an example of this process. Starting with q0 = f0g, we obtain the statetable of Figure 5.13b, with states q1, q2 and q3 as �nal states. Obviously this is not thesimplest automaton which we could create for the given language; we shall return to thisproblem in Section 6.2.2. R = l(l + d)�R0 = 01(2 + 3)�a) Modifying the Regular Expressionl dq0 q1 f0gq1 q2 q3 f1g (�nal)q2 q2 q3 f2g (�nal)q3 q2 q3 f3g (�nal)b) The resulting state tableFigure 5.13: Regular Expressions to State Tables5.3 Context-Free Grammars and Pushdown AutomataRegular grammars are not su�ciently powerful to describe languages such as algebraic ex-pressions, which have nested structure. Since most programming languages contain suchstructures, we must change to a su�ciently powerful descriptive method such as context-freegrammars. Because regular grammars are a subclass of context-free grammars, one mightask why we bother with regular languages at all. As we shall see in this section, the analysisof phrase structure by means of context-free grammars is so much more costly that one fallsback upon the simpler methods for regular grammars whenever possible.Here, and also in Chapter 7, we assume that all context-free grammars (T;N; P; Z) containa production Z ! S. This is the only production in which the axiom Z appears. (Anygrammar can be put in this form by addition of such a production.) We assume furtherthat the terminator # follows each sentence. This symbol identi�es the condition `inputtext completely consumed' and does not belong to the vocabulary. Section 5.3.3 assumesfurther that the productions are consecutively numbered. The above production has the

5.3 Context-Free Grammars and Pushdown Automata 97number 1, n is the total number of productions and the ith production has the form Xi ! �i,�i = xi;1 : : : xi;m. The length, m, of the right-hand side is also called the length of theproduction. We shall denote a leftmost derivation X)� Y by X)L Y and a rightmostderivation by X)R Y .We �nd the following notation convenient for describing the properties of strings: Thek-head k : ! of ! gives the �rst min(k; j!j + 1) symbols of !#. FIRSTk(!) is the set ofall terminal k-heads of strings derivable from !. The set EFFk(!) (`�-free �rst') contains allstrings from FIRSTk(!) for which no �-production A ! � was applied at the last step inthe rightmost derivation. The set FOLLOWk(!) comprises all terminal k-heads that couldfollow !. By de�nition FOLLOWk(Z) = f#g for any k. Formally:k : ! = (!# when j!j < k� when ! = � and j�j = kFIRSTk(!) = f� j 9� 2 T � such that !)� �; � = k : �gEFFk(!) = f� 2 FIRSTk(!) j @A 2 N; � 2 T � such that !)R A��) ��gFOLLOWk(!) = f� j 9� 2 V � such that Z)� �!�; � 2 FIRSTk(�)gWe omit the index k when it is 1. These functions may be applied to sets of strings, inwhich case the result is the union of the results of applying the function to the elements of itsargument. Finally, if � is a string and
 is a set of strings, we shall de�ne �
 = f�! j ! 2
g.5.3.1 Pushdown AutomataFor �nite automata, we saw that the state speci�es the set of nonterminal symbols of Gthat could have been used to derive the remainder of the input string. Suppose that a �niteautomaton has reached the �rst right parenthesis of the following expression (which can bederived using a context-free grammar):(a1 + (a2 + (� � � + (am) : : :))It must then be in a state specifying some set of nonterminal symbols that can derive exactly mright parentheses. Clearly there must be a distinct state for eachm. But ifm is larger than thenumber of states of the automaton (and this could be arranged for any given number of states)then there cannot be a distinct state for each m. Thus we need a more powerful automaton,which can be obtained by providing a �nite automaton with a stack as an additional storagestructure.5.20 DefinitionA pushdown automaton is a septuple A = (T;Q;R; q0; F; S; s0), where (T [Q [S;R) is ageneral rewriting system, q0 is an element of Q, F is a subset of Q, and s0 is an element ofS or s0 = �. The sets T and Q are disjoint. Each element of R has the form �qa� ! �0q0� ,where � and �0 are elements of S�, q and q0 are elements of Q, a is an element of T or a = �,and � is an element of T �. �Q, q0 and F have the same meaning as the corresponding components of a �nite automaton. Sis the set of stack symbols, and s0 is the initial content of the stack. The pushdown automatonaccepts a string � 2 T � if s0q0�)� q for some q 2 F . If each sentence is followed by #, the

98 Elements of Formal Systemspushdown automaton A de�nes the language L(A) = f� j s0q0�#)� q#; q 2 F; � 2 T �g. (Inthe literature one often �nds the requirement that � be an element of S rather than S�; ourautomaton would then be termed a generalized pushdown automaton. Further, the de�nitionof `accept' could be based upon either the relation s0q0�)� �q, � 2 S�, q 2 F , or the relations0q0�)� q, q arbitrary. Under the given assumptions these de�nitions prove to be equivalentin power.)We can picture the automaton as a machine with a �nite set Q of internal states and astack of arbitrary length. If we have reached the con�guration s1 : : : snq� in a derivation, thenthe automaton is in state q, � is the unread part of the input text being analyzed, and s1 : : : snis the content of the stack (s1 is the bottom item and sn the top). The transitions of theautomaton either read the next symbol of the input text (symbol-controlled) or are spontaneousand do not shorten the input text. Further, each transition may alter the topmost item ofthe stack; it is termed a stacking, unstacking or replacing transition, respectively, if it onlyadds items, deletes items, or changes them without altering their total number.The pushdown automaton can easily handle the problem of nested parentheses: When itreads a left parenthesis from the input text, it pushes a corresponding symbol onto the stack;when it reads the matching right parenthesis, that symbol is deleted from the stack. Thenumber of states of the automaton plays no role in this process, and is independent of theparenthesis nesting depth.5.21 TheoremFor every context-free grammar, G, there exists a pushdown automaton, A, such that L(A) =L(G). �As with �nite automata, one proves this theorem by construction of A. There are two con-struction procedures, which lead to distinct automata; we shall go into the details of theseprocedures in Sections 5.3.2 and 5.3.3 respectively. The automata constructed by the twoprocedures serve as the basic models for two fundamentally di�erent parsing algorithms.A pushdown automaton is not necessarily deterministic even if the left sides of all pro-ductions are distinct. For example, suppose that �1q� ! �0q0� 0 and �2q� ! �00q00� 00 are twodistinct productions and �2 is a proper tail of �1. Thus �1 = ��2 and both productions areapplicable to the con�guration ��2q��. If we wish to test formally whether the productionsunambiguously specify the next transition, we must make the left-hand sides the same length.Determinism can then be tested, as in the case of �nite automata, by checking that the left-hand sides of the productions are distinct. We shall only consider cases in which the state qand k lookahead symbols of the input string are used to determine the applicable production.Unfortunately, it is not possible to sharpen Theorem 5.21 so that the pushdown automa-ton is always deterministic; Theorem 5.15 for regular grammars cannot be generalized tocontext-free grammars. Only by additional restrictions to the grammar can one guaranteea deterministic automaton. Most programming languages can be analyzed deterministically,since they have grammars that satisfy these restrictions. (This has an obvious psychologi-cal basis: Humans also �nd it easier to read a deterministically-analyzable program.) Therestrictions imposed upon a grammar to obtain a deterministic automaton depend upon theconstruction procedure. We shall discuss the details at the appropriate place.5.3.2 Top-Down Analysis and LL(k) GrammarsLet G = (T;N; P; Z) be a context-free grammar, and consider the pushdown automatonA = (T; fqg; R; q; fqg; V; Z) with V = T [N and R de�ned as follows:R = ftqt! q j t 2 Tg [fBq ! bn : : : b1q j B ! b1 : : : bn 2 P; n � 0; B 2 N; bi 2 V g

5.3 Context-Free Grammars and Pushdown Automata 99T = f+; �; (;); igQ = fqgR = fEq ! Tq, Eq ! T+Eq,Tq ! Fq, Tq ! F*Tq,Fq ! iq, Fq !)E(q,+q+! q, *q*! q, (q(! q,)q)! q, iqi! qgq0 = qF = fqgS = f+, *, (,), i; E; T; Fgs0 = EFigure 5.14: A Pushdown Automaton Constructed from Figure 5.3aStack Input Leftmost derivationE q i+ i � i ET +E q i+ i � i E + TT + T q i+ i � i T + TT + F q i+ i � i F + TT + i q i+ i � i i+ TT+ q +i � iT q i � iF � T q i � i i+ T � FF � F q i � i i+ F � FF � i q i � i i+ i � FF� q �iF q ii q i i+ i � iqFigure 5.15: Top-Down AnalysisThis automaton accepts a string in L(G) by constructing a leftmost derivation of that stringand comparing the symbols generated (from left to right) with the symbols actually appearingin the string.Figure 5.14 is a pushdown automaton constructed in this manner from the grammar ofFigure 5.3a. In the left-hand column of Figure 5.15 we show the derivation by which thisautomaton accepts the string i + i � i. The right-hand column is the leftmost derivation ofthis string, copied from Figure 5.5. Note that the automaton's derivation has more steps dueto the rules that compare a terminal symbol on the stack with the head of the input stringand delete both. Figure 5.16 shows a reduced set of productions combining some of thesesteps with those that precede them.The analysis performed by this automaton is called a top-down (or predictive) analysisbecause it traces the derivation from the axiom (top) to the sentence (bottom), predictingthe symbols that should be present. For each con�guration of the automaton, the stackspeci�es a string from V � used to derive the remainder of the input string. This correspondsto construction 5.13 for �nite automata, with the stack content playing the role of the stateand the state merely serving to mark the point reached in the input scan.We now specify the construction of deterministic, top-down pushdown automata by meansof the LL(k) grammars introduced by Lewis and Stearns [1969]:

100 Elements of Formal SystemsR0 = fEq ! Tq, Eq ! T +EqTq ! Fq, Tq ! F � Tq,Fqi! q, Fq(!)Eq,+q+! q, �q� ! q,)q)! qgFigure 5.16: Reduced Productions for Figure 5.145.22 DefinitionA context-free grammar G = (T;N; P; Z) is LL(k) for given k � 0 if, for arbitrary derivationsZ)L �A�) ���)� � �; 2 T �; �; � 2 V �; A 2 NZ)L �A�) �!�)� �0 0 2 T �; ! 2 V �(k : = k : 0) implies � = !. �5.23 TheoremFor every LL(k) grammar, G, there exists a deterministic pushdown automaton, A, such thatL(A) = L(G). �A reads each sentence of the language L(G) from left to right, tracing a leftmost derivationand examining no more than k input symbols at each step. (Hence the term `LL(k)'.)In our discussion of Theorem 5.13, we noted that each state of the �nite automatoncorresponding to a given grammar speci�ed the nonterminal of the grammar that must havebeen used to derive the string being analyzed. Thus the state of the automaton characterized astep in the grammar's derivation of a sentence. We can provide an analogous characterizationof a step in a context-free derivation by giving information about the production being appliedand the possible right context: Each state of a pushdown automaton could specify a triple(p; j;
), where 0 � j � np gives the number of symbols from the right-hand side of productionXp ! xp;1 : : : xp;np already analyzed and
 is the set of k-heads of strings that could followthe string derived from Xp. This triple is called a situation, and is written in the followingdescriptive form: [Xp ! � � �;
] � = xp;1 : : : xp;j; � = xp;j+1 : : : xp;npThe dot (which is assumed to be outside of the vocabulary) marks the position of the analysiswithin the right-hand side. (In most cases
 contains a single string. We shall then write itwithout set brackets.)Given a grammar (T;N; P; Z), we specify the states Q and transitions R of the automatoninductively as follows:1. Initially let Q = fq0g and R = ;, with q0 = [Z ! �S;#]. (Note that FOLLOWk(Z) =f#g.) The initial state is q0, which is also the initial stack content of A. (We couldhave chosen an arbitrary state as the initial stack content.) The automaton halts if thisstate is reached again, the stack is empty, and the next input symbol is the terminator#.2. Let q = [X ! � � �;
] be an element of Q that has not yet been considered.3. If � = � then add q� ! � to R if it is not already present. (The notation q� ! � isshorthand for the set of spontaneous unstacking transitions q0q� ! q0� with arbitraryq0.)4. If � = t for some t 2 T and 2 V �, let q0 = [X ! �t � ;
]. Add q0 to Q and qt! q0to R if they are not already present.

5.3 Context-Free Grammars and Pushdown Automata 1015. If � = B for some B 2 N and 2 V �, let q0 = [X ! �B � ;
] and H = f[B !��i;FIRSTk(
)] j B ! �i 2 Pg. (Thus 1 � i � m if there are m productions withleft-hand side B.) Set Q := Q [fq0g [H and R := R [fq�i ! q0hi�i j hi 2 H,�i 2 FIRSTk(�i
)g.6. If all states in Q have been examined, stop. Otherwise, return to step (2).The construction terminates in all cases, since the set of situations is �nite. One canshow that the resulting automaton is deterministic if and only if G is an LL(k) grammar, andtherefore the construction provides a test for the LL(k) property.Consider the grammar of Figure 5.17a. We can apply Construction 5.23 with k = 3 toshow that this grammar is LL(3), obtaining the states of Figure 5.17b and the transitions ofFigure 5.17c. P = fZ ! X,X ! Y , X ! bY a,Y ! c, Y ! caga) An LL(3) grammarq0 = [Z ! �X;#] q9 = [Y ! c � a;#]q1 = [Z ! X�;#] q10 = [X ! bY � a;#]q2 = [X ! �Y ;#] q11 = [Y ! �c; a#]q3 = [X ! �bY a;#] q12 = [Y ! �ca; a#]q4 = [X ! Y �;#] q13 = [Y ! ca�;#]q5 = [Y ! �c;#] q14 = [X ! bY a�;#]q6 = [Y ! �ca;#] q15 = [Y ! c�; a#]q7 = [X ! b � Y a;#] q16 = [Y ! c � a; a#]q8 = [Y ! c�;#] q17 = [Y ! ca�; a#]b) States of the automaton, with the situations they representR = fq0c#! q1q2c#, q7ca#! q10q11ca#q0ca#! q1q2ca#, q7caa! q10q12caa,q0bca! q1q3bca, q8 ! �,q1 ! �, q9a! q13,q2c#! q4q5c#, q10a! q14,q2ca#! q4q6ca#, q11c! q15,q3b! q7, q12c! q16, q13 ! �,q4 ! �, q14 ! �,q5c! q8, q15 ! �,q6c! q9, q16a! q17, q17 ! � gc) Production set of the AutomatonFigure 5.17: Constructing a Deterministic Top-Down AutomatonWith k = 2 the construction leads to identical states. In state q7, however, we obtain thefollowing transitions: q7ca! q10q11ca; q7ca! q10q12caThe automaton is therefore nondeterministic and hence the grammar is LL(3), but not LL(2).The example also shows that the lookahead symbols are examined only at spontaneous, stack-ing transitions that correspond to entry into a new production. As soon as such a transition

102 Elements of Formal Systemsis executed, the reading of terminal symbols and the decision to terminate the productionwith an unstacking transition proceeds without further lookahead.There exist grammars that do not have the LL(k) property for any k. Among the possiblereasons is the occurrence of left recursive nonterminals { nonterminalsA for which a derivationA) A!, ! 6= �, is possible. In a predictive automaton, left recursive nonterminals lead tocycles that can be broken only by examining a right context of arbitrary length. They can,however, be eliminated through a transformation of the grammar.5.24 TheoremAn LL(k) grammar can have no left recursive nonterminal symbols. �5.25 TheoremFor every context-free grammar G = (T;N; P; Z) with left recursive nonterminals, there existsan equivalent grammar G0 = (T;N 0; P 0; Z) with no left recursive nonterminals. �Let the elements of N be numbered consecutively: N = fX1; : : : ;Xng. If we choose theindices such that the condition i < j holds for all productions Xi ! Xj! then G has no leftrecursive nonterminals. If such a numbering is not possible for G, we can guarantee it for G0through the following construction:1. Let N 0 = N , P 0 = P . Perform steps (2) and (3) for i = 1; : : : ; n.2. For j = 1; : : : ; i�1 replace all productionsXi ! Xj! 2 P 0 by fXi ! �j! jXj ! �j 2 P 0g.(After this step, Xi)+ Xj implies i � j.)3. Replace the entire set of productions of the form Xi ! Xi! 2 P 0 (if any exist) by theproductions fBi ! !Bi j Xi ! Xi! 2 P 0g [fBi ! �g, adding a new symbol Bi to N 0.At the same time, replace the entire set of productions Xi ! �, � 6= Xi, by Xi ! �Bi.The symbols added during this step will be given numbers n+ 1; n+ 2; : : : ;If the string ! in the production Xi ! Xi! does not begin with Xj, j � i then we canreplace Xi ! Xi! by fBi ! !, Bi ! !Big and Xi ! � by fXi ! �, Xi ! �Big in step (3).This approach avoids the introduction of �-productions; it was used to obtain the grammarof Figure 5.3b from that of Figure 5.3a.Note that left recursion such as E ! T , E ! E + T is used in the syntax of arithmeticexpressions to reect the left-association of the operators. This semantic property can also beseen in the transformed productions E ! TE0; E0 ! +TE0; E0 ! �, but not in E ! T; E !T + E. In EBNF the left associativity of an expression can be conveniently represented byE ::= T (0+0 T)�.One of the constructions discussed above results in �-productions, while the other doesnot. We can always eliminate �-productions from an LL(k) grammar, but by doing this wemay increase the value of k:5.26 TheoremGiven an LL(k) grammar G with �-productions. There exists an LL(k+1) grammar without�-productions that generates the language L(G)� f�g. �Conversely, k can be reduced by introducing �-productions:5.27 TheoremFor every �-free LL(k+1) grammar G, k > 0, there exists an equivalent LL(k) grammar with�-productions. �

5.3 Context-Free Grammars and Pushdown Automata 103The proof of Theorem 5.27 rests upon a grammar transformation known as left-factoring,illustrated in Figure 5.18. In Figure 5.18a, we cannot distinguish the productions X ! Y cand X ! Y d by examining any �xed number of symbols from the input text: No matterwhat number of symbols we choose, it is possible for Y to derive a string of that length ineither production. P = fZ ! X,X ! Y c, X ! Y d,Y ! a, Y ! bY ga) A grammar that is not LL(k) for any kP = fZ ! X,X ! Y X 0,X 0 ! c, X 0 ! d,Y ! a, Y ! bY gb) An equivalent LL(1) grammarFigure 5.18: Left FactoringWe avoid the problem by deferring the decision. Since both productions begin with Y ,it is really not necessary to distinguish them until after the string derived from Y has beenscanned. The productions can be combined by `factoring out' the common portion, as shownin Figure 5.18b. Now the decision is made at exactly the position where the productionsbegin to di�er, and consequently it is only necessary to examine a single symbol of the inputstring.In general, by deferring a decision we obtain more information about the input text weare analyzing. The top-down analysis technique requires us to decide which production toapply before analyzing the string derived from that production. In the next section we shallpresent the opposite technique, which does not require a decision until after analyzing thestring derived from a production. Intuitively, this technique should handle a larger class ofgrammars because more information is available on which to base a decision; this intuition canbe proven correct. The price is an increase in the complexity of both the analysis procedureand the resulting automaton, but in practice the technique remains competitive.5.3.3 Bottom-Up Analysis and LR(k) GrammarsAgain let G = (T;N; P; Z) be a context-free grammar, and consider the pushdown automatonA = (T; fqg; R; q; fqg; V; �) with V = T [N , and R de�ned as follows:R = fx1 : : : xnq ! Xq j X ! x1 : : : xn 2 Pg [fqt! tq j t 2 Tg [fZq ! qgThis automaton accepts a string in L(G) by working backward through a rightmost derivationof the string.Figure 5.19 is a pushdown automaton constructed in this manner from the grammar ofFigure 5.3a. In the left-hand column of Figure 5.20, we show the derivation by which thisautomaton accepts the string i+ i � i. The right-hand column is the reverse of the rightmostderivation of this string, copied from Figure 5.5. The number of steps required for theautomaton's derivation can be decreased by combining productions as shown in Figure 5.21.(This reduction is analogous to that of Figure 5.16.)The analysis performed by this automaton is called a bottom-up analysis because of thefact that it traces the derivation from the sentence (bottom) to the axiom (top). In each

104 Elements of Formal SystemsT = f+; �; (;); igR = fTq ! Eq, E + Tq ! Eq,Fq ! Tq, T � Fq ! Tq,iq ! Fq, (E)q ! Fq,q+! +q, q� ! �q, q(! (q, q)!)q, qi! iq,Eq ! qgS = f+; �; (;); i; E; T; FgFigure 5.19: A Pushdown Automaton Constructed from Figure 5.3aStack Input Reverse rightmost derivationq i+ i � i i+ i � ii q +i � iF q +i � i F + i � iT q +i � i T + i � iE q +i � i E + i � iE+ q i � iE + i q �iE + F q �i E + F � iE + T q �i E + T � iE + T� q iE + T � i qE + T � F q E + T � FE + T q E + TE q EqFigure 5.20: Bottom-Up Analysiscon�guration of the automaton the stack contains a string from S�, from which the portionof the input text already read can be derived. The state merely serves to mark the pointreached in the input scan. The meaningful information is therefore the pair (�; �), where� 2 S� denotes the stack contents and � 2 T � denotes the remainder of the input text.The pairs (�; �) that describe the con�gurations of an automaton tracing such a derivationmay be partitioned into equivalence classes as follows:5.28 DefinitionFor p = 1; : : : ; n let Xp ! �p be the pth production of a context-free grammar G =(T;N; P; Z). The reduction classes, Rj , j = 0; : : : ; n are de�ned by:R0 = f(�; �) j � = �; � = �! such that Z)R �A!;A)R0 �; � 6= �gRp = f(�; �) j � = ��p; Z)R �Xp�g �R0 = fTq! Eq, E + Tq ! Eq,Fq ! Tq, T � Fq ! Tq,qi! Fq, (Eq)! Fq,q+! +q, q� ! �q, q(! (q,Eq ! qgFigure 5.21: Reduced Productions for Figure 5.17

5.3 Context-Free Grammars and Pushdown Automata 105`A)R0 �' denotes the relation `A)R � and the last step in the derivation does not take theform B�) �'.The reduction classes contain all pairs of strings that could appear during the bottom-upparse of a sentence in L(G) by the automaton described above. Further, the reduction classto which a pair belongs characterizes the transition carried out by the automaton when thatpair appears as a con�guration. There are three possibilities:1. (�; �) 2 R0. The simple phrase � is not yet completely in the stack; the transition qt! tqwith t = 1 : � is applied (shift transition).2. (�; �) 2 Rp, 1 � p � n. The simple phrase � is complete in the stack and the reducetransition �pq ! Xpq is applied. (For p = 1 the transition Zq ! q occurs and theautomaton halts.)3. (�; �) =2 Rj , 0 � j � n. No further transitions are possible; the input text does not belongto L(G).A pushdown automaton that bases its decisions upon the reduction classes is obviouslydeterministic if and only if the grammar is unambiguous.Unfortunately the de�nition of the sets Rj uses the entire remainder of the input stringin order to determine the reduction class to which a pair (�; �) belongs. That means that ourbottom-up automaton must inspect an arbitrarily long lookahead string to make a decisionabout the next transition, if it is to be deterministic. If we restrict the number of lookaheadsymbols to k, we arrive at the following de�nition:5.29 DefinitionFor some k � 0, the sets Rj;k, j = 0; : : : ; n, are called k-stack classes of a grammar G if:Rj;k = f(�; �) j 9(�; �) 2 Rj such that � = k : �g �If the k-stack classes are pairwise-disjoint, then the pushdown automaton is deterministiceven when the lookahead is restricted to k symbols. This property characterizes a class ofgrammars introduced by Knuth [1965]:5.30 DefinitionA context-free grammar G = (T;N; P; Z) is LR(k) for given k � 0 if, for arbitrary derivationsZ)R �A!) ��! � 2 V �; ! 2 T �; A! � 2 PZ)R �0B!0) �0!0 �0 2 V �; !0 2 T �; B ! 2 P(j��j+ k) : ��! = (j��j+ k) : �0!0 implies � = �0, A = B and � = . �The automaton given at the beginning of this section scans the input text from left to right,tracing the reverse of a r ightmost derivation and examining no more than k input symbolsat each step. (Hence the term "LR(k)".)5.31 TheoremA context-free grammar is LR(k) if and only if its k-stack classes are pairwise-disjoint. �On the basis of this theorem, we can test the LR(k) property by determining the intersectionof the k-stack classes. Unfortunately the k-stack classes can contain in�nitely many pairs(�; �): The length restriction permits only a �nite number of strings � , but the lengths of thestack contents are unrestricted. However, we can give a regular grammar Gj for each k-stack

106 Elements of Formal Systemsclass Rj;k such that L(Gj) = f(�&�) j (�; �) 2 Rj;kg. Since algorithms exist for determiningwhether two regular languages are disjoint, this construction leads to a procedure for testingthe LR(k) property.5.32 TheoremLet G = (T;N; P; Z) be a context-free grammar, and let k � 0. Assume that & is not anelement of the vocabulary V = T [N . There exists a set of regular grammars Gj, j = 0; : : : ; nsuch that L(Gj) = f�&� j (�; �) 2 Rj;kg. �The regular grammars that generate the k-stack classes are based upon the situations intro-duced in connection with Theorem 5.23:W = f[X ! � � �;!] j X ! �� 2 P; ! 2 FOLLOWk(X)gThese situations are the nonterminal symbols of the regular grammars. To de�ne the gram-mars themselves, we �rst specify a set of grammars that generate the k-stack classes, but arenot regular: G0j = (V [f&;#g;W; P 0 [P 00 [Pj ; [Z ! �S;#])The productions in P 0[P 00 build the � components of the k-stack class. They provide the �nitedescription of the in�nite strings. Productions in Pj attach the � component, terminating thek-stack class: P 0 = f[X ! � � �;!]! �[X ! �� � ;!] j � 2 V gP 00 = f[X ! � � B;!]! [B ! ��; �] j B ! � 2 P; � 2 FIRSTk(!)gP0 = f[X ! � � �;!]! &� j � 6= �; � 2 EFFk(�!)gPp = f[Xp ! �p�;!]! &!g p = 1; : : : ; nRemember that the lengths of � and ! are limited to k symbols, so the number of possiblestrings &� and &! is �nite. If we regard these strings as single terminal symbols, productionsin P 0 and Pj , j = 0; : : : ; n, are allowable in a regular grammar. Productions in P 00 are notallowable, however, since they are of the form A! B, A;B 2 N . Thus G0j is not regular.It is always possible to rewrite a grammar so that it contains no productions such as thosein P 00. The key is the closure of a nonterminal:H(A) = fAg [fB j C ! B 2 P;C 2 H(A)gThe procedure for rewriting the grammar is:1. Select an A 2 N for which H(A) 6= fAg.2. Set P = P � fA! B j B 2 Ng.3. Set P = P [fA! � j B ! � 2 P;B 2 H(A); � =2 Ng.The algorithm terminates when no selection can be made in step (1).We obtain Gj from G0j by applying this algorithm. The strings � are all of the formv[: : :], &� or &!, and therefore all introduced productions satisfy the conditions for a regulargrammar.

5.3 Context-Free Grammars and Pushdown Automata 1075.33 TheoremFor every LR(k) grammar G there exists a deterministic pushdown automaton A such thatL(A) = L(G). �Let G = (T;N; P; Z). We base the construction of the automaton on the grammars Gj, e�ec-tively building a machine that simultaneously generates the k-stack classes and checks themagainst the reverse of a rightmost derivation of the string. Depending upon the particulark-stack class, the automaton pushes the input symbol onto the stack or reduces some numberof stacked symbols to a nonterminal. The construction algorithm generates the necessarysituations as it goes, and uses the closure operation discussed above `on the y' to avoidconsidering productions from P 00. As in the construction associated with Theorem 5.15, astate of the automaton must specify a set of situations, any one of which might have beenused in deriving the current k-stack class. It is convenient to restate the de�nition of a closuredirectly in terms of a set of situations M :H(M) =M [f[B ! ��; �] j 9[X ! � � B;!] 2 H(M); B ! � 2 P; � 2 FIRSTk(!)gThe elements of Q and R are determined inductively as follows:1. Initially let Q = fq0g and R = ;, with q0 = H(f[Z ! �S;#]g).2. Let q be an element of Q that has not yet been considered. Perform steps (3)-(5) for each� 2 V .3. Let basis(q; �) = f[X ! �� � ;!] j [X ! � � �;!] 2 qg.4. If basis(q; �) 6= ;, then let next(q; �) = H(basis(q; �)). Add q0 = next(q; �) to Q if it isnot already present.5. If basis(q; �) 6= ; and � 2 T then setR := R [(fq� ! qq0g if k � 1fq�� ! qq0� j [X ! � � �;!] 2 q; � 2 FIRSTk�1(!)g otherwise6. If all elements of Q have been considered, perform step (7) for each q 2 Q and then stop.Otherwise return to step (2).7. For each [X ! ��;!] 2 q, where � = x1 : : : xn, set R := R [fq1 : : : qnq! ! q1q0! j[X ! ��;!] 2 q1; qi+1 = next(qi; xi)(i = 1; : : : ; n � 1); q = next(qn; xn); q0 =next(q1;X)gThe construction terminates in all cases, since only a �nite number of situations [X !� � ;!] exist.Figure 5.22 illustrates the algorithm by applying it to the grammar of Figure 5.17a withk = 2. In this example k = 1 would yield the same set of states. (For k = 0, q4 and q6 wouldbe coalesced, as would q7 and q9.) Nevertheless, a single lookahead symbol is not su�cient todistinguish between the shift and reduce transitions in state 6. The grammar is thus LR(2),but not LR(1).We shall conclude this section by quoting the following theoretical results:5.34 TheoremFor every LR(k) grammar with k > 1 there exists an equivalent LR(1) grammar. �5.35 TheoremEvery LL(k) grammar is also an LR(k) grammar. �

108 Elements of Formal Systemsq0: [Z ! �X;#] q4: [Y ! c � ;#][X ! �Y ;#] [Y ! c � a;#][X ! �bY a;#][Y ! �c;#] q5: [X ! bY � a;#][Y ! �ca;#] q6: [Y ! c�; a#]q1: [Z ! X�;#] [Y ! c � a; a#]q2: [X ! Y �;#] q7: [Y ! ca�;#]q3: [X ! b � Y a;#] q8: [X ! bY a�;#][Y ! �c; a#] q9: [Y ! ca�; a#][Y ! �ca; a#]a) StatesR = fq0bc! q0q3c,q0c#! q0q4#,q0ca! q0q4a,q3ca! q3q6a,q4a#! q4q7#,q5a#! q5q8#,q6aa! q6q9a,q0q2#! q0q1#,q0q4#! q0q2#,q3q6a#! q3q5a#,q0q4q7#! q0q2#,q0q3q5q8#! q0q1#,q3q6q9a#! q3q5a#gb) TransitionsFigure 5.22: A Deterministic Bottom-Up Automaton for Figure 5.17a5.36 TheoremThere exist LR(k) grammars that are not LL(k0) for any k0. �5.37 TheoremThere exists an algorithm that, when given an LR(k) grammar G, will decide in a �nitenumber of steps whether there exists a k0 such that G is LL(k0). �As a result of Theorem 5.34 we see that it might possibly be su�cient to concern ourselvesonly with LR(1) grammars. (As a matter of fact, the transformation underlying the proofof this theorem is unsuitable for practical purposes.) The remaining theorems support ourintuitive thoughts at the end of Section 5.3.2.5.4 Notes and ReferencesThe basic symbols of a programming language are often described by arbitrary context-freeproductions, as illustrated by the LAX de�nition of Appendix A.1. This description does notprovide a suitable starting point for mechanical construction of a lexical analyzer, and musttherefore be recast by hand in terms of a regular set or regular grammar.Our interpretation of �nite automata and pushdown automata as special cases of generalrewriting systems follows Salomaa [1973]. By this means we avoid a special de�nition ofconcepts such as con�gurations or transitions of an automaton.

5.4 Notes and References 109BNF notation was �rst used to describe ALGOL 60 [Naur, 1963]. Many authors haveproposed extensions similar to our EBNF, using quoted terminals rather than bracketednonterminals and having a regular expression capability. EBNF de�nitions are usually shorterthan their BNF equivalents, but the important point is that they are textual representationsof syntax charts [Jensen and Wirth, 1974; ANSI, 1978a]. This means that the context-freegrammar can actually be developed and described to the user by means of pictures.Pushdown automata were �rst examined by Samelson and Bauer [1960] and appliedto the compilation of a forerunner of ALGOL 60. Theoretical mastery of the concepts andthe proofs of equivalence to general context-free grammars followed later. Our introductionof LR(k) grammars via reduction classes follows the work of Langmaack [1971]. Aho andUllman [1972] (and many other books dealing with formal languages) cover essentially thesame material as this chapter, but in much greater detail. The proofs that are either outlinedhere or omitted entirely can be found in those texts.Exercises5.1 Prove that there is no loss of generality by prohibiting formal systems in which aderivation �)+ � of a string from itself is possible.5.2 Choose some useless nonterminal from the LAX de�nition and briey justify its inclu-sion in Appendix A.5.3 Give an intuitive justi�cation of Theorem 5.10.5.4 Write a program to examine a �nite automaton A and return the accepted languageL(A) in closed form as a regular expression.5.5 Regular expressions X1; : : : ;Xn can also be de�ned implicitly via systems of regularequations of the form:Xi = ai;0 + ai;1X1 + � � �+ ai;nXn; i = 1; : : : ; nHere the ai;j are known regular expressions. State the conditions under which such asystem has a unique solution, and give an algorithm to compute this solution. (Hint:For b 6= �, the equation X = aX + b has the solution b�a.)5.6 Give an explanation of the need for `)R0 ' in De�nition 5.28.5.7 Prove that the algorithm for rewriting G to remove productions of the form A ! B,A;B 2 N results in a grammar G0 such that L(G) = L(G0).

110 Elements of Formal Systems

Chapter 6Lexical AnalysisLexical analysis converts the source program from a character string to a sequence ofsemantically-relevant symbols. The symbols and their encoding form the intermediate lan-guage output from the lexical analyzer.In principle, lexical analysis is a subtask of parsing that could be carried out by the normalparser mechanisms. To separate these functions, the source language grammar G must bepartitioned into subgrammars G0; G1; G2; : : : such that G1; G2; : : : describe the structureof the basic symbols and G0 describes the structure of the language in terms of the basicsymbols. L(G) is then obtained by replacing the terminal symbols of G0 by strings fromL(G1); L(G2); : : :The separation of lexical analysis from parsing gives rise to higher organizational coststhat can be justi�ed only by realizing greater savings in other areas. Such savings are possiblein table-driven parsers through reduction in table size. Further, basic symbols usually havesuch a simple structure that faster procedures can be used for the lexical analysis than forthe general parsing.We shall �rst discuss the partitioning of the grammar and the desired results of lexicalanalysis, and then consider implementation with the help of �nite automata.6.1 Modules and InterfacesIn this section we devote ourselves to the `black box' aspects of lexical analysis: Decompositionof the grammar and with it the de�nition of the tasks of lexical analysis, arriving at theinterface between the lexical analyzer and the remainder of the compiler.6.1.1 Decomposition of the GrammarDelimiters (keywords, meaningful special characters and combinations of special characters),identi�ers and constants together are termed basic symbols. In sharp contrast to other lan-guage elements, their structure and representation may be arbitrarily changed (say by in-troducing French or German keywords or by representing `<' by `.LT.') without altering thepower of the language. Further, the structure of the basic symbols can generally be describedwith regular grammars or regular expressions.The productions of Section A.1 describe the basic symbols of LAX. (Conversion to aregular grammar is left to the reader.) The productions A.1.0.1, A.1.0.9-12 are superuousbecause only the nonterminals identifier and constant , single keywords, special charactersand special character combinations (other than `(*') occur in the remainder of the grammar.111

112 Lexical AnalysisIn many languages the grammar for basic symbols (symbol grammar) is not so easily de-termined from the language de�nition, or it results in additional di�culties. For example,the ALGOL 60 Report de�nes keywords, letters, digits, special characters and special char-acter combinations as basic symbols; it does not include identi�ers, numbers and strings inthis category. This description must be transformed to meet the requirements of compilerconstruction. In PL/1, as in other languages in which keywords are lexically indistinguish-able from identi�ers, context determines whether an identi�er (e.g. IF) is to be treated as akeyword or a freely-chosen identi�er. Two symbol grammars must therefore be distinguishedon the basis of context; one accepts identi�ers and not keywords, the other does the converse.An example of similar context-dependence in FORTRAN is the �rst identi�er of a statement:In an assignment it is interpreted as the identi�er of a data object, while in most other casesit is interpreted as a keyword. (Statement classi�cation in FORTRAN is not an easy task {see the discussion by Sale [1971] for details.)Even if it is necessary to consult context in order to determine which symbols are possibleat the given point in the input text, a �nite automaton often su�ces. The automaton in thiscase has several starting states corresponding to the distinct symbol grammars. We shall notpursue this point further.6.1.2 Lexical Analyzer InterfaceThe lexical analyzer is organized as a module with several local state variables and implementsthe following elementary operations:� initialize lexical analysis� next token� wrapup lexical analysisThe central operation next token is used by the parser to obtain the next token in thetoken sequence (Section 4.1.1). (A coroutine, activated for each token, might be used insteadof a procedure.) If the parser does not interact directly with the lexical analyzer, then a �leof tokens must be constructed by calls to next token . The parser obtains the tokens byreading this �le. Even if direct calls are possible, such a �le is necessary when the parsing isdone in several passes (as for ALGOL 68).The lexical analyzer itself uses the following elementary operations:� next character (Source program input module)� report lexical error (Error module)� identify symbol (Symbol table module)� enter constant (Constant table module)The information ow involving the lexical analyzer module is shown in Figure 6.1.The lexical analyzer reads the input text one character at a time by executing thenext character operation. Both the transition to a new line (if it is signi�cant) and theencounter with the end of the input text are represented by characters in order to preserve theuniformity of the interface. (If next character is executed again after the end of the inputtext has been encountered then it continues to deliver the termination character.) Usuallynext character is the most frequently executed operation in the entire compiler, and thusstrongly inuences the speed of compilation. We shall consider the implementation of thisoperation in detail in Section 6.2.3.The error reporting module is invoked when lexical errors (unrecognized input charac-ters and violations of the basic symbol grammar) are encountered. This module will thendetermine the continuation of lexical analysis (Section 12.2.3).When a sequence of characters has been identi�ed as a basic symbol, the lexical analyzerwill either create a token describing it or will restart in a new state. Di�erent representations

6.2 Construction 113
Source program

input

Parser

Symbol table

Lexical analyser

Error handler

Constant table

Figure 6.1: Lexical Analyzer Interfaceof the same basic symbol are resolved at this point. For example, if we were to allow thesymbol `<' to be written `LESS' or `LT' also, all three would lead to creation of the sametoken. The operation identify symbol is used during token creation to perform the mappingdiscussed in Section 4.2.1. If the basic symbol is a literal constant, rather than an identi�er,the enter constant operation is used instead of identify symbol (Section 4.2.2).6.2 ConstructionWe assume that the basic symbols are described by some set of regular grammars or regularexpressions as discussed in Section 6.1.1. According to Theorem 5.15 or Theorem 5.19 wecan construct a set of �nite automata that accept the basic symbols. Unfortunately, theseautomata assume the end of the string to be known a priori ; the task of the lexical analyzer isto extract the next basic symbol from the input text, determining the end of the symbol in theprocess. Thus the automaton only partially solves the lexical analysis problem. To enhancethe e�ciency of the lexical analyzer we should use the automaton with the fewest states fromthe set of automata that accept the given language. Finally, we consider implementationquestions.In order to obtain the classi�cation for the basic symbol (Figure 4.1) we partition the�nal states of the automaton into classes. Each class either provides the classi�cation directlyor indicates that it must be found by using the operation identify symbol . The textualrepresentation of constants, and the strings used to interrogate the symbol table, are obtainedfrom the input stream. The automaton is extended for this purpose to a �nite-state transducerthat emits a character on each state transition. (In the terminology of switching theory, thistransducer is a special case of a Mealy machine.) The output characters are collected togetherinto a character string, which is then used to derive the necessary information.6.2.1 Extraction and RepresentationA semicolon is an ALGOL 60 basic symbol, and is not a head of any other basic symbol. Whenan ALGOL 60 lexical analysis automaton reaches the �nal state corresponding to semicolon,it can halt and accept the semicolon. The end of the accepted string has been determined,and the input pointer is positioned for the next symbol. A colon is also an ALGOL 60 basicsymbol, but it is a head of :=. Therefore the automaton must look ahead when it reachesthe �nal state corresponding to colon. A more complex lookahead is required in the case ofFORTRAN, where a digit sequence d is a basic symbol and also a head of the basic symbol

114 Lexical Analysisd.E1. Since .EQ. is also a basic symbol, the automaton must look ahead three characters (incertain cases) before it can determine the end of the symbol string.By applying the tests of Section 5.3.3 to the original grammar G, we could determine (for�xed k) whether a k-character lookahead is su�cient to resolve ambiguity. Because of thee�ort involved, this is usually not done. Instead, we apply the principle of the longest match:The automaton continues to read until it reaches a state with no transition corresponding tothe current input character. If that state is a �nal state, then it accepts the symbol scannedto that point; otherwise it signals a lexical error. The feasibility of the principle of the longestmatch is determined by the representation of the symbols (the grammars G1; G2; : : :) and bythe sequences of symbols permitted (the grammar G0).The principle of the longest match in its basic form as stated above is unsuitable for a largenumber of grammars. For example, an attempt to extract the next token from `3.EQ.4' usingthe rules of FORTRAN would result in a lexical error when `Q' was encountered. The solutionis to retain information about the most-recently encountered �nal state, thus providing a `fall-back' position. If the automaton halts in a �nal state, then it accepts the symbol; otherwiseit restores the input stream pointer to that at the most-recently encountered �nal state. Alexical error is signaled only if no �nal state had been encountered during the scan.We have tacitly assumed that the initial state of the automaton is independent of the�nal state reached by the previous invocation of next token . If this assumption is relaxed,permitting the state to be retained from the last invocation, then it is sometimes possible toavoid even the limited backtracking discussed above (Exercise 6.3). Whether this techniquesolves all problems is still an open question.The choice of a representation for the keywords of a language plays a central role in de-termining the representations of other basic symbols. This choice is largely a question oflanguage design: The de�nitions of COBOL, FORTRAN and PL/1 (for example) prescribethe representations and their relationship to freely-chosen identi�ers. In the case of AL-GOL 60 and its descendants, however, these characteristics are not discussed in the languagede�nitions. Here we shall briey review the possibilities and their consequences.The simplest possibility is the representation of keywords by reserved words { ordinaryidenti�ers that the programmer is not permitted to use for any other purpose. This approachrequires that identi�ers be written without gaps, so that spaces and newlines can serve asseparators between identi�ers and between an identi�er and a number. Letters may appearwithin numbers, and hence they must not be separated from the preceding part of the numberby spaces. The main advantage of this representation is its lucidity and low susceptibility totypographical errors. Its main disadvantage is that the programmer often does not rememberall of the reserved words and hence incorrectly uses one as a freely-chosen identi�er. Further,it is virtually impossible to modify the language by adding a new keyword because too manyexisting programs might have used this keyword as a freely-chosen identi�er.If keywords are distinguished lexically then it is possible to relax the restrictions on place-ment of spaces and newlines. There is no need for the programmer to remember all of thekeywords, and new ones may be introduced without a�ecting existing programs. The rulesfor distinguishing keywords are known as stropping conventions; the most common ones are:� Underlining the keyword.� Bracketing the keyword by special delimiters (such as the apostrophes used in the DIN66006 standard for ALGOL 60).� Pre�xing the keyword with a special character and terminating it at the �rst space,newline or character other than a letter or digit.� Using upper case letters for keywords and lower case for identi�ers (or vice-versa).

6.2 Construction 115All of these conventions increase the susceptibility of the input text to typographical errors.Some also require larger character sets than others or relatively complex line-imaging routines.6.2.2 State MinimizationConsider a completely-speci�ed �nite automaton A = (T;Q;R; q0; F) in which a productionqt! q0 exists for every pair (q; t), q 2 Q, t 2 T . Such an automaton is termed reduced whenthere exists no equivalent automaton with fewer states.6.1 TheoremTheorem: For every completely-speci�ed �nite automaton A = (T;Q;R; q0; F) there exists areduced �nite automaton A0 = (T;Q0; R0; q00; F 0) with L(A0) = L(A). �To construct A0 we �rst delete all states q for which there exists no string ! such thatq0!)� q. (These states are termed unreachable.) We then apply the re�nement algorithmof Section B.3.2 to the state diagram of A, with the initial partition fq j q 2 Fg, fq j q =2 Fg.Let Q0 be the set of all blocks in the resulting partition, and let [q] denote the block to whichq 2 Q belongs. The de�nition of A0 can now be completed as follows:R0 = f[q]t! [q0]jqt! q0 2 Rgq00 = [q0]F 0 = f[q]jq 2 FgAs an example, consider the automaton of Figure 5.13, which recognized the regularexpression l(l + d)�. The initial partition consists of two blocks fq0g and fq1; q2; q3g and isnot re�ned, leading to the automaton of Figure 6.2. We would have achieved the same resultif we had begun with the regular expression (A+B+ � � �+Z)(A+B+ � � �+Z+0+ � � �+9)�.
l

0 1
ldFigure 6.2: Reduced Automaton Accepting l(l + d)�In order to apply the algorithm of Section B.3.2 to this example we must complete theoriginal automaton, which permits only l as an input character in state q0. To do this weintroduce an `error state', qe, and transitions qt ! qe for all pairs (q; t); q 2 Q; t 2 T , notcorresponding to transitions of the given automaton. (In the example, q0d! qe su�ces.) Inpractice, however, it is easier to modify the algorithm so that it does not require explicit errortransitions.If c denotes any character other than the quote, then the regular expression "" + "(c +"")(c + "")*" describes the characters and strings of Pascal. Figure 6.3a shows the automatonconstructed from this expression according to the procedure of Theorem 5.19, and the reducedautomaton is shown in Figure 6.3b.In our application we must modify the equivalence relation still further, and only treat�nal states as equivalent when they lead to identical subsequent processing. For an automatonrecognizing the symbol grammar of LAX, we divide the �nal states into the following classes:� Identi�ers or keywords� Special characters� Combinations of special characters

116 Lexical Analysis
’’

c

c

c

’’

’’

’’

’’

c

’’’’

5

4

0

2

3 6

1

a) Unreduced
c

’’
’’

’’

4,5

1,2
3,60

b) ReducedFigure 6.3: Finite Automata Accepting `"" + "(c + "")(c + "")*"'� Integers� Floating point numbers� Floating point numbers with exponentsThis results in the reduced automaton of Figure 6.4. Letters denote the following characterclasses:� a = all characters other than '*'� a0 = all characters other than '*' or ')'� d = digits� l = letters� s = '+' '-' '*' '<' '>' '"' ';' ',' ')' '[' ']'Figure 6.4 illustrates several methods of obtaining the code corresponding to a basicsymbol. States, 1, 6, 7, 9, and 12-18 all provide the code directly. Identify symbol mustbe used in state 4 to distinguish identi�ers from keywords. In state 19 we might also useidentify symbol , or we might use some other direct computation based on the charactercodes.The state reduction in these examples could be performed by hand with no display oftheory, but the theory is required if we wish to mechanically implement a lexical analyzerbased upon regular expressions.6.2.3 Programming the Lexical AnalyzerIn order to extract the basic symbol that follows a given position p in the input stream we mustrecognize and delete irrelevant characters such as spaces and newlines, use the automaton toread the symbol, and �x the terminal position p0.Superuous spaces can be deleted by adding transitions q0 0 ! q to all states q in whichsuch spaces are permitted. Since newlines (card boundaries or carriage returns) are inputcharacters if they are signi�cant, we can handle them in the same way as superuous spacesin many languages.

6.2 Construction 117

/ =

E

E

.

ld

s

/ =:
d

+-

d d

d

d

d

d

.
d

=

(

) l

*a

*

a’

* -

ld
4

1

129

6

19 7

17

18 16

14 13

15

2 3 5

0 8

10 11

Figure 6.4: Finite Automaton Accepting LAX Basic SymbolsThere are two possibilities from which to choose when programming the automaton:� Representing the transition table as a matrix, so that the program for the automatonhas the general form:while basic_symbol_not_yet_complete dostate := table[state, next_character];� Programming the transition table as a case clause for each state.The �rst method is generally expensive in terms of memory. For LAX we need a 20� 57matrix, even without considering characters that may occur only in comments. We can reducethe size of this matrix by grouping together all characters that are treated uniformly by thelexical analyzer and provide one column for each such character class. The class to which acharacter belongs is then obtained from an array indexed by the character. This array makesthe remainder of the compiler relatively independent of changing character sets and theirencoding, thus increasing its machine-independence. For LAX the classes are: fletters otherthan Eg, fEg, fdigitsg, f g, f(g, f)g, f*g, f+ -g, f;g, f=g, f/g, f.g, f:g, f<>", []g, fspacetab newlineg, fterminator (#)g, fcharacters allowed only in commentsg; the matrix size isthen 20� 18. The storage requirements can often be reduced still further, possibly by meansof techniques introduced in the next chapter.In contrast to the matrix representation, mechanical implementation of the transitiontable by case clauses can be carried out only at great cost. Hand coding is rather simple,however, and one usually obtains a much smaller lexical analyzer. Steps can also be taken tospeed up execution of the most-frequently performed transitions.

118 Lexical AnalysisThe simplest way to provide output from the automaton is to add the input characterto a string { empty at the start of the basic symbol { during each state transition. Thisstrategy is generally inadequate. For example, the quotes bounding a Pascal character orstring denotation should be omitted and any doubled internal quote should be replaced bya single quote. Thus more general actions may need to be taken at each state transition. Itusually su�ces, however, to provide the following four options:� Add (some mapping of) the input character to the output string.� Add a given character to the output string.� Set a pointer or index to the output string.� Do nothing.Figure 6.5 illustrates three of these actions applied to produce output from the automatonof Figure 6.3b. A slash separates the output action from the input character; the absence ofa slash indicates the `do nothing' action.
c/c

’’/’’

’’

’’

4,5

1,2
3,60

Figure 6.5: Finite Transducer for Pascal StringsIn order to produce the standard representation of oating point numbers (see Sec-tion 4.2.2), we require three indices to the characters of the signi�cand:beg: Initially indexes the �rst character of the signi�cand, �nally indexes the �rst nonzerodigit.pnt: Indexes the �rst position to the right of the decimal point.lim: Initially indexes the �rst position to the right of the signi�cand, �nally indexes the �rstposition to the right of the last nonzero digit.By moving the indices beg and lim, the leading and trailing zeros are removed so that thesigni�cand is left over in standard form. If e is the value of the explicit exponent, then theadjusted exponent e0 is given by:e0 := e+ (pnt� beg) signi�cand interpreted as a fractione0 := e+ (pnt� lim) signi�cand interpreted as an integerThe standard representation of a oating point zero is the pair (000; 0). This representationis obtained by taking a special exit from the standardization algorithm if beg becomes equalto lim during the zero-removal process.Many authors suggest that the next character operation be implemented by a proce-dure. We have already pointed out that the implementation of next character stronglyinuences the overall speed of the compiler; in many cases simple use of a procedure leads tosigni�cant ine�ciency. For example, Table 6.6 shows the results of measuring lexical analysistimes for three translators running on a Control Data 6400 under KRONOS 2.0. RUN 2.3 is aFORTRAN compiler that reads one line at a time, storing it in an array; the next characteroperation is implemented as a fetch and index increment in-line. The COMPASS 2.0 assem-bler implements some instances of next character by procedure calls and others by in-linereferences, while the Pascal compiler uses a procedure call to fetch each character. The two

6.3 Notes and References 119test programs for the FORTRAN compiler had similar characteristics: Each was about 5000lines long, composed of 30-40 heavily-commented subprograms. The test program for COM-PASS contained 900 lines, about one-third of which were comments, and that for Pascal (thecompiler itself) had 5000 lines with very few comments.Lexical Analysis TimeTranslator Program Microseconds Fraction ofper character total compile timeRUN 2.3 Page Formatter 3.56 14%without comments 3.44 9%Flowchart Generator 3.3 11.5%COMPASS 2.0 I/O Package 5.1 21%Pascal 3.4 Pascal Compiler 35.6 39.6%Figure 6.6: Lexical Analysis on a Control Data 6400 [Dunn, 1974]Further measurements on existing compilers for a number of languages indicate that themajor subtasks of lexical analysis can be rank-ordered by amount of time spent as follows:1. Skipping spaces and comments.2. Collecting identi�ers and keywords.3. Collecting digits.4. All other tasks.In many cases there are large (factor of at least 2) di�erences in the amount of time spentbetween adjacent elements in this hierarchy. Of course the precise breakdown depends uponthe language, compiler, operating system and coding technique of the user. For example, skip-ping a comment is trivial in FORTRAN; on the other hand, an average non-comment cardin FORTRAN has 48 blank columns out of the 66 allocated to code Knuth [1971a]. Takentogether, the measurements discussed in the two paragraphs above lead to the conclusion thatthe lexical analyzer should be partitioned further: Tasks 1-3 should be incorporated into ascanner module that implements the next character operation, and the �nite automatonand its underlying regular grammar (or regular expression) should be de�ned in terms ofthe characters digit string , identifier , keyword , etc. This decomposition drastically re-duces the number of invocations of next character , and also the inuence of the automatonimplementation upon the speed of the lexical analyzer.Tasks 1-3 are trivial, and can be implemented `by hand' using all of the coding tricks andspecial instructions available on the target computer. They can be carefully integrated withthe I/O facilities provided by the operating system to minimize overhead. In this way, seriousine�ciencies in the lexical analyzer can be avoided while retaining systematic constructiontechniques for most of the implementation.6.3 Notes and ReferencesThe fact that the basic symbols are regular was �rst exploited to generate a lexical analyzermechanically in the RWORD System [Johnson et al., 1968; Gries, 1971]. More recently,DeRemer [1974] has proposed the use of a modi�ed LR technique (Section 5.3.3) for thisgeneration. Lesk [1975] describes how such a system can be linked to the remainder of acompiler.Lexical analyzer generators are still the exception rather than the rule. The analyzersused in practice are simple, and hand coding is not prohibitively expensive. There are also

120 Lexical Analysismany indications that the hand-coded product provides signi�cant savings in execution timeover the products of existing generators. Many of the coding details (table formats, outputactions, limited backtrack and character class tradeo�s) are discussed by Waite [1973a] inhis treatment of string-directed pattern matching.Two additional features, macros and compiler control commands (compiler options,compile-time facilities) complicate the lexical analyzer and its interface to the parser. Macroprocessing can usually be done in a separate pre-pass. If, however, it is integrated into thelanguage (as in PL/M or Burroughs Extended ALGOL) then it is a task of the lexical an-alyzer. This requires additional information from the parser regarding the scope of macrode�nitions.We recommend that control commands always be written on a separate line, and be easilyrecognizable by the lexical analyzer. They should also be syntactically valid, so that the parsercan process them if they are not relevant to lexical analysis. Finally, it is important that therebe only one form of control command, since the user should not be forced to learn severalconventions because the compiler writer decides to process commands in several places.Exercises6.1 Derive a regular grammar from the LAX symbol grammar of Appendix A.1. Derive aregular expression.6.2 [Sale, 1971; McIlroy, 1974] Consider the de�nition of FORTRAN 66.(a) Partition the grammar as discussed in Section 6.1.1. Explain why you distin-guished each of the symbol subgrammars Gi.(b) Carefully specify the lexical analyzer interface. How do you invoke di�erent symbolsubgrammars?6.3 Consider the following set of tokens, which are possible in a FORTRAN assignmentstatement [McIlroy, 1974] (identifier is constructed as usual, d denotes a nonemptysequence of digits, and s denotes either `+' or `-'):+ - * / ** (), =.TRUE. .FALSE..AND. .OR. .NOT..LT. .LE. .EQ. .NE. .GE. .GT.identifierd d. d.d .ddEd d.Ed d.dEd .dEddEsd d.Esd d.dEsd .dEsdAssume that any token sequence is permissible, and that the ambiguity of `***' maybe resolved in any convenient manner.(a) Derive an analysis automaton using the methods of Section 5.2, and minimize thenumber of states by the method of Section B.3.3.(b) Derive an analysis automaton using the methods given by Aho and Corasick[1975], and minimize the number of states.(c) Describe in detail the interaction between the parser and the automaton derivedin (b). What information must be retained? What form should that informationtake?

6.3 Notes and References 121(d) Can you generalize the construction algorithms of Aho and Corasick to arbitraryregular expression inputs?6.4 Write a line-imaging routine to accept an arbitrary sequence of printable characters,spaces and backspace characters and create an image of the input line. You shouldrecognize an extended character set which includes arbitrary underlining, plus the fol-lowing overstruck characters:c overstruck by / interpreted as `cents'= overstruck by / interpreted as `not equal'(Note: Overstrikes may occur in any order.) Your image should be an integer array,with one element per character position. This integer should encode the character (e.g.`cents') resulting in that position from the arbitrary input sequence.6.5 Write a program to implement the automaton of Figure 6.4 as a collection of caseclauses. Compile the program and compare its size to the requirements for the transi-tion table.6.6 Attach output speci�cations to the transitions of Figure 6.4. How will the inclusion ofthese speci�cations a�ect the program you wrote for Exercise 6.5? Will their inclusionchange the relationship between the program size and transition table size signi�cantly?6.7 Consider the partition of a lexical analyzer for LAX into a scanner and an automaton.(a) Restate the symbol grammar in terms of identifier , digit string , etc. toreect the partition. Show how this change a�ects Figure 6.4.(b) Carefully specify the interface between scanner and automaton.(c) Rewrite the routine of Exercise 6.5, using the interface de�ned in (b). Has theoverall size of the lexical analyzer changed? (Don't forget to include the scan-ner size!) Has the relationship between the two possible implementations of theautomaton (case clauses or transition tables) changed?(d) Measure the time required for lexical analysis, comparing the implementation of(c) with that of Exercise 6.5. If they di�er, can you attribute the di�erence to anyspeci�c feature of your environment (e.g. an expensive procedure mechanism)? Ifthey do not di�er, can you explain why?6.8 Suppose that LAX is being implemented on a machine that supports both upper andlower case letters. How would your lexical analyzer change under each of the followingassumptions:(a) Upper and lower case letters are indistinguishable.(b) Upper and lower case may be mixed arbitrarily in identi�ers, but all occurrences ofa given identi�er must use the same characters. (In other words, if an identi�er isintroduced as ArraySize then no identi�er such as arraysize can be introducedin the same range.) Keywords must always be lower case.(c) As (b), except that upper and lower case may be mixed arbitrarily in keywords,and need not always be the same.(d) Choose one of the schemes (a)-(c) and argue in favor of it on grounds of programportability, ease of use, documentation value, etc.

122 Lexical Analysis

Chapter 7ParsingThe parsing of a source program determines the semantically-relevant phrases and, at thesame time, veri�es syntactic correctness. As a result we obtain the parse tree of the program,at �rst represented implicitly by the sequence of productions employed during the derivationfrom (or reduction to) the axiom according to the underlying grammar.In this chapter we concern ourselves with the practical implementation of parsers. Webegin with the parser interface and the appropriate choice of parsing technique, and thengo into the construction of deterministic parsers from a given grammar. We shall considerboth the top-down and bottom-up parsing techniques introduced in Section 5.3.2 and 5.3.3.Methods for coding parsers by hand and for generating them mechanically will be discussed.7.1 DesignTo design a parser we must de�ne the grammar to be processed, augment it with connectionpoints (points at which information will be extracted) and choose the parsing algorithm.Finally, the augmented grammar must be converted into a form suited to the chosen parsingtechnique. After this preparation the actual construction of the parser can be carried outmechanically. Thus the process of parser design is really one of grammar design, in which wederive a grammar satisfying the restrictions of a particular parsing algorithm and containingthe connection points necessary to determine the semantics of the source program.Even if we are given a grammar for the language, modi�cations may be necessary to obtaina useful parser. We must, of course, guarantee that the modi�ed grammar actually describesthe same language as the original, and that the semantic structure is unchanged. Structuralsyntactic ambiguity leading to di�erent semantic interpretations can only be corrected byaltering the language. Other ambiguities can frequently be removed by deleting productionsor restricting their applicability depending upon the parser state.7.1.1 The Parser InterfaceA parser accepts a sequence of basic symbols, recognizes the extant syntactic structure, andoutputs that structure along with the identity of the relevant symbols. If the syntacticstructure is not error-free, the parser invokes the error handler to report errors and to aidin recovery so that processing can continue. (The details of the recovery mechanism will bediscussed in Section 12.2.2.) Figure 7.1 shows the information ow involved in the parsingprocess.Three possible interface speci�cations are suggested by Figure 7.1, depending upon theoverall organization of the compiler. The most common is for the parser module to provide123

124 Parsing
Sythesized

tokens
Error

reports

Connection
points

Tokens
Parseranalyzer

Lexical Semantic
analyzer

Error
handlerFigure 7.1: Parser Information Flowthe operation parse program . It invokes the lexical analyzer's next symbol operation foreach basic symbol, and reports each connection point by invoking an appropriate operationof some other module. (We term this invocation a parser action.) Control of the entiretransduction process resides within the parser in this design. By moving the control out ofthe parser module, we obtain the two alternative designs: The parser module provides eitheran operation parse symbol that is invoked with a token as an argument, or an operationnext connection that is invoked to obtain a connection point speci�cation.It is also possible to divide the parsing over more than one pass. Properties of the languageand demands of the parsing algorithm can lead to a situation where we need to know thesemantics of certain symbols before we can parse the context of the de�nitions of thesesymbols. ALGOL 68, for example, permits constructs whose syntactic structure can berecognized by deterministic left-to-right analysis only if the complete set of type identi�ers isknown beforehand. When the parsing is carried out in several passes, the sequence of symbolsproduced by the lexical analyzer will be augmented by other information collected by parseractions during previous passes. The details depend upon the source language.We have already considered the interface between the parser and the lexical analyzer, andthe representation of symbols. The parser looks ahead some number of symbols in order tocontrol the parsing. As soon as it has accepted one of the lookahead symbols as a componentof the sentence being analyzed, it reads the next symbol to maintain the supply of lookaheadsymbols. Through the use of LL or LR techniques, we can be certain that the program issyntactically correct up to and including the accepted symbol. The parser thus need notretain accepted symbols. If the code for these symbols, or their values, must be passed onto other compiler modules via parser actions, these actions must be connected directly tothe acceptance of the symbol. We shall term connection points serving this purpose symbolconnections.We can distinguish a second class of connection point, the structure connection. It isused to connect parser actions to the attainment of certain sets of situations (in the senseof Section 5.3.2) and permits us to trace the phrases recognized by the parser in the sourceprogram. Note carefully that symbol and structure connections provide the only informationthat a compiler extracts from the input text.In order to produce the parse tree as an explicit data structure, it su�ces to provideone structure connection at each reduction of a simple phrase and one symbol connection atacceptance of each symbol having a symbol value; at the structure connections we must knowwhich production was applied. We can �x the connection points for this process mechanicallyfrom the grammar. This process has proved useful, particularly with bottom-up parsing.Parser actions that enter declarations into tables or generate code directly cannot be �xedmechanically, but must be introduced by the programmer. Moreover, we often know whichproduction is to be applied well before the reduction actually takes place, and we can make

7.1 Design 125good use of this knowledge. In these cases we must explicitly mark the connection pointsand parser actions in the grammar from which the parser is produced. We add the symbolencoding (code and value) taken from the lexical analyzer as a parameter to the symbolconnections, whereas parser actions at structure connections extract all of their informationfrom the state of the parser.Expression ::= Term ('+' Term % Addop)� .Term ::= Factor ('*' Factor % Mulop)� .Factor ::= 'Identifier ' & Ident j '(' Expression ')' .a) A grammar for expressionsAddop : Output "+"Mulop : Output "*"Ident : Output the identi�er returned by the lexical analyzerb) Parser actions to produce post�xFigure 7.2: Connection PointsFigure 7.2 illustrates a grammar with connection points. The character % marks structureconnections, the character & symbol connections. Following these characters, the parseraction at that point is speci�ed. De�nitions of the parser actions are given in Figure 7.2b.The result of these speci�cations is a translation of arithmetic expressions from in�x to post�xform.The processes for parser generation to be described in Sections 7.2 and 7.3 can inter-pret symbol and structure connections introduced explicitly into the grammar as additionalnonterminals generating the null string. Thus the connection points do not require specialtreatment; only the generated parsing algorithm must distinguish them from symbols of thegrammar. In addition, none of the transformations used during the generation process altersthe invocation sequence of the associated parser actions.The introduction of connection points can alter the properties of the grammar. For ex-ample, the grammar whose productions are fZ ! S, S ! abc, S ! abdg is LR(0). Themodi�ed grammar fZ ! S, S ! a&Abc, S ! a&Bbdg no longer possesses this property:After reading a it is not yet clear which of the parser actions should be carried out.If a grammar does not have a desired property before connection points are introduced,then their inclusion will not provide that property. This does not, however, prohibit a parseraction from altering the state of the parser and thus simulating some desirable property. Forexample, one can occasionally distinguish among several possible state transitions throughthe use of semantic information and in this manner establish an LL property not previouslypresent. More problems are generally created than avoided by such ad hoc measures, however.7.1.2 Selection of the Parsing AlgorithmThe choice of which parsing technique to use in a compiler depends more upon the economicand implementation viewpoint than upon the source language and its technical properties.Experience with a particular technique and availability of a program to construct the parser(or the cost of developing such a program) are usually stronger criteria than the suitability ofthe technique for the given source language. The reason is that, in many cases, the grammarfor a language can be modi�ed to satisfy the restrictions of several parsing techniques.As we have previously stressed, the parser should work deterministically under all cir-cumstances. Only in this way can we parse correct programs in a time linearly dependent

126 Parsingupon program length, avoiding backtrack and the need to unravel parser actions. We havealready pointed out the LL and LR algorithms as special cases of deterministic techniquesthat recognize a syntactic error at the �rst symbol, t, that cannot be the continuation of acorrect program; other algorithms may not discover the error until attempting to reduce thesimple phrase in which t occurs. Moreover, LR(k) grammars comprise the largest class whosesentences can be parsed using deterministic pushdown automata. In view of these propertieswe restrict ourselves to the discussion of LL and LR parsing algorithms. Other techniquescan be found in the literature cited in Section 7.4.Usually the availability of a parser generator is the strongest motive for the choice betweenLL and LR algorithms: If one has such a generator at one's disposal, then the technique itimplements is given preference. If no parser generator is available, then an LL algorithmshould be selected because the LL conditions are substantially easier to verify by hand. Alsoa transparent method for obtaining the parser from the grammar exists for LL but not forLR algorithms. By using this approach, recognizers for large grammars can be programmedrelatively easily by hand.LR algorithms apply to a larger class of grammars than LL algorithms, because theypostpone the decision about the applicable production until the reduction takes place. Themain advantage of LR algorithms is that they permit more latitude in the representation ofthe grammar. As the example at the end of Section 7.1.1 shows, however, this advantage maybe neutralized if distinct structure connections that frustrate deferment of a parsing decisionmust be introduced. (Note that LL and LR algorithms behave identically for all languageconstructs that begin with a special keyword.)We restrict our discussion to parsers with only one-symbol lookahead, and thus to LL(1)and LR(1) grammars. Experience shows that this is not a substantial restriction; program-ming languages are usually so simply constructed that it is easy to satisfy the necessaryconditions. In fact, to a large extent one can manage with no lookahead at all. The mainreason for the restriction is the considerable increase in cost (both time and space) that mustbe invested to obtain more lookahead symbols in the parser generator and in the generatedparser.When dealing with LR grammars, not even the restriction to the LR(1) case is su�cientto obtain practical tables. Thus we use an LR(1) parse algorithm, but control it with tablesobtained through a modi�cation of the LR(0) analyzer.7.1.3 Parser ConstructionLL and LR parsers are pushdown automata. Given a grammar G = (T;N; P; Z), we canuse either construction 5.23 (LL) or construction 5.33 (LR) to derive a parsing automatonA = (T;Q;R; q0; fq0g; Q; q0). To implement this automaton, we must represent the transitionsof R in a convenient form so that we can determine the next transition quickly and at thesame time keep the total storage requirement reasonable.For this purpose we derive a transition function, f(q; �), from the production set R. Itspeci�es which of the possible actions (e.g. read a symbol, reduce according to a productionfrom P , report an error) should be taken in state q when the input string begins with theelement � 2 T . In the LR case we also de�ne f(q; �) for � 2 N ; it then speci�es the action tobe taken in state q after a reduction to �. The transition function may be represented by a(transition) matrix.Some of the entries of f(q; �) may be unreachable, regardless of the terminal string inputto the parser. (We shall give examples in Section 7.3.1.) Because these entries can never bereached, the actions they specify are irrelevant. In the terminology of sequential machines,these entries are don't-cares and the transition function is incompletely speci�ed. The presence

7.2 LL(1) Parsers 127of don't-cares leads to possible reduction in table size by combining rows or columns that di�eronly in those elements.The transition function may be stored as program fragments rather than as a matrix.This is especially useful in an LL parser, where there are simple rules relating the programfragments to the original grammar.Parser generation is actually compilation: The source program is a grammar with em-bedded connection points, and the target program is some representation of the transitionfunction. Like all compilers, the parser generator must �rst analyze its input text. Thisanalysis phase tests the grammar to ensure that it satis�es the conditions (LL(1), LR(1),etc.) assumed by the parser. Some generators, like `error correcting' compilers, will attemptto transform a grammar that does not meet the required conditions. Other transformationsdesigned to optimize the generated parser may also be undertaken. In Sections 7.2 and 7.3we shall consider some aspects of the `semantic analysis' (condition testing) and optimizationphases of parser generators.Grammar Type Test Parser generationLL(1) n2 n2Strong LL(k) nk+1 nk+1LL(k) n2k 2nk+(k+1) log nSLR(1) n2 2n+log nSLR(k) nk+2 2n+k log nLR(k) n2(k+1) 2nk+1+k log nTable 7.1: Computational Complexity of Parser Generation [Hunt et al., 1975]Table 7.1 summarizes the computational complexity of the parser generation algorithmspresented in the remainder of this chapter. (The parameter n is the sum of the lengths of theright-hand sides of all productions.) It should be emphasized that the expressions of Table 7.1represent asymptotic bounds on execution time. All of the bounds given are sharp, since inevery case grammars exist whose parsers require an amount of table space proportional tothe time bound speci�ed for parser construction.7.2 LL(1) ParsersLL(1) parsers are top-down pushdown automata that can be obtained by construction 5.23.We shall �rst sharpen the de�nition of an LL grammar and thereby simplify the constructionof the automaton. Next we explain the relationship between a given LL(1) grammar and theimplementation of the pushdown automaton. Finally we develop the algorithms for an LL(1)parser generator. We defer the problem of error handling until Section 12.2.2.7.2.1 Strong LL(k) GrammarsConsider an LL(k) grammar G = (T;N; P; Z) and a left derivation:Z)L �A�)� � �; 2 T �; A 2 N; � 2 V �According to De�nition 5.22, we can predict the next applicable production A! � if � andk : are given. The dependence upon � is responsible for the fact that, in construction 5.23,we must carry along the right context ! in the situation [A ! � � �;!]. Without thisdependence we could use the following in place of step 5 of the construction algorithm:

128 Parsing5'. If � = B for some B 2 N and 2 V �, let q0 = [X ! �B � ;
] and H = f[B !��i;FOLLOWk(B)] j B ! �i 2 Pg. Set Q := Q [fq0g [H, and R := R [fq� !q0hi� j hi 2 H; � 2 FIRSTk(�iFOLLOWk(B))g.In this way, situations distinct only in the right context always belong to the samestate. This simpli�cation is made possible by the strong LL(k) grammars introduced byRosenkrantz and Stearns [1970]:7.1 DefinitionA context free grammar G = (T;N; P; Z) is called a strong LL(k) grammar for given k < 0if, for arbitrary derivationsZ)L �A�) ���)� � �; 2 T �; �; � 2 V �; A 2 NZ)L �0A�0) �0!�0)� �00 �0; 0 2 T �; !; �0 2 V �(k : = k : 0) implies � = !. �The grammar with P = fZ ! aAab; Z ! bAbb;A ! a;A ! �g is LL(2), as can be seenby writing down all derivations. On the other hand, the derivations Z) aAab) aab andZ) bAbb) babb violate the conditions for strong LL(2) grammars.The dependence upon �, the stack contents of the automaton, is reected in the fact thattwo distinct states q = [X ! � � �;!] and q0 = [X ! � � �;!0], identical except for theright context, can occur in construction 5.23 and lead to distinct sequences of transitions.Without this dependence the further course of the parse is determined solely by X ! � � �,and FOLLOWk(X) cannot distinguish the right contexts !,!0.7.2 Theorem (LL(1) condition)A context free grammar G is LL(1) i� for two productions X ! �, X ! �0, � 6= �0 impliesthat FIRST (�FOLLOW (X)) and FIRST (�0FOLLOW (X)) are disjoint. �To prove Theorem 7.2 we assume a t 2 T that is an element of both FIRST (�FOLLOW (X))and FIRST (�0FOLLOW (X)). Then one of the following cases must hold:1. t 2 FIRST (�), t 2 FIRST (�0)2. � 2 FIRST (�), t 2 FIRST (�0), t 2 FOLLOW (X)3. � 2 FIRST (�0), t 2 FIRST (�), t 2 FOLLOW (X)4. � 2 FIRST (�), � 2 FIRST (�0), t 2 FOLLOW (X)With the aid of the de�nition of FOLLOW we can easily see that each of these casescontradicts De�nition 5.22 for k = 1. Thus G is not an LL(1) grammar; in fact, in case(4) the grammar is ambiguous. If, on the other hand, the grammar does not ful�ll thespeci�cations of De�nition 5.22, then one of the above cases holds and the grammar does notsatisfy the LL(1) condition. (Note that Theorem 5.24 may be derived directly from the LL(1)condition.)If the grammar is �-free, the LL(1) condition can be simpli�ed by omitting FOLLOW (X).Obviously it is ful�lled if and only if G is a strong LL(k) grammar. Thus Theorem 7.3 followsfrom Theorem 7.2:7.3 TheoremEvery LL(1) grammar is a strong LL(1) grammar. �Theorem 7.3 cannot be generalized to k < 1, as illustrated by the LL(2) grammar withP = fZ ! aAab; Z ! bAbb;A ! a;A ! �g cited above. The simpli�cation of pushdownautomata mentioned at the beginning of the section thus applies only to the LL(1) case; it isnot applicable to LL(k) grammars with k < 1.

7.2 LL(1) Parsers 1297.2.2 The Parse AlgorithmA matrix representation of the transition function for the LL(1) case does not provide as muchinsight into the parsing process as does the conversion of the productions of the grammar torecursive procedures. We shall thus begin our treatment by discussing the technique knownas recursive descent.In a recursive descent parser we use a position in the parser to reect the state of theautomaton. The stack therefore contains locations at which execution of the parser mayresume. When a state represents a situation [X ! � � B�;!], B 2 N , we must enterinformation into the stack about the following state [X ! �B � �;!] before proceeding tothe consideration of the production B ! �. If we are using a programming language thatpermits recursive procedures, we may associate a procedure with each nonterminal B and usethe standard recursion mechanism of the language to implement the automaton's stack.With this approach, the individual steps in construction 5.23 lead to the program schematashown in Figure 7.3. These schemata assume the existence of a global variable symbol con-taining the value of the last symbol returned by the lexical analyzer, which is reset by a callto next symbol .Transition set Program schemaq ! � q : endqt! q0 q : if symbol = t then next symbol else error ; q0 : : : :q : X; q0 : : : :: : :proc X :begincase symbol ofqt1 ! q0q1t1 t1 : begin q1 : : : : end;: : : : : :qtm ! q0qmtm tm : begin qm : : : : endotherwise errorendendFigure 7.3: Program Schemata for an LL(1) ParserConsider the grammar of Figure 7.4a, which, like the grammar of Figure 5.3b, satis�es theLL(1) condition. By construction 5.23, with the simpli�cation discussed in Section 7.2.1, weobtain the pushdown automaton whose states are shown in Figure 7.4b and whose transitionsappear in Figure 7.4c. Figure 7.5 shows a parser for this grammar implemented by recursivedescent. As suggested, the procedures correspond to the nonterminals of the grammar. Wehave placed the code to parse the axiom on the end as the main program. The test of thelookahead symbol in state q1 guarantees that the iput has been completely processed.This systematically-constructed program can be simpli�ed, also systematically, as shownin Figure 7.6a. The correspondence between the productions of Figure 7.4a and the code ofFigure 7.6a results from the following transformation rules:1. Every nonterminal X corresponds to a procedure X; the axiom of the grammar corre-sponds to the main program.2. The body of procedure X consists of a case clause that distinguishes the productionswith X as left-hand side. Every nonterminal on the right-hand side of a production isconverted to a call of the corresponding procedure. Every terminal leads to a call ofnext symbol , after the presence of the terminal has been veri�ed.3. In case none of the expected terminals is present, the error handler is invoked.

130 ParsingIf an empty production occurs for a nonterminal, this alternative can, in principle, bedeleted. Thus the procedure corresponding to E1 could also be written as shown in Fig-ure 7.6b. Any errors would then be detected only after return to the calling procedure. InSection 12.2.2 we shall see that the quality of error recovery is degraded by this strategy.Z ! EE ! FE1E1 ! � j + FE1F ! i j (E)a) The grammarq0 : [Z ! �E] q8 : [E1 ! �+ FE1]q1 : [Z ! E�] q9 : [F ! i�]q2 : [E ! �FE1] q10 : [F ! (�E)]q3 : [E ! F � E1] q11 : [E1 ! + � FE1]q4 : [F ! �i] q12 : [F ! (E�)]q5 : [F ! �(E)] q13 : [E1 ! +F � E1]q6 : [E ! FE1�] q14 : [F ! (E)�]q7 : [E1 ! ��] q15 : [E1 ! +FE1�]b) The states of the parsing automatonq0i! q1q2i, q0(! q1q2(,q1 ! �;q2i! q3q4i, q2(! q3q5(,q3#! q6q7#, q3)! q6q7), q3+! q6q8+,q4i! q9,q5(! q10,q6 ! �,q7 ! �,q8+! q11,q9 ! �,q10i! q12q2i, q10(! q12q2(,q11i! q13q4i, q11(! q13q5(,q12)! q14,q13#! q15q7#, q13)! q15q7), q13+! q15q8+,q14 ! �,q15 ! �c) The transitions of the parsing automatonFigure 7.4: A Sample Grammar and its Parsing AutomatonIf we already know that a grammar satis�es the LL(1) condition, we can easily use thesetransformations to write a parser (either by mechanical means or by hand). With additionaltransformation rules we can generalize the technique su�ciently to convert our extended BNF(Section 5.1.3) and connection points. Some of the additional rules appear in Figure 7.7.Figure 7.8 illustrates the use of these rules.

7.2 LL(1) Parsers 131procedure parser;procedure E ; forward;procedure F ;begin (* F *)case symbol of'i':begin(* q4: *) if symbol = 'i' then next_symbol else error;(* q9: *)end;'(' :begin(* q5: *) if symbol = '(' then next_symbol else error;(* q10: *) E ;(* q12: *) if symbol = ')' then next_symbol else error ;(* q14: *)endotherwise errorend;end; (* F *)procedure E1 ;begin (* E1 *)case symbol of'#', ')' : (* q7: *);'+' :begin(* q8: *) if symbol = '+' then next_symbol else error;(* q11: *) F ;(* q13: *) E1 ;(* q15: *)endotherwise errorend;end; (* E1 *)procedure E ;begin (* E *)(* q2: *) F ;(* q3: *) E1 ;(* q6: *)end; (* E *)begin (* parser *)(* q0: *) E ;(* q1: *) if symbol <> '#' then error ;end; (* parser *)Figure 7.5: A Recursive Descent Parser for the Grammar of Figure 7.4

132 Parsing
procedure parser;procedure E ; forward;procedure F ;begin (* F *)case symbol of'i' : next_symbol;'(':beginnext_symbol;E;if symbol = ')' then next_symbol else error ;endotherwise errorend;end; (* F *)procedure E1 ;begin (* E1 *)case symbol of'#', ')': ;'+': begin next_symbol; F ; E1 endotherwise errorend;end; (* E1 *)procedure E ;begin F ; E1 end;begin (* parser *)E ;if symbol <> '#' then error ;end; (* parser *)a) Errors detected within E1procedure E1 ;begin (* E1 *)if symbol = `+' then begin next_symbol; F ; E1 end;end; (* E1 *)b) Errors detected after exit from E1Figure 7.6: Figure 7.5 Simpli�ed

7.2 LL(1) Parsers 133Element Program schemaOption [x] if symbol in FIRST (x) then x;Closure x+ repeat x until not (symbol in FIRST (x))x� while symbol in FIRST (x) do x;List x jj d x;while symbol in FIRST (d) dobegin d;x end;Connection t&Y if symbol = t thenbegin Y ; next symbol endelse error ;%Z ZFigure 7.7: Extension of Figure 7.3expression ::= term (0+0 term % addop)�:term ::= 0i0 & ident j 0(0 expression 0)0:a) Grammar (compare Figure 7.2a)procedure parser;procedure term ; forward;procedure expression;begin (* expression *)term ;while symbol = '+' dobegin next_symbol; term ; addop end;end; (* expression *)procedure term ;begin (* term *)case symbol of'i': begin ident; next_symbol end;'(': beginnext_symbol;expression;if symbol = ')' then next_symbol else error;endotherwise errorend;end; (* term *)begin (* parser *)expression;if symbol <> '#' then error;end (* parser *) b) ParserFigure 7.8: Parser for an Extended BNF GrammarRecursive descent parsers are easy to construct, but are not usually very e�cient in eithertime or storage. Most grammars have many nonterminals, and each of these leads to thedynamic cost associated with the call of and return from a recursive procedure. The proce-dures that recognize nonterminals could be implemented substantially more e�ciently than

134 Parsingarbitrary recursive procedures because they have no parameters or local variables, and thereis only a single global variable. Thus the alteration of the environment pointer on procedureentry and exit can be omitted.An interpretive implementation of a recursive descent parser is also possible: The controlprogram interprets tables generated from the grammar. Every table entry speci�es a basicoperation of the parser and the associated data. For example, a table entry might be describedas follows:type parse_table_entry = recordoperation : integer; (* Transition *)lookahead : set of symbol_code; (* Input or lookahead symbol *)next : integer (* Parse table index *)end;States corresponding to situations that follow one another in a single production followone another in the table. Figure 7.9 speci�es a recursive descent interpreter assuming thatparse table is an array of parse table entry .Alternatives (1)-(5) of the case clause in Figure 7.9 supply the program schemata forqt ! q0, q ! � and qti ! q0qiti introduced in Figure 7.3. As before, the transition qti !q0qiti is accomplished in two steps (alternative 3 followed by either 4 or 5). The situationsrepresented by the alternatives are given as comments. Alternative 6 shows one of the possibleoptimizations, namely the combination of selecting a production X ! �i (alternative 4)with acceptance of the �rst symbol of �i (alternative 1). Further optimization is possible(Exercise 7.6).7.2.3 Computation of FIRST and FOLLOW SetsThe �rst step in the generation of an LL(1) parser is to ensure that the grammar G =(T;N; P; Z) satis�es the LL(1) condition. To do this we compute the FIRST and FOLLOWsets for all X 2 N . For each production X ! � 2 P we can then determine the directorset W = FIRST (�FOLLOW (X)). The director sets are used to verify the LL(1) condition,and also become the lookahead sets used by the parser. With the computation of these sets,the task of generating the parser is essentially complete. If the grammar does not satisfy theLL(1) condition, the generator may attempt transformations automatically (for example, leftrecursion removal and simple left factoring) or it may report the cause of failure to the userfor correction.The following algorithm can be used to compute FIRST (X) and initial values for thedirector set W of each production X ! �.1. Set FIRST (X) empty and repeat steps (2)-(5) for each production X ! �.2. Let � = x1 : : : xn, i = 0 and W = f#g. If n = 0, go to step 5.3. Set i := i+1 and W :=W [FIRST (xi). (If xi is an element of T , FIRST (xi) = fxig;if FIRST (xi) is not available, invoke this algorithm recursively to compute it.) Repeatstep 3 until either i = n or # is not an element of FIRST (xi).4. If # is not an element of FIRST (xi), set W :=W � f#g.5. Set FIRST (X) := FIRST (X) [W .Note that if the grammar is left recursive, step (3) will lead to an endless recursion andthe algorithm will fail. This failure can be avoided by marking each X when the computationof FIRST (X) begins, and clearing the mark when that computation is complete. If step (3)attempts to invoke the algorithm with a marked nonterminal, then a left recursion has beendetected.

7.2 LL(1) Parsers 135
procedure parser;var current: integer;stack : array [1 .. max_stack] of integer;stack_pointer: 0 .. max_stack;begin (* parser *)current := 1; stack_pointer := 0;repeatwith parse_table[current] docase operation of1: (* X ! � � t� *)if symbol in lookahead thenbegin next_symbol; current := current + 1 endelse error;2: (* X ! � � *)begincurrent := stack[stack_pointer];stack_pointer := stack_pointer - 1;end;3: (* X ! � � B� *)beginif stack_pointer = max_stack then abort ;stack_pointer := stack_pointer + 1;stack[stack_pointer] := current + 1;current := next;end;4: (* X ! ��i (not the last alternative) *)if symbol in lookahead thencurrent := current + 1else current := next;5: (* X ! ��m (last alternative) *)if symbol in lookahead thencurrent := current + 1else error;6: (* X ! �t�i (not the last alternative) *)if symbol in lookahead thenbegin next_symbol; current := current + 1 endelse current := nextend;until current = 1;if symbol <> '#' then error ;end; (* Parser *)Figure 7.9: An Interpretive LL(1) Parser

136 ParsingThis algorithm is executed exactly once for each X 2 N . If # is not in W at thebeginning of step 5 thenW is the complete director set for the production X ! �. Otherwisethe complete director set for X ! � is (W � f#g) [FOLLOW (X).E�cient computation of FOLLOW (X) is somewhat trickier. The problem is that someelements can be deduced from single rules, while others reect interactions among rules.For example, consider the grammar of Figure 7.4a. We can immediately deduce thatFOLLOW (F) includes FIRST (E1), because of the production E1 ! +FE1 Since E1)� �,FOLLOW (F) also contains FOLLOW (E1), which includes FOLLOW (E) because of theproduction E ! FE1.Interaction among the rules can be represented by the relation LAST :7.4 DefinitionGiven a context free grammar G = (T;N; P; Z). For any two nonterminals A, B, A LAST Bi� B ! �A� 2 P and �)� �. �This relation can be described by a directed graph F = (N;D), with D = f(A;B) jA LAST Bg. If there is a path from node A to node B in F , then FOLLOW (A) is asubset of FOLLOW (B); all nodes in a strongly connected region of F have identical fol-low sets. The general strategy for computing follow sets is thus to compute provisional setsFOL(X) = ft j A ! �X� 2 P; t 2 FIRST (�)g � f#g based only upon the relationshipsamong symbols within productions, and then use F to combine these sets.We can easily compute the graph F and the set FOL(X) by scanning the productionbackward and recalling that A)� � if # is in FIRST (A). Since F is sparse (jDj << jN�N j),it must be represented by an edge list rather than an adjacency matrix if the e�ciency of theremaining computation is to be maintained.The next step is to form the strongly connected regions of F and derive the directedacyclic graph F 0 = (N 0;D0) of these regions:D0 = f(A0; B0) j (A;B) 2 D such that A is in the strongly connected region A0 and B isin the region B0gF 0 can be constructed e�ciently by using the algorithm of Section B.3.2 to form the regionsand then constructing the edges in one pass over F . At the same time, we can compute theinitial follow sets FOL(A0) of the strongly connected regions A0inN 0 by taking the union ofall FOL(A) such that A is a nonterminal in the region A0.The �nal computation of FOLLOW (A0) is similar to our original computation ofFIRST (A):1. Initially, FOLLOW (A0) = FOL(A0) for A0 6= Z 0, and FOLLOW (Z 0) = f#g.2. For each immediate successor, B0, of A0 add FOLLOW (B0) to FOLLOW (A0).If FOLLOW (B0) is not already available, then invoke this algorithm recursively tocompute it.This algorithm also operates upon each element of N 0 exactly once. For each productionX ! � with # in W , we now obtain the �nal director sets by setting W := (W � f#g) [FOLLOW (X 0) (X 0 is the strongly connected region containing X).7.3 LR ParsersUsing construction 5.33, we can both test whether a grammar is LR(1) and construct a parserfor it. Unfortunately, the number of states of such a parser is too large for practical use.Exactly as in the case of strong LL(k) grammars, many of the transitions in an LR(1) parser

7.3 LR Parsers 137are independent of the lookahead symbol. We can utilize this fact to arrive at a parser withfewer states, which implements the LR(1) analysis algorithm but in which reduce transitionsdepend upon the lookahead symbol only if it is absolutely necessary.We begin the construction with an LR(0) parser, which does not examine lookaheadsymbols at all, and introduce lookahead symbols only as required. The grammars that wecan process with these techniques are the simple LR(1) (SLR(1)) grammars of DeRemer[1969]. (This class can also be de�ned for arbitrary k < 1.) Not all LR(1) grammars are alsoSLR(1) (there is no equivalence similar to that between ordinary and strong LL(1) grammars),but the distinction is unimportant in practice except for one class of problems. This classof problems will be solved by sharpening the de�nition of SLR(1) to obtain lookahead LR(1)(LALR(1)) grammars.The veri�cations of the LR(1), SLR(1) and LALR(1) conditions are more laborious thanveri�cation of the LL(1) condition. Also, there exists no simple relationship between thegrammar and the corresponding LR pushdown automaton. LR parsers are therefore employedonly if one has a parser generator. We shall �rst discuss the workings of the parser and inthat way derive the SLR(1) and LALR(1) grammars from the LR(0) grammars. Next weshall show how parse tables are constructed. Since these tables are still too large in practice,we investigate the question of compressing them and show examples in which the �nal tablesare of feasible size. The treatment of error handling will be deferred to Section 12.2.2.7.3.1 The Parse AlgorithmConsider an LR(k) grammar G = (T;N; P; Z) and the pushdown automaton A = (T;Q;R; q0;fq0g; Q; q0) of construction 5.33. The operation of the automaton is most easily explainedusing the matrix form of the transition function:f(q; �) = 8>>>>>><>>>>>>:q
0 if � 2 T � and q� ! qq0 2 R orif � 2 N and q0 = next(q; �) (shift transition)X ! � if [X ! ��; �] 2 q (reduce transition)HALT if � = # and [Z ! S�;#] 2 qERROR otherwiseThis transition function is easily obtained from construction 5.33: All of the transitionsde�ned in step (5) deliver shift transitions with one terminal symbol, which will be accepted;the remaining transitions result from step (7) of the construction. We divide the transitionp1 : : : pmq! ! p1q0! referred to in step (7) into two steps: Because [X ! ��; �] is in q weknow that we must reduce according to the production X ! � and remove m = j�j statesfrom the stack. Further we de�ne f(p1;X) = next(p1;X) = q0 to be the new state. If w = #and [Z ! S�;#] 2 q then the pushdown automaton halts.Figure 7.10 gives an example of the construction of a transition function for k = 0. Wehave numbered the states and rules consecutively. `+2' indicates that a reduction will bemade according to rule 2; `*' marks the halting of the pushdown automaton. Because k = 0,the reductions are independent of the following symbols.Figure 7.10c shows the transition function as the transition diagram of a �nite automatonfor the grammars of Theorem 5.32. The distinct grammars correspond to distinct �nal states.As an LR parser, the automaton operates as follows: Beginning at the start state 0, we makea transition to the successor state corresponding to the symbol read. The states throughwhich we pass are stored on the stack; this continues until a �nal state is reached. In the �nalstate we reduce by means of the given production X ! �, delete j�j states from the stackand proceed as though X had been `read'.

138 Parsing(1) Z ! E(2) E ! E + F (3) E ! F(4) F ! i (5) F ! (E)a) The grammari () + # E F0 3 4 . . . 1 21 . . . 5 *2 +3 +3 +3 +3 +33 +4 +4 +4 +4 +44 3 4 . . . 6 25 3 4 . . . 76 . . 8 5 .7 +2 +2 +2 +2 +28 +5 +5 +5 +5 +5b) The transition table
HALT

+4

F

i

i +

F)

(

+5 +2

#EF

(

(

+

+3

E

i

8

2

3

76

4

0 1

5c) The transition diagramFigure 7.10: An Example of an LR(0) GrammarThe only distinction between the mode of operation of an LR(k) parser for k > 0 and theLR(0) parser of the example is that the reductions may depend upon lookahead symbols. Inthe �nal states of the automaton, reductions will take place only if the context allows them.Don't-care entries with f(q; �) = ERROR, i.e. entries such that there exists no word �with q0q0�#)� !q�# with suitable stack contents !, may occur in the matrix representa-tion of the transition function. Note that all entries (q;X), X 2 N , with f(q;X) = ERRORare don't-cares. By the considerations in step (3) of construction 5.33, no error can occur ina transition on a nonterminal; it would have been recognized at the latest at the precedingreduction. (The true error entries are denoted by `.', while don't-cares are empty entries inthe matrix representation of f(q; �).)7.3.2 SLR(1) and LALR(1) GrammarsFigure 7.11a is a slight extension of that of Figure 7.10a. It is not an LR(0) grammar, asFigure 7.12 shows. (A star before a situation means that this situation belongs to the basis ofthe state; the lookahead string is omitted.) In states 2 and 9 we must inspect the lookaheadsymbols to decide whether to reduce or not. Figure 7.11b gives a transition matrix thatperforms this inspection.The operation of the parser can be seen from the example of the reduction of i+i�(i+i)#(Figure 7.13). The `Next Symbol' column is left blank when the parser does not actuallyexamine the lookahead symbol. This example shows how, by occasional consideration of a

7.3 LR Parsers 139(1) Z ! E(2) E ! E + T (3) E ! T(4) T ! T � F (5) T ! F(6) F ! i (7) F ! (E)a) The grammari () + * # E T F0 4 5 1 2 31 . . . 6 . *2 . . +3 +3 7 +33 +5 +5 +5 +5 +5 +54 +6 +6 +6 +6 +6 +65 4 5 8 2 36 4 5 9 37 4 5 108 . . 11 6 . .9 . . +2 +2 7 +210 +4 +4 +4 +4 +4 +411 +7 +7 +7 +7 +7 +7b) The transition tableFigure 7.11: A Non-LR(0) Grammarlookahead symbol, we can also employ an LR(0) parser for a grammar that does not satisfythe LR(0) condition. States in which a lookahead symbol must be considered are calledinadequate. They are characterized by having a situation [X ! ��] that leads to a reduction,and also a second situation. This second situation leads either to a reduction with anotherproduction or to a shift transition.DeRemer [1971] investigated the class of grammars for which these modi�cations lead toa parser:7.5 DefinitionA context free grammar G = (T;N; P; Z) is SLR(1) i� the following algorithm leads to adeterministic pushdown automaton.The pushdown automaton A = (T;Q;R; q0; fq0g; Q; q0) will be de�ned by its transitionfunction f(q; �) rather than the production set R. The construction follows that of construc-tion 5.33. We use the following as the closure of a set of situations:H(M) =M [f[Y ! ��] j 9[X ! � � Y] 2 H(M)g1. Initially let Q = fq0g, with q0 = H(f[Z ! �S]g).2. Let q be an element of Q that has not yet been considered. Perform steps (3)-(4) foreach � 2 V .3. Let basis(q; �) = f[X ! �� �] j [X ! � � v] 2 qg.4. If basis(q; �) 6= ;, then let next(q; �) = H(basis(q; �)). Add q0 = next(q; �) to Q if it isnot already present.5. If all elements of Q have been considered, perform step (6) for each q 2 Q and thenstop. Otherwise return to step (2).6. For all � 2 V , de�ne f(q; �) by:

140 Parsingf(q; �) = 8>>>><>>>>:next(q; �) if [X ! � � v] 2 qX ! � if [X ! ��] 2 q and � 2 FOLLOW (X)HALT if � = # and [Z ! S�] 2 qERROR otherwise �This construction is almost identical to construction 5.33 with k = 0. The only di�erence isthe additional restriction � 2 FOLLOW (X) for the reduction (second case).SLR(1) grammars cover many practically important language constructs not expressibleby LR(0) grammars. Compared to the LR(1) construction, the given algorithm leads tosubstantially fewer states in the automaton. (For the grammar of Figure 7.11a the ratio is22:12). Unfortunately, even SLR(1) grammars do not su�ce for all practical requirements.State Situation � f(q; �)0 * [Z ! �E] E 1[E ! �E + T][E ! �T] T 2[T ! �T � F][T ! �F] F 3[F ! �i] i 4[F ! �(E)] (51 * [Z ! E�] # HALT* [E ! E � + T] + 62 * [E ! T�] #;);+ reduce 3* [T ! T � � F] � 73 * [T ! F�] reduce 54 * [F ! i�] reduce 65 * [F ! (�E)] E 8[E ! �E + T][E ! �T] T 2[T ! �T � F][T ! �F] F 3[F ! �i] i 4[F ! �(E)] (56 * [E ! E + �T] T 9[T ! �T � F][T ! �F] F 3[F ! �i] i 4[F ! �(E)] (57 * [T ! T � �F] F 10[F ! �i] i 4[F ! �(E)] (58 * [F ! (E�)]) 11* [E ! E � + T] + 69 * [E ! E + T�] #;);+ reduce 2* [T ! T � � F] � 710 * [T ! T � F�] reduce 411 * [F ! (E)�] reduce 7Figure 7.12: Derivation of the Automaton of Figure 7.11b

7.3 LR Parsers 141Right derivation Stack Next Reduce by Nextbefore transition Symbol Production State:i+ i � (i+ i)# 0 i 4i:+ i � (i+ i)# 0,4 6 3F:+ i � (i+ i)# 0,3 5 2T:+ i � (i+ i)# 0,2 + 3 1E:+ i � (i+ i)# 0,1 + 6E + :i � (i+ i)# 0,1,6 i 4E + i: � (i+ i)# 0,1,6,4 6 3E + F: � (i+ i)# 0,1,6,3 5 9E + T: � (i+ i)# 0,1,6,9 � 7E + T � :(i+ i)# 0,1,6,9,7 (5E + T � (:i+ i)# 0,1,6,9,7,5 i 4E + T � (i:+ i)# 0,1,6,9,7,5,4 6 3E + T � (F:+ i)# 0,1,6,9,7,5,3 5 2E + T � (T:+ i)# 0,1,6,9,7,5,2 + 3 8E + T � (E:+ i)# 0,1,6,9,7,5,8 + 6E + T � (E + :i)# 0,1,6,9,7,5,8,6 i 4E + T � (E + i:)# 0,1,6,9,7,5,8,6,4 6 3E + T � (E + F:)# 0,1,6,9,7,5,8,6,3 5 9E + T � (E + T:)# 0,1,6,9,7,5,8,6,9) 2 8E + T � (E:)# 0,1,6,9,7,5,8) 11E + T � (E):# 0,1,6,9,7,5,8,11 7 10E + T � F:# 0,1,6,9,7,10 4 9E + T:# 0,1,6,9 # 2 1E:# 0,1 # HALTZ:#Figure 7.13: A Sample Parse by the Automaton of Figure 7.11bThe problem arises whenever there is a particular sequence of tokens that plays di�erent rolesin di�erent places. In LAX, for example, an identi�er followed by a colon may be either a label(A.2.0.6) or a variable serving as a lower bound (A.3.0.4). For this reason the LAX grammar isnot SLR(1), because the lookahead symbol `:' does not determine whether identifier shouldbe reduced to name (A.4.0.16), or a shift transition building a label definition should takeplace.If the set of lookahead symbols for a reduction could be partitioned according to thestate then we could solve the problem, as can be seen from the example of Figure 7.14. Theproductions of Figure 7.14a do not ful�ll the SLR(1) condition, as we see in the transitiondiagram of Figure 7.14b. In the critical state 5, however, a reduction with lookahead symbolc need not be considered! If c is to follow B then b must have been read before, and we wouldtherefore have had the state sequence 0, 3, 7 and not 0, 2, 5. The misjudgement arises throughstates in which all of the symbols that could possibly follow B are examined to determinewhether to reduce B ! d, without regard to the symbols preceding B. We thus re�ne theconstruction so that we do not admit all lookahead symbols in FOLLOW (X) when decidingupon a reductionX ! �, but distinguish on the basis of predecessor states lookahead symbolsthat can actually appear.We begin by de�ning the kernel of an LR(1) state to be its LR(0) situations:kernel(q) = f[X ! � � �] j [X ! � � �;
] 2 qg

142 Parsing(1) Z ! A(2) A! aBb (3) A! adc (4) A! bBc (5) A! bdd(6) B ! d a) The grammar
on b,c
+6

on b,c
+6HALT

+4 +5+2 +3

B d

b

b c c d

Bd

A a

0

2

5

1

4

3

6 7

98 10 11b) The SLR(1) transition diagrama b c d # A B0 2 3 . . . 11 *2 . . . 5 . 43 . . . 7 . 64 8 .5 . +6 9 . .6 . 107 . +6 +6 11 .8 +2 +2 +2 +2 +29 +3 +3 +3 +3 +310 +4 +4 +4 +4 +411 +5 +5 +5 +5 +5c) The LALR(1) transition tableFigure 7.14: A Non-SLR(1) GrammarConstruction 7.5 above e�ectively merges states of the LR(1) parser that have the same kernel,and hence any lookahead symbol that could have appeared in any of the LR(1) states canappear in the LR(0) state. The set of all such symbols forms the exact right context uponwhich we must base our decisions.7.6 DefinitionLetG = (T;N; P; Z) be a context free grammar, Q be the state set of the pushdown automatonformed by construction 7.5, and Q0 be the state set of the pushdown automaton formed byconstruction 5.33 with k = 1. The exact right context of an LR(0) situation [X ! � � �] in astate q 2 Q is de�ned by:ERC(q; [X ! � � �]) = ft 2 T j 9q0 2 Q0 such that q = kernel(q0) and [X ! � � �; t] 2 q0g�Theorem 5.31 related the LR(k) property to non-overlapping k-stack classes, so it is notsurprising that the de�nition of LALR(1) grammars involves an analogous condition:

7.3 LR Parsers 1437.7 DefinitionLet G = (T;N; P; Z) be a context free grammar and Q be the state set of the pushdownautomaton formed by construction 7.5. G is LALR(1) i� the following sets are pairwisedisjoint for all q 2 Q, p 2 P :Sq;0 = ft j [X ! � � �] 2 q; � 6= �; t 2 EFF (�ERC(q; [X ! � � �]))gSq;p = ERC(q; [Xp ! �p�]) �Although De�nition 7.6 implies that we need to carry out construction 5.33 to determine theexact right context, this is not the case. The following algorithm generates only the LR(0)states, but may consider each of those states several times in order to build the exact rightcontext. Each time a shift transition into a given state is discovered, we propagate the rightcontext. If the propagation changes the third element of any triple in the state then the entirestate is reconsidered, possibly propagating the change further. Formally, we de�ne a mergeoperation on sets of situations as follows:merge(A;B) = f[X ! � � �;� [
] j [X ! � � �;�] 2 A; [X ! � � �;
] 2 BgThe LALR(1) construction algorithm is then:1. Initially let Q = fq0g, with q0 = H(f[Z ! �S; f#g]g).2. Let q be an element of Q that has not yet been considered. Perform steps (3)-(5) foreach � 2 V .3. Let basis(q; �) = f[X ! �� � ;
] j [X ! � � v;
] 2 qg.4. If basis(q; �) 6= ; and there is a q0 2 Q such that kernel(q0) = kernel(H(basis(q; �)))then let next(q; �) = merge(H(basis(q; �)); q0). If next(q; �) 6= q0 then replace q0 bynext(q; �) and mark q0 as not yet considered.5. If basis(q; �) 6= ; and there is no q0 2 Q such that kernel(q0) = kernel(H(basis(q; �)))then let next(q; �) = H(basis(q; �)). Add q00 = next(q; �) to Q.6. If all elements of Q have been considered, perform step (7) for each q 2 Q and thenstop. Otherwise return to step (2).7. For all � 2 V de�ne f(q; �) as follows:f(q; �) = 8>>>><>>>>:next(q; �) if basis(q; �) 6= ;X ! � if [X ! ��;
] 2 q; � 2
HALT if � = # and [Z ! S�; f#g] 2 qERROR otherwiseFigure 7.14c shows the LALR(1) automaton derived from Figure 7.14a. Note that wecan only recognize a B by reducing production 6, and this can be done only with b or c asthe lookahead symbol (see rows 5 and 7 of Figure 7.14c). States 4 and 6 are entered onlyafter recognizing a B, and hence the current symbol must be b or c in these states. ThusFigure 7.14c has don't-care entries for all symbols other than b and c in states 4 and 6.7.3.3 Shift-Reduce TransitionsFor most programming languages 30-50% of the states of an LR parser are LR(0) reducestates, in which reduction by a speci�c production is determined without examining the

144 Parsingcontext. In Figure 7.12 these states are 3, 4, 10 and 11. We can combine these reductionswith the stacking of the previous symbol to obtain a new kind of transition { the shift-reducetransition { specifying both the stacking of the last symbol of the right-hand side and theproduction by which the next reduction symbol is to be made. Formally:If f(q0; �) = X ! � (or f(q0; �) = HALT) is the only possible action (other thanERROR)in state q0 then rede�ne f(q; �) to be `shift reduce X ! �' for all states q with f(q; �) = q0and for all � 2 V . Then delete state q0.With this simpli�cation the transition function of Figure 7.11 can be written as shown inFigure 7.15. i () + * # E T F0 -6 5 1 2 -51 . . . 6 . *2 . . +3 +3 7 +35 -6 5 . . . 8 2 -56 -6 5 9 -57 -6 5 -48 . . -7 6 . .9 . . +2 +2 7 +2Figure 7.15: The Automaton of Figure 7.11 Recast for Shift-Reduce Transitions(The notation remains the same, with the addition of �p to indicate a shift-reduce tran-sition that reduces according to the pth production.)Introduction of shift-reduce transitions into a parsing automaton for LAX reduces thenumber of states from 131 to 70.7.3.4 Chain Production EliminationA chain production A! B is a semantically meaningless element of P with a right-hand sideof length 1. In this section we shall denote chain productions by A !c B and derivationsusing only chain productions by A)c B (instead of A)� B). Any productions not explicitlymarked are not chain productions. Chain productions are most often introduced throughthe description of expressions by rules like sum ::= term | sum addop term . They alsofrequently arise from the collection of single concepts into some all-embracing concept (as inA.3.0.1, for example).Reductions according to chain productions are completely irrelevant, and simply wastetime. Thus elimination of all chain productions may speed up the parsing considerably.During the parse of the statement A := B in LAX, for example, we must reduce 11 timesby productions of length 1 before reaching the form name `:=' expression , which can berecognized as an assignment. Of these reductions, only the identi�cation of an identifier asa name (A.4.0.16) has relevant semantics. All other reductions are semantically meaninglessand should not appear in the structure tree.We could remove chain productions by substitution, a process used in conjunction withTheorem 5.25. The resulting de�nition of the LR parser would lead to far too many states,which we must then laboriously reduce to a manageable number by further processing. Amore satisfactory approach is to try to eliminate the reductions by chain productions fromthe parser during construction. In many cases this technique will also lower the number ofstates in the �nal parser.The central idea is to simultaneously consider all chain productions that could be intro-duced in a given parser state. Suppose that a state q contains a situation [X ! � � A�; t]

7.3 LR Parsers 145and A)+ B. We must �rst reduce to B, then to A. If however, the derivation A)+ Bconsists solely of chain productions then upon a reduction to B we can immediately reduceto A without going through any intermediate steps.Construction 7.7, when applied to Figure 7.16a(1) Z ! E(2) E ! E + T (3) E ! T(4) T ! T � i (5) T ! ia) The grammar
HALT

T

i

on #

on #,+
+3

on #,+,*
+4

+

i

E

*

*

T

on #,+,*
+5

on +,#
+2

i

2

5

0

1

6

3

4

7 b) The transition Diagram
HALT
on #

HALT
on #

T

i

i

E

+5

on #,+,*
+4

*

*

T

on +,#
+2

i

+

+

2 0 3

5

1

6

4

7c) After elimination of the chain production (3) E ! TFigure 7.16: A Simple Case of Chain Production Elimination(a simpli�ed version of Figure 7.11a), yields a parser with the state diagram given inFigure 7.16b. If we reach state 2, we can reduce to E given the lookahead symbol #, but wecould also reduce to Z immediately. We may therefore take either the actions of state 1 orthose of state 2. Figure 7.16c shows the parser that results from merging these two states.Note that in Figure 7.16b the actions for states 1 and 2 do not conict (with the excep-tion of the reduction E ! T being eliminated). This property is crucial to the reduction;fortunately it follows automatically from the LR(1) property of the grammar: Suppose thatfor A 6= B, A)c C and B)c C. Suppose further that some state q contains situations[X ! � �A; �] and [Y ! � �B�;�]. The follower condition `FIRST (�) and FIRST (��)disjoint' must then hold, since otherwise it would be impossible to decide whether to reduce Cto A or B in state f(q; C). Consideration of state 0 in Figure 7.16b with A = E, B = C = Tillustrates that the follower condition is identical to the absence of conict required above.Situations involving chain productions are always introduced by a closure operation. In-stead of using these chain production situations when establishing a new state, we use thesituations that introduced them. This is equivalent to saying that reduction to the right-handside of the chain production should be interpreted as reduction to the left-hand side. Thusthe only change in construction 7.7 comes in computation of basis(q; �):3'. Let basis(q; �) = f[Y ! �a� �;�] j [X ! ��v; �]; [Y ! � �a�;�] 2 q; a)c �g�f[A!B�;
] j A!c Bg.

146 ParsingAs an example of the process, assume that the productions E ! T and T ! F inthe grammar of Figure 7.11a are chain productions. Figure 7.17 shows the derivation of anLALR(1) automaton that does not reduce by these productions. (Compare this derivationwith that of Figure 7.12.)State Situation � f(q; �)0 * [Z ! �E; f#g] E 1[E ! �E + T ; f#+g][E ! �T ; f#+g] T 2[T ! �T � F ; f#+ �g][T ! �F ; f#+ �g] F 2[F ! �i; f#+ �g] i 3[F ! �(E); f#+ �g] (41 * [Z ! E�; f#g] # HALT* [E ! E � + T ; f#+g] + 52 * [Z ! E�; f#g] # HALT* [E ! E � + T ; f#+g] + 5* [T ! T � � F ; f#+ �g] � 63 * [F ! i�; f#+ �)g] reduce 64 * [F ! (�E); f#+ �)g] E 7[E ! �E + T ; f)+g][E ! �T ; f)+g] T 8[T ! �T � F ; f) + �g][T ! �F ; f) + �g] F 8[F ! �i; f) + �g] i 3[F ! �(E); f) + �g] (45 * [E ! E + �T ; f#+)g] T 9[T ! �T � F ; f#+ �)g][T ! �F ; f#+ �)g] F 9[F ! �i; f#+ �)g] i 3[F ! �(E); f#+ �)g] (46 * [T ! T � �F ; f#+ �)g] F 10[F ! �i; f#+ �)g] i 3[F ! �(E); f#+ �)g] (47 * [F ! (E�); f#+ �)g]) 11* [E ! E � + T ; f)+g] + 58 * [F ! (E�); f#+ �)g]) 11* [E ! E � + T ; f)+g] + 5* [T ! T � � F ; f) + �g] � 69 * [E ! E + T�; f#+)g] #)+ reduce 2* [T ! T � � F ; f#+ �)g] � 610 * [T ! T � F�; f#+ �)g] reduce 411 * [F ! (E)�; f#+ �)g] reduce 7Figure 7.17: Chain Production Elimination Applied to Figure 7.117.3.5 ImplementationIn order to carry out the parsing practically, a table of the left sides and lengths of the rightsides of all productions (other than chain productions), as well as parser actions to be invokedat connection points, must be known to the transition function. The transition function is

7.3 LR Parsers 147partitioned in this way to ease the storage management problems. Because of cost we storethe transition function as a packed data structure and employ an access routine that locatesthe value f(q; �) given (q; �). Some systems work with a list representation of the (sparse)transition matrix; the access may be time consuming if such a scheme is used, because listsmust be searched.The access time is reduced if the matrix form of the transition function is retained, and thestorage requirements are comparable to those of the list method if as many rows and columnsas possible are combined. In performing this combination we take advantage of the fact thattwo rows can be combined not only when they agree, but also when they are compatibleaccording to the following de�nition:7.8 DefinitionConsider a transition matrix f(q; �). Two rows q; q0 2 Q are compatible if, for each column�, either f(q; �) = f(q0; �) or one of the two entries is a don't-care entry. �Compatibility is de�ned analogously for two columns �; � 0 2 V . We shall only discuss thecombination of rows here.We inspect the terminal transition matrix, the submatrix of f(q; �) with � 2 T , separatelyfrom the nonterminal transition matrix. Often di�erent combinations are possible for the twosubmatrices, and by exploiting them separately we can achieve a greater storage reduction.This can be seen in the case of Figure 7.18a, which is an implementation of the transitionmatrix of Figure 7.17. In the terminal transition matrix rows 0, 4, 5 and 6 are compatible,but none of these rows are compatible in the nonterminal transition matrix.In order to increase the number of compatible rows, we introduce a Boolean failure matrix,F [q; t], q 2 Q, t 2 T . This matrix is used to �lter the access to the terminal transition matrix:f(q; t) = if F [q; t] then error else entry in the transition matrix;For this purpose we de�ne F [q; t] as follows:F [q; t] = (true if f(q; t) = ERRORfalse otherwiseFigure 7.18b shows the failure matrix derived from the terminal transition matrix of Fig-ure 7.18a. Note that the failure matrix may also contain don't-care entries, derived as dis-cussed at the end of Section 7.3.2. Row and column combinations applied to Figure 7.18breduce it from 9� 6 to 4� 4.With the introduction of the failure matrix, all previous error entries become don't-careentries. Figure 7.18c shows the resulting compression of the terminal transition matrix.The nonterminal transition matrix is not a�ected by this process; in our example it can becompressed by combining both rows and columns as shown in Figure 7.18d. Each matrixrequires an access map consisting of two additional arrays specifying the row (column) of thematrix to be used for a given state (symbol). For grammars of the size of the LAX grammar,the total storage requirements are generally reduced to 5-10% of their original values.We have a certain freedom in combining the rows of the transition matrix. For ex-ample, in the terminal matrix of Figure 7.18a we could also have chosen the groupingf(0,4,5,6,9),(1,2,7,8)g. In general these groupings di�er in the �nal state count; we musttherefore examine a number of possible choices. The task of determining the minimum num-ber of rows reduces to a problem in graph theory: We construct the (undirected) incompati-bility graph I = (Q;D) for our state set Q, in which two nodes q and q0 are connected if therows are incompatible. Minimization of the number of rows is then equivalent to the task of

148 Parsingcoloring the nodes with a minimum number of colors such that any pair of nodes connectedby a branch are of di�erent colors. (Graph coloring is discussed in Section B.3.3.) Furthercompression may be possible as indicated in Exercises 7.12 and 7.13.i () + * # E T F0 -6 4 1 2 21 . 5 *2 . . . 5 6 *4 -6 4 7 8 85 -6 4 9 96 -6 4 -47 -7 5 .8 . . -7 5 6 .9 . . +2 +2 6 +2a) Transition matrix for Figure 7.17 with shift-reduce transitionsi () + * #0 false false true true true true1 true false false2 true true true false false false4 false false true true true true5 false false true true true true6 false false true true true true7 false false true8 true true false false false true9 true true false false false falseb) Uncompressed failure matrix for (a)i () + * #0,1,2,4,5,6,7,8 -6 4 -7 5 6 *9 +2 +2 6 +2c) Compressed terminal transition matrixE TF0,1,2 1 24 7 85 96,7,8,9 -4d) Compressed nonterminal transition matrixFigure 7.18: Table Compression7.4 Notes and ReferencesLL(1) parsing in the form of recursive descent was, according to McClure [1972], the mostfrequently-used technique in practice. Certainly its exibility and the fact that it can behand-coded contribute to this popularity.LR languages form the largest class of languages that can be processed with deterministicpushdown automata. Other techniques (precedence grammars, (m;n)-bounded context gram-

7.4 Notes and References 149mars or Floyd-Evans Productions, for example) either apply to smaller language classes or donot attain the same computational e�ciency or error recovery properties as the techniquestreated here. Operator precedence grammars have also achieved signi�cant usage because onecan easily construct parsers by hand for expressions with in�x operators. Aho and Ullman[1972] give quite a complete overview of the available parsing techniques and their optimalimplementation.Instead of obtaining the LALR(1) parser from the LR(1) parser by merging states, onecould begin with the SLR(1) parser and determine the exact right context only for those statesin which the transition function is ambiguous. This technique reduces the computation time,but unfortunately does not generalize to an algorithm that eliminates all chain productions.Construction 7.7 requires a redundant e�ort that can be avoided in practice. For example,the closure of a situation [X ! � � B;
] depends only upon the nonterminal B if thelookahead set is ignored. The closure can thus be computed ahead of time for each B 2 N ,and only the lookahead sets must be supplied during parser construction. Also, the repeatedconstruction of the follower state of an LALR(1) state that develops from the combinationof two LR(1) states with distinct lookahead sets can be simpli�ed. This repetition, whichresults from the marking of states as not yet examined, leaves the follower state (speci�edas a set of situations) unaltered. It can at most add lookahead symbols to single situations.This addition can also be accomplished without computing the entire state anew.Our technique for chain production elimination is based upon an idea of Pager [1974].Use of the failure matrix to increase the number of don't-care entries in the transition matrixwas �rst proposed by Joliat [1973, 1974].Exercises7.1 Consider a grammar with embedded connection points. Explain why transformationsof the grammar can be guaranteed to leave the invocation sequence of the associatedparser actions invariant.7.2 State the LL(1) condition in terms of the extended BNF notation of Section 5.1.3.Prove that your statement is equivalent to Theorem 7.2.7.3 Give an example of a grammar in which the graph of LAST contains a cycle. Provethat FOLLOW (A) = FOLLOW (B) for arbitrary nodes A and B in the same stronglyconnected subgraph.7.4 Design a suitable internal representation of a grammar and program the generationalgorithm of Section 7.2.3 in terms of it.7.5 Devise an LL(1) parser generation algorithm that accepts the extended BNF notationof Section 5.1.3. Will you be able to achieve a more e�cient parser by operating uponthis form directly, or by converting it to productions? Explain.7.6 Consider the interpretive parser of Figure 7.9.(a) De�ne additional operation codes to implement connection points, and add theappropriate alternatives to the case statement. Carefully explain the interfaceconventions for the parser actions. Would you prefer a di�erent kind of parsetable entry? Explain.(b) Some authors provide special operations for the situations [X ! � �B] and [X !� � tB]. Explain how some recursion can be avoided in this manner, and writeappropriate alternatives for the case statement.

150 Parsing(c) Once the special cases of (b) are recognized, it may be advantageous to provideextra operations identical to 4 and 5 of Figure 7.9, except that the conditions arereversed. Why? Explain.(d) Recognize the situation [X ! � � t] and alter the code of case 4 to absorb theprocessing of the 2 operation following it.(e) What is your opinion of the value of these optimizations? Test your predictionson some language with which you are familiar.7.7 Show that the following grammar is LR(1) but not LALR(1):Z ! A,A! aBcB, A! B, A! D,B ! b, B ! Ff ,D ! dE,E ! FcA, E ! FcE,F ! b7.8 Repeat Exercise 7.5 for the LR case. Use the algorithm of Section 7.3.4.7.9 Show that FIRST (A) can be computed by any marking algorithm for directed graphsthat obtains a `spanning tree', B, for the graph. B has the same node set as the originalgraph, G, and its branch set is a subset of that of G.7.10 Consider the grammar with the following productions:Z ! AXd, Z ! BX, Z ! C,A! B, A! C,B ! CXb,C ! c,X ! �(a) Derive an LALR(1) parser for this grammar.(b) Delete the reductions by the chain productions A! B and A! C.7.11 Use the techniques discussed in Section 7.3.5 to compress the transition matrix pro-duced for Exercise 7.8.7.12 [Anderson et al., 1973] Consider a transition matrix for an LR parser constructed byone of the algorithms of Section 7.3.2.(a) Show that for every state q there is exactly one symbol z(q) such that f(q0; a)implies a = z(q).(b) Show that, in the case of shift-reduce transitions introduced by the algorithmsof Sections 7.3.3 and 7.3.4, an unambiguous symbol z(A ! �) exists such thatf(q; a) = `shift and reduce A! �' implies a = z(A! �).(c) Show that the states (and shift-reduce transitions) can be numbered in such away that all states in column c have sequential numbers c0 + i, i = 0; 1; : : : Thusit su�ces to store only the relative number i in the transition matrix; the basec0 is only given once for each column. In exactly the same manner, a list of thereductions in a row can be assigned to this row and retain only the appropriateindex to this list in the transition matrix.(d) Make these alterations in the transition matrix produced for Exercise 7.8 beforebeginning the compression of Exercise 7.11, and compare the result with thatobtained previously.

7.4 Notes and References 1517.13 Bell [1974] Consider an m � n transition matrix, t, in which all unspeci�ed entriesare don't-cares. Show that the matrix can be compressed into a p � q matrix c, twolength-m arrays f and u, and two length-n arrays g and � by the following algorithm:Initially fi = gi = 1, 1 � i � m, 1 � j � n, and k = 1. If all occupied columns ofthe ith row of t uniformly contain the value r, then set fi := k, k := k + 1, ui := rand delete the ith row of t. If the jth column is uniformly occupied, delete it also andset gj := k, k := k + 1, �j := r. Repeat this process until no uniformly-occupied rowor column remains. The remaining matrix is the matrix c. We then enter the row(column) number in c of the former ith row (jth column) into ui (�j). The followingrelation then holds:ti;j = if fi < gj then uielse if fi < gj then �jelse (* fi = gj =1 *) cui;�j ;(Hint: Show that the size of c is independent of the sequence in which the rows andcolumns are deleted.)

152 Parsing

Chapter 8Attribute GrammarsSemantic analysis and code generation are based upon the structure tree. Each node of thetree is `decorated' with attributes describing properties of that node, and hence the treeis often called an attributed structure tree for emphasis. The information collected in theattributes of a node is derived from the environment of that node; it is the task of semanticanalysis to compute these attributes and check their consistency. Optimization and codegeneration can be also described in similar terms, using attributes to guide the transformationof the tree and ultimately the selection of machine instructions.Attribute grammars have proven to be a useful aid in representing the attribution of thestructure tree because they constitute a formal de�nition of all context-free and context-sensitive language properties on the one hand, and a formal speci�cation of the semanticanalysis on the other. When deriving the speci�cation, we need not be overly concerned withthe sequence in which the attributes are computed because this can (with some restrictions) bederived mechanically. Storage for the attribute values is also not reected in the speci�cation.We begin by assuming that all attributes belonging to a node are stored within that node inthe structure tree; optimization of the attribute storage is considered later.Most examples in this chapter are included to show constraints and pathological cases;practical examples can be found in Chapter 9.8.1 Basic Concepts of Attribute GrammarsAn attribute grammar is based upon a context-free grammar G = (N;T; P; Z). It associates aset A(X) of attributes with each symbol, X, in the vocabulary of G. Each attribute representsa speci�c (context-sensitive) property of the symbol X, and can take on any of a speci�ed setof values. We write X:a to indicate that attribute a is an element of A(X).Each node in the structure tree of a sentence in L(G) is associated with a particularset of values for the attributes of some symbol X in the vocabulary of G. These valuesare established by attribution rules R(p) = fXi:a f(Xj :b; : : : ;Xk:c)g for the productionsp : X0 ! X1 : : : Xn used to construct the tree. Each rule de�nes an attribute Xi:a in termsof attributes Xj:b; : : : ;Xk:c of symbols in the same production. (Note that in this chapterwe use upper-case letters to denote vocabulary symbols, rather than using case to distinguishterminals from nonterminals. The reason for this is that any symbol of the vocabulary mayhave attributes, and the distinction between terminals and nonterminals is generally irrelevantfor attribute computation.)In addition to the attribution rules, a condition B(Xi:a; : : : ;Xj :b) involving attributes ofsymbols occurring in p may be given. B speci�es the context condition that must be ful�lledif a syntactically correct sentence is correct according to the static semantics and therefore153

154 Attribute Grammarsrule assignment ::= name ':=' expression.attributionname.environment assignment.environment;expression.environment assignment.environment;name.postmode name.primode;expression.postmode if name.primode = ref_int_type then int_type else real_type �;rule expression ::= name addop name .attributionname[1].environment expression.environment;name[2].environment expression.environment;expression.primode if coercible (name[1].primode, int_type) andcoercible (name[2].primode, int_type)then int_type else real_type �;addop.mode expression.primode;name[1].postmode expression.primode;name[2].postmode expression.primode;condition coercible (expression.primode, expression.postmode);rule addop ::= '+'.attributionaddop.operation if addop.mode = int_type then int_addition else real_addition �;rule name ::= identifier.attributionname.primode defined_type (identifier.symbol, name.environment);condition coercible (name.primode, name.postmode);Figure 8.1: Simpli�ed LAX Assignmenttranslatable. We could also regard this condition as the computation of a Boolean attributeconsistent , which we associate with the left-hand side of the production.As an example, Figure 8.1 gives a simpli�ed attribute grammar for LAX assignments.Each p 2 P is marked by the keyword ruleand written using EBNF notation (restricted toexpress only productions). The elements of R(p) follow the keyword attribution. We use aconventional expression-oriented programming language notation for the functions f , and ter-minate each element with a semicolon. Particular instances of an attribute are distinguishedby numbering multiple occurrences of symbols in the production (e.g. name[1] , name[2])from left to right. Any condition is also marked by a keyword and terminated by a semicolon.In order to check the consistency of the assignment and to further identify the + operator,we must take the operand types into account. For this purpose we de�ne two attributes,primode and postmode , for the symbols expression and name , and one attribute, mode ,for the symbol addop . Primode describes the type determined directly from the node and itsdescendants; postmode describes the type expected when the result is used as an operand byother nodes. Any di�erence between primode and postmode must be resolved by coercions.The Boolean function coercible (t1; t2) tests whether type t1 can be coerced to t2.

8.1 Basic Concepts of Attribute Grammars 155
name1

identifier1 name3

identifier3

name2

identifier2

assignment

expression

addop

’+’a) Syntactic structure treeassignment.environmentidentifieri.symbolb) Attribute values given initially (i = 1; : : : ; 3)name1.environment expression.environmentnamei.environment name1.primodename1.postmode expression.postmode namei.primodeexpression.primode name1 conditionaddop.mode namei.postmode expression conditionaddop.operation namei conditionc) Attribute values computed (i = 2; 3)Figure 8.2: Analysis of x := y + zFigure 8.2 shows the analysis of x := y + z according to the grammar of Figure 8.1.(Assignment.environment would be computed from the declarations of x, y and z, but herewe show it as given in order to make the example self-contained.) Attributes on the sameline of Figure 8.2c can be computed collaterally; every attribute is dependent upon at leastone attribute from the previous line. These dependency relations can be expressed as a graph(Figure 8.3). Each large box represents the production whose application corresponds to thenode of the structure tree contained within it. The small boxes making up the node itselfrepresent the attributes of the symbol on the left-hand side of the production, and the arrowsrepresent the dependency relations arising from the attribution rules of the production. Thenode set of the dependency graph is just the set of small boxes representing attributes; itsedge set is the set of arrows representing dependencies.

identifieridentifier

symbol

identifier

symbol

symbol

env pri post primode postmode

environment

pripri

nameaddopname

name

assignment

expression

post post

environment

env envmode oper

Figure 8.3: Attribute Dependencies in the Tree for x := y + z

156 Attribute GrammarsWe must know all of the values upon which an attribute depends before we can computethe value of that attribute. Clearly this is only possible if the dependency graph is acyclic.Figure 8.3 is acyclic, but consider the following LAX type de�nition, which we shall discussin more detail in Sections 9.1.2 and 9.1.3:type t = record (real x , ref t p);We must compute a type attribute for each of the identi�ers t, x and p so that theassociated type is known at each use of the identi�er. The type attribute of t consists ofthe keyword record plus the types and identi�ers of the �elds. Now, however, the type of pcontains an application of t, implying that the type identi�ed by t depends upon which typea use of t identi�es. Thus the type t depends cyclically upon itself. (We shall show how toeliminate the cycle from this example in Section 9.1.3.)Let us now make the intuition gained from these examples more precise. We begin withthe grammar G, a set of attributes A(X) for each X in the vocabulary of G, and a set ofattribution rules R(p) (and possibly a condition B(p)) for each p in the production set of G.8.1 DefinitionAn attribute grammar is a 4-tuple, AG = (G;A;R;B). G = (T;N; P; Z) is a reduced contextfree grammar, A = SX2T[N A(X) is a �nite set of attributes, R = Sp2P R(p) is a �niteset of attribution rules, and B = Sp2P B(p) is a �nite set of conditions. A(X) \ A(Y) 6=; implies X = Y . For each occurrence of X in the structure tree corresponding to a sentenceof L(G), at most one rule is applicable for the computation of each attribute a 2 A(X). �8.2 DefinitionFor each p : X0 ! X1 : : : Xn 2 P the set of de�ning occurrences of attributes is AF (p) =fXi:a j Xi:a f(: : :) 2 R(p)g. An attribute X:a is called derived or synthesized if thereexists a production p : X ! � and X:a is in AF (p); it is called inherited if there exists aproduction q : Y ! �X� and X:a 2 AF (q). �Synthesized attributes of a symbol represent properties resulting from consideration of thesubtree derived from the symbol in the structure tree. Inherited attributes result from con-sideration of the environment. In Figure 8.1, the name.primode and addop.operation at-tributes were synthesized; name.environment and addop.mode were inherited.Attributes such as the value of a constant or the symbol of an identi�er, which arise inconjunction with structure tree construction, are called intrinsic. Intrinsic attributes reectour division of the original context-free grammar into a parsing grammar and a symbol gram-mar. If we were to use the entire grammar of Appendix A as the parsing grammar, we couldeasily compute the symbol attribute of an identifier node from the subtree rooted in thatnode. No intrinsic attributes would be needed because constant values could be assignedto left-hand side attributes in rules such as letter ::= 'a'. Thus our omission of intrinsicattributes in De�nition 8.2 results in no loss of generality.8.3 TheoremThe following sets are disjoint for all X in the vocabulary of G:AS(X) = fX:a j 9p : X ! � 2 P and X:a 2 AF (p)gAI(X) = fX:a j 9q : Y ! �X� 2 P and X:a 2 AF (q)gFurther, there exists at most one rule X:a f(: : :) in R(p) for each p 2 P and a 2 A(X).�

8.1 Basic Concepts of Attribute Grammars 157Suppose that an attribute a belonged to both AS(X) and AI(X). Some derivation Z)��Y �) ��X��) �����)� ! (! 2 L(G)) would then have two di�erent rules for computingthe value of attribute a at node X. But this situation is prohibited by the last condition ofDe�nition 8.1. It can be shown that Theorem 8.3 is equivalent to that condition.De�nition 8.1 does not guarantee that a synthesized attribute a 2 A(X) will be com-putable in all cases, because it does not require that X:a be an element of AF (p) for everyproduction p : X ! �. A similar statement holds for inherited attributes.8.4 DefinitionAn attribute grammar is complete if the following statements hold for all X in the vocabularyof G: For all p : X ! � 2 P;AS(X) � AF (p)For all q : Y ! �X� 2 P;AI(X) � AF (q)AS(X) [AI(X) = A(X)Further, if Z is the axiom of G then AI(Z) is empty. �As compiler writers, we are only interested in attribute grammars that allow us to computeall of the attribute values in any structure tree.8.5 DefinitionAn attribute grammar is well-de�ned if, for each structure tree corresponding to a sentenceof L(G), all attributes are e�ectively computable. A sentence of L(G) is correctly attributedif, in addition, all conditions yield true. �It is clear that a well-de�ned attribute grammar must be complete. A complete attributegrammar is well-de�ned, however, only if no attribute can depend upon itself in any structuretree. We therefore need to formalize the dependency graph introduced in Figure 8.3.8.6 DefinitionFor each p : X0 ! X1 : : : Xn 2 P the set of direct attribute dependencies is given byDDP (p) = f(Xi:a;Xj :b) j Xj :b f(: : : Xi:a : : :) 2 R(p)gThe grammar is locally acyclic if the graph of DDP (p) is acyclic for each p 2 P . �We often write (Xi:a;Xj :b) 2 DDP (p) as Xi:a ! Xj:b 2 DDP (p), and follow the sameconvention for the relations de�ned below. If no misunderstanding can occur, we omit thespeci�cation of the relation. In Figure 8.3 the arrows are the edges of DDP (p) for a particularp. We obtain the complete dependency graph for a structure tree by `pasting together' thedirect dependencies according to the syntactic structure of the tree.8.7 DefinitionLet S be the attributed structure tree corresponding to a sentence in L(G), and let K0 : : : Knbe the nodes corresponding to application of p : X0 ! X1 : : : Xn. We write Ki:a ! Kj :b ifXi:a! Xj :b 2 DDP (p). The set DT (S) = fKi:a! Kj :bg, where we consider all applicationsof productions in S, is called the dependency relation over the tree S. �8.8 TheoremAn attribute grammar is well-de�ned if and only if it is complete and the graph of DT (S) isacyclic for each structure tree S corresponding to a sentence of L(G). �

158 Attribute GrammarsIf AG is a well-de�ned attribute grammar (WAG) then a nondeterministic algorithm can beused to compute all attribute values in the attributed structure tree for a sentence in L(G): Weprovide a separate process to compute each attribute value, which is started after all operandsof the attribution rule de�ning that value have been computed. Upon completion of thisprocess, the value will be available and hence other processes may be started. Computationbegins with intrinsic attributes, which become available as soon as the structure tree has beenbuilt. The number of processes depends not upon the grammar, but upon the number of nodesin the structure tree. Well-de�nedness guarantees that all attributes will be computed by thissystem without deadlock, independent of the precise construction of the attribute rules.Before building a compiler along these lines, we should verify that the grammar on which itis based is actually WAG. Unfortunately, exponential time is required to verify the conditionsof Theorem 8.8. Thus we must investigate subclasses of WAG for which this cost is reduced.It is important to note that the choice of subclass is made solely upon practical consid-erations; all well-de�ned attribute grammars have the same formal descriptive power. Theproof of this assertion involves a `hoisting' transformation that is sometimes useful in moldinga grammar to a pre-speci�ed tree traversal: An inherited attribute of a symbol is removed,along with all synthesized attributes depending upon it, and replaced by a computation inthe parent node. We shall see an example of this transformation in Section 8.2.3.8.2 Traversal StrategiesA straightforward implementation of any attribute evaluation scheme will fail in practicebecause of gigantic storage requirements for attribute values and correspondingly long com-putation times. Only by selecting an evaluation scheme that permits us to optimize memoryusage can the attribute grammar technique be made practical for compiler construction. Sec-tion 8.3.2 will discuss optimizations based upon the assumption that we can determine thesequence of visits to a particular node solely from the symbol corresponding to that node.We shall require that each production p : X0 ! X1 : : : Xn 2 P be associated with a �xedattribution algorithm made up of the following basic operations:� Evaluate an element of R(p).� Move to child node i (i = 1; : : : ; n).� Move to parent node.Conceptually, a copy of the algorithm for p is attached to each node corresponding to anapplication of p. Evaluation begins by moving to the root and ends when the algorithm forthe root executes `move to parent'.We �rst discuss algorithms based upon these operations { what they look like and howthey interact { and characterize the subclass of WAG for which they can be constructed. Wethen examine two di�erent construction strategies. The �rst uses the attribute dependenciesto de�ne the tree traversal, while the second speci�es a traversal a priori. We only discussthe general properties of each strategy in this section; implementation details will be deferredto Section 8.3.8.2.1 Partitioned Attribute GrammarsBecause of the properties of inherited and synthesized attributes, the algorithms for twoproductions p : X ! � and q : Y ! �X� must cooperate to evaluate the attributes of aninterior node of the structure tree. Inherited attributes would be computed by rules in R(q),synthesized attributes by rules in R(p). The attribution of X represents the interface between

8.2 Traversal Strategies 159Evaluate name.environmentMove to nameEvaluate expression.environmentMove to expressionEvaluate name.postmodeMove to nameEvaluate expression.postmodeMove to expressionMove to parenta) Procedure for assignment ::= name ':=' expressionEvaluate name[1].environmentMove to name[1]Evaluate name[2].environmentMove to name[2]Evaluate expression.primodeMove to parentEvaluate name[1].postmodeMove to name[1]Evaluate addop.modeMove to addopEvaluate name[2].postmodeMove to name[2]Evaluate conditionMove to parentb) Procedure for expression ::= name addop nameEvaluate name.primodeMove to parentEvaluate conditionMove to parentc) Procedure for name ::= identifierFigure 8.4: Evaluation Procedures for Figure 8.1the algorithms for p and q. In Figure 8.3, for example, the algorithms for expression ::= nameaddop name and assignment ::= name ':=' expression are both involved in computationof attributes for the expression node. Because all computation begins and ends at theroot, the general pattern of the (coroutine) interaction would be the following: The algorithmfor q computes values for some subset of AI(X) using a sequence of evaluation instructions.It then passes control to the algorithm for p by executing `move to child i'. After using asequence of evaluation operations to compute some subset of AS(X), the algorithm for preturns by executing `move to parent'. (Of course both algorithms could have other attributeevaluations and moves interspersed with these; here we are considering only computation ofX's attributes.) This process continues, alternating computation of subsets of AI(X) andAS(X) until all attribute values are available. The last action of each algorithm is `move toparent'.Figure 8.4 gives possible algorithms for the grammar of Figure 8.1. Because a symbol likeexpression can appear in several productions on the left or right sides, we always identifythe production for the child node by giving only the left-hand-side symbol. We do not answerthe question of which production is really used because in general we cannot know. For thesame reason we do not specify the parent production more exactly.

160 Attribute GrammarsThe attributes of X constitute the only interface between the algorithms for p and q.When the algorithm for q passes control to the algorithm for p by executing `move to child i',it expects that a particular subset of AS(X) will be evaluated before control returns. Since thealgorithms must work for all structure trees, this subset must be evaluated by every algorithmcorresponding to a production of the form X ! �. The same reasoning holds for subsets ofAI(X) evaluated by algorithms corresponding to productions of the form Y ! �X�.8.9 DefinitionGiven a partition of A(X) into disjoint subsets Ai(X), i = 1; : : : ;m(X) for each X in thevocabulary of G, the resulting partition of the entire attribute set A is admissible if, for allX, Ai(X) is a subset of AS(X) for i = m;m � 2; : : : and Ai(X) is a subset of AI(X) fori = m� 1;m� 3; : : : Ai(X) may be empty for any i. �8.10 DefinitionAn attribute grammar is partitionable if it is locally acyclic and an admissible partition existssuch that for each X in the vocabulary of G the attributes of X can be evaluated in theorder A1(X); : : : ; Am(X). An attribute grammar together with such a partition is termedpartitioned. �Since all attributes can be evaluated, a partitionable grammar must be well-de�ned.A set of attribution algorithms satisfying our constraints can be constructed if and onlyif the grammar is partitioned. The admissible partition de�nes a partial ordering on A(X)that must be observed by every algorithm. Attributes belonging to a subset Ai(X) may beevaluated in any order permitted by DDP (p), and this order may vary from one productionto another. No context switch across the X interface occurs while these attributes are beingevaluated, although context switches may occur at other interfaces. A move instructioncrossing the X interface follows evaluation of each subset.The grammar of Figure 8.1 is partitioned, and the admissible partition used to constructFigure 8.4 was:A1(expression) =fenvironmentg A1(name) =fenvironmen tgA2(expression) =fprimode g A2(name) =fprimode gA3(expression) =fpostmode g A3(nam e) =fpostmodegA4(expression) =fg A4(name) = fgA1(addop) =fmode gA2(addop) =foperationgA4 is empty in the cases of both expression and name because the last nonempty subsetin the partition consists of inherited attributes, while De�nition 8.9 requires synthesizedattributes. At this point the algorithm actually contains a test of the condition, which wehave already noted can be regarded as a synthesized attribute of the left-hand-side symbol.With this interpretation, it would constitute the single element of A4 for each symbol.8.2.2 Derived TraversalsLet us now turn to the questions of how to partition an attribute grammar and how to derivealgorithms from an admissible partition that satis�es De�nition 8.10, assuming no a prioriconstraints upon the tree traversal. For this purpose we examine dependency graphs, withwhich the partitions and algorithms must be compatible.Suppose that X:a is an element of Ai(X) and X:b is an element of Aj(X) in an admissiblepartition, and i > j. Clearly KX :a! KX :b cannot be an element of DT (S) for any structure

8.2 Traversal Strategies 161tree S, because then X:b could not be calculated before X:a as required by the fact thati > j. DDP (p) gives direct dependencies for all attributes, but the graph of DT (S) includesindirect dependencies resulting from the interaction of direct dependencies. These indirectdependencies may lead to a cycle in the graph of DT (S) as shown in Figure 8.5. We need away of characterizing these dependencies that is independent of the structure tree.
r

p

q

sFigure 8.5: A Cycle Involving More Than One ProductionIn a locally acyclic grammar, dependencies between attributes belonging to AF (p) can beremoved by rewriting the attribution rules:Xi:a f(: : : ;Xj :b; : : :) becomes Xi:a f(: : : ; g(: : :); : : :)Xj :b g(: : :) Xj:b g(: : :)In Figure 8.3 this transformation would, among other things, replace the dependencyexpression.primode ! addop.mode by name[1].primode ! addop.mode and name[2].primode ! addop.mode . Dependencies that can be removed in this way may require thatthe attributes within a partition element Ai(X) be computed in di�erent orders for di�erentproductions, but they have no e�ect on the usability of the partition itself (Exercise 8.3).8.11 DefinitionFor each p : X0 ! X1 : : : Xn 2 P , the normalized transitive closure of DDP (p) isNDDP (p) = DDP (p)+ � f(Xi:a;Xj :b) j Xi:a;Xj :b 2 AF (p)g �The dependencies arising from interaction of nodes in the structure tree are summarizedby two collections of sets, IDP and IDS. IDP (p) shows all of the essential dependenciesbetween attributes appearing in production p, while IDS(X) shows those between attributesof symbol X.8.12 DefinitionThe induced attribute dependencies of an attribute grammar (G;A;R;B) are de�ned as fol-lows:1. For all p 2 P , IDP (p) := NDDP (p).2. For all X in the vocabulary of G,IDS(X) := f(X:a;X:b) j 9q such that (X:a;X:b) 2 IDP (q)+g3. For all p : X0 ! X1 : : : Xn 2 P ,IDP (p) := IDP (p) [IDS(X0) [� � � [IDS(Xn)4. Repeat (2) and (3) until there is no change in any IDP or IDS. �

162 Attribute Grammarsrule Z ::= X. (* Production 1 *)attributionX.a 1 ;rule X ::= s Y. (* Production 2 *)attributionX.b Y.f ;Y.c X.a ;Y.d Y.e ;rule X ::= t Y. (* Production 3 *)attributionX.b Y.e ;Y.c Y.f ;Y.d X.a ;rule Y ::= u. (* Production 4 *)attributionY.e 2 ;Y.f Y.d ;rule Y ::= v. (* Production 5 *)attributionY.e Y.c ;Y.f 3 ; a) RulesIDS(X) = fa! bgIDS(Y) = fc! e; d! f; e! d; f ! cgb) Induced dependencies for symbolsFigure 8.6: A Well-De�ned GrammarIDP (p) and IDS(X) are pessimistic approximations to the desired dependency relations.Any essential dependency that could be present in any structure tree is included in IDP (p)and IDS(X), and all are assumed to be present simultaneously. The importance of this pointis illustrated by the grammar of Figure 8.6, which is well-de�ned but not partitioned. Bothc ! e and d ! f are included in IDS(Y) even though it is clear from Figure 8.7 that onlyone of these dependencies could occur in any structure tree. A similar situation occurs fore ! d and f ! c. The result is that IDS(Y) indicates a cycle that will never be present inany DT .The pessimism of the indirect dependencies is crucial for the existence of a partitionedgrammar. Remember that it must always be possible to evaluate the attributes of X inthe order speci�ed by the admissible partition. Thus the order must satisfy all dependencyrelations simultaneously.

8.2 Traversal Strategies 163

Y ::= u

Z ::= X

X ::= sY

Z ::= X

Z ::= XZ ::= X

X ::= tY

X ::= sY

Y ::= u Y ::= v

X ::= tY

Y ::= v

c d e f

baa b

c d e f

c d e f

a b a b

c d e f

Figure 8.7: Dependency Graphs DT (s)8.13 TheoremIf an attribute grammar is partitionable then the graph of IDP (p) is acyclic for every p 2 Pand the graph of IDS(X) is acyclic for every X in the vocabulary of G. Further, if a! b isin IDS(X) then a 2 Ai(X) and b 2 Aj(X) implies i � j. �Note that Theorem 8.13 gives a necessary, but not su�cient, condition for a partitionablegrammar. The grammar of Figure 8.8 illustrates the reason, and provides some furtherinsight into the properties of partitionable grammars.Given the rules of Figure 8.8, a straightforward computation yields IDS(X) = fa !b; c! dg. Three of the �ve admissible partitions of fa; b; c; dg satisfy Theorem 8.13:fagfbgfcgfdgfcgfdgfagfbgfa; cgfb; dgFigure 8.9 gives the dependency graphs for the two structure trees that can be derived ac-cording to this grammar. Simple case analysis shows that none of the three partitions can beused to compute the attributes of X in both trees. For example, consider the �rst partition.Attribute a must be computed before attribute d. In the �rst tree X[1]:d must be known forthe computation of X[2]:a, so the sequence must be X[1]:a, X[1]:d, X[2]:a, X[2]:d. This isimpossible, however, because X[2]:d! X[1]:a is an element of NDDP (Z ! sXX).When we choose a partition, this choice �xes the order in which certain attributes maybe computed. In this respect the partition acts like a set of dependencies, and its e�ect maybe taken into account by adding these dependencies to the ones arising from the attributionrules.

164 Attribute Grammarsrule Z ::= s X X.attributionX[1].a X[2].d;X[1].c 1 ;X[2].a X[1].d;X[2].c 2 ;rule Z ::= t X X.attributionX[1].a 3 ;X[1].c X[2].b;X[2].a 4 ;X[2].c X[1].b;rule X ::= u.attributionX.b X.a ;X.d X.c ;Figure 8.8: An Attribute Grammar That Is Not Partitioned8.14 DefinitionLet A1(X); : : : ; Am(X) be an admissible partition of A(X). For each p : X0 ! X1 : : : Xn inP the set of dependencies over the production p is:DP (p) = IDP (p) [f(Xi:a;Xi:b) j a 2 Aj(Xi); b 2 Ak(Xi); 0 � i � n; j < kg �8.15 TheoremGiven an admissible partition for an attribute grammar, the grammar is partitioned if andonly if the graph of DP (p) is acyclic for each p 2 P . �Unfortunately, Theorem 8.15 does not lead to an algorithm for partitioning an at-tribute grammar. Figure 8.10 is a partitioned grammar, but the obvious partition A1(X) =fbg; A2(X) = fag causes cyclic graphs for both DP (1) and DP (2). In order to avoid theproblem we must use A1(X) = fag; A2(X) = fbg, A3(X) = fg. A backtracking procedurefor constructing the partition begins with the dependency relations of IDS(X) and considerspairs of independent attributes (a; b), one of which is inherited and the other synthesized. Itadds a ! b to the dependencies currently assumed and immediately checks all DP graphsfor cycles. If a cycle is found then the dependency b ! a is tested. If this also results ina cycle then the procedure backtracks, reversing a previously assumed dependency. Becausethis procedure involves exponential cost, it is of little practical interest.As in the case of parser construction, where pragmatic considerations forced us to usesubclasses of the LL(k) and LR(k) grammars, the cost of obtaining an appropriate partitionforces us to consider a subclass of the partitioned grammars. The following de�nition yieldsa nonbacktracking procedure for obtaining a partition that evaluates each attribute at thelatest point consistent with IDS(X).8.16 DefinitionAn attribute grammar is ordered if the following partition of A results in a partitioned gram-mar: Ai(X) = Tm�i+1(X)� Tm�i�1(X) (i = 1; : : : ;m)

8.2 Traversal Strategies 165
Z ::= sXX

Z ::= tXX

a b c d

X ::= u

a b c d

X ::= u

a b c d

X ::= u

a b c d

X ::= u

Figure 8.9: DT Graphs for Figure 8.8Here m is the smallest n such that Tn�1(X) [Tn(X) = A(X), T�1(X) = T0(X) = ;, and fork < 0 T2k�1(X) = fa 2 AS(X) j a! b 2 IDS(X) implies b 2 Tj(X); j � (2k � 1)gT2k(X) = fa 2 AI(X) j a! b 2 IDS(X) implies b 2 Tj(X); j � 2kg �This de�nition requires that all Tj(X) actually exist. Some attributes remain unassigned toany Tj(X) if (and only if) the grammar is locally acyclic and some IDS contains a cycle.For the grammar of Figure 8.10, construction 8.16 leads to the `obvious' partition discussedabove, which fails. Thus the grammar is not ordered, and we must conclude that the orderedgrammars form a proper subclass of the partitionable grammars.Suppose that a partitioned attribute grammar is given, with partitions A1(X); : : : ; Am(X)for each X in the vocabulary. In order to construct an attribution algorithm for a productionp : X0 ! X1 : : : Xn, we begin by de�ning a new attribute ci;j corresponding to each subsetAi(Xj) of attributes not computed in the context of p. (These are the inherited attributesAi(X0), i = m� 1;m� 3; : : : of the left-hand side and the synthesized attributes Ai(Xj); j 6=0; i = m;m� 2; : : : of the right-hand side symbols.) For example, the grammar of Figure 8.1is partitioned as shown at the end of Section 8.2.1. In order to construct the attributionalgorithm of Figure 8.4b, we must de�ne new attributes as shown in Figure 8.11a.Every occurrence of an attribute from Ai(Xj) is then replaced by ci;j in DP (p)[DDP (p),as illustrated by Figure 8.11b. DP (p) alone does not su�ce in this step because it was derived(via IDP (p)) from NDDP (p), and thus does not reect all dependencies of DDP (p). InFigure 8.11b, for example, the dependencies expression.primode ! name[i].postmode(i = 1; 2) are in DDP but not DP .Figure 8.11b has a single node for each ci;j because each partition contains a single at-tribute. In general, however, partitions will contain more than one attribute. The resultinggraph still has only one node for each ci;j. This node represents all of the attributes in Ai(Xj),and hence any relation involving an attribute in Ai(Xj) is represented by an edge incidentupon this node.

166 Attribute Grammarsrule Z ::= s X Y. (* Production 1 *)attributionX.b Y.d ;Y.c 1 ;Y.e X.a ;rule Z ::= t X Y. (* Production 2 *)attributionX.b Y.f ;Y.c X.a ;Y.e 2 ;rule X ::= u. (* Production 3 *)attributionX.a 3 ;rule Y ::= v. (* Production 4 *)attributionY.d Y.c ;Y.f Y.e ;Figure 8.10: A Partitioned GrammarThe graph of Figure 8.11b describes a partial order. To obtain an attribution algorithm,we augment the partial order with additional dependencies, consistent with each other andwith the original partial order, until the nodes are totally ordered. Figure 8.11c shows suchadditional dependencies for Figure 8.11b. The total order de�nes the algorithm: Each elementthat is an attribute in AF (p) corresponds to a computation of that attribute, each elementci;0 corresponds to a move to the parent, and each element ci;j (j > 0) corresponds to a moveto the jth child. Finally, a `move to parent' operation is added to the end of the algorithm.Figure 8.4b is the algorithm resulting from the analysis of Figure 8.11.The construction sketched above is correct if we can show that all attribute dependenciesfrom IDP (p) and DDP (p) are accounted for and that the interaction with the moves betweennodes is proper. Since IDP (p) is a subset of DP (p), problems can only arise from the mergingof attributes that are not elements of AF (p). We distinguish �ve cases:Xi:a! Xi:b 2 IDP (p), a =2 AF (p), b =2 AF (p)Xi:a! Xi:b 2 IDP (p), a 2 AF (p), b =2 AF (p)Xi:a! Xi:b 2 IDP (p), a =2 AF (p), b 2 AF (p)Xi:a! Xj :b 2 IDP (p), i 6= j, a =2 AF (p)Xi:a! Xj :b 2 IDP (p), i 6= j, b =2 AF (p)In the �rst case the dependency is accounted for in all productions q for which a and bare elements of AF (q). In the second and third cases Xi:a and Xi:b must belong to di�erentsubsets Ar(Xi) and As(Xi). The dependency manifests itself in the ordering condition r < sor s < r, and will not be disturbed by collapsing either subset. In the fourth case we computeXj :b only after all of the attributes in the subset to which Xi:a belongs have been computed;this is simply an additional restriction. The �fth case is excluded by De�nition 8.11: Xi:a!Xj :b cannot be an element of DDP (p) because Xj:b is not in AF (p); it cannot be an elementof any IDS because i 6= j.

8.2 Traversal Strategies 167c1;0 = fexpression.environmentgc3;0 = fexpression.postmodegc2;1 = fname[1].primodegc4;1 = fgc2;2 = faddop.operationgc2;3 = fname[2].primodegc4;3 = fga) New attributes
2,1c

c1,0

2,2c

3,0c

2,3c

4,3c4,1c

name [1].environment

name[1].postmode name[2].postmode

name [2].environment

addop.mode

expression.primode

conditionb) Graph de�ning DP (p) [DDP (p)c2;1 ! name[2].environmentc3;0 ! name[1].postmodec4;1 ! addop.modec2;2 ! name[2].postmodec4;3 ! conditionc) Additional dependencies used to establish a total orderFigure 8.11: Deriving the Algorithm of Figure 8.4bWhen an algorithm begins with a visit cj;i, this visit may or may not actually be carriedout. Suppose that the structure tree has been completed before the attribution is attempted.The traversal then begins at the root, and every algorithm will be initiated by a `move to childi'. Now if the �rst action of the algorithm is c1;0, i.e. a move to the parent to compute inheritedattributes, this move is superuous because the child is only invoked if these attributes areavailable. Hence the initial c1;0 should be omitted. The situation is reversed if the tree isbeing processed bottom-up, as when attribution is merged with a bottom-up parse: An initialci;j that causes a move to the leftmost subtree should be omitted.Semantic conditions are taken care of in this schema by treating them as synthesizedattributes of the left-hand side of the production. They can be introduced into an algorithmat any arbitrary point following computation of the attributes upon which they depend.In practice, conditions should be evaluated as early as possible to enhance semantic errorrecovery and reduce the lifetime of attributes.

168 Attribute Grammars8.2.3 Pre-Speci�ed TraversalsOverall compiler design considerations may indicate use of one or more depth-�rst, left-to-right and or right-to-left traversals for attribute evaluation. This allows us to linearize thestructure tree as discussed in Section 4.1.2 and make one or more passes over the linearizedrepresentation. (For this reason, attribute grammars that specify such traversals are calledmulti-pass attribute grammars. We shall discuss the left-to-right case in detail here, leavingthe analogous right-to-left case to the reader.8.17 DefinitionAn attribute grammar is LAG(1) if, for every node corresponding to an application of p :X0 ! X1 : : : Xn 2 P , the attributes in AI(X0), AI(X1), AS(X1), AI(X2); : : : ; AS(Xn),AS(X0) can be computed in that order. �An LAG(1) grammar is partitioned, with the partition being A1(X) = AI(X), A2(X) =AS(X) for all X. Further constraints on the order of evaluation within a production areintroduced to force processing of the symbols from left to right.8.18 TheoremAn attribute grammar is LAG(1) if and only if it is locally acyclic and, for all p : X0 !X1 : : : Xn 2 P , Xi:a! Xj :b 2 DDP (p) implies one of the following conditions:� j = 0� i = 0 and a 2 AI(X0)� 1 � i < j� 1 � i = j and a 2 AI(Xi) �Note that Theorem 8.18 makes use only of DDP (p); it does not consider induced attributedependencies. This is possible because every induced dependency that would a�ect the com-putation must act over a path having a `top' node similar to that in Figure 8.5: An inheritedattribute of a symbol depends directly upon a synthesized attribute of the same symbol. Thiscase is prohibited, however, by the conditions of the theorem.LAG(1) grammars are inadequate even in comparatively simple cases, as can be seen byconsidering the grammar of Figure 8.1. The production for assignment satis�es the condi-tions of Theorem 8.18, but that for expression does not because both name[1].postmodeand name[2].postmode depend upon expression.primode . We can repair the problem inthis example by applying the `hoisting' transformation mentioned at the end of Section 8.1:Delete the inherited attribute postmode and move the condition using it upward. A similarchange is required to move the operator identi�cation upward (Figure 8.12).If one tree traversal does not su�ce to compute all attributes, a sequence of severaltraversals might be used. This idea is actually much older and more general than that ofattribute grammars. We have already met it in Section 1.3: `Any language requires at least onepass over the source text, but certain language characteristics require more.' (The proceduredetermine traversals discussed below describes, in terms of attributes, the fundamentalmechanism by which the number of passes of a compiler is determined.) The di�erencebetween LAG and RAG appears in the same section as the distinction between forward andbackward passes.All attributes in the structure tree of a sentence derived from any arbitrary well-de�nedattribute grammar can be evaluated with an unlimited number of traversals, but the cost ofdetermining dynamically whether another traversal is necessary is roughly as high as that ofthe nondeterministic evaluation procedure in Section 8.1. Here we are interested in cases forwhich the number of traversals can be determined from the grammar alone, independent ofany structure tree.

8.2 Traversal Strategies 169rule assignment ::= name ':=' expression.attributionname.environment assignment.environment;expression.environment assignment.environment;conditioncoercible (expression.primode,if name.primode = ref_int_type then int_typeelse real_type �);rule expression ::= name addop name.attributionname[1].environment expression.environment;name[2].environment expression.environment;expression.primode if coercible (name[1].primode, int_type) andcoercible (name[2].primode, int_type)then int_typeelse real_type�;addop.operation if expression.primode = int_type then int_additionelse real_addition�;conditioncoercible (name[1].primode, expression.primode) andcoercible (name[2].primode, expression.primode);rule addop ::= '+'.rule name ::= identifier.attributionname.primode defined_type(identifier.symbol,name.environment);Figure 8.12: Transformation of Figure 8.18.19 DefinitionAn attribute grammar is LAG(k) if and only if for each X in the vocabulary a partitionAI(X) = AI1(X) [� � � [AIk(X)AS(X) = AS1(X) [� � � [ASk(X)exists such that for all productions p : X0 ! X1 : : : Xn, the attributes in AI1(X0),AI1(X1); : : : ; AS1(Xn), AS1(X0), AI2(X0); : : : ; AIk(X0); : : : ; ASk(X0) can be computed inthat order. �Note that this reduces to De�nition 8.17 for k = 1.The set of partitions taken together form an admissible partition of the attribute set Awith m(X) = 2k for every X. We can think of the sets AIi(X) and ASi(X) as belonging toan LAG(1) grammar with AIj(X) and ASj(X)(j < i) as intrinsic attributes. This reasoningleads to the following LAG(k) condition which closely parallels Theorem 8.18:

170 Attribute Grammars8.20 TheoremAn attribute grammar is LAG(k) if and only if it is locally acyclic and a partition A =A1 [� � � [Ak exists such that for all p : X0 ! X1 : : : Xn 2 P , Xi:a ! Xj :b 2 DDP (p),a 2 Au(Xi), b 2 Av(Xj) implies one of the following conditions:� u < v� u = v and j = 0� u = v and i = 0 and a 2 AI(X0)� u = v and 1 � i < j� u = v and 1 � i = j and a 2 AI(Xi) �function determine_traversals : integer;(* Test an attribute grammar for the LAG(k) propertyOn entry-Attribute grammar (G ; A ; R ; B) is defined as in Section 8.1Sets A , AS (X) and AF (p) are defined as in Section 8.1Set NDDP (p) is defined as in Section 8.2.2If the grammar is LAG(k)then on exit- determine_traversals = kelse on exit- determine_traversals = -1*)vark : integer; (* current traversal number *)candidates, (* possibly evaluable in the current traversal *)later : attribute_set; (* not evaluable in the first k traversals *)candidates_unchanged: boolean;begin (* determine_traversals *)k := 0; later := A ; (* no attributes evaluable in 0 traversals *)repeat (* determine the next Ak *)k := k + 1; candidates := later; later := ;;repeat (* delete those unevaluable in traversal k *)candidates_unchanged := true ;for all productions p : X0 ! X1: : : Xn dofor all Xj .b 2 (AF(p) \ candidates) dofor all Xi .a 2 A doif Xi .a ! Xj .b 2 NDDP (p) thenif Xi .a 2 later or j 6= 0 and(i > j or (i = 0 or i = j) anda 2 AS(Xi)) thenbegincandidates := candidates - fXj .b g;later := later [fXj .b g;candidates_unchanged := false ;end;until candidates_unchanged;Ak := candidates;until later = ; or candidates = ;if later = ; then determine_traversals := kelse determine_traversals := - 1;end; (* determine_traversals *)Figure 8.13: Testing the LAG(k) Property

8.2 Traversal Strategies 171Theorem 8.20 leads directly to a procedure for determining the partition and the valueof k from a locally acyclic grammar (Figure 8.13). For k = 1; 2; : : : this procedure assumesthat all remaining attributes belong to Ak and then deletes those for which this assumptionviolates the theorem. There are two distinct stopping conditions:� No attribute is deleted. The number of traversals is k and the partition is A1; : : : ; Ak.� All attributes are deleted. The conditions of Theorem 8.20 cannot be met and hencethe attribute grammar is not LAG(k) for any k.Analogous constructions are possible for RAG(k) grammars and for the alternating evalu-able attribute grammars (AAG(k)). With the latter class, structure tree attributes are evalu-ated by traversals that alternate in direction: The �rst is left-to-right, the second right-to-left,and so forth. We leave the derivation of these de�nitions and theorems, plus the necessaryprocessing routines, to the reader.It is important to note that the algorithm of Figure 8.13 and its analogs for RAG(k) andAAG(k) assign attributes to the �rst traversal in which they might be computed. Thesealgorithms give no indication that it might also be possible to evaluate an attribute in a latertraversal without delaying evaluation of other attributes or increasing the total number oftraversals. rule Z ::= X .attributionX.b 1 ;rule X ::= W X .attributionX[1].a W.c ;X[2].b X[1].b;W.d X[2].a ;rule X ::= 's'.attributionX.a X.b ;rule W ::= 't'.attributionW.c W.d ;Figure 8.14: An RAG(1) Grammar That Is Not LAG(k)Figure 8.14 is RAG(1) but not LAG(k) for any k. Each left-to-right traversal can onlycompute the value of one X:a because of the dependency relation involving the precedingnonterminal W . Hence the number of traversals is not �xed, but is the depth of the recur-sion. A single right-to-left traversal su�ces to compute all X:a, however, because traversalof W 's subtree follows traversal of X[2]'s. If we combine two such attribute relationshipswith opposite dependencies then we obtain an AAG(2) grammar that is neither LAG(k) norRAG(k) for any k (Figure 8.15).It is, of course, possible to construct an appropriate partition for a multi-pass grammarby hand. The development usually proceeds as follows: On the basis of given properties ofthe language one determines the minimum number of traversals required, partitions the at-tributes accordingly, and then constructs the attribute de�nition rules to make that partitionvalid. The `hoisting' transformation referred to earlier is often used implicitly during ruleconstruction.

172 Attribute Grammarsrule Z ::= X .attributionX.b 1 ;rule X ::= W X Y .attributionX[1].a W.c ;X[1].e Y.g ;X[2].b X[1].b;W.d X[2].a;Y.f X[2].e;rule X ::= 's'.attributionX.a X.b ;X.e X.b ;rule W ::= 't'.attributionW.c W.d ;rule Y ::= 'u'.attributionY.g Y.f ;Figure 8.15: An AAG(2) Grammar That Is Neither LAG(k) Nor RAG(k)The disadvantage of this technique is that it is based upon an initial opinion about thenumber of traversals and the assignment of attributes to traversals that may turn out to bewrong. For example, one may discover when constructing the rules that an attribute canonly be computed if additional arguments are available, or even that important attributes aremissing entirely. Experience shows that small changes of this kind often have disastrous e�ectson the basic structure being built. Considering the cost involved in developing a semanticanalyzer { an attribute grammar for LAX is barely 30 pages, but speci�cations for complexlanguages can easily grow to well over 100 pages { such e�ects cannot be tolerated. It is moreadvisable to construct an attribute grammar without regard to the number of traversals.Only when it is certain that all aspects of the language have been covered correctly shouldsubstitutions and other alterations to meet a constraint upon the number of traversals beundertaken. The greater part of the grammar will usually be una�ected by such changes.As soon as a partition of the attribute set satisfying De�nition 8.17 or 8.19 is available, itis simple to derive an algorithm via the technique discussed at the end of the last section.8.3 Implementation ConsiderationsSection 8.2 showed methods for constructing attribute evaluation algorithms from attributegrammars. Here we concern ourselves with the implementation of these algorithms. First weassume that the structure tree appears as a linked data structure providing storage for theattributes, and later we show how to reduce the storage requirements.8.3.1 Algorithm CodingOur evaluation procedures are coroutines that transfer control among themselves by executingthe basic operations `move to child i' and `move to parent'. They might be coded directly,

8.3 Implementation Considerations 173class expression;begin comment Declarations of primode, postmode and environment end;class name;begin comment Declarations of primode, postmode and environment end;class addop;begin comment Declarations of mode and operation end;expression class p2 ;begin ref (name) X1 ; ref (addop) X2 ; ref (name) X3 ;comment Initialization of X1 , X2 and X3 needed here;detach;X1.environment := environment;resume (X1) ;X3.environment := environment;resume (X3) ;primode := if : : : ;detach;X1.postmode := primode;resume (X1) ;X2.mode := primode;resume (X2) ;X3.postmode := primode;resume (X3) ;if : : : ; comment Evaluate the condition;detach;end; Figure 8.16: SIMULA Implementation of Figure 8.4btransformed to a collection of recursive procedures, or embodied in a set of tables to beinterpreted. We shall discuss each of these possibilities in turn.The coroutines can be coded directly in SIMULA as classes, one per symbol and oneper production. Each symbol class de�nes the attributes of the symbol and serves as apre�x for classes representing productions with that symbol on the left side. This allows usto obtain access to a subtree having a particular symbol as its root without knowing theproduction by which it was constructed. Terminal nodes t are represented only by the classt. Each production class contains pointer declarations for all of its descendants X1 : : : Xn. Astructure tree is built using statements of the form node :- new p (or node :- new t)to create nodes and assignments of the form node.xi :- subnode to link them. Since a sidee�ect of new is execution of the class body, the �rst statement of each class body is detach(return to caller). (Intrinsic attributes could be initialized by statements preceding this �rstdetach.) Figure 8.16 gives the SIMULA coding of the procedure from Figure 8.4b.Figure 8.17 gives an implementation using recursive procedures. The tree is held in adata structure made up of the nodes de�ned in Figure 8.17a. When a node corresponding toapplication of p : X0 ! X1 : : : Xn is created, its �elds are initialized as follows:X0 p = px pi = pointer to node representing Xi; i = 1; : : : ; nThe body of a coroutine is broken at the detach statements, with each segment formingone branch of the case statement in the corresponding procedure. Then detach is imple-mented by simply returning; resume (Xi) is implemented by sproc s (x pi; k), where sproc s

174 Attribute Grammarstypetree_pointer = "tree_node;tree_node = recordcase symbols ofs : (* one per symbol in the vocabulary *)(: : : (* storage for attributes of S *)case s_p : integer ofp : (* one per production p : S ! X1 : : : Xn *)(x_p : array [1..n] tree_pointer);)end; a) General structure of a nodeprocedure pproc_p (t : tree_pointer; k : integer);(* one procedure per production *)begin (* pproc_p *)case k of0 :: : : (* actions up to the first detach *): : : (* successive segments *)end;end; (* pproc_p *)b) General structure of a production procedureproceduresproc_s (t : tree_pointer; k : integer);(* one procedure per symbol *)begin (* sproc_s *)case t".s_p ofp : pproc_p (t, k) ; (* one case element per production *): : :end;end; (* sproc_s *)c) General structure of a symbol procedureFigure 8.17: Transformation of Coroutines to Proceduresis the procedure corresponding to symbol Xi and k is the segment of that procedure to be ex-ecuted. Figure 8.18 shows the result of applying the transformation to Figure 8.16. We havefollowed the schema closely in constructing this example, but in practice the implementationcan be greatly simpli�ed.A tabular implementation, in which the stack is explicit, can be derived from Figure 8.17.It involves a pushdown automaton that walks the structure tree, invoking evaluate in muchthe same way that the parsing automata of Chapter 7 invoke parser actions to report connec-tion points. In each case the automaton communicates with another processor via a sequenceof simple data items. Thus the implementations of the automaton and the communicatingprocessor are quite distinct, and di�erent techniques may be used to carry them out. Thenumber of actions is usually very large, and when deciding how to handle them one must takeaccount of any restrictions imposed by the implementation language and its compiler.Figure 8.19 shows how the pushdown automaton is implemented. Each entry in the tablecorresponds to an element of some algorithm and there is an auxiliary function, segment ,

8.3 Implementation Considerations 175such that segment (k; p) is the index of the �rst entry for the kth segment of the algorithmfor production p. If the element corresponds to Xi:a then it speci�es the computation insome appropriate manner (perhaps as a case index or procedure address); otherwise it simplycontains the pair of integers de�ning the visit. Because the selectors for a visit must beextracted from the table, rather than being built into the procedure, the tree node must berepresented as shown in Figure 8.19b.typetree_pointer = "tree_node;tree_node = recordcase symbols ofexpression :(expression_environment : environment;expression_primode,expression_postmode:type_specification;case expression_2 : integer of: : : 2 : (x_2 : array [1..3] of tree_pointer);: : :name :(name_environment : environment;name_primode, name_postmode : type_specification; : : :);addop :(addop_mode : type_specification;: : :);end;procedure sproc_expression (t : tree_pointer; k : integer);begin (* sproc_expression *)case t".expression_2 of2 : pproc_2 (t , k);end;end; (* sproc_expression *)procedure pproc_2 (t : tree_pointer; k : integer);begin (* pproc_2 *)case k of0 : (* construction of subtrees *);1 : begint".x_1[1]".name_environment := t".expression_environment;sproc_name (t".x_1[1], 1);t".x_1[3]".name_environment := t".expression_environment;sproc_name (t".x_1[3], 1);t".expression_primode := if : : : ;end;2 : begint".x_1[1].name_postmode := t".expression_primode;sproc_name (t".x_1[1], 2);t".x_1[2].name_postmode := t".expression_primode;sproc_addop (t".x_1[2], 1);t".x_1[3].addop_postmode := t".expression_primode;sproc_name (t".x_1[3], 2);if : : : ;end;end;end; (* pproc_2 *)Figure 8.18: Transformation of Figure 8.16

176 Attribute GrammarsSimpli�cations in the general coding procedure are possible for LAG(k),RAG(k) andAAG(k) grammars. When k = 1 the partition for each X is A1(X) = AI(X), A2(X) =AS(X), so no intermediate detach operations occur in the coroutines. This, in turn, meansthat no case statement is required in the production procedures or in the interpretive model.For k > 1 there are k + 1 segments in each procedure proc p , corresponding to the ini-tialization and k traversals. It is best to gather together the procedures for each traversalas though dealing with a grammar for which k = 1, and then run them sequentially. Whenparsing by recursive descent, the tree construction, the calculation of intrinsic attributes andthe �rst tree traversal can be combined with the parsing.typetable_entry = recordcase is_computation : boolean oftrue : (* Rp ; X i :a *)(rule : attribute_computation);false : (* Csegment number ; child *)(segment_number, child : integer)end; a) Structure of a table entrytypetree_pointer = " tree_node;tree_node = recordproduction : integer;X : array[1..max_right_hand_side] of tree_pointerend; b) Structure of a tree nodeprocedure interpret;label 1 ;var t : tree_pointer;state, next : integer;begin (* interpret *)t := root_of_the_tree;state := segment (0, t".production);repeatnext := state + 1;with table[state] doif is_computation then evaluate (t , rule)else if segment_number <> 0 thenbeginstack_push (t , next);t := t".X[child];next := segment(segment_number,t".production);endelse if stack_empty then goto 1else stack_pop (t , next);state := next ;until false; (* forever *)1 : end; (* interpret *)c) Table interpreterFigure 8.19: Tabular Implementation of Attribution Algorithms

8.3 Implementation Considerations 1778.3.2 Attribute StorageSo far we have assumed that all attributes of a structure tree node were stored within the nodeitself. Applying this assumption in practice usually leads to a gigantic storage requirement.Several remedies are possible:� Overlaying of attributes� Use of local temporaries of evaluation procedures� Storage of speci�ed attributes only at designated nodes.� Use of global variables and data structures.Because these optimizations cannot be automated completely (given the present state ofthe art), the question of attribute storage represents an important part of the developmentof an attribute grammar implementation.We classify the attributes of a node as �nal or intermediate. Final attributes are neces-sary in later phases of the compilation and must be available in the structure tree followingattribution. Intermediate attributes are used only as aids in computing other attributes ortesting conditions; they have a bounded lifetime. The largest intermediate attribute, whichwe shall discuss in Chapter 9, is the environment used to obtain the meaning of an identi�erat a particular point.Distinct storage must be assigned to �nal attributes, but this storage can be used earlierto hold one or more intermediate attributes if their lifetimes do not overlap. Minimization ofoverlap (not minimization of lifetimes for simple attributes) is thus one of the most importantuses of our freedom to specify the sequence of attribute evaluations. Usually it is best to beginwith the �nal attributes and work backwards, �xing the sequence so that attributes can takeone another's place in storage.We often discover that two attribute lifetimes overlap, but only briey. The overlapcan be eliminated by de�ning a new attribute whose lifetime is just this overlap, assigningthe �rst attribute to it, and freeing the second attribute's storage. The second attribute isthen computed into that storage. In this manner we reduce the overlap among `long lived'attributes and increase the number of `short lived' attributes. The new attributes generallyhave little overlap among themselves, but even if they had we have gained something: Thistransformation usually makes other optimizations applicable.In many cases we can implement short-lived attributes as local variables of the evaluationprocedures, thus avoiding the need for space within the node entirely. If the attributesare referenced by other procedures (for the parent or children of the node to which theybelong) then their values can be passed as extra parameters. This strategy only works forimplementations like that of Figure 8.17, where distinct processing procedures are provided.The tabular implementation discussed at the end of Section 8.2.1 requires stacks instead ofprocedure parameters or local variables to realize the same strategy.An attribution rule can only access attributes of the nodes corresponding to the symbolsof the associated production. Many of the attributes in a typical grammar are thereforeconcerned with transmission of information from one part of the tree to another. Sinceattribute values do not change, they may be transmitted by reference instead of by value.Thus we might store the value of a large attribute at a single node, and replace this attributein other nodes by a pointer to the stored information. The node at which the value is stored isusually the root of a subtree to which all nodes using this information belong. For example,the environment attribute of a block or procedure node is formed by combining the listsgenerated by local de�nitions with the inherited environment. The result is passed to allnodes in the subtree rooted in the block or procedure node. If a pointer to the next enclosing

178 Attribute Grammarsblock or procedure node is given during the processing of the nodes in the subtree, then weobtain the same environment: First we reach the local de�nitions in the innermost enclosingblock and, in the same manner, the next outermost, etc. The search of the environment fora suitable de�nition thus becomes a search of the local de�nition lists from inner to outer.Attributes should often be completely removed from the corresponding nodes and repre-sented by global variables or linked structures in global storage. We have already noted thatit is usually impossible to retain the entire structure tree in memory. Global storage is usedto guarantee that an attribute accessible by a pointer is not moved to secondary storage withthe corresponding node. Global storage is also useful if the exact size of an attribute cannotbe determined a priori. Finally, global storage has the advantage that it is directly accessible,without the need to pass pointers as parameters to the evaluation procedures.If the environment is kept as a global attribute then it is represented by a list of localde�nitions belonging to the nested blocks or procedures. In order to be certain that the`correct' environment is visible at each node we alter the global attribute during the traversalof the structure tree: When we move to a block or procedure node from its parent, we copythe local de�nition set to this environment variable; when we return to the parent we deleteit. The description in the previous paragraph shows that in reality we are using a globaldata structure to describe several related attribute values. This situation usually occurs withrecursive language elements such as blocks. The environment attribute shows the typicalsituation for inherited attributes: Upon descent in the tree we alter the attribute value, forexample increasing its size; the corresponding ascent in the tree requires that the previousstate be restored. Sometimes, as in the case of the nesting depth attribute of a LAX block,restoration is a simple inverse of the computation done on entry to the substructure. Oftenthere is no inverse, however, and the old value of the attribute must be saved explicitly. (Theenvironment represents an intermediate situation that we shall consider in Section refsec-9.3.)By replacing the global variable with a global stack, we can handle such cases directly.Global variables and stacks are also useful for synthesized attributes, and the analysis par-allels that given above. Here we usually �nd that attribute values replace each other at suc-cessive ascents in the tree. An example is the primode computation in a LAX case clause :rule case ::= case_label ':' statement_list.attributioncase.primode statement_list.primode;rule cases ::= case .rule cases ::= cases '//' case .attributioncases[1].primode balance (cases[2].primode, case.primode);The value of cases[2].primode becomes irrelevant as soon as cases[1].primode hasbeen evaluated. A case may, however, contain another case clause . Hence a stack mustbe used rather than a variable.By changing the attribution rules, we can often increase the number of attributes imple-mentable by global variables or stacks. A speci�c change usually �xes a speci�c traversalstrategy, but any one of several changes (each implying a di�erent traversal strategy) couldbe used to achieve the desired e�ect. Thus the designer should avoid such changes untilthe last possible time, when they can be coordinated with the `natural' traversal strategiesdetermined by the basic information ow.

8.4 Notes and References 1798.4 Notes and ReferencesAttribute grammars stem from the `syntax-directed compilers' introduced by Irons [1961,1963b]. Irons' grammars had a single, synthesized attribute attached to each nonterminal.This attribute provided the `meaning' of the subtree rooted in the nonterminal. Knuth[1968b, 1971b] proved that such a scheme was su�cient to de�ne the meaning associatedwith any structure tree, but pointed out that the description could be simpli�ed considerablythrough the use of inherited attributes in addition. (Su�ciency of synthesized attributesleads immediately to the conclusion that all well-de�ned attribute grammars have the samedescriptive power.) Intrinsic attributes were �rst characterized by Schulz [1976], althoughLewis et al. [1974] had previously allowed certain terminal symbols to have `attributes whosevalues are not given by rules'. The a�x grammars of Koster [1971, 1976] are similar toattribute grammars, the main di�erence being that a�xes are considered to be variables whileattributes are constants. R�aih�a [1980] provides a good overview of the attribute grammarliterature as it existed in 1979.Our treatment of attribute classi�cation di�ers from that of many authors because wedo not begin with disjoint sets of synthesized, inherited and intrinsic attributes. Instead,De�nition 8.2 classi�es the attributes based upon the placement of the attribution rules.Tienari [1980] has derived results similar to Theorems 8.3 and 8.8 from a de�nition allowingmore than one attribution rule per attribute in a single production. His analog of Theorem 8.8,however, includes the restriction to a single attribution rule as a part of the hypothesis.Theorem 8.8 assumes `value semantics' for the attribution rules: The operands of the ruleare evaluated before the rule itself, and hence the following represents a circularity:a if p then b else 1 �; b if not p then a else 2 �;`Lazy evaluation', in which an operand is not evaluated until its value is required, wouldnot lead to circularity in this case. The attendant broadening of the acceptable grammars isnot interesting for us because we are attempting to de�ne the evaluation sequence statically.Whenever there is a di�erence between value semantics and lazy evaluation, the evaluationsequence must be determined dynamically.Dynamic attribute evaluators based on cooperating sequential processes have been re-ported by Fang [1972] and Banatre et al. [1979]. Borowiec [1977] described a fragmentof COBOL in this manner. The process scheduling overhead can be avoided by deriving adependency graph from the speci�c tree being processed, and then converting this graph to apartial order. Gallucci [1981] implemented such a system, adding dependency links to thetree and using reference counts to derive the partial order.One of the major arguments given in support of a dynamic evaluator is that it is simple toimplement. The actual evaluation algorithm is simple, but it will fail on certain programs if thegrammar is not well-de�ned. We have already pointed out that WAG testing is exponential,[Jazayeri et al., 1975; Jazayeri, 1981] and hence occasional failure of the dynamic evaluatoris accepted by most authors advocating this strategy. Acyclicity of IDP (p) and IDS(X), asu�cient condition for WAG, can be tested in polynomial time [Kastens, 1980]. This testforms the basis of all systems that employ subclasses of WAG. Such systems are guaranteednever to fail during evaluation.Kennedy and Warren [1976] termed the subclass of WAG for which IDP (p) andIDS(X) are acyclic for all p and X `absolutely non-circular attribute grammars� (ANCAG).They developed an algorithm for constructing ANCAG evaluators that grouped attributestogether, avoiding individual dependency links for every attribute. The evaluation remainsdynamic, but some decisions are shifted to evaluator construction time. In a later paper,Kennedy and Ramanathan [1979] retain the ANCAG subclass but use a pure dynamicevaluator. Their reasoning is that, although this strategy is less e�cient at run time, it iseasier to understand and simpler to implement.

180 Attribute GrammarsOrdered attribute grammars were originated by Kastens [1976, 1980], who used the term`arranged orderly' to denote a partitioned grammar. OAG is a subclass of ANCAG for whichno decisions about evaluation order are made dynamically; all have been shifted to evaluatorconstruction time. This means that attribute lifetimes can be determined easily, and theoptimizations discussed in Section 8.3.2 can be applied automatically: In a semantic analyzerfor Pascal, constructed automatically from an ALADIN description by the GAG [Kastenset al., 1982] system, attributes occupied only about 20% of the total structure tree storage.Lewis et al. [1974] studied the problem of evaluating all attributes during a single depth-�rst, left-to-right traversal of the structure tree. Making no use of the local acyclicity ofDDP (p), they derived the �rst three conditions we stated in Theorem 8.18. The same con-ditions were deduced independently by Bochman [1976], who went on to point out thatdependencies satisfying the fourth condition of Theorem 8.18 are allowed if the relationshipNDDP (p) is used in place of DDP (p). There is no real need for this substitution, however,because if DDP (p) is locally acyclic then the dependency Xi:a! Xj :b immediately rules outXj :b! Xi:a. Thus dependencies satisfying the fourth condition of Theorem 8.18 cannot leadto any problem in left-to-right evaluation. Since local acyclicity is a necessary condition forwell-de�nedness, this assumption does not result in any loss of generality.LAG(k) conditions similar to those of Theorem 8.20 were also stated by Bochman [1976].Again, he did not make use of local acyclicity to obtain the last condition of our result.Systems based upon LAG(k) grammars have been developed at the Universit�e de Montreal[Bochmann and Lecarme, 1974] and the Technische Universit�at M�unchen [Giegerich,1979].The theoretical underpinnings of the latter system are described by Ripken [1977], Wil-helm [1977] and Ganzinger [1978]. Wilhelm's work combines tree transformation withattribution.Alternating-evaluable grammars were introduced by Jazayeri and Walter [1975] as ageneralization of Bochmann's work. Their algorithm for testing the AAG(k) condition doesnot provide precise criteria analogous to those of Theorem 8.18, but rather uses speci�cationssuch as `occur before [the current candidate] in the present pass' to convey the basic idea. Agroup at the University of Helsinki developed a compiler generator based upon this form ofgrammar [R�aih�a and Saarinen, 1977; R�aih�a et al., 1978].Asbrock [1979] and Pozefsky [1979] considers the question of attribute overlap mini-mization in more detail.Jazayeri and Pozefsky [1977] and Pozefsky [1979] give a completely di�erent methodof representing a structure tree and evaluating a multi-pass attribute grammar. They proposethat the parser create k sequential �les Di such that Di contains the sequence of attributionrules with parameters for pass i of the evaluation. Thus Di contains, in sequential form,the entire structure of the tree; only the attribute values, arbitrarily arranged and withoutpointers to subnodes, are retained in memory. Pozefsky [1979] also considers the questionof whether the evaluation of a multi-pass grammar can be arranged to permit overlaying ofthe attributes in memory.Exercises8.1 Write an attribute grammar describing a LAX basic symbol as an identifier , integeror floating point . (Section A.1 describes these basic symbols.) Your grammar shouldcompute the intrinsic attributes discussed in Section 4.1.1 for each basic symbol (withthe exception of location) as synthesized attributes. Use no intrinsic attributes in yourgrammar. Be sure to invoke the appropriate symbol and constant table operationsduring your computation.

8.4 Notes and References 1818.2 [Banatre et al., 1979] Write a module for a given well-de�ned attribute grammar(G;A; R;B) that will build the attributed structure tree of a sentence of L(G). Theinterface for the module must provide creation, access and assignment operations asdiscussed in Section 4.1.2. The creation and assignment operations will be invoked byparser actions to build the structure tree and set intrinsic attribute values; the accessoperation will be invoked by other modules to examine the structure of the tree andattribute values of the nodes. Within the module, access and assignment operations areused to implement attribution rules. You may assume that all invocations of creationand assignment operations from outside the module will precede any invocation of anaccess operation from outside. Invocations from within the module must, of course, bescheduled according to the dependencies of the attribute grammar. You may providean additional operation to be invoked from outside the module to indicate the end ofthe sequence of external creation and assignment invocations.8.3 Consider the following attribute grammar:rule Z ::= s X .attributionX.a X.c ;X.b X.a ;rule Z ::= t X.attributionX.b X.d ;X.a X.b ;rule X ::= u .attributionX.d 1 ;X.c X.d ;rule X ::= v .attributionX.c 2 ;X.d X.c ;(a) Show that this grammar is partitionable using the admissible partition A1(X) =fc; dg, A2(X) = fa; bg, A3(X) = fg.(b) Compute IDP (p) and IDS(X) replacing NDDP (p) by DDP (p) in De�ni-tion 8.12. Explain why the results are cyclic.(c) Modify the grammar to make IDP (p) and IDS(X) acyclic under the modi�cationof De�nition 8.12 postulated in (b).(d) Justify the use of NDDP (p) in De�nition 8.12 in terms of the modi�cation of (c).8.4 Compute IDP and IDS for all p and X in the grammar of Figure 8.1. Apply construc-tion 8.16, obtaining a partition (di�erent from that given at the end of Section 8.2.1),and verify that Theorem 8.13 is satis�ed. Compute DP for all p, and verify thatTheorem 8.15 is satis�ed.8.5 Show that a partitionable grammar that is not ordered can be made into an orderedgrammar by adding suitable `arti�cial dependencies' X:a ! X:b to some IDS(X).(In other words, the gap between partitionable and ordered grammars can always bebridged by hand.)

182 Attribute Grammars8.6 De�ne a procedure Evaluate P for each production of an LAG(1) grammar such thatall attributes of a structure tree can be evaluated by applying Evaluate Z (where Zis the production de�ning the axiom) to the root.8.7 A right-to-left attribute grammar may have both inherited and synthesized attributes.All of the attribute values can be obtained in some number of depth-�rst, right-to-lefttraversals of the structure tree. State a formal de�nition for RAG(k) analogous toDe�nition 8.19 and prove a theorem analogous to Theorem 8.20.8.8 [Jazayeri andWalter, 1975] De�ne the class of alternating evaluable attribute gram-mars AAG(k) formally, state the condition they must satisfy, and give an analysis pro-cedure for verifying this condition. (Hint: Proceed as for LAG(2k), but make some ofthe conditions dependent upon whether the traversal number is odd or even.)8.9 Extend the basic de�nitions for multi-pass attribute grammars to follow the hybridlinearization strategy of Figure 4.4d: Synthesized attributes can be evaluated not onlyat the last visit to a node but also after the visit to the ith subnode, 1 � i � n, oreven prior to the �rst subnode visit (i = 0). How does this change the proceduredetermine traversals ?8.10 Show that the LAG(k), RAG(k) or AAG(k) condition can be violated by a partitionableattribute grammar only when a syntactic rule leads to recursion.8.11 Complete the class de�nitions of Figure 8.16 and �ll in the remaining details to obtaina complete program that parses an assignment statement by recursive descent and thencomputes the attributes. If you do not have access to SIMULA, convert the schemainto MODULA2, Ada or some other language providing coroutines or processes.8.12 Under what conditions will the tabular implementation of an evaluator for a partitionedattribute grammar require less space than the coroutine implementation?8.13 Give detailed schemata similar to Figure 8.17 for LAG(k) and AAG(k) evaluators,along the lines sketched at the end of Section 8.3.1.8.14 Consider the implementation strategies for attribution algorithms exempli�ed by Fig-ures 8.17 and 8.19.(a) Explain why the tree node of Figure 8.19b is less space-e�cient than that ofFigure 8.17a.(b) Show that, by coding the interpreter of Figure 8.19c in assembly language andassigning appropriate values to the child �eld of Figure 8.19a, it is possible to usethe tree node of Figure 8.17a and also avoid the need for the sproc s proceduresof Figure 8.17c.8.15 Modify Figure 8.1 by replacing name with expression everywhere, and changing thesecond rule to expression ::= '(' expression addop expression ')'. Consider aninterpretive implementation of the attribution algorithms that follows the model ofExercise 8.16.(a) Show the memory layout of every possible node.(b) De�ne another rule, addop ::= '-', with a suitable attribution procedure. Whatnodes are a�ected by this change, and how?(c) Show that the addop node can be incorporated into the expression node withoutchanging the attribution procedures for addop . What is the minimum changenecessary to the interpreter and the attribution procedure for expression ? (Hint:Introduce a second interpretation for ci;j.)

Chapter 9Semantic AnalysisSemantic analysis determines the properties of a program that are classed as static semantics(Section 2.1.1), and veri�es the corresponding context conditions { the consistency of theseproperties.We have already alluded to all of the tasks of semantic analysis. The �rst is name anal-ysis, �nding the de�nition valid at each use of an identi�er. Based upon this information,operator identi�cation and type checking determine the operand types and verify that theyare allowable for the given operator. The terms `operator' and `operand' are used here intheir broadest sense: Assignment is an operator whether the language de�nition treats it assuch or not; we also speak of procedure parameter transmission and block end (end of extent)as operations.Section 9.1 is devoted to developing a formal speci�cation of the source language fromwhich analysis algorithms can be mechanically generated by the techniques of Chapters 5-8.Our goal for the speci�cation is clarity, so that we can convince ourselves of its correctness.This is an important point, because the correspondence between the speci�cation and thegiven source language cannot be checked formally. In the interest of clarity, we often useimpractically ine�cient descriptions that give the e�ect of auxiliary functions, but do notreect their actual implementation. Section 9.2 discusses the practical implementation ofthese auxiliary functions by modules.9.1 Description of Language Properties via Attribute Gram-marsThe description of a programming language by an attribute grammar provides a formal de�-nition of both its context-free syntax and its static semantics. (Dynamic semantics, such asexpression evaluation, could be included also; we shall not pursue that point, however.) Wetherefore approach the total problem of analysis via attribute grammars as follows:� First we develop an attribute grammar and replace the informal language descriptionwith it.� From the attribute grammar we extract the context-free syntax and transform it to aparsing grammar in the light of the chosen parsing technique.� Finally we implement the attribution rules to obtain the semantic analyzer.The parsing grammar and implementation of the attribution rules can be derived individ-ually from the informal language de�nition, as we have done implicitly up to this point. The183

184 Semantic Analysisadvantage of using attribute grammars (or some other formal description tool such as denota-tional semantics) lies in the fact that one has a comprehensive and uni�ed speci�cation. Thisensures that the parsing grammar, structure tree and semantic analysis `�t together' withoutinterface problems.Development of an attribute grammar consists of the following interdependent steps:� Development of the context-free syntax.� Determination of the attributes and speci�cation of their types.� Development of the attribution rules.� Formulation of the auxiliary functions.Three major aspects of semantic analysis described via attribution are scope and nameanalysis, types and type checking, and operator identi�cation in expressions. With a fewexceptions, such as the requirement for distinct case labels in a case clause (Section A.4.6),all of the static semantic rules of LAX fall into these classes. Sections 9.1.1 to 9.1.4 examinethe relevant attribution rules in detail.Many of the attribution rules in a typical attribute grammar are simple assignments. Toreduce the number of such assignments that must be written explicitly, we use the followingconventions: A simple assignment to a synthesized attribute of the left-hand side of a pro-duction may be omitted when there is exactly one symbol on the right-hand side that hasa synthesized attribute with the same name. Similarly, simple assignments of inherited at-tributes of the left-hand side to same-named inherited attributes of any number of right-handside symbols may be omitted. In important cases we shall write these (semantic) transfersfor emphasis. (Attribute grammar speci�cation languages such as ALADIN [Kastens et al.,1982] contain even more far-reaching conventions.)We assume for every record type R used to describe attributes the existence of a functionN R whose parameters correspond to the �elds of the record. This function creates a newrecord of type R and sets its �elds to the parameter values. Further, we may de�ne a list ofobjects by records of the form:typet_list = "t_list_element;t_list_element = record first : t ; rest : t_list end;If e is an object of type t then we shall also regard e as a single element of typet list wherever the context requires this interpretation. We write l 1 & l 2 to indicateconcatenation of two lists, and hence e & l describes addition of the single element e to thefront of the list l . `Value semantics' are assumed for list assignment: A copy of the entirelist is made and this copy becomes the value of the attribute on the left of the arrow.9.1.1 Scope and Name AnalysisThe scope of identi�ers is speci�ed in most languages by the hierarchical structure of theprogram. In block structured languages the scopes are nested. Languages like FORTRANhave only a restricted number of levels in the hierarchy (level 1 contains the subprogram andCOMMON names, level 2 the local identi�ers of a subprogram including statement numbers).Further considerations are the use of implicit de�nition (FORTRAN), the admissibility (AL-GOL 60) or inadmissibility (LIS) of new de�nitions in inner blocks for identi�ers declared inouter blocks, and the restriction of scope to the portion of the block following the de�nition(C). We shall consider the special properties of �eld selectors in Section 9.1.3.Every de�nition of an identi�er is represented in the compiler by a variant record. Thetypes of Figure 9.1a su�ce for LAX; di�erent variants would be required for other languages.

9.1 Description of Language Properties via Attribute Grammars 185typedefinition_class = (object_definition, (* Section A.3.1 *)type_definition, (* Section A.3.1 *)label_definition, (* Section A.2.6 *)unknown_definition); (* Undefined identifier *)definition = recorduid : integer; : : : (* Discussed in Section 9.1.3 *)ident : symbol; (* Identifier being defined *)case k : definition_class ofobject_definition : (object_type:mode); (* mode is discussed *)type_definition : (defined_type:mode); (* in Section 9.1.2 *)label_definition,unknown_definition : ()end; a) The attributes of an identi�erdefinition_table = "dt_element;dt_element = record first:definition; rest :definition_table end;b) Type of the environment attributerule name ::= identifier_use.conditionidentifier_use.corresponding_definition.k = object_definition;rule identifier_use ::= identifier.attributionidentifier_use.corresponding_definition current_definition (identifier.sym, identifier_use.environment);c) Use of an environmentFigure 9.1: EnvironmentsFor example, the variant type definition would be missing in a language without typeidenti�ers and FORTRAN would require additional variants for subprograms and COMMONblocks because these are not treated as objects. The de�nition record could also specifyfurther characteristics (such as the parameter passing mechanism for ALGOL 60 parametersor the access rights to Ada objects) that are known at the de�ning occurrence and used atthe applied occurrences.The de�nition class unknown definition is important because semantic functions mustdeliver a value under all circumstances. If no de�nition is available for an identi�er, one mustbe supplied (with the variant unknown definition).Records of type definition are collected into linear lists referenced as the environmentattribute by every construct that uses an identi�er. The rules for this attribute describe thescope rules of the language. Figure 9.1b gives the type of this attribute, and Figure 9.1cshows a typical example of its use. (Examples such as that of Figure 9.1c will normallycontain only the attribution rules necessary for the point that we are trying to make. Do notassume, therefore, that no additional attributes or attribution rules are associated with thegiven syntax rule.)

186 Semantic Analysisrule statement_list ::= statements.attributionstatements.environment statements.definitions & statement_list.environment;conditionunambiguous (statements.definitions);a) Language construct that changes the environmentrule unlabelled_statement ::= expression.attributionexpression.environment unlabelled_statement.environment;b) Language construct that does not change the environmentFigure 9.2: Environment ManipulationThe introduction of an additional nonterminal identifier use in Figure 9.1c is necessarybecause we cannot attach the attribute corresponding definition to either the nonterminalname or the terminal identifier . For the former the attribute would be meaningless in theproduction name ::= name 0 " 0, while for the latter we would have di�culty with de�ningoccurrences of identi�ers.In LAX, the environment attribute is changed only upon entry to ranges (A.2.0.2). Fig-ure 9.2a shows the change associated with a statement list . For language constructs thatare not ranges, the environment attribute is simply passed along unchanged as illustrated inFigure 9.2b. (Figure 9.2b is an example of a `transfer rule', where we would normally notwrite the attribute assignment.)The synthesized attribute statements.definitions is a definition table that hasone entry for each label de�nition. It describes the identi�ers given new meanings in thestatement list . This attribute is constructed as shown in Figure 9.3. (Note that the rulestatements ::= statement is simply a transfer, and hence the attribution rules are omitted.)The function gennum is a source of unique integers: Each invocation of gennum yields a newinteger.Section A.2.2 gives the visibility rules for LAX. Implementation of these rules in theattribute grammar is illustrated by Figures 9.1c and 9.2a. The function unambiguous is usedin Figure 9.2a to verify that statements.definitions contains no more than one de�nitionof any identi�er. Current definition (Figure 9.1c) searches the environment linearly fromleft to right and selects the �rst de�nition for the desired identi�er. As shown in Figure 9.2a,the local de�nitions are placed at the front of the environment list; they therefore `hide' anyde�nitions of the same identi�ers appearing in outer ranges because a linear search will �ndthem �rst.We must reiterate that attributes belonging to di�erent symbols in a production or todi�erent nodes in a structure tree are di�erent, even if they are identically named. Thusthere is not just one attribute environment , but as many as there are nodes in the structuretree. The fact that these many environments will be represented by a single de�nition tablein the implementation discussed in Section 9.2 does not concern us in the speci�cation. In thesame way, it does not follow from the informal speci�cation of current definition givenabove that the implementation must also use an ine�cient linear search; this strategy is onlya simple speci�cation of the desired e�ect.If the scope of a de�nition begins at that de�nition, and not at the beginning of the range inwhich it appears (an important property for one-pass compilers), then the environment mustbe passed `along the text' as shown in Figure 9.4. The right-recursive solution of Figure 9.4a

9.1 Description of Language Properties via Attribute Grammars 187rule statements ::= statement.rule statements ::= statements ';' statement.attributionstatements[1].definitions statements[2].definitions & statement.definitions;rule statement ::= label_definition statement.attributionstatement[1].definitions label_definition.def & statement[2].definitions;rule statement ::= unlabelled_statement.attributionstatement.definitions nil;rule label_definition ::= identifier ':'.attributionlabel_definition.def N_definition (gennum, identifier.sym, label_definition);Figure 9.3: Label De�nitionrequires the parser to accumulate entries for all of the declarations on its stack before it canbegin reducing declaration lists. This can lead to excessive storage requirements. A betterapproach is to use left recursion, as shown in Figure 9.4b. In this case the parser will neverhave more than one declaration entry on its stack, no matter how many declarations appear inthe declaration list. Figure 9.4b is easy to understand, but it has the unpleasant property thatfor each declaration the original environment is augmented by all of the de�nitions resultingfrom earlier declarations in the list. Figure 9.4c, where the environment is extended in astepwise manner, is the best strategy.Figure 9.4c makes the passing of the environment `along the text' explicit. Declara-tion list has an (inherited) attribute environment in that describes the initial state anda (synthesized) attribute environment out that describes the �nal state. The latter consistsof the former augmented by the current de�nition. Although this solution appears to bequite costly because of the multiple environments, it is actually the most e�cient: Simpleanalysis shows that all of the environments replace one another and therefore all of them canbe represented by a single data structure.It is clear that all of the de�nitions of Figure 9.4 are equivalent from the standpoint ofthe language de�nition. If, however, we wish to specify the semantic analyzer then we preferFigure 9.4c. Examining a given attribute grammar for optimizations of this kind often paysdividends.The implicit declarations of FORTRAN are described in a similar fashion, with eachidentifier use a potential declaration (Figure 9.5). We pass the environment along thetext of the expressions and statements, modifying it at each operand, by rules analogousto those of Figure 9.4c. This strategy avoids the problem of double implicit declarations inexpressions such as I � I.Greater di�culties arise from the fact that the Pascal fragment shown in Figure 9.6 isillegal because i is declared in p but used prior to its declaration. This is not allowed,even though a declaration of i exists outside of p . On the other hand, the use of t in the

188 Semantic Analysisrule declaration_list ::= declaration ';' declaration_list.attributiondeclaration.environment declaration_list[1].environment;declaration_list[2].environment declaration.definitions & declaration_list[1].environment;declaration_list[1].definitions declaration.definitions & declaration_list[2].definitions;a) Right-recursive solutionrule declaration_list ::= declaration_list ';' declaration.attributiondeclaration_list[2].environment declaration_list[1].environmentdeclaration.environment declaration_list[2].definitions & declaration_list[1].environment;declaration_list[1].definitions declaration_list[2].definitions & declaration.definitions;b) Left-recursive solutionrule declaration_list ::= declaration_list ';' declaration.attributiondeclaration_list[2].environment_in declaration_list[1].environment_in;declaration.environment declaration_list[2].environment_out;declaration_list[1].environment_out declaration_list[2].environment_out & declaration.definitions;declaration_list[1].definitions declaration_list[2].definitions & declaration.definitions;c) Stepwise environment constructionFigure 9.4: Scope Beginning at the Declarationrule identifier_use ::= identifier.attributionidentifier_use.implicit_definitions if found (identifier.sym, identifier_use.environment) then nilelseN_definition (gennum ,identifier.sym,object_definition,identifier.implicit_type);identifier_use.corresponding_definition current_definition (identifier.sym,identifier_use.implicit_definitions & identifier_use.environment);Figure 9.5: Implicit Declarations in FORTRAN

9.1 Description of Language Properties via Attribute Grammars 189const i = 17;type t = : : : ; (* First declaration of t *)procedure p ;typej = i; (* Use of i illegal here *)i = 1; (* This makes the previous line illegal *)typett = "t ; (* Refers to second declaration of t *)t = : : : ; (* Second declaration of t *)Figure 9.6: De�nition Before Use in Pascaldeclaration of tt is correct and identi�es the type whose declaration appears on the nextline. This problem can be solved by a variant of the standard technique for dealing withdeclarations in a one-pass ALGOL 60 compiler (Exercise 9.5).9.1.2 TypesA type speci�es the possible operations on an entity and the coercions that can be appliedto it. During semantic analysis this information is used to identify operators and verifythe compatibility of constructs with their environment. We shall concentrate on languageswith manifest types. Languages with latent types, in which type checking and operatoridenti�cation occur during execution, are treated in the same manner except that these tasksare deferred.In order to perform the tasks outlined in the previous paragraph, every structure treenode that represents a value must have an attribute describing its type. These attributesare usually tree-valued, and are built of linked records. For uniformity, the compiler writershould de�ne a single record format to be used in building all of them. The record formatmust therefore be capable of representing the type of any value that could appear in a sourceprogram, regardless of whether the language de�nition explicitly describes that value as beingtyped. For example, the record format used in a LAX compiler must be capable of representingthe type of nil because nil can appear as a value. Section A.3.1 does not describe nil ashaving a speci�c type, but says that it `denotes a value of type ref t , for arbitrary t' .Figure 9.7 de�nes a record that can be used to build attributes describing LAX types.Type class bad type is used to indicate that errors have made it impossible to determine theproper type. The type itself must be retained, however, since all attributes must be assignedvalues during semantic analysis. Nil type is the type of the prede�ned identi�er nil . Wealso need a special mechanism for describing the result type of a proper procedure. Void typespeci�es this case, and in fact is used whenever a result is to be discarded.For languages like ALGOL 60 and FORTRAN, which have only a �xed number of types,an enumeration similar to type class serves to represent all types. Array types must alsospecify the number of dimensions, but the element type can be subsumed into the enumeration(e.g. integer array type or real array type). Pascal requires additional speci�cations forthe index bounds; in LAX the bounds are expressions whose values do not belong to the staticsemantics, as illustrated by the rules of Figure 9.8.Figure 9.9 shows how procedure types are constructed in LAX. (Bad symbol represents anonexistent identi�er.) Because parameter transmission is always by value (reference param-eters are implemented by passing a ref value as discussed in Section 2.5.3) it is not necessaryto give a parameter transmission mechanism. In Pascal or ALGOL 60, however, the trans-mission mechanism must be included for each parameter. For a language like Ada, in which

190 Semantic Analysistypetype_class = (bad_type, nil_type, void_type, bool_type, int_type, real_type,ref_type,arr_type,rec_type,proc_type,unidentified_type, (* See Section 9.1.3 *)identified_type); (* See Section 9.1.3 *)mode = recordcase k : type_class ofbad_type, nil_type, void_type, bool_type,int_type, real_type : ();ref_type : (target : "mode);arr_type : (dimensions : integer; element : "mode);rec_type : (fields : definition_table);proc_type : (parameters : definition_table; result : "mode);unidentified_type : (identifier : symbol);identified_type : (definition : integer)end; Figure 9.7: Representation of LAX Typeskeyword association of arguments and parameters is possible, the identi�ers must be retainedalso. We retain the parameter identi�ers, even though this is not required in LAX, to reducethe number of attributes for the common case of a procedure declaration (A.3.0.8). Here wecan use the procedure type attribute both to validate the type compatibility and to providethe parameter de�nitions. If we were to remove the parameter identi�ers from the proceduretype this would not be possible.When types and de�nitions are represented by attributes, the complete set of declarations(other than procedure declarations) can, in principle, be deleted from the structure treeto avoid duplicating information both as attributes and as subtrees of the structure tree.Actually, however, this compression of the representation should only be carried out underextreme storage constraints; normally both representations should be retained. The mainreason is that expressions (like dynamic array bounds) appearing within declarations cannotbe abstracted as attributes because they are not evaluated until the program is executed.Context-sensitive properties of types lead to several relations that can be expressed asrecursive functions over types (objects of type mode). These basic relations are:Equivalent : Two types t and t' are semantically equivalent.Compatible : Usually an asymmetric relation, in which an object of type t can be used inplace of an object of type t' .Coercible : A type t is coercible to a type t' if it is either compatible with t' or can beconverted to t' by a sequence of coercions.Type equivalence is de�ned in Section A.3.1 for LAX; this de�nition is embodied in theprocedure type equivalent of Figure 9.10. Type equivalent must be used in all caseswhere two types should be compared. The direct comparison t1 = t2 may not yield true forequivalent composite types because the pointers contained in the type records may addressequivalent types represented by di�erent records.The test for equivalence of type identi�ers is for the identity of the type declarationsrather than for the equivalence of types they declare. This reects the name equivalence

9.1 Description of Language Properties via Attribute Grammars 191rule of Section A.3.1. If structural equivalence is required, as in ALGOL 68, then we mustcompare the declared types instead. A simple implementation of this comparison leads toin�nite recursion for types containing pointers to themselves. The recursion can, however, bestopped as soon as we attempt to compare two types whose comparison has been begun buthas not yet terminated. During comparison we therefore hold such pairs in a stack. Since theonly types that can participate in in�nite recursion are those of class identified type , weenter pairs of identified type types into the stack when we begin to compare them. Thenext pair is checked against the stack before beginning their comparison; if the pair is foundthen they are considered to be equivalent and no further comparison of them is required. (Ifthey are not equivalent, this will be detected by the �rst comparison { the one on the stack.)rule type_specification ::= 'ref' type_specification.attributiontype_specification[1].repr N_mode (ref_type,type_specification[2].repr);rule type_specification ::= 'ref' array_type.attributiontype_specification.repr N_mode (ref_type, array_type.repr);rule array_type ::= 'array' '[' dimensions ']' 'of' type_specification.attributionarray_type.repr N_mode (arr_type, dimensions.count, type_specification.repr);rule dimensions ::= .attributiondimensions.count 1;rule dimensions ::= dimensions ','.attributiondimensions[1].count dimensions[2].count + 1;rule record_type ::= 'record' fields 'end'.attributionrecord_type.repr N_mode (rec_type, fields.definitions);conditionunambiguous(fields.definitions);rule fields ::= field .rule fields ::= fields ';' field .attributionfields[1].definitions fields[2].definitions & field.definitions;rule field ::= identifier ':' type_specification.attributionfield.definitions N_definition (gennum, identifier.sym, object_definition,type_specification.repr);Figure 9.8: Type De�nition

192 Semantic Analysisrule type_specification ::= 'procedure' parameter_type_list result_type.attributiontype_specification.repr N_mode(proc_type,parameter_type_list.definitions,result_type.repr);rule parameter_type_list ::=.attributionparameter_type_list.definitions nil;rule parameter_type_list ::= '(' parameter_types ')'.rule parameter_types ::= type_specification.attributionparameter_types.definitions N_definition (gennum, bad_symbol, type_definition,type_specification.repr);rule parameter_types ::= parameter_types ',' type_specification.attributionparameter_types[1].definitions parameter_types[2].definitions &N_definition (gennum, bad_symbol, type_definition,type_specification.repr);Figure 9.9: Procedure Type De�nitionFigure 9.10 compares exactly two types. If we wish to group all types of a block, procedureor program into classes of structurally equivalent types then it is better to use the re�nementalgorithm of Section B.3.2 as generalized in Exercise B.7. This algorithm has the advantageof reducing the number of records that represent types, and therefore the amount of storagerequired to hold the attributes.The Pascal Standard proposes name equivalence for all types except sets and subranges,whose equivalence depends upon the equivalence of the base types. In addition, however, itde�nes the property of type compatibility and relies upon that property for assignments andparameter transmission. Among other things, two array types are compatible if they have thesame bounds and compatible element types. Other languages also provide (explicitly or im-plicitly) a somewhat weaker compatibility relation in addition to the strong type equivalence.There is no separate type compatibility rule in LAX.The allowable LAX coercions (Section A.4.2) are embodied in the function coercible(Figure 9.11). Note that when the type class of a type is bad type any coercion is allowed.The reason is that this class can only occur as the result of an error. If we did not allow thecoercion, the use of an erroneous construct would lead to further (superuous) error messages.9.1.3 DeclarationsFigure 9.12 shows the attribution rules for variable and identity declarations in LAX. Ade�nition is created for each declaration, just as was done for label de�nitions in Figure 9.3.Note that the variable declaration creates a reference to the given type, while the identitydeclaration uses that type as it stands. This is because the variable declaration creates `avariable referring to an unde�ned value (of the speci�ed type)' (Section A.3.2) and the identitydeclaration creates `a new instance of the value (of the speci�ed type)' (Section A.3.3).

9.1 Description of Language Properties via Attribute Grammars 193function type_equivalent (t1 , t2 : mode) : boolean;(* Compare two types for equivalence *)function compare_parameters (f1 , f2 : definition_table) : boolean;(* Compare parameter lists for equivalent types *)begin (* compare_parameters *)if f1 = nil then compare_parameters := f2 = nilelse if f2 = nil then compare_parameters := falseelse compare_parameters :=type_equivalent(f1".first.object_type,f2".first.object_type)and compare_parameters (f1".rest , f2".rest)end; (* compare_parameters *)begin (* type_equivalent *)if t1.k <> t2.k then type_equivalent := falseelse case t1.k ofref_type :type_equivalent := type_equivalent (t1.target", t2.target");arr_type :type_equivalent :=t1.dimension = t2.dimension andtype_equivalent (t1.element", t2.element");rec_type :type_equivalent := false;proc_type :type_equivalent :=compare_parameters (t1.parameters, t2.parameters) andtype_equivalent (t1.result", t2.result");identified_type :type_equivalent := t1.definition = t2.definitionotherwise type_equivalent := trueend;end; (* type_equivalent *)Figure 9.10: Type Equivalence in LAXfunction coercible (t1 , t2 : mode) : boolean;(* Verify that t1 can be coerced to t2 *)begin (* coercible *)if type_equivalent (t1 , t2) or t2.k = void_type or t2.k = bad_typethen coercible := trueelse case t1.k ofbad_type : coercible := truenil_type : coercible := t2.k = ref_type;int_type : coercible := t2.k = real_type;ref_type : coercible := coercible (t1.target ", t2) ;proc_type: coercible := t1.parameters = nil andcoercible(t1.result", t2)otherwise coercible := falseend;end; (* coercible *)Figure 9.11: Coercibility in LAX

194 Semantic Analysisrule variable_declaration ::= identifier ':' type_specification.attributionvariable_declaration.definitions N_definition (gennum, identifier.sym, object_definition,N_mode (ref_type, type_specification.repr));rule variable_declaration ::=identifier ':' 'array' '[' bounds ']' 'of' type_specification.attributionvariable_declaration.definitions N_definition (gennum, identifier.sym, object_definition,N_mode (ref_type,N_mode (arr_type, bounds.count,type_specification.repr)));rule bounds ::= bound_pair.attributionbounds.count := 1;rule bounds ::= bounds ',' bound_pair.attributionbounds[1].count := bounds[2].count + 1;rule identity_declaration ::=identifier 'is' expression ':' type_specification.attributionidentity_declaration.definitions N_definition (gennum, identifier.sym, object_definition,type_specification.repr);Figure 9.12: Variable and Identity DeclarationsThe treatment of array variables in Figure 9.12 reects the requirements of Section A.3.2.We construct the array type based only on the dimensionality and element type. The boundsmust be integer expressions, but they are to be evaluated at execution time.Type declarations introduce apparent circularities into the declaration process: The de�-nition of an identi�er must be known in order to de�ne that identi�er. One obvious example,the declaration type t = record x : real ; p : ref t end, was mentioned in Section 8.1.Another is the fact that the analysis process discussed in Section 9.1.1 assumes we can con-struct de�nitions for all identi�ers in a range and then form an environment for that range.Unfortunately the de�nition of a variable identi�er includes its type, which might be speci�edby a type identi�er declared in the same range. Hence the environment must be available toobtain the type.We solve the problem in three steps, as shown in Figure 9.13, using the unidenti-fied type and identified type variants of mode :1. Collect all of the type declarations of a range into one attribute, of type defini-tion table . Any type identi�ers occurring in the corresponding types are not yetidenti�ed, but are given by the unidentified type variant.

9.1 Description of Language Properties via Attribute Grammars 195rule type_specification ::= identifier.attributiontype_specification.repr N_mode (unidentified_type, identifier.sym);a) Reference to a type identi�errule type_declaration ::= 'type' identifier '=' record_type.attributiontype_declaration.definitions N_definition(gennum,identifier.sym,type_definition,record_type.repr);rule declaration ::= variable_declaration.rule declaration ::= identity_declaration.rule declaration ::= type_declaration.rule declarations ::= declarations ';' declaration.attributiondeclarations[1].definitions declarations[2].definitions & declaration.definitions;rule block ::= 'declare' declarations 'begin' statements 'end'.attributiondeclarations.environment complete_env (declarations.definitions,declarations.definitions & statements.definitions &block.environment) & statements.definitions & block.environment;statements.environment declarations.environment;conditionunambiguous (declarations.definitions & statements.definitions);b) Completing the type declarationsFigure 9.13: Type Declarations2. As soon as step (1) has been completed, transform the entire attribute to an-other definition table in which each unidentified type has been replaced by anidentified type that identi�es the proper de�nition. This transformation uses theenvironment inherited by the range as well as the information present in the type dec-larations.3. Incorporate the newly-created definition table into the range's environment, andthen process all of the remaining declarations (none of which are type declarations).Complete env is a recursive function that traverses the de�nitions seeking unidenti�edtypes. Whenever one is found, identify type (Figure 9.14) is used to obtain the currentde�nition of the type identi�er. Note that identify type must use a unique representationof the de�nition, not the de�nition itself, corresponding to the type identi�er. The reasonis that, if types involve recursive references, we cannot construct any of the de�nitions untilwe have constructed all of them! (Remember that attributes are not variables, so it is notpossible to construct an `empty' de�nition and then �ll it in later.)

196 Semantic Analysisfunction identify_type (s : symbol ; e : definition_table) : mode ;(* Find the type defined by an identifier *)begin (* identify_type *)if e = nil then identify_type := N_mode (bad_type)else with e ", first doif s <> identthen identify_type := identify_type (s , rest)else if def.k <> type_definitionthen identify_type := N_mode(bad_type);else identify_type := N_mode (identified_type, uid)end; (* identify_type *)Figure 9.14: Type Identi�cation9.1.4 Expressions and StatementsThe a priori type (primode) of an expression is a synthesized attribute, and describes the typewith which a result is computed; the a posteriori type (postmode) is an inherited attribute,and describes the type required by the context. If these two types are di�erent then a sequenceof coercion operations must be used during execution to convert the value from one to theother.The a posteriori type of a particular expression may or may not depend upon its a prioritype. If the expression is an operand of an operator indication like +, which can stand forseveral operations (e.g. integer addition, real addition), then its postmode depends upon theprimode attributes of both operands. If, on the other hand, the expression is an array indexin LAX then postmode is integer independent of the expression's primode .Some constructs, like the LAX clause , may not yield a result of the same type every timethey are executed. This does not lead to di�culty when the construct appears in a contextwhere the a posteriori type is �xed, because each part of the construct simply inherits the�xed postmode . When the a posteriori type depends upon the a priori types of the operands,however, we need a type t to serve as a `model a priori type' in place of the result typest1; : : : ; tn. This type is obtained by balancing : A set of types t1; : : : ; tn, n > 1 can be balancedto a type t if each ti is coercible to t, and there is no type t0 coercible to t such that each tiis coercible to t0.For LAX (and most other languages) balancing is commutative and `associative' (Exer-cise 9.11), so that we may restrict ourselves to the case n = 2 (Figure 9.15).Three facts were used in constructing balance :� If t1 is coercible to but not equivalent to t2, t2 is not coercible to t1.� If not voided, the result has the same base type (type after all references and procedureshave been removed) as one of the operands.� If t1 is coercible to the base type of t2 but not to t2 itself, the result type is a dereferencingand/or deproceduring of t2.If LAX types t1 and t2 are coerced to an a posteriori type t0, then the type balance (t1; t2)always appears as an intermediate step. This may not be true in other languages, however. InALGOL 68, for example, balance (integer , real) = real but both types can be coercedto union (integer , real) and in this case integer is not coerced to real �rst.Figure 9.16 illustrates the use of balancing. In addition to the attributes primode andpostmode , this example uses label values (synthesized, type case selectors). Postmode

9.1 Description of Language Properties via Attribute Grammars 197function base_type (t : mode) : mode ;(* Remove all levels of reference and procedure call from a type *)begin (* base_type *)if t.k = ref_type then base_type := base_type (t.target")else if t.k = proc_type thenif t.parameters <> nil then base_type := telse base_type := base_type (t.result")else base_type := tend; (* base_type *)function balance (t1 , t2 : mode) : mode ;(* Obtain the representative a priori type of t1,t2 *)begin (* balance *)if coercible (t1 , t2) then balance := t2else if coercible (t2 , t1) then balance := t1else if coercible (t1 , base_type (t2)) thencase t2.k ofref_type : balance := balance (t1 , t2.target");proc_type : balance := balance (t1 , t2.result")endelse if coercible (t2 , base_type (t1)) thencase t1.k ofref_type : balance := balance (t1.target", t2);proc_type : balance := balance (t1.result", t2)endelse N_mode (void_type); (* incompatible types *)end; (* balance *)Figure 9.15: Balancing in LAXis simply passed through from top to bottom, so we follow our convention of not writing thesetransfers explicitly. Label values collects the values of all case labels into a list so we cancheck that no label has occurred more than once (Section A.4.6).Note that there is no condition checking coercibility of the resulting a priori type of thecase clause to the a posteriori type. Similarly, the a priori type of the selecting expression isnot checked against its a posteriori type in these rules. Such tests appear only in those ruleswhere the a priori type is determined by considerations other than balancing or transfer fromadjacent nodes.Figure 9.17 illustrates some typical attribution rules for primode and postmode in ex-pressions. Table A.2 requires that the left operand of an assignment be a reference, andSection A.4.2 permits only dereferencing coercions of the left operand. Thus the assignmentrule invokes deproc (Figure 9.18)Figure 9.18 to obtain an a posteriori type for the name. Note that there is no guaranteethat the type obtained actually is a reference, so additional checks are needed. Coercible(Figure 9.11) is invoked to verify that the a priori type of the assignment itself can be coercedto the a posteriori type required by the context in which the assignment appears. As can beseen from the remainder of Figure 9.17, this check is made every time an object is created.Assignment is the only dyadic operator in Table A.2 whose left and right operands havedi�erent types. In all other cases, the types of the operands must be the same. The attribution

198 Semantic Analysistypecase_selectors = "cs_element;cs_element = record first : integer; rest : case_selectors end;a) Type of label valuesrule case_clause ::='case' expression 'of' cases 'else' statement_list 'end'.attributioncase_clause.primode balance(cases.primode,statement_list.primode);expression.postmode N_mode (int_type);conditionvalues_unambiguous (cases.label_values);rule cases ::= case.rule cases ::= cases '//' case .attributioncases[1].primode balance (cases[2].primode, case.primode);cases[1].label_values cases[2].label_values & case.label_values;rule case ::= case_label ':' statement_list.attributioncase.label_values case_label.value;b) Attribution rulesFigure 9.16: Case Clausesrules for comparison show how balance can be used in this case to obtain a candidateoperand type. The two rules for eqop illustrate placement of additional requirements uponthis candidate.The attribution for a simple name sets the a priori type to the type speci�ed by theidenti�er's de�nition, and must also verify (via coercible) that the a priori type satis�esthe requirements of the context as speci�ed by the a posteriori type. Field selection is a bittrickier. Section A.4.4 states that the name preceding the dot may yield either an object ora reference to an object. This requirement, which also holds for index selection, is embodiedin one ref (Figure 9.18). Note that the environment in which the �eld identi�er is sought isthat of the record type de�nition, not the one in which the �eld selection appears. We musttherefore write the transfer of the environment attribute explicitly. Finally, the type yieldedby the �eld selection is a reference if and only if the object yielded by the name to the left ofthe dot was a reference (Section A.4.4).Figure 9.19 shows how the �eld de�nitions of the record are obtained. Section A.3 requiresthat every record type be given a name. The declaration process described in Figures 9.13and 9.14 guarantees that if this name is associated with an identified type , the typede�nition will actually be in the current environment. Moreover, the type de�nition cannotspecify anything but a record. Thus record env need not verify these conditions.In most programming languages the speci�cation of the operator and the a posteriori typesof the operands uniquely determines the operation to be carried out, but usually no operationattribute appears in the language description itself. The reason is that semantic analysis does

9.1 Description of Language Properties via Attribute Grammars 199rule assignment ::= name ':=' expression.attributionassignment.primode name.postmode;name.postmode deproc (name.primode);expression.postmode if name.postmode.k <> ref_type then N_mode (bad_type)else name.postmode.target";conditioncoercible (assignment.primode, assignment.postmode) andname.postmode.k = ref_type;rule comparison ::= relation eqop relation.attributioncomparison.primode N_mode (bool_type);relation[1].postmode eqop.operand_post;eqop.operand_pri balance(relation[1].primode,relation[2].primode);relation[2].postmode eqop.operand_post;conditioncoercible (comparison.primode, comparison.postmode);rule eqop ::= '='.attributioneqop.operand_post deref (eqop.operand_pri);conditioneqop.operand_post.k <> void_type;rule eqop ::= '=='.attributioneqop.operand_post deproc (eqop.operand_pri);conditioneqop.operand_post.k = ref_type;rule name ::= name '.' identifier_use.attributionname[1].primode if identifier_use.current_definition <> object_definition thenN_mode (bad_type)else if name[2].postmode.k = ref_type thenN_mode (ref_type, identifier_use.current_definition.object_type)else identifier_use.current_definition.object_type;name[2].postmode one_ref (name[2].primode);name[2].environment name[1].environment;identifier_use.environment if deref (name[2].postmode).k <> identified_type then nilelse record_env(deref(name[2].postmode).definition,name[1].environment);conditioncoercible(name[1].primode, name[1].postmode) andidentifier_use.current_definition.k = object_definition;Figure 9.17: Determining A Priori and A Posteriori Types

200 Semantic Analysisfunction deproc (t : mode) : mode ;(* Remove all levels of procedure call from a type *)begin (* deproc *)if t.k <> proc_type then deproc := telse if t.parameters <> nil then deproc := telse deproc := deproc (t.result ")end; (* deproc *)function deref (t : mode) : mode ;(* Remove all levels of reference from a type *)begin (* deref *)if t.k <> ref_type then deref := telse deref := deref (t.target");end; (* deref *)function one_ref (t : mode) : mode;(* Remove all but one level of reference from a type *)begin (* one_ref *)case t.k ofref_type :if t.target".k <> arr_type and t.target".k <> rec_typethen one_ref := one_ref (t.target") else one_ref := t ;proc_type :if t.parameters <> nil then one_ref := telse one_ref := one_ref (t.result")otherwiseone_ref := tend;end; (* one_ref *)Figure 9.18: Type Transformations in LAXfunction record_env(i :integer;e :definition_table):definition_table;(* Obtain the field definitions of a record typeOn entry-i =type for which the fields are soughte =environment containing the type definition *)begin (* record_env *)if e".first.uid <> i then record_env := record_env(i ,e".rest)else record_env := e".first.defined_type.fields;end; (* record_env *)Figure 9.19: Obtaining a Record's Field De�nitionsnot make any further use of the operation, and the operation determined by the semanticanalysis may be either an over- or underspeci�cation for code generation purposes. Forexample, the distinction between integer and real assignment is usually an overspeci�cationbecause only the length of the object being assigned is of interest. On the other hand, arecord assignment operator is an underspeci�cation because the code generator must decidebetween a load/store sequence, a block transfer and a closed subroutine on the basis of therecord size.The situation is di�erent for languages like ALGOL 68 and Ada, in which a user may de�neoperations. There the semantic analyzer must identify the operations, and there is scarcelyany distinction between operators and functions of one or two operands. Which operationsor functions are implemented with closed subprograms and which with open sequences ofinstructions is a decision made by the code generator.

9.2 Implementation of Semantic Analysis 201Operator identi�cation for Ada depends not only upon the a priori types of the operands,but also upon the a posteriori type of the result. There is no coercion, so the a priori anda posteriori types must be compatible, but on the other hand the constant 2 (for example)could have any of the types `short integer', and `integer' and `long integer'. Thus both theoperand types and the result types must be determined by analysis of the tree.Each operand and result is given one inherited and one synthesized attribute, each ofwhich is a set of types. We begin at the leaves of the tree and compute the possible (a priori)types of each operand. Moving up the tree, we specify the possible operations and result typesbased upon the possible combinations of operand types and the operator indication. Uponarriving at the root of the tree for the expression we have a synthesized attribute for everynode giving the possible types for the value of this node. Moving down the tree, these typesets are now further restricted: An inherited attribute, a subset of the previous synthesizedattribute, is computed for each node. It speci�es the set of types permitted by the use of thisvalue as an operand in operations further up the tree. At the beginning of the descent, thepreviously-computed set of possible result types at the root is used as the inherited attributeof the root. If this process leads to a unique type for every node of the tree, i.e. if the inheritedattribute is always a singleton set, then the operations are all speci�ed; otherwise at least oneoperator (and hence the program) is semantically ambiguous and hence illegal.Because LAX is an expression-oriented language, statements and statement-like constructs(statement list , iteration , loop , etc.) also have primode and postmode attributes.Most rules involving these constructs simply transfer those attributes. Figure 9.20 showsrules that embody the conditions given in Sections A.2.4 through A.2.6.9.2 Implementation of Semantic AnalysisIf we have fully speci�ed the semantic analysis with an attribute grammar and auxiliaryfunctions, the implementation consists of the following steps:� Derive the abstract syntax for the structure tree.� Derive the attribution algorithms as discussed in Section 8.2.� Derive the attribute storage layout as discussed in Section 8.3.� Code the attribution rules and auxiliary functions.As we noted in connection with Figure 4.2, the distinction between the concrete andabstract syntax is that groups of symbols appearing in the former are really di�erent namesfor a single construct of the latter, and hence chain rules that simply transform one of thesesymbols into another are omitted. The abstract syntax is derived from the attribute grammarby identifying symbols whose attributes are the same, and deleting all rules whose attributionconsists solely of transfers.We extract the context-free syntax directly from the attribute grammar for input to aparser generator. The only thing missing is the connection point speci�cations, which can beattached systematically as discussed in Section 7.1.1. If a rule does not belong to the abstractsyntax, no connection points are attached to it. Thus the parser uses the concrete syntax forits analysis of the token sequence, but produces a connection sequence that is a linearizationof a structure tree obeying the abstract syntax.The result of the attribution algorithm speci�cation leads to the choice of analysis tech-nique: multi-pass, ordered, etc. As with the selection of a parsing technique discussed inChapter 7, this choice depends primarily upon the experience of the compiler writer and theavailability of tools for automated processing. Tools are indispensable if ordered grammars

202 Semantic Analysisrule statements := statements ';' statement.attributionstatements[1].primode statement.primode;statements[2].postmode N_mode (void_type);statement.postmode statements[1].postmode;rule iteration := 'while' expression loop.attributioniteration.primode N_mode (void_type);expression.postmode N_mode (bool_type);loop.postmode N_mode (void_type);conditioniteration.postmode.k = void_type;rule iteration :='for' identifier 'from' expression 'to' expression loop .attributioniteration.primode N_mode (void_type);expression[1].postmode N_mode (int_type);expression[2].postmode N_mode (int_type);loop.environment N_definition(gennum,identifier.sym,object_definition,N_mode (int_type)) &iteration.environment;loop.postmode N_mode (void_type);conditioniteration.postmode.k = void_type;rule jump := 'goto' identifier_use.attributionjump.primode N_mode (void_type);conditionjump.postmode.k = void_type and(identifier_use.corresponding_definition.k = label_definition oridentifier_use.corresponding_definition.k = unknown_definition);Figure 9.20: A Priori and A Posteriori Types in Statementsare to be used; the evaluation sequence for multi-pass grammars can be obtained by hand.Further, the available memory plays a role. Roughly the same amount of memory su�ces tostore the attributes for any method, if intermediate attributes are suitably overlaid. In thecase of multi-pass evaluation, however, the algorithm and attribution rules can be segmentedand overlaid so that only the relevant part is required during each pass.The storage layout of the attributes is �xed last, based upon the discussion in Section 8.3.2.As noted there, particular attention must be paid to the interaction among attribute repre-sentation, algorithms and formulation of the attribution rules. Often one can inuence theentire behavior of the semantic analysis through small (in terms of content) variations inthe attribute representation or attribution rules. For example, a one-pass attribution forlanguages like Pascal is usually not obtained at �rst, but only after some modi�cation ofthe original speci�cation. This is not surprising, since the language description discussed inSection 9.1 aims above all for a correct rendition of the language properties and does notconsider implementability.

9.2 Implementation of Semantic Analysis 203One of the most common attributes in the structure tree is the environment, which allowsus to determine the meaning of an identi�er at a given point in the program. In the simplestcase, for example in several machine-oriented languages, each identi�er has exactly one de�-nition in the program. The de�nition entry can then be reached directly via a pointer in thesymbol table. In fact, the symbol and de�nition table can be integrated into a single table inthis case.
Symbol

Entity

Current
Possession

relation

Symbol stack
headers

Range header Possession relations for the range

outer ranges
Possession relations holding inNote : `Entity' is a pointer to a de�nition.Figure 9.21: A De�nition Table StructureMost languages permit an identi�er to have several meanings. Figure 9.21 shows a de�ni-tion table organization that provides access to the current de�nition for an identi�er, given itssymbol table entry, in constant time: The symbol table entry points to a stack of elements,the �rst of which contains a pointer to the current possession, and the current possessionpoints to the de�nition. But this access is exactly the current definition function of Fig-ure 9.1c. Thus Figure 9.21 allows us to implement current definition without using anylist search at all. The access time is essentially the same as that in the simple case of theprevious paragraph; only two additional memory accesses (to follow the possession pointercontained in the stack and the de�nition pointer contained in the possession) are required.At �rst glance, it may seem that there is too much indirection in Figure 9.21. Why doesthe stack element contain a pointer to the possession instead of a pointer to the de�nition?Why does the possession contain a pointer to the de�nition instead of the de�nition itself?The answers to these questions become clear if we examine the operations that take place onentry to and exit from a range, when the set of currently-valid declarations changes and thede�nition table must be updated to reect these changes.

204 Semantic Analysistypeone = record f : integer; g : "two end;two = record f : boolean; h : "one end;varj : "one ;: : :with j " dobegin: : :with g " dobegin: : :with h " dobegin: : :endendend; Figure 9.22: Self-Nesting RangesWhen a range is entered, the stack for each identi�er de�ned in the range must be pusheddown and an entry describing the de�nition valid in this range placed on top. Conversely,the stack for each identi�er de�ned in a range must be popped when leaving that range. Tosimplify the updating, we represent the range by a linear list of elements specifying a symboltable entry and a corresponding de�nition as shown at the top of Figure 9.21. This givesconstant-time access to the stacks to be pushed or popped, and means that the amount oftime required to enter or leave a range is linear in the number of identi�ers having de�nitionsin it.We use a pointer to the de�nition rather than the de�nition itself in the range list becausemany identi�ers in di�erent ranges may refer to the same de�nition. (For example, in Pascalmany type identi�ers might refer to the same complex record type.) By using a pointer weavoid having to store multiple copies of the de�nition itself, and also we simplify equalitytests on de�nitions.We stack a pointer to the appropriate range list entry instead of stacking the range listentry itself because it is possible to enter a range and then enter it again before leaving it.(Figure 9.22 is a Pascal fragment that has this property. The statement with j " enters therange of the record type one ; the range will be left at the end of that statement. However,the nested statement with h " also enters the same range!) When a range is entered twicewithout being left, its de�nitions are stacked twice. If the (single) range list entry were placedon the stack twice, a cycle would be created and the compiler would fail.Finally, we stack a pointer to the range list entry rather than a pointer to the de�nitionto cater for languages (such as COBOL and PL/1) that allow partial quali�cation: In a �eldselection the speci�cation of the containing record may be omitted if it can be determinedunambiguously. (This assumes that, in contrast to LAX, exactly one object exists for eachrecord type. In other words, the concepts of record and record type merge.)Figure 9.23 illustrates the problem of partial quali�cation, using an example from PL/1.Each quali�ed name must include su�cient identi�ers to resolve any ambiguity within a singleblock; the reference is unambiguous if either or both of the following conditions hold:� The reference gives a valid quali�cation for exactly one declaration.� The reference gives the complete quali�cation for exactly one declaration.

9.2 Implementation of Semantic Analysis 205A: PROCEDURE;DECLARE 1 W,: : : ;B: PROCEDURE;DECLARE P,1 Q, 2 R, 3 Z,2 X, 3 Y,3 Z,3 Q;Y = R.Z; /* Q.X.Y from B, Q.R.Z from B */W = Q, BY NAME; /* W from A, major Q from B */C: PROCEDUREDECLARE Y,1 R, 2 Z;Z = Q.Y /* R.Z from C, Q.X.Y from B */X = R, BY NAME; /* Q.X from B, R from C */END C;END B;END A; Figure 9.23: Partial Quali�cationMost of the references in Figure 9.23 are unambiguous because the �rst of these conditionsholds. The Q in W = Q, however, gives a valid quali�cation for either the major structure orthe �eld Q:X:Q; it is unambiguous because it gives the complete quali�cation of the majorstructure. References Z and Q:Z in procedure B would be ambiguous.In order to properly analyze Figure 9.23, we must add three items of structural in-formation to each possession relation in Figure 9.21: The level is the number of identi-�ers in a fully-quali�ed reference to the entity possessed. If the level is greater than 1,containing structure points to the possession relation for the containing structure. In anycase, the range to which the possession belongs must be speci�ed. Figure 9.24 shows thepossession relations for procedure B of Figure 9.23. Note that this range contains two validpossession relations for Q and two for Z. The symbol stack entries for Z have been includedto show that this results in two stack entries for the same range.A reference is represented by an array of symbols. The stack corresponding to the lastof these is scanned, and the test of Figure 9.25 applied to each possession relation. When arelation satisfying the test is found, no further ranges are tested; any other relations for thesame symbol within that range must be tested, however. If more than one relation in a rangesatis�es the test, then the reference is ambiguous unless the level of one of the relations isequal to the number of symbols in the reference.A de�nition table module might provide the following operations:� New range () range : Establish a new range.� Add possession (symbol, definition, range) : Add a possession relation to a givenrange.� Enter range (range) : Enter a given range.

206 Semantic Analysis

Symbol stack
headers

Range header Possession relations for the range

P Q

1 1 2

R Z

3 2

X Y

3 3

Z

3

Q

Z

Figure 9.24: Range Speci�cation Including Structure� Leave range : Leave the current range.� Current definition (symbol) definition : Identify the de�nition corresponding toa given identi�er at the current point in the program.� Definition in range (symbol, range) definition : Identify the de�nition corre-sponding to a given identi�er in a given range.The �rst two of these operations are used to build the range lists. The next three have beendiscussed in detail above. The last is needed for �eld selection in languages such as Pascaland LAX. Recall the treatment of �eld selection in Figure 9.17. There the environment inwhich the �eld identi�er was sought consisted only of the �eld identi�ers de�ned in the recordyielded by name . This is exactly the function of definition in range . If we were to enterthe range corresponding to the record and then use current definition , we would notachieve the desired e�ect. If the identi�er sought were not de�ned in the record's range, butwas de�ned in an enclosing range, the latter de�nition would be found!Unfortunately, definition in range must perform a search. (Actually, the search isslightly cheaper than the incorrect implementation outlined in the previous paragraph.) Itmight linearly search the list of de�nitions for the range representing the record type. Thistechnique is advantageous if the number of �elds in the record is not too large. Alternatively,we could associate a list of pairs (record type, pointer to a de�nition entry for a �eld withthis selector) with each identi�er and search that. This would be advantageous if the numberof record types in which an identi�er occurred was, on the average, smaller than the numberof �elds in a record.9.3 Notes and ReferencesMany language de�nitions use context-free syntax rules to indicate properties that are moreeasily checked with attribute computations. The compiler designer should not slavishly followthe language de�nition in this regard; checks should be apportioned between the context-freerules and attribution rules on the basis of simplicity.

9.3 Notes and References 207In many compilers the semantic analysis is not treated as a separate task but as a by-product of parsing or code generation. The result is generally that the static semantic condi-tions are not fully veri�ed, so erroneous programs are sometimes accepted as correct. We havetaken the view here that semantic analysis is the fundamental target-independent task of thecompiler, and should be the controlling factor in the development of the analysis module.typepossession = recordrange : "range_header;next : "possession;possessing_symbol : symbol;possessed_entity : entity;level : integer;containing_structure : "possessionend;symbol_array = array [1..max_qualifiers] of symbol;function test(qualifier:symbol_array;i :integer;p :possession) : boolean;(* Check a qualified referenceOn entry-qualifier=reference to be checkedi =number of symbols in the referencep =possession to be checkedIf the reference describes the possession then on exit-test = trueelse on exit-test = false *)label 1;begin (* test *)test := true ;while i < p.level dobeginif qualifier[i] = p.possessing_symbol thenbegini := i - 1;ifi = 0 then goto 1;end;p := p.containing_structureend;if i = p.level thenwhile qualifier[i] = p.possessing_symbol dobegini := i - 1;if i = 0 then goto 1;p := p.containing_structureend;test := false1 : end; (* test *)Figure 9.25: Test for Partially-Quali�ed Reference

208 Semantic AnalysisMany of the techniques presented here for describing speci�c language facilities were theresult of experience with attribute grammars for PEARL, [DIN, 1980] Pascal [Kastens et al.,1982], and Ada [Uhl et al., 1982] developed at the Universit�at Karlsruhe. The representationof arbitrarily many types by lists was �rst discussed in conjunction with ALGOL 68 com-pilers [Peck, 1971]. Koster [1969] described the recursive algorithm for ALGOL 68 modeequivalence using this representation.The attribution process for Ada operator identi�cation sketched in Section 9.1.4 is dueto Persch and his colleagues [Persch et al., 1980]. Baker [1982] has proposed a similaralgorithm that computes attributes containing pointers to the operator nodes that must beidenti�ed. The advantage claimed by the author is that if the nodes can be accessed randomly,this means that a complete second traversal is unnecessary. Operator identi�cation cannotbe considered in isolation, however. It is not at all clear that a second complete traversalwill not be required by other attribution, giving us the operator identi�cation `for free'. Thisillustrates the importance of constructing the complete attribute grammar without regard tonumber of traversals, and then processing it to determine the overall evaluation order.Most authors combine the symbol and de�nition tables into a single `symbol table' [Gries,1971; Bauer and Eickel, 1976; Aho and Ullman, 1977]. Separate tables appear in descrip-tions of multi-pass compilers and serve above all to reduce the main storage requirements;[Naur, 1964] the literature on ALGOL 68 [Peck, 1971] is an exception. In his description ofa multi-pass compiler for `sequential Pascal', Hartmann [1977] separates the tables both toreduce the storage requirement and simplify the compiler structure.The basic structure of the de�nition table was developed for ALGOL 60 [Randell andRussell, 1964; Grau et al., 1967; Gries, 1971]. We have re�ned this structure to allowit to handle record types and incompletely-quali�ed identi�ers [Busam, 1971]. An algebraicspeci�cation of a module similar to that sketched at the end of Section 9.2 was given byGuttag [1975, 1977].Exercises9.1 Determine the visibility properties of Pascal labels. Write attribution rules that embodythese properties. Treat the prohibition against jumping into a compound statement asa restriction on the visibility of the label de�nition (as opposed to the label declaration,which appears in the declaration part of the block).9.2 Write the function current definition (Figure 9.1c).9.3 Write the function unambiguous (Figure 9.2a).9.4 Note that Figure 9.5 requires additional information: the implicit type of an identi�er.Check the FORTRAN de�nition to �nd out how this information is determined. Howwould you make it available in the attribute grammar? Be speci�c, discussing the roleof the lexical analyzer and parser in the process.9.5 [Sale, 1979] Give attribution rules and auxiliary functions to verify the de�nition beforeuse constraint in Pascal. Assume that the environment is being passed along the text,as illustrated by Figure 9.4.(a) Add a depth �eld to the de�nition record, and provide attribution rules that setthis �eld to the static nesting depth at which the de�nition occurred.

9.3 Notes and References 209(b) Add attribution rules that check the de�nition depth at each use of an identi�er.Maintain a list of identi�ers that have been used at a depth greater than theirde�nition.(c) When an identi�er is de�ned, check the list to ensure that the identi�er has notpreviously been used at a level greater than or equal to the current level when itwas de�ned at a level less than the current level.(d) Demonstrate that your rules correctly handle Figure 9.6.9.6 What extensions to the environment attribute are required to support modules asde�ned in MODULA2?9.7 Extend the representation of LAX types to handle enumerated types and records withvariants, described as in Pascal.9.8 Develop type representations analogous to Figure 9.7 for FORTRAN, ALGOL 60 andAda.9.9 Modify the procedure type equivalent to handle the following alterations in the LAXde�nition:(a) Structural type equivalence similar to that of ALGOL 68 is speci�ed instead ofthe equivalence of A.3.1.(b) Union types union (t1; : : : ; tn) similar to those of ALGOL 68. The sequenceof types is arbitrary and union (t1; union (t2; t3)) = union (union (t1; t2); t3) =union (t1; t2; t3).9.10 Consider the case clause described in Figure 9.16.(a) Formulate a procedure value unambiguous to verify the uniqueness of the caselabels.(b) Alter the attribution rules to check the uniqueness at each label.(c) Alter the attribution rules and extend the value unambiguous procedure so thatthe labels may be constants of an enumerated type (see Exercise 9.7).9.11 Prove the following relations for types t1, t2 and t3, using the coercion rules de�ned inA.4.1:(a) balance (t1; t2) = balance (t2; t1)(b) balance (balance (t1; t2); t3) = balance (t1; balance (t2; t3))9.12 Suppose that we chose to use the de�nition table discussed in Section 9.2 for a LAXcompiler.(a) [Guttag, 1975, 1977] The de�nition table module operations were stated as oper-ations of a package, with `de�nition table' as an implied parameter. Restate themas operations of an abstract data type, making this dependence explicit.(b) Two abstract data types, range and definition table , are involved in thismodule. Which of the attributes in the LAX rules discussed in this chapter willbe of type range , and which of type definition table ?(c) Replace the computations of the attributes you listed in (b) with computationsinvolving the operations of the de�nition table module. Does this change a�ectthe traversal strategy?

210 Semantic Analysis(d) Given the modi�ed rules of (c), do any of the attributes you listed in (b) satisfythe conditions for implementation as global variables? As global stacks? How doyour answers to these questions bear upon the implementation of the de�nitiontable as a package vs. an abstract data type?9.13 Develop de�nition tables for BASIC, FORTRAN, COBOL and Pascal.9.14 Add the use before de�nition check of Exercise 9.5 to the de�nition table of Figure 9.21.9.15 Give a detailed explanation of the problems encountered when analyzing Figure 9.22 ifpossession relation entries are stacked directly.9.16 How must a Pascal de�nition table be set up to handle the with statement? (Hint:Build a stack of with expressions for each record type.)9.17 Show the development during compilation of the de�nition table for the program ofFigure 9.23 by giving a sequence of snapshots.

Chapter 10Code GenerationThe code generator creates a target tree from a structure tree. This task has, in principle,three subtasks:� Resource allocation: Determine the resources that will be required and used duringexecution of instruction sequences. (Since in our case the resources consist primarily ofregisters, we shall speak of this as register allocation.)� Execution order determination: Specify the sequence in which the descendants of a nodewill be evaluated.� Code selection: Select the �nal instruction sequence corresponding to the operationsappearing in the structure tree under the mapping discussed in Chapter 3.In order to produce code optimum under a cost criterion that minimizes either programlength or execution time, these subtasks must be intertwined and iterated. The problem isNP-complete even for simple machine architectures, which indicates that in practice the costwill be exponential in the number of structure tree nodes. In view of the simple form ofthe expressions that actually occur in programs, however, it is usually su�cient to employlinear-cost algorithms that do not necessarily produce the optimum code in all cases.The approach taken in this chapter is to �rst map the source-language objects onto thememory of the target machine. An estimate of register usage is then made, and the executionorder determined on the basis of that estimate. Finally, the behavior of the target machine issimulated during an execution-order traversal of the structure tree, driving the code selectionand register assignment. The earlier estimate of register usage must guarantee that all registerrequirements can actually be met during the �nal traversal. The code may be suboptimal insome cases because the �nal register assignment cannot a�ect the execution order.The computation graph discussed in Section 4.1.3 is implicit in the execution-order struc-ture tree traversal. Chapter 13 will make the computation graph explicit, and discuss opti-mizing transformations that can be applied to it. If a compiler writer follows the strategies ofChapter 13, some of the optimization discussed here becomes redundant. Nevertheless, thethree code generation subtasks introduced above remain unchanged.Section 10.1 shows how the memory map is built up, starting with the storage requirementsfor elementary objects given by the implementor in the mapping speci�cation of Section 3.4.We present the basic register usage estimation process in Section 10.2, and show how addi-tional attributes can be used to improve the generated code. Target machine simulation andcode selection are covered in Section 10.3. 211

212 Code Generation10.1 Memory MappingMemory mapping determines the size and (relative) address of each object. In the process, ityields the sizes and alignments for all target types and the relative addresses of componentsof composite objects. This information is used to �nd access paths during the code selectionand, in the case of static allocation, to generate storage reservation requests to the assemblymodule. It also constitutes most of the information needed to construct the type templatesdiscussed in Section 3.3.3, if these are required.The storage mapping process begins with elementary objects whose sizes and alignmentsare known. These are combined, step-by-step, into larger aggregates until an object is createdwhose base address cannot be determined until run time. We term such an object allocatable.Examples of allocatable objects are activation records and objects on the heap. Objects arecharacterized during this aggregation process by their size and relative address within thecontaining object. The sum of the base address determined at run time and the sequence ofrelative addresses of aggregates in which an object is contained yields the e�ective address ofthat object.When the objects are combined, the compactness (packed/aligned) may be speci�ed. Thisspeci�cation inuences not only the relative address of a component, but also its size and thealignment of the composite object: If the source language permits value constraints (e.g.Pascal subranges), then a type can be characterized by both a size (for the unconstrainedvalue set) and a minimum size (taking the constraint into account). For example, in Pascal anobject de�ned to lie in a subrange 0..10 would have a minimum size of 4 (if sizes are expressedin bits) or 1 (if sizes are expressed in bytes) and a size equal to that of an unconstrained integer.When this object is combined with others in a packed composite object, its minimum size isassumed; when the composite object is not packed, the size is used.The alignment of a composite object that is not packed is the least common multiple of thealignments of its components. When the object is packed, however, no alignment constraintis imposed.The storage mapping process can, of course, only use objects of known length as compo-nents of other objects. As noted in Chapter 3, this means that activation records containingarrays whose bounds are not known until run time must be split into two parts; only thearray descriptor is held in the static part. For languages like FORTRAN, in which all objectshave �xed size, and in which each procedure is associated with one and only one local storagearea, the procedure and its activation record can be combined into a single allocatable object.This object then becomes the basis for planning run-time overlay structure.Figure 10.1 de�nes an interface for a memory mapping module. The module is independentof both source language and target machine. It can be used for packing to either the memorycell or the bit, depending upon the interpretation of the types size and location .The basic idea of the storage module is that one has areas that may grow by accretion ofblocks (objects of known size). An area whose growth has ceased becomes a block and canitself be added to other areas. Areas may grow either upward or downward in memory, andthe packing attribute is speci�ed individually for each area. (Both properties are �xed atthe time the area is established.) Each area has a growth point that summarizes the currentamount of the area's growth. For example, at the beginning of the variant part of a Pascalrecord, the storage mapping module notes the growth point; for each alternative it resets tothat point. Since variants may be nested, the growth points must be saved on stacks (one perarea) within the memory mapping module. After all of the alternatives have been speci�ed,the growth point is advanced by the maximum length over all alternatives.In Pascal, the size and alignment of each variant of a record must be kept so that newand dispose calls can be handled correctly. This requirement is most easily satis�ed by

10.1 Memory Mapping 213typearea = : : :size = : : :location = : : :direction = (up,down);strategy = (align, pack);procedure new_area (d : direction; s : strategy; var a : area);(* Establish a new memory areaOn entry -d = growth direction for this areas = growth strategy for this areaOn exit -a specifies the new area*): : : ;procedure add_block (a : area ; s : size; alignment : integer;var l : location);(* Allocate a block in an areaOn entry -a specifies the area to which the block is to be addeds = size of the blockalignment = alignment of the blockOn exit -l = relative location of the first cell of the block*): : : ;procedure end_area (a : area ; var s : size ; var alignment : integer);(* Terminate an areaOn entry -a specifies the area to be terminatedOn exit -s = size of the resulting blockalignment = alignment of the resulting block*): : : ;procedure mark (a : area);(* Mark the current growth point of an area *): : : ;procedure back (a : area);(* Reset the growth point of an area to the last outstanding mark *): : : ;procedure combine (a : area);(* Erase the last outstanding mark in an area andreset the growth point to the maximum of all previous growths*): : : ; Figure 10.1: Memory Mapping Module Interface

214 Code Generationadding two output parameters to both back and combine (Figure 10.1), making their callingsequences identical to that of end area .In areas that will become activation records, storage must be reserved for pointers tostatic and dynamic predecessors, plus the return address and possibly a template pointer.The size and alignment of this information is �xed by the mapping speci�cation, which mayalso require space for saving registers and for other working storage. It is usually placedeither at the beginning of the record or between the parameters and local variables. (Inthe latter case, the available access paths must permit both negative and positive o�sets.)Finally, it is convenient to leave an activation record area open during the generation of codefor the procedure body, so that compiler-generated temporaries may be added. Only uponcompletion of the code selection will the area be closed and the size and alignment of theactivation record �nally determined.In principle, the storage module is invoked at the beginning of code generation to �xthe length, relative address and alignment of all declared objects and types. For languageslike Ada, integration with the semantic analyzer is essential because object size may beinterrogated by the program and must be used in verifying semantic conditions. Even in thiscase, however, we must continue to regard the storage module as a part of the synthesis taskof the compiler; only the location of the calls, not the modular decomposition, is changed.10.2 Target AttributionIn the simplest case we �x the execution order without regard to target machine registerallocation. The code selector performs a depth-�rst, left-to-right traversal of the structuretree that corresponds directly to the post�x form of the expressions. It does not alter theleft-to-right evaluation of the operands, since there is no additional information upon whichto base such an alteration. If the number of registers available does not su�ce to hold theintermediate results while computing the value of an expression then an ad hoc decision ismade during the code generation about which intermediate value(s) should be left in memory.In general this strategy leads to greater register requirements and longer code than necessary;hence some planning is recommended. This planning results in computation of additionalattributes.In this section we consider the computation of seven attributes: Register count ,store and operand sequence are used to determine the execution order, desire andtarget labels provide information about the use of a result, cost and decision are usedto modify the instruction sequence generated from a node. These attributes are evaluatedby three distinct kinds of computation, which we treat in the following subsections: Registerallocation (Section 10.2.1) is concerned with determining the temporary storage requirementsof subtrees and hence the execution order. Targeting (Section 10.2.2) speci�es desirable place-ment of results. Finally, algebraic identities (Section 10.2.3) can be used to obtain equivalentcomputations having better properties.10.2.1 Register AllocationWe distinguish global register allocation, which holds over an entire procedure, from localregister allocation, which controls the use of registers within expressions and inuences theexecution order. Further, we partition the task into allocation, by which we plan the registerusage, and assignment, by which we �x the registers actually used for a speci�c purpose.Register assignment takes place during code selection, and will be discussed in Section 10.3.1;here we concern ourselves only with allocation.

10.2 Target Attribution 215(x+ y)=(a � b+ c � d)a) A LAX expressionLE 0,x LE 2,aAE 0,y ME 2,bLE 2,a LE 0,cME 2,b ME 0,dLE 4,c AER 2,0ME 4,d LE 0,xAER 2,4 AE 0,yDER 0,2 DER 0,2(uses 3 registers) (uses 2 registers)b) Two possible IBM 370 implementationsFigure 10.2: Dependence of Register Usage on Evaluation OrderGlobal register allocation begins with values speci�ed by the implementation as being heldpermanently in registers. This might result in the following allocations for the IBM 370:Register 15: Subprogram entry addressRegister 14: Return addressRegister 13: Local activation record base addressRegister 12: Global activation record base addressRegister 11: Base address for constantsRegister 10: Code base addressRegister 9: Code o�set (Section 11.1.3)Only two registers are allocated globally as activation record bases; registers for access tothe activation records of intermediate contours are obtained from the local allocation, as areregisters for stack and heap pointers.Most compilers use no additional global register allocation. Further global allocationmight, for example, be appropriate because most of a program's execution time is spent inthe innermost loops. We could therefore stretch the register usage considerably and shortenthe code if we reserved a �xed number of registers (say, 3) for the most-frequently used valuesof the innermost loops. The controlled variable of the loop is often one of these values. Thesimple approach of assigning the controlled variables of the innermost loops to the reservedregisters gives very good results in practice; more complex analysis is generally unnecessary.Upon completion of the global allocation, we must ensure that at least n registers alwaysremain for local allocation. Here n is the maximum number of registers used in a singleinstruction. (For the IBM 370, n = 4 in the MVCL instruction.) A rule of thumb says thatwe should actually guarantee that n+1 registers remain for local allocation, which allows atleast one additional intermediate result or base address to be held in a register.Pre-planning of local register allocation would be unnecessary if the number of availableregisters always su�ced for the number of simultaneously-existing intermediate results of anexpression. Given a limited number of registers, however, we can guarantee this only for somesubtrees. Outside of these, the register requirement is not �xed unambiguously: Altering thesequence of operations may change the number of registers required. Figure 10.2 shows anexample.The general strategy for local register allocation is to seek subtrees evaluable, possiblywith rearrangement, using only the number of registers available to hold intermediate results.These subtrees can be coded without additional store instructions. We choose the largest,

216 Code Generationand generate code to evaluate it and store the result. All registers are then again available tohold intermediate results in the next subtree.Consider an expression represented as a structure tree and a machine with n identicalregisters ri. The machine's instructions have one of the following forms:� Load: ri := memory location� Store: memory location := ri� Compute: ri := op(vj ; : : : ; vk), where vh may be either a register or a memory location.The machine has various computation instructions, each of which requires speci�coperands in registers and memory locations. (Note that a load instruction can be consid-ered to compute the identity function, and require a single operand in a memory location.)We say that a program fragment is in normal form if it is written as P1J1 : : : Ps�1Js�1Pssuch that each J is a store instruction, each P is a sequence containing no store instructions,and all of the registers are free immediately after each store instruction. Let I1 : : : In be oneof the sequences containing no stores. We term this sequence strongly contiguous if, wheneverIi is used to compute an operand of Ik(i < k) all Ij such that i � j < k are also used in thecomputation of operands of Ik. The sequence P1J1 : : : Ps is in strong normal form if Pq isstrongly contiguous for all 1 � q � s.Aho and Johnson [1976] shows that, provided no operand or result has a size exceedingthe capacity of a single register, an optimal program to evaluate an expression tree on ourassumed machine can be written in strong normal form. (The criterion for optimality isminimum program length.) Thus to achieve an optimal program it su�ces to determine asuitable sequence in which to evaluate the operands of each operator and { in case the registerrequirements exceed n { to introduce store operations at the proper points. The result canbe described in terms of three attributes: register count , store and operand sequence .Register count speci�es the maximum number of registers needed simultaneously at anypoint during the computation of the subtree. Store is a Boolean attribute that is true if theresult of this node must be stored. Operand sequence is an array of integers giving the orderin which the operands of the node should be evaluated. A Boolean attribute can be used ifthe maximum number of operands is 2.The conditions for a strong normal form stated above are ful�lled on most machines byoating point expressions with single-length operands and results. For integer expressionsthey generally do not hold, since multiplication of single-length values produces a double-length result and division requires a double-length dividend. Under these conditions theoptimal instruction sequence may involve `oscillation'. Figure 10.3a shows a tree that requiresoscillation in any optimal program. The square nodes produce double-length values, the roundnodes single-length values. An optimal PDP11 program to evaluate the expression appears asFigure 10.3b. The PDP11 is an `even/odd machine' { one that requires double-length valuesto be held in a pair of adjacent registers, the �rst of which has an even register number. Nopolynomial algorithm that yields an optimal solution in this case is known.Under the conditions that the strong normal form theorem holds and, with the exception ofthe load instruction, all machine instructions take their operands from registers, the followingregister allocation technique leads to minimum register requirements: For the case of twooperands with register requirements k1 < k2, always evaluate the one requiring k1 registers�rst. The result remains as an intermediate value in a register, so that while evaluating theother operand, k2+1 registers are actually required. Since k1 < k2 however, the total registerrequirement cannot exceed k1.When k1 = k2, either operand may be evaluated �rst. The evaluation of the �rst operandwill still require k1 registers and the result remains in a register. Thus k1+1 registers will be

10.2 Target Attribution 217
DIV

+FDIV

DIV

*

E

*

* *

C D

+

A B

I JG H

Note:Round nodes have single-length results
 Square nodes have double-length resultsa) An expression involving single- and double-length valuesMOV A,R0 (R0,R1):=A*BMUL B,R0MOV C,R2 (R2,R3):=C*DMUL D,R2ADD R3,R1 (R0,R1):=(R0,R1)+(R2,R3)ADC R2ADD R2,R0DIV E,R0 R0:=(R0,R1) DIV EMOV G,R2 (R2,R3):=G*HMUL H,R2MOV I,R1 R1:=I+JADD J,R1DIV R1,R2 R2:=(R2,R3) DIV R1MUL F,R0 (R0,R1):=R0*FDIV R2,R0 R0:=(R0,R1) DIV R2b) An optimal PDP11 program to evaluate (a)Figure 10.3: Oscillationneeded to evaluate the second operand, leading to an overall requirement for k1+1 registers.If k1 = n then it is not possible to evaluate the entire expression in the registers available,although either subexpression can be evaluated entirely in registers. We therefore evaluateone operand (usually the second) and store the result. This leaves all n registers free toevaluate the other operand. Figure 10.4 formalizes the computation of these attributes.If the second operand may be either in a register or in memory we apply the same rules,but begin with simple operands having a register count of 0; further, the left operandcount is replaced by max (expression[2].register count ; 1) since the �rst operand mustalways be loaded and therefore has a cost of at least one register. Extension to the case inwhich the second operand must be in memory (as for halfword arithmetic on the IBM 370)presents some additional problems (Exercise 10.3). For integermutiplication and division wemust take account of the fact that the result (respectively the �rst operand) requires tworegisters. The resulting sequence is not always optimal in this case.Several independent sets of registers can also be dealt with in this manner; examplesare general registers and oating point registers or general registers and index registers. Theproblem of the Univac 1108, in which the index registers and general registers overlap, requiresadditional thought.On machines like the PDP11 or Motorola 68000, which have stack instructions in additionto registers or the ability to execute operations with all operands and the result in memory,

218 Code Generationrule expression ::= simple_operand.attributionexpression.register_count 1;expression.operand_sequence true,rule expression ::= expression operator expression.attributionexpression[1].operand_sequence expression[2].register_count > expression[3].register_count;expression[1].register_count if expression[2].register_count = expression[3].register_countthenmin (expression[2].register_count + 1,n)elsemax (expression[2].register_count,expression[3].register_count);expression[2].store false;expression[3].store expression[2].register_count = nandexpression[3].register_count = n ;Figure 10.4: Local Register Allocation and Execution Order Determinationoptimization of the local register allocation is a very di�cult problem. The minimum registerrequirement in these cases is always 0, so that we must include the program length or executiontime as cost criteria. The result is that in general memory-to-memory operations are onlyreasonable if no operands are available in registers, and also the result does not appear in aregister and will not be required in one. Operations involving the stack usually have longerexecution time than operations of the same length involving registers. On the other hand,the operations to move data between registers and the stack are usually shorter and fasterthan register-memory moves. As a general principle, then, intermediate results that must bestored because of insu�cient registers should be placed on the stack.10.2.2 TargetingTargeting attributes are inherited attributes used to provide information about the desireddestination of a result or target of a jump.We use the targeting attribute desire to indicate that a particular operand should be in aregister of a particular class. If a descendant can arrange to have its result in a suitable registerat no extra cost, this should be done. Figure 10.5 gives the attribution rules for expressionscontaining the four basic arithmetic operations, assuming the IBM 370 as the target machine.This machine requires a multiplicand to be in an odd register, and a dividend to be in aregister pair. We therefore target a single-length dividend to the even-numbered register ofthe pair, so that it can be extended to double-length with a simple shift.In the case of the commutative operators addition and multiplication, we target both operandsto the desired register class. Then if the register allocation can satisfy our preference forthe second operand but not the �rst, we make use of commutativity (Section 10.2.3) andinterchange the operands. If neither of the preferences can be satis�ed, then an instruction tomove the information to the proper register will be generated as a part of the coding of themultiplication or division operator. No disadvantages arise from inability to satisfy the stated

10.2 Target Attribution 219type register_class = (dont_care, even , odd , pair);rule expression ::= expression operator expression.attributionexpression[2].desire case operator.operator ofplus, minus:if expression[1].desire = pairthen evenelse expression[1].desire;times : odd ;divided_by : evenend;expression[3].desire case operator.operator ofplus :if expression[1].desire = pairthen evenelse expression[1].desire;times : odd ;otherwise dont_careend;Figure 10.5: Even/Odd Register Targeting for the IBM 370preference. This example illustrates the importance of the non-binding nature of targetinginformation. We propagate our desire to both branches in the hope it will be satis�ed on oneof them. If it is satis�ed on one branch then it is actually spurious on the other, and no costshould be incurred by trying to satisfy it there.Many Boolean expressions can be evaluated using conditional jumps (Section 3.2.3), and itis necessary to specify the address at which execution continues after each jump. Figure 10.6shows the attribution used to obtain short-circuit evaluation, in the context of a conditionaljump. (If short-circuit evaluation is not permitted by the language, the only change is to delaygeneration of the conditional jumps until after all operands not containing Boolean operatorshave been evaluated, as discussed in Section 3.2.3.) Labels (and procedure entry points) arespeci�ed by references to target tree elements, for which the assembler must later substituteaddresses. Thus the type assembler symbol is de�ned not by the code generator, but by theassembler (Section 11.1.1).Given the attribution of Figure 10.6, it is easy to see how code is generated: A conditionaljump instruction is produced following the code to evaluate each operand that contains nofurther Boolean operators (e.g. a relation). The target of the jump is the label that does notimmediately follow the operand, and the condition is chosen accordingly. Boolean operatornodes generate no code at all. Moreover, the execution order is �xed; no use of commutativityis allowed.10.2.3 Use of Algebraic IdentitiesThe goal of the attribution discussed in Section 10.2.1 was to reduce the register requirementsof an expression, which usually leads to a reduction in the length of the code sequence. Thelength of the code sequence can often be reduced further through use of the algebraic identities

220 Code Generationtype boolean_labels = recordfalse_label, true_label : assembler_symbol;immediate_successor : boolean;end;rule conditional_clause ::='if' boolean_expression 'then' statement_list'else' statement_list 'end'.attributionboolean_expression.location N_assembler_symbol;conditional_clause.then_location N_assembler_symbol;conditional_clause.else_location N_assembler_symbol;boolean_expression.jump_target N_boolean_labels(conditional_clause.else_location,conditional_clause.then_location,true); (* true target follows immediately *)rule boolean_expression ::=boolean_expression boolean_operator boolean_expression.attributionboolean_expression[2].location boolean_expression[1].location;boolean_expression[3].location N_assembler_symbol;boolean_expression[2].jump_target if boolean_operator.operator = 'or' thenN_boolean_labels (boolean_expression[3].location,boolean_expression[1].jump_target.true_label,false) (* false target follows immediately *)else(* operator must be and *)N_boolean_labels (boolean_expression[1].jump_target.false_label,boolean_expression[3].location,true);boolean_expression[3].jump_target boolean_expression[1].jump_target;rule boolean_expression ::= 'not' boolean_expression.attributionboolean_expression[2].location boolean_expression[1].location,boolean_expression[2].jump_target N_boolean_labels (boolean_expression[1].jump_target.true_label,boolean_expression[1].jump_target.false_label,notboolean_expression[1].jump_target.immediate_successor);Figure 10.6: Jump Targeting for Boolean Expression Evaluation

10.2 Target Attribution 221summarized in Figure 10.7a. We distinguish two steps in this reduction:� Reduction of the number of computational instructions.� Reduction of the number of load instructions.x+ y = y + xx� y = x+ (�y) = �(y � x)�(�x) = xx � y = y � x = (�x) � (�y)�(x � y) = (�x) � y = x � (�y)a) Identities for integer and real operandsL 1,xLNR 1,1L 2,yS 2,zMR 0,2b) Computation of (�x) � (y � z)L 2,zS 2,yL 1,xMR 0,2c) Computation of x � (z � y), which is equivalent to (b)L 1,zS 1,yM 0,xd) Computation of (z � y) � x, which is equivalent to (c)Figure 10.7: Algebraic IdentitiesThe number of computational instructions can be reduced by, for example, using theidentities of Figure 10.7a to remove a change of sign or combine it with a load instruction(unary complement elimination). Load operations can be avoided by applying commutativitywhen the right operand of a commutative operator is already in a register and the left operandis still in memory. Figures 10.7b-d give a simple example of these ideas.None of the identities of Figure 10.7a involve the associative or distributive laws of algebra.Computers do not obey these axioms, and hence transformations based upon them are notsafe. Also, if the target machine uses a radix-complement representation for negative numbersthen the identity �(�x) = x fails when x is the most negative representable value, leavingcommutativity of addition and multiplication as the only safe identities. As implementors,however, we are free to specify the range of values representable using a given type. By simplystating that the most negative value does not lie in that range, we can use all of the identitieslisted in Figure 10.7a. This does not unduly constrain the programmer, since its only e�ect isto make the range symmetric and thus remove an anomaly of the hardware arithmetic. (Wenormally remove the analogous anomaly of sign-magnitude representation, the negative zero,without debate.)

222 Code GenerationAlthough use of algebraic identities can reduce the register requirement, the decisive costcriterion is the code size. Here we assume that every instruction has the same cost; in prac-tical applications the respective instruction lengths must be introduced. Let us also assume,for the moment, a machine that only provides register-register arithmetic instructions. Alloperands must therefore be loaded into registers before they are used. We shall restrict our-selves to addition, subtraction, multiplication and negation in this example and assume thatmultiplication yields a single-length result. The basic idea consists of attaching a synthesizedattribute, cost , to each expression. Cost speci�es the minimum costs (number of instruc-tions) to compute the result of the expression in its correct and inverse (negated) form. It isdetermined from the costs of the operation, the operand computations, and any complement-ing required. An inherited attribute, decision , is then computed on the basis of these costsand speci�es the actual form (correct or inverse) that should be used.To generate code for a node, we must know which operation to actually implement. (Ingeneral this may di�er from the operator appearing in the structure tree.) If the actualoperation is not commutative then we have to know whether the operands are to be takenin the order given by the structure tree or not. Finally, we need to know whether the resultmust be complemented. As shown in Table 10.1, all of this information can be deduced fromthe structure tree operator and the forms of the operands and result.Tree Result Operand k Reverse Negate Actual MethodNode Form Forms Operands Operationc cc 1 false false plus a+ bci 1 false false minus a� (�b)ic 1 true false minus b� (�a)ii 2 false true plus �(�a+ (�b))a+ b i cc 2 false true plus �(a+ b)ci 1 true false minus �b� aic 1 false false minus �a� bii 1 false false plus �a+ (�b)c cc 1 false false minus a� bci 1 false false plus a+ (�b)ic 2 false true plus �(�a+ b)ii 1 true false minus �b� (�a)a� b i cc 1 true false minus b� aci 2 false true plus �(�a+ (�b))ic 1 false false plus �a+ bii 1 false false minus �a� (�b)c cc 1 false false times a � bci 2 false true times �(a � (�b))ic 2 false true times �(�a � b)ii 1 false false times �a � (�b)a � b i cc 2 false true times �(a � b)ci 1 false false times a � (�b)ic 1 false false times �a � bii 2 false true times �(�a � (�b)c means that the sign of the operand is not invertedi means that the sign of the operand is invertedk is a typical cost of the operation in instructionsTable 10.1: Unary Complement Elimination

10.2 Target Attribution 223type form = (correct, inverse);combination = (cc, ci, ic, ii);cost_specification = array [correct .. inverse] of recordlength : integer;operands : combinationend;function best (op:operator;kcc,kci,kic,kii:integer):cost_specification;(* Determine the cheapest combinationOn entry- op = Structure tree operatorkpq = Sum of the operand costs for combination pqOn exit - best = Cost of the optimum instructions yielding,respectively, the correct and inverted values of theexpression *)var operand_length : array [ci .. ii] of integer;cost : cost_specification;next : integer;begin (* best *)operand_length[ci] := kci ;operand_length[ic] := kic ;operand_length[ii] := kii ;for f := correct to inverse dobegincost[f].length := kcc + k[op, f, cc]; cost[f].operands := cc ;for pq := ci to ii dobeginnext :=operand_length[pq]+k[op,f,pq]; (*k from Table 10.8*)if cost[f].length > next then begincost[f].length := next; cost[f].operands := pqendendend;best := costend; (* best *) Figure 10.8: The Cost AttributeThe k column of Table 10.1 gives the cost of the operation, including any complementing.This information is used to obtain the minimum costs of the correct and inverse forms ofthe expression as shown in Figure 10.8: Best is invoked with the structure tree operatorand the costs of all combinations of operand computations. It tests all of the possibilities,�nding the combination of operand forms that minimizes the cost of computing each of thepossible result forms. Figure 10.9 gives the attribution rules. Note that the costs assessed tosimple operands in Figure 10.9 do not include the cost of a load operation. Loads and storesare completely determined by the local register allocation process for a machine with onlyregister-register instructions.Let us now consider a machine that has an additional instruction for each binary arithmeticoperation. These additional instructions require the left operand value to be in a register andthe right operand value to be in memory. Since the best choice of computation depends uponthe operand locations, we must extend Table 10.1 to include this information. Table 10.2shows such an extension for the integer addition operator. The k column of Table 10.2includes the cost of a load instruction when both operands are in memory.

224 Code Generationrule assignment ::= name ':=' expression.attributionexpression.decision correct;rule expression ::= denotation.attributionexpression.cost N_cost_specification ((* Combination is a dummy value *)0, cc , (* Load instruction only *)0, cc); (* Negative constant is stored *)rule expression ::= name.attributionexpression.cost N_cost_specification ((* Combination is a dummy value *)0, cc , (* Load instruction only *)1, cc); (* Load and complement *)rule expression ::= expression binary_operator expression.attributionexpression[1].cost best (binary_operator.op,expression[2].cost[correct].length+expression[3].cost[correct].length,expression[2].cost[correct].length+expression[3].cost[inverse].length,expression[2].cost[inverse].length+expression[3].cost[correct].length,expression[2].cost[inverse].length+expression[3].cost[inverse].length);Vexpression[2].decision if expression[1].cost[expression[1].decision].operands in [cc, ci]then correctelse inverse;expression[3].decision if expression[1].cost[expression[1].decision].operands in [cc, ic]then correctelse inverse;rule expression ::= unary_operator expression.attributionexpression[1].cost best (unary_operator.op,expression[2].cost[correct].length,maxint, maxint, (* ci, ic are invalid in this case *)expression[2].cost[inverse].length);expression[2].decision if expression[1].cost[expression[1].decision].operands = ccthen correctelse inverse; Figure 10.9: Unary Complement Costing

10.2 Target Attribution 225We took the operand location as �xed in deriving Table 10.2. This meant, for example,that when the correct left operand was in memory and the inverted right operand was in aregister we used the sequence subtract , negate to obtain the correct value of the expression(Table 10.2, row 7). We could also have used the sequence load , subtract , but this wouldhave increased the register requirements. If we allow the unary complement elimination toalter the register requirements then it must be integrated with the local register allocation,increasing the number of attribute dependencies and possibly requiring a more complex treetraversal. Our approach is optimal provided that the cost of a load instruction is never lessthan the cost of negating a value in a register.Result Operand Operand k Reverse Negate Actual MethodForm Forms Locations Operands Operationc cc rr 1 false false plus a+ brm 1 false false plus a+ bmr 1 true false plus b+ amm 2 false false plus a+ bci rr 1 false false minus a� (�b)rm 1 false false minus a� (�b)mr 2 true true minus �(�b� a)mm 2 false false minus a� (�b)ic rr 1 true false minus b� (�a)rm 2 false true minus �(�a� b)mr 1 true false minus b� (�a)mm 2 true false minus b� (�a)ii rr 2 false true plus �(�a+ (�b))rm 2 false true plus �(�a+ (�b))mr 2 true true plus �(�b+ (�a))mm 3 false true plus �(�a+ (�b))i cc rr 2 false true plus �(a+ b)rm 2 false true plus �(a+ b)mr 2 true true plus �(b+ a)mm 3 false true plus �(a+ b)ci rr 1 true false minus �b� arm 2 false true minus �(a� (�b))mr 1 true false minus �b� amm 2 true false minus �b� aic rr 1 false false minus �a� brm 1 false false minus �a� bmr 2 true true minus �(b� (�a))mm 2 false false minus �a� bii rr 1 false false plus �a+ (�b)rm 1 false false plus �a+ (�b)mr 1 true false plus �b+ (�a)mm 2 false false plus �a+ (�b)c means that the sign of the operand is not invertedi means that the sign of the operand is invertedr means that the value of the operand is in a registerm means that the value of the operand is in memoryk is a typical cost of the operation in instructionsTable 10.2: Addition on a Machine with Both Memory and Register Operands

226 Code GenerationWhen we apply algebraic identities on a machine with both register-register and register-memory instructions, the local register allocation process should assume that each computa-tional instruction can accept any of its operands either in a register or in memory, and returnsits result to a register (the general model proposed in Section 10.2.1). This assumption leadsto the proper register requirement, and allows complete freedom in applying the identities.Local register allocation decides the evaluation order of the operands, but leaves open thequestion of which operand is left and which is right. Algebraic identities, on the other hand,deal with the choice of left and right operands but make no decisions about evaluation order.10.3 Code SelectionAlthough the techniques of the previous sections largely determine the shape of the generatedcode, a number of problems remain open. These include the �nal assignment of registers andthe question of which instructions will actually implement a previously-speci�ed operation:On the IBM 370, for example, can a constant be loaded with an LA instruction or must it bestored as a literal? Does an addition of two addresses require a separate add instruction, orcan the addition be carried out during computation of the e�ective address of the followinginstruction?10.3.1 Machine SimulationThe relationship between values computed by the program being compiled and the machineresources that will be used to represent them during execution can be characterized by asequence of machine states. These states form the pre- and post-conditions for the generatedinstructions. We could include the machine state as an attribute in the structure tree andspecify it in advance by attribution rules. This would mean, for example, that we would com-bine register assignment with local register allocation and thereby specify the �nal registernumbers for operands and results. Such a strategy complicates a number of optimizations,however. Examples are the re-use of intermediate results that remain in registers from previ-ous computations in the same expression, and the delay of store instructions discussed below.Thus we assume that, during the execution-order traverssal of the structure tree in whichcode selection takes place, a machine simulation is used to determine the run-time machinestate as closely as possible.Every value computed by the program and every allocatable resource of the target machineis (conceptually) speci�ed by a descriptor. The machine state consists of links between thesedescriptors, indicating the relationship between the values and the resources representing themat a given point in the execution sequence. Figure 10.10 shows typical descriptor layouts forimplementing LAX on the IBM 370.Constants that might appear in the address �eld of the instruction, and constants whosevalues are to be processed further by the code generator, are described by the value classliteral value . Other constants, like strings and oating point numbers, will be placed instorage and consequently appear as memory values.Label and procedure references are represented by closures (Section 2.5.2), leaving thecode location to be de�ned by the assembler and indicating the proper environment by anexecution-time value. Note that this representation is used only for an explicit label orprocedure reference; the closure for a label or procedure-type variable or parameter is notknown at compile time and must therefore appear as a memory or register value.The value descriptors of Figure 10.10 contain no information for the storage classes `pro-gram counter' and `condition code' (Section 3.1.1), since these classes occur only implicitly in

10.3 Code Selection 227IBM 370 instructions. The situation could be di�erent on the PDP11, where explicit assign-ments to the program counter are possible. Computers like the Motorola 68000 and PDP11,which provide stack instructions, also require information about the storage class `stack'. Theactual representation in the descriptor depends upon how many stacks there are and whetheronly the top element or also lower elements can be accessed. We restrict ourselves here totwo storage classes: `main storage' and `registers'. Similar techniques can be used for otherstorage classes.typemain_storage_access = recordbase , index : "value_descriptor;displacement : internal_int;end;value_class = (, (* Current access *)literal_value, (* Manipulable integer constant *)label_reference, (* Explicitly-referenced label *)procedure_reference, (* Explicitly-referenced procedure *)general_register, (* Single general register *)register_pair, (* Adjacent even/odd general registers *)floating_point_register, (* Single floating point register *)memory_address, (* Pointer to a memory location *)memory_value); (* Contents of a memory location *)value_descriptor = recordtmode : target_type; (* Pointer to target definition table *)case class : value_class ofliteral_value :(lval : internal_int);label_reference, procedure_reference :(code : assembler_symbol;environment : "value_descriptor);general_register, register_pair, floating_point_register :(reg : "register_descriptor);memory_address, memory_value :(location : main_storage_access)end;register_state = ((* Current usage *)free , (* Unused *)copy , (* A copy exists in memory *)unique, (* No other copy available *)locked); (* Not available for assignment *)register_descriptor = recordstate : register_state;content : "value_descriptor;memory_copy : main_storage_access;end; Figure 10.10: Descriptors for Implementing LAX on the IBM 370

228 Code GenerationWhen an access function is realizable within a given addressing structure, we say that theaccessed object is addressable within that structure. If an object required by the computationis not addressable then the code generator must issue instructions to manipulate the state,making it addressable, before it can be used. These manipulations can be divided into twogroups, those required by source language concepts and those required by limitations on theaddressing structure of the target machine. Implementing a reference with a pointer variablewould be an example of the former, while loading a value into an index register illustratesthe latter. The exact division between the groups is determined by the structure of the mainstorage access function implemented in the descriptors. We assume that every non-literal leafof the structure tree is addressable by this access function. The main storage access functionof Figure 10.10 is stated in terms of a base, an index and a displacement. The base refersto an allocatable object (Section 10.1) whose address may, in general, be computed duringexecution. The index is an integer value computed during execution, while the displacementis �xed at compile time. Index and displacement values are summed to yield the relativeaddress of the accessed location within the allocatable object referred to by the base.If the access is to statically-allocated storage then the `allocatable object' to which theaccessed object belongs is the entire memory. We indicate this special case by a nil base, andthe displacement becomes the static address. A more interesting situation arises when theaccess is to storage in the activation record of a LAX procedure.Figure 10.11 shows a LAX program with �ve static nesting levels. If we associate activationrecords only with procedures (Section 3.3.2) then we need consider only three levels. Valuedescriptors for the three components of the assignment in the body of q could be constructedas shown in Figure 10.11b.The level array is built into the compiler with an appropriate maximum size. When thecompiler begins to translate a procedure, it ensures one value descriptor for each level up to thelevel of the procedure. Initially, the descriptor at level 1 indicates that the global activationrecord base address can be found in register 12 and the descriptor at the procedure's levelindicates that the local activation record base address can be found in register 13. Baseaddresses for other activation records can be found by following the static chain, as indicatedby the descriptor at level 2. This initial condition is determined by the mapping speci�cation.We are assuming here that the LAX-to-IBM 370 mapping speci�cation makes the globalregister allocation proposed at the beginning of Section 10.2.1.When a value descriptor is created for a variable, its base is simply a copy of the levelarray element corresponding to the variable's static nesting depth. (The program is assumedat level 0 here.) The index �eld for a simple variable's access function is nil (indicated inFigure 10.11b by an empty �eld) and the displacement is the o�set of the variable within theactivation record. For array variables, the index �eld points to the value descriptor of theindex, and the displacement is the �ctitious o�set discussed in Section 3.2.2.The access function for a value may change as instructions that manipulate the valueare generated. For example, suppose that we generate code to carry out the assignment inFigure 10.11a, starting from the machine state described by Figure 10.11b. We might �rstconsider generating a load instruction for b. Unfortunately, b is not addressable; the IBM 370load instruction requires that the base be in a register. Thus we must �rst obtain a register(say, general register 1) and load the base address for the activation record at level 2 intoit. When this instruction has been generated, we change the value descriptor for the base tohave a value class of general register and indicate general register 1. Generation of theload for b is now possible, and the value descriptor for b must be altered to reect the factthat it is in (say) general register 3.There is one register descriptor for each register used by the code generator. This includesboth the registers controlled by the local register allocation and globally-assigned registers

10.3 Code Selection 229declarea : integer;procedure p ;declareb : integer;procedure q (c : integer); a := b + cbeginb := 1; q (2)endbeginpend a) A LAX program

.

.

.

1
2
3
4

Array

Level

0

offset

offset

memory
address

memory
address

b

c

Value class

Base

Index

Displacementa offset

12

general
register

static chain
offset

general
register

13

value
memory

memory
address

b) Value descriptors for the IBM 370Figure 10.11: Referencing Dynamic Storagewith �xed interpretations. The local register allocation process discussed in Section 10.2.1schedules movement of values into and out of registers. As we noted at the beginning of thechapter, however, only an estimate of the register requirements is possible. The code selectionprocess, working with the machine state description, may be able to reduce the register countbelow that estimated by the local register allocator. As a consequence, it may be unnecessaryto store an intermediate value whose node had been given the store attribute. For thisreason, we defer the generation of store instructions requested by these attributes in the hopethat the register holding the value will not actually be required before the value can be usedagain. Using this strategy, we may have to free the register `unexpectedly' in a context wherethe value descriptor for the value is not directly accessible. This means that the registerdescriptor of a register containing a value must point to the value descriptor for the containedvalue. If the register must be freed, a store instruction can be emitted and the value descriptorupdated to reect the current location of the value.

230 Code GenerationImmediately after a load or store instruction, the contents of a register are a copy ofthe contents of some memory location. This `copy' relationship represents a condition thatoccurs during execution, and to specify it the register descriptor must be able to de�ne amemory access function. This access function is copied into the register descriptor from avalue descriptor at the time the two are linked; it might describe the location from which theregister was loaded or that to which it was stored. Some care must be exercised in decidingwhen to establish such a relationship: The code generator must be able to guarantee thatthe value in memory will not be altered by side e�ects without explicitly terminating therelationship. Use of programmer-de�ned variables is particularly dangerous because of thisrequirement, but use of compiler-generated temporaries and activation record bases is safe.if free registers exist then choose one arbitrarilyelse if copy registers exist then choose the least-recently accessedelsebeginchoose the least-recently accessed unique register;allocate a temporary memory location;emit a store instruction;end;if chosen register has an associated value descriptor thende-link the value descriptor;lock the chosen register;Figure 10.12: Register ManagementThe register assignment algorithm should not make a random choice when asked to assigna register (Figure 10.12). If some register is in state free , it may be assigned without penalty.A register whose state is copy may be assigned without storing its value, but if this value isneeded again it will have to be reloaded. The contents of a register whose state is unique mustbe stored before the register can be reassigned, and a locked register cannot be reassignedat all. All globally-allocated registers are locked throughout the simulation. The states oflocally-allocated registers change during the simulation; they are always free at a label.As shown in Figure 10.12, the register assignment algorithm locks a register when it isassigned. The code selection routine requesting the register then links it to the proper valuedescriptor, generating any code necessary to place the value into the register. If the value isthe result of a node with the store attribute then the register descriptor state is changed tounique . This makes the register available for reassignment, and guarantees that the valuewill be saved if the register is actually reassigned. When a value descriptor is destroyed, it is�rst de-linked from any associated register descriptor. The state of the register descriptor ischanged to free if the register descriptor speci�es no memory copy; otherwise it is changedto copy . In either case it is available for reassignment without any requirement to storeits contents. The local register allocation algorithm of Section 10.2.1 guarantees that thesimulator can never block due to all registers being locked.10.3.2 Code TransformationWe traverse the structure tree in execution order, carrying out a simulation of the targetmachine's behavior, in order to obtain the �nal transformation of the structure tree into asequence of instructions. When the traversal reaches a leaf of the tree, we construct a valuedescriptor for the object that the leaf represents. When the traversal reaches an interior node,a decision table speci�c to that kind of node is consulted. There is at least one decision tablefor every abstract operation, and if the traversal visits the node more than once then each

10.3 Code Selection 231visit may have its own decision table. The condition stubs of these decision tables involveattributes of the node and its descendants.Result correct Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N N N N N N N N N N N N Nl correct Y Y Y Y Y Y Y Y N N N N N N N N Y Y Y Y Y Y Y Y N N N N N N N Nr correct Y Y Y Y N N N N Y Y Y Y N N N N Y Y Y Y N N N N Y Y Y Y N N N Nl in register Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N N Y Y N Nr in register Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y Nswap(l; r) X X X X X X X X X X X Xlreg(l; desire) X X X X X X X Xgen(A; l; r) X X X X X X X X X X X Xgen(AR; l; r) X X X Xgen(S; l; r) X X X X X X X X X X X Xgen(SR; l; r) X X X Xgen(LCR; l; r) X X X X X X X X X X X Xfree(r) Xresult(l; store) X"correct" means the sign is not invertedl=value descriptor of the left operand, r=value descriptor of the right operanddesire=desire attribute of the current nodestore=store attribute of the current nodeA, AR, S, SR and LCR are IBM 370 instructionsFigure 10.13: IBM 370 Decision Table for + (integer, integer) integer Based on Ta-ble 10.2Figure 10.13 shows a decision table for integer addition on the IBM 370 that is derivedfrom Table 10.2. The condition stub uses the form and location attributes discussed inSection 10.2.3 to select a single column, and the elements of the action stub corresponding toX's in that column are carried out in sequence from top to bottom. These actions are basedprimarily upon the value descriptors for the operands, but they may interrogate any of thenode's attributes. They are basically of two kinds, machine state manipulation and instructiongeneration, although instructions must often be generated as a side e�ect of manipulating themachine state.Four machine state manipulation actions appear in Figure 10.13: swap (l, r) simplyinterchanges the contents of the value descriptors for the left and right operands. A regis-ter is allocated by lreg (l, desire) , taking into account the preference discussed in Sec-tion 10.2.2. This action also generates an instruction to load the allocated register with thevalue speci�ed by value descriptor l , and then links that value descriptor to the registerdescriptor of the allocated register. After the code to carry out the addition has been gen-erated, registers that might have been associated with the right operand must be freed andthe descriptor for the register holding the left operand must be linked to the value descriptorfor the result. If the store attribute is true then the result register descriptor state is set tounique ; otherwise it remains locked as discussed in Section 10.3.1.Figure 10.13 contains one action to generate the RR-format of the add instruction andanother to generate the RX-format. A single action could have been used instead, deferringthe selection to assembly. The choice between having the code generator select the instructionformat and having the assembler select it is made on grounds of convenience. In our case thecode generator possesses all of the information necessary to make the selection; for machineswith several memory addressing formats this is not always true because the proper format

232 Code Generationmay depend upon the location assigned to an operand by the assembler.We must stress here a point made earlier: The code selection process, speci�ed by thedecision tables and the register assignment algorithm operating on the machine state, producesthe �nal code. All previous attribution prepares for this process, gathering information butmaking no decisions.Decision tables occurring in the code generator usually have a comparatively small numberof conditions (two to six), and well-known techniques for converting decision tables intoprograms can be applied to implement them. We can distinguish two essentially di�erentmethods: programmed decision trees and realization as data structures. The former methodgenerally leads to long programs with large storage requirements. In the latter case the tablesmust be interpreted; the storage costs are smaller but the execution time is longer. Becauseeach decision table is used infrequently, we give priority to reduction of memory requirementsover shortening of execution time. Mixed-code approaches, based upon the frequency of useof the table, can also be followed. Programmed decision tables are most successful in small,simple compilers. The more cases and attributes that the code generator distinguishes, themore heavily the advantages of a data structure weigh.To represent the decision tables by data structures we �rst collect all of the possible actionsinto a large case statement. The actions can then be represented in the tables by their caseselectors. In most cases the tables are (or are close to being) complete, so we can apply amethod based upon the idea that the sequence of values for the conditions that characterizethe possible cases can be regarded as a mixed-radix number. The lower right quadrant of thedecision table (see Figure 10.13) is implemented as a Boolean matrix indexed by the actionnumber (row) and the condition (column). An X corresponds to a true element, a blank toa false element. Instead of using a Boolean matrix, each column could also be coded as a listof the case labels that correspond to the actions which must be carried out.10.4 Notes and ReferencesThe memory map module enters blocks into an area as they are delivered, regardless of whetheror not gaps are introduced because of alignment constraints. As noted in Chapter 3, such gapscan often be eliminated or reduced by rearrangement of the components of a composite object.Unfortunately, the problem of obtaining an optimum layout is a variant of the `knapsackproblem' [Miller and Thatcher, 1972], which is known to be NP-complete.The problem of optimal code generation for expression trees has been studied extensively.Proof that the problem is NP-complete was given by Bruno and Sethi [1976]. Our treatmentis derived from those of Bruno and Lassagne [1975] and Aho and Johnson [1976]. Thebasic method for estimating register usage is due to Sethi and Ullman [1970] Multi-registermachines were discussed by Aho et al. [1977] who showed that a polynomial algorithm foroptimal code generation could be obtained if double-length values could occupy arbitrary pairsof registers. Unfortunately, most machines restrict double-length values to pairs of adjacentregisters, and usually require that the �rst register of the pair have an even number.Targeting is a concept that is implicit in the notion of an inherited attribute. Wulf andhis students 1975 were the �rst to make systematic use of targeting under that name, andour discussion of unary complement elimination is based upon their work.Target attribution is described by an attribute grammar, and hence the semantic analysisand code generation tasks can be interfaced by merging their attribute grammars. If storageconstraints require splitting of this combined attribution, the split should be made on thebasis of traversals required by the combined attribute grammar. Thus each traversal maybe implemented as a pass, and each pass may carry out both semantic analysis and code

10.4 Notes and References 233generation tasks. The speci�cations of the two tasks remain distinct, however, their mergingis an implementation decision that can be carried out automatically.`Peephole optimization' [McKeeman, 1965] uses a machine simulation, and capitalizesupon relationships that arise when certain code fragments are joined together. Wilcox[1971] proposed a code generator consisting of two components, a transducer (which essen-tially evaluates attributes) and a simulator (which performs the machine simulation and codeselection). He introduced the concepts of value and register descriptors in a form quite similarto that discussed here. Davidson and Fraser [1980] uses a simulation following a simplecode selector based upon a depth-�rst, left-to-right traversal of the structure tree with noattempt to be clever about register allocation. He claims that this approach is easier toautomate, and gives results approaching those of far more sophisticated techniques.Formulation of the code selection process in terms of decision tables is relatively rare inthe literature, although they seem to be the natural vehicle for describing it. A number ofauthors [Elson and Rake, 1970; Wilcox, 1971; Waite, 1976] have proposed special codegenerator description languages that e�ectively lead to programmed decision trees. Gries[1971] mentions decision tables, but only in the context of a rather specialized implementationused by the IBM FORTRAN H compiler [Lowry and Medlock, 1969]. This technique,known as `bit strips', divides the conditions into two classes. Conditions in the �rst classselect a column of the table, while those in the second are substituted into particular rows ofthe selected column. It is useful only when a condition applies to some (but not all) elementsof a row. The technique precludes the use of a bit matrix because it requires each element tospecify one of three possibilities (execute, skip and substitute) instead of two.Glanville and Graham [1978] use SLR(1) parse tables as a data structure implementa-tion of the decision tables; this approach has also been used in the context of LALR(1) parsetables by Jansohn et al. [1982]Exercises10.1 Complete the de�nition of the memory mapping module outlined in Figure 10.1 for amachine of your choice.10.2 Devise a linear algorithm to rearrange the �elds of a record to minimize waste space,assuming that the only possible alignments are 1 and 2. (The DEC PDP11 and Intel8086 have this property.)10.3 [Aho and Johnson, 1976] Consider an expression tree attributed according to therules of Figure 10.4.(a) State an execution-order traversal algorithm that will produce optimum code whenarithmetic instructions are emitted at the post�x encounters of interior nodes.(b) State the conditions under which LOAD and STORE instructions will be emittedduring the traversal of (a).(c) Show that the attribution of Figure 10.4 is inadequate in the case where somearithmetic operations can be carried out only by instructions that require oneoperand in memory.(d) Show that optimum code can be produced in case (c) if it is possible to createa queue of pointers to the tree and use this queue to guide the execution-ordertraversal.10.4 Extend the attribution of Figure 10.4 to handle expression nodes with arbitrary num-bers of operands, all of which must be in registers.

234 Code Generation10.5 [Bruno and Lassagne, 1975] Suppose that the target computer has a stack of �xeddepth instead of a set of registers. (This is the case for most oating point chipsavailable for microprocessors.) Show that your algorithm of Exercise 10.4 will stillwork if extra constraints are placed upon the allowable permutations.10.6 What changes would you make in your solution to Exercise 10.4 if some of a node'soperands had to be in memory and others in registers?10.7 Show that the attribution rules of Figure 10.6 obey DeMorgan's law, i.e. that eithermember of the following pairs of LAX expressions leads to the same set of attributesfor a and b:not (a and b), not a or not bnot (a or b), not a and not b10.8 Modify Figure 10.6 for a language that does not permit short-circuit evaluation. Whatcorresponding changes must be made in the execution-order determination?10.9 [Elson and Rake, 1970] The PL/1 LENGTH function admits optimizations of string ex-pressions analogous to short-circuit evaluation of Boolean expressions: LENGTH (AjjB)becomes LENGTH (A)+LENGTH (B). (`jj' is the concatenation operator.) Devise targetingattributes to carry this information and show how they are propagated.10.10 Show that the unary complement elimination discussed in Section 10.2.3 also minimizesregister requirements.10.11 Extend Table 10.1 to include division.10.12 Show that the following relation holds for the cost attribute (Figure 10.9) of any ex-pression node: jcost[correct]:length� cost[inverse]:lengthj � LWhere L is the length of a negation operator. (This condition must hold for all op-erations, not just those illustrated in Table 10.1.) What follows from this if register-memory instructions are also allowed?10.13 What changes would be required in Figure 10.9 for a machine with a `load negative'instruction that places the negative of a memory value into a register?10.14 Modify Figure 10.8 for a machine with both register-register and register-memory in-structions. Write a single set of attribution rules incorporating the tasks of both Fig-ure 10.4 and Figure 10.9.10.15 Specify descriptors to be used in implementing LAX on some computer other thanthe IBM 370. Carefully explain any di�erence between your speci�cation and that ofFigure 10.10.10.16 Under what circumstances could a LAX code generator link register values toprogrammer-de�ned variables? Do you believe that the payo� would justify the analysisrequired?10.17 There is no guarantee that the heuristic of Figure 10.12 will produce optimal code.Under what circumstances would the code improve when unique registers were chosenbefore copy registers?10.18 Give, for a machine of your choice, the remaining decision tables necessary to translateLAX trees involving simple integer operands and operators from Table A.2.

Chapter 11AssemblyThe task of assembly is to convert the target tree produced by the code generator into thetarget code required by the compiler speci�cation. This target code may be a sequence of bitpatterns to be interpreted by the control unit of the target machine, or it may be text subjectto further processing by a link editor or loader. In either case, the assembler must determineoperand addresses and resolve any issues left open by the code generator.Since the largest fraction of the compilers for most machines originate from the manufac-turer, the manufacturer's target code format provides a de facto standard that the compilerwriter should use: If the manufacturer's representation is abandoned then all access to thesoftware already developed using other compilers, and probably all that will be developed inthe future at other installations, is lost. For the same reason, it is best to use manufacturer-supplied link editors and loaders to carry out the external address resolution. Otherwise, ifthe target code format is extended or changed then we must alter not only the compilers,but also the resolution software that we had developed. We shall therefore assume that theoutput of the assembly task is a module rather than a whole program, and that external ad-dress resolution is to be provided by other software. (If this is not the case, then the encodingprocess is somewhat simpli�ed.)Assembly is essentially independent of the source language, and should be implemented bya common module that can be used in any compiler for the given machine. To a large extent,this module can be made machine-independent in design. Regardless of the particular com-puter, it must be able to resolve operand addresses and encode instructions. The informationrequired by di�erent link editors and loaders does not vary signi�cantly in content. In thischapter we shall discuss the two main subtasks of assembly, internal address resolution andinstruction encoding, in some detail. We shall sketch the external address resolution problembriey in order to indicate the kind of information that must be provided by the compiler;two speci�c examples of the way in which this information is represented can be found inChapter 14.11.1 Internal Address ResolutionInternal address resolution is the process of mapping the target tree onto a block of contiguoustarget machine memory locations, determining the addresses of all labels relative to thebeginning of this block. We begin by assuming that the size of an instruction is �xed, andthen show how this assumption can be relaxed. Special problems can arise from particularmachine architectures, and we shall briey discuss a representative example.235

236 Assembly11.1.1 Label Value DeterminationWe begin with the structure of the target tree discussed in Section 4.1.4, which can becharacterized by the context-free rules of Figure 11.1.The attribution rules in Figure 11.1 gather information from the tree about the rela-tionships among sequences (origin env) and the placement of labels within the sequences(label env). This information is exactly what is found in the `symbol table' of a conven-tional symbolic assembler. It can easily be shown that Figure 11.1 is LAG(1), and the singletraversal corresponds to `pass 1' of the conventional assembler. Clearly we could integrate thistraversal with the code selection process in an implementation, but it remains conceptuallydistinct.The environments are lists whose elements have the types shown in Figure 11.2a. A basedorigin element speci�es an address expression stored as a tree, using linked records of theform shown in Figure 11.2b. This tree actually forms a part of the origin env attribute;it is abstracted from the target tree by rules not shown in Figure 11.1, and delivered asthe attribute expression.expr in the rule for sequence ::= expression nodes . We shallassume that all address computations either involve only absolute values or have the formrelative � absolute ; situations requiring more complex calculations can easily be avoidedby the compiler.On the basis of the information in label env and origin env , every label can be assigneda value that is either absolute or relative to the origin of a sequence whose origin class isarbitrary . We could simply consider each arbitrary -origin sequence as a separate `module'and terminate the internal address resolution process when the attribution of Figure 11.1was complete. This is generally not done. Instead, we compute the overall length of eacharbitrary -origin sequence and concatenate them, restating all but the �rst as based . Theconcatenated sequences form the relocatable portion of the program in which every label canbe assigned a relocatable address { an address relative to the single arbitrary origin.Most programming languages do not o�er the user a way to specify an absolute origin,and hence the compiler will create only relocatable target code. If a particular implementa-tion does require absolute sequences, there are two ways to proceed. The �rst is to �x thearbitrary origin and treat the entire program as absolute; the second is to resolve the ad-dresses separately in the absolute and relocatable portions, resolving cross references betweenthem by the methods of Section 11.2. The latter approach can also be taken when the sourcelanguage allows the programmer to specify that portions of the program reside in read-onlymemory and others in read-write memory.11.1.2 Span-Dependent InstructionsThe assumption that the size of an instruction is �xed does not hold for all machines. Forexample, the conditional branch instructions of the PDP11 use a single-byte address andcan therefore transfer control a maximum of 127 words back or 128 words forward. If thebranch target lies outside of this range then a sequence involving a conditional branch overan unconditional jump must be used. The code generator cannot decide between these twopossibilities, and hence it outputs an abstract conditional jump instruction for the assemblerto resolve. Clearly the size of the resulting code depends upon the relative locations of thetarget label and jump instruction. (A simple-minded assembler could always assume theworst case and generate the longest version of the jump.)A span-dependent instruction can be characterized by its location and the manner inwhich its length depends upon the label(s) appearing in its operand(s). For example, thelength of a jump may depend upon the di�erence between the location of the jump and the

11.1 Internal Address Resolution 237rule target_tree ::= sequencesrule sequences ::=attributionsequences.label_env nil;sequences.origin_env nil;rule sequences := sequences sequenceattributionsequences[1].label_env sequences[2].label_env & sequence.label_env;sequences[1].origin_env sequences[2].origin_env & sequence.origin_env;rule sequence := nodesattributionnodes.base gennum;sequence.origin_env N_origin_element (nodes.base, nodes.length, arbitrary)rule sequence := expression nodesattributionnodes.base gennum;sequence.origin_env N_origin_element (nodes.base, nodes.length,based , expression.expr);rule nodes ::=attributionnodes.label_env nil;nodes.length 0;rule nodes := nodes operationattributionnodes[1].length nodes[2].length +instr_size (operation.instr);rule nodes := nodes constantattributionnodes[1].length nodes[2].length +const_size (constant.value);rule nodes := nodes labelnodes[1].label_env nodes[2].label_env &N_label_element (label.uid, nodes[1].base, nodes[2].length);Figure 11.1: Target Tree Structure and Attribution

238 Assemblytypelabel_element = krecorduid : integer; (* Unique identification for the label *)base : integer; (* Sequence to which the label belongs *)relative_address : integer,(* Address of the label in the sequence *)end;origin_class = (arbitrary, based);origin_element = krecorduid : integer; (* Unique identification for the sequence *)length : integer (* Space occupied by the sequence *)case k : origin_class ofarbitrary : ();based : (origin : address_exp)end; a) Types used in the environments of Figure 11.1typeaddress_exp = recordcase k : expr_class ofabsolute :(value : integer_value); (* Provided by the constant table *)relative :(label : integer); (* Unique identification of thereferenced label *)computation :(rator : (add, sub);right , left : "address_exp)end; b) Types used to represent address expressionsFigure 11.2: The Environment Attributeslocation of its target; in rare cases the length of a constant-setting instruction may dependupon the value of an expression (LABEL1 - LABEL2). In the remainder of this section we shallconsider only the former situation, and restrict the operand of the span-dependent instructionto a simple label.Span-dependence does not change the basic attribution of Figure 11.1, but it requires thatan extra attribute be constructed. This attribute, called mod list , consists of linked recordswhose form is given in Figure 11.3a. Mod list is initialized and propagated in exactly thesame way as label env . Elements are added to it at span-dependent instructions as shown inFigure 11.3b. The function instr size returns the minimum length of the span-dependentinstruction, and this value is used to determine origin values as discussed in Section 11.1.1.The next step is to construct a relocation table that can be consulted whenever a labelvalue must be determined. Each relocation table entry speci�es the total increase in size forall span-dependent instructions lying below a given address (relative or absolute). When thelabel address calculation of Section 11.1.1 indicates an address lying between two relocationtable entries, it is increased by the amount speci�ed in the lower entry.

11.1 Internal Address Resolution 239typemod_element = recordbase : integer; (* Sequence in which instruction appears *)relative_address:integer;(* Address of the instruction in the sequence *)operand : integer; (* Unique identification for the operand label*)instr : machine_op; (* Characterization of the instruction *)end; a) Type used in mod listrule nodes := nodes span_dependent_operationattributionnodes[1].length nodes[2].length + instr_size (span_dependent_operation.instr);nodes[1].mod_list nodes[2].mod_list &N_mod_element (nodes[1].base,nodes[2].length,span_dependent_operation.operand_uid,span_dependent_operation.instr);b) Calculation of mod listFigure 11.3: Span-Dependent InstructionsThe properties of the span-dependent instructions are embodied in a module that providestwo operations:Too short (machine op , integer) boolean : Yields true if the instruction de�ned bymachine op cannot have its operand at the (signed) distance from the instruction givenby the integer.Lengthen (machine op , integer) integer : Updates the given machine op , if necessary, sothat the instruction de�ned can have its operand at the (signed) distance given by theinteger. Yields the increase in instruction size resulting from the change.The relocation table is built by the following algorithm:1. Establish an empty relocation table.2. Make the �rst element of mod list current.3. Calculate the addresses of the span-dependent instruction represented by the currentelement of mod list and its operand, using the current environments and relocationtable.4. Apply too short to the (signed) distance between the span-dependent instruction andits operand. If the result is false , go to step 6.5. Lengthen the instruction and update the relocation table accordingly. Go to step 2.6. If elements remain in mod list , make the next element current and go to step 3.Otherwise stop.This algorithm has running time proportional to n2 in the worst case (n is the numberof span-dependent instructions), even when each span-dependent instruction has more thantwo lengths.

240 AssemblySpan-dependency must be resolved separately in each portion of the program that dependsupon a di�erent origin (see the end of Section 11.1.1). If span-dependent instructions providecross-references between portions based on di�erent origins then either all analysis of span-dependence must be deferred to external address resolution or some arbitrary assumptionmust be made about the cross-referencing instructions. The usual approach is to optimizespan-dependent instructions making internal references and use the longest version of anycross-referencing instruction.11.1.3 Special ProblemsThe IBM 370 and its imitators have a short address �eld and do not permit addressing relativeto the program counter. This is a design aw that means the general-purpose registers must beused as base registers to provide addressability within the code sequence. Such addressabilityis required for two purposes: access to constants and speci�cation of jump targets. Thecode generator could, as a part of the memory mapping process, map all constants into acontiguous block of memory and determine the number of base registers required to provideaddressability for this block. Given our decomposition of the compilation process, however,it is impossible to guarantee that the code generator can allocate the minimum number ofbase registers needed for jump target speci�cation.The number of code base registers required for any procedure can be reduced to two,at the cost of increasing the size of a jump instruction from 4 bytes to 8: One of the tworegisters holds the address of the procedure's �rst instruction. Any jump target is de�nedby its address, t, relative to this address. Let t = 4096q + d, such that 0 � d < 4096 will �tthe displacement �eld of an RX-format instruction. Assuming that the address of the �rstinstruction is in register 10 and the second register allocated for code basing is 9, a jump tot becomes LH 9,CONS+2*q(10)BC MASK,d(9,10)(Here `CONS' is an array of halfword values for 4096q and `MASK' is the condition codemask de�ning the branch condition.)By performing additional analysis of the code sequence, it may be possible to avoid ex-panding some of the jumps. The value of q (and hence the contents of register 9) is easilydetermined at every point in the program. If the target of a jump has the same q as is in forceat the location of the jump then no expansion is necessary. E�ectively, jump becomes a span-dependent instruction. The problem of �nding the minimum number of jumps that must beexpanded is NP-complete, but a linear algorithm that never shortens a previously-generatedjump gives adequate results in practice.11.2 External Address ResolutionExternal address resolution combines separately-compiled modules into a complete programor simply a larger module. Component modules may constitute a part of the input text,or may be extracted automatically from one or more libraries. They may have originallybeen coded in a variety of programming languages, and translated by di�erent compilers.(This last is only possible when all of the compilers produce target code using a commonrepresentation.)We restrict ourselves here to the basic problems of external address resolution and theirsolution. To do so we must assume a particular code format, but this should in no way be

11.2 External Address Resolution 241taken as advice that the compiler writer should design his own representation! As noted atthe beginning of the chapter, we strongly advocate use of manufacturer-supplied link editorsand loaders for external address resolution.11.2.1 Cross-ReferencingIn many respects, external address resolution is analogous to internal address resolution: Eachmodule is a single code sequence with certain locations (usually called entry points, althoughthey may be either data or code addresses) distinguished. These locations are analogousto the label nodes in the internal address resolution case. The module may also containaddress expressions that depend upon values (usually called external references) not de�nedwithin that module. These values are analogous to the label references in the internal addressresolution case. When the modules are combined, they can be considered to be a list ofindependent code sequences and all of the techniques discussed in Section 11.1 can be carriedover.There can be some bene�t in going beyond the analogy discussed in the previous para-graph, and simply deferring the internal address resolution until all modules have been gath-ered together. Under those circumstances one could optimize the length of inter-modulereferences as well as intra-module references (Section 11.1.2). We believe that the bene-�ts are not commensurate with the costs, however, since inter-module references should berelatively rare.Two basic mechanisms are available for establishing inter-module references: transfervectors and direct substitution. A transfer vector is best suited to references involving atransfer of control. It is a block of memory, included in each module that contains externalreferences, consisting of one element for each distinct external symbol referenced (Figure 11.4).The internal address resolution process replaces every external reference with a reference tothe corresponding element of the transfer vector, and the external address resolution process�lls each transfer vector element with the address of the proper entry point. When themachine architecture permits indirect addressing, the initial reference is indirect and maybe either a control or a data reference. If the machine does not provide indirect addressingvia main memory, the transfer vector address must be loaded into a base register for theaccess. When the address length permits jumps to arbitrary addresses, we might also placean unconditional jump to the entry point in the transfer vector and implement a call as a callto that transfer vector entry.Direct substitution avoids the indirection inherent in the transfer vector mechanism: Theactual address of an entry point is determined during external address resolution and storedinto the instruction that references it. Even with the transfer vector mechanism, directsubstitution is required within the transfer vector itself. In the �nal analysis, we use atransfer vector because it reduces to one the number of changes that must be made when theaddress of an entry point changes, and concentrates these changes at a particular point in theprogram. Entry point addresses may change statically, as when a module is newly compiledand bound without altering the program, or they may change dynamically, as when a routineresides in memory temporarily. For example, service routines in an operating system areoften `transient' { they are brought into memory only when needed. The operating systemprovides a transfer vector, and all invocations of service routines must go via this transfervector. When a routine is not in memory, its transfer vector entry is replaced by a jump toa loader. Even if the service routines are not transient, a transfer vector is useful: Whenchanges made to the operating system result in moving the service routine entry points, onlythe transfer vector is altered; there is no need to �x up the external references of all userprograms. (Note that in this case the transfer vector is a part of the operating system, not

242 Assemblyprocedure ex (x , y : real) : real ;vara , b : real;begina := sign (x) * sqrt (abs (x));b := sign (y) * sqrt (abs (y));ex := (a - b) / (a + b)end; (* ex *)a) External referencesabssignsqrtb) Transfer vector for procedure exFigure 11.4: Transfer Vectorsof each module using the operating system as discussed in the previous paragraph. If thevector occupies a �xed location in memory, however, it may be regarded either as part of themodule or as part of the operating system.)In the remainder of this section we shall consider the details of the direct substitutionmechanism. As pointed out earlier, this is analogous to internal address resolution. We shalltherefore concern ourselves only with the di�erences between external and internal resolution.These di�erences lie mainly in the representation of the modules.A control dictionary is associated with each module to provide the following information:� Length of the module.� Locations of entry points relative to the beginning of the module.� Symbols used to denote entry points and external values.� Fields within the module that represent addresses relative to the beginning of the mod-ule.� Fields within the module that represent external references.Additional information about the size of external areas may also be carried, to supportexternal static data areas such as FORTRAN COMMON.The module length, relative entry point addresses and symbols are used to establishan attribute analogous to label element . Note that this requires a traversal of the listof modules, but not of the individual modules themselves. After this attribute is known,the �elds representing relative and external addresses must be updated. A relative addressis updated by adding the address of the module origin; the only information necessary tocharacterize the �eld is the fact that it contains a relative address. One common way ofencoding this information is to associate relocation bits with the module text. The preciserelationship between relocation bits and �elds depends upon the machine architecture. Forexample, on the PDP11 a relative address occurring in an instruction must occupy one word.We might therefore use one relocation bit per word, 1 indicating a relative address. Notethat this encoding precludes other placement of relative addresses, and may therefore imposeconstraints upon the code generator's mapping of data structures to be initialized by thecompiler.To characterize an external reference we must specify the particular external symbol in-volved in addition to the fact that an external reference occurs in the �eld. The concept of

11.3 Instruction Encoding 243a relocation bit can be extended to cover the existence of an external reference by adding athird state: For a particular �eld the possibilities are `no change', `relative' and `external'.The �eld itself then contains an integer specifying the particular external symbol.There are two disadvantages to this strategy for characterizing external references. Themost important is that it does not permit an address relative to an external symbol, since the�eld must be used to de�ne the symbol itself. Data references, especially those to externalarrays like FORTRAN COMMON, tend to violate this constraint. A second disadvantage isthat the number of relocation bits for every �eld is increased, although only a small minorityof the �elds may actually contain external references. Both disadvantages may be overcomeby maintaining a list of all �elds containing external references relative to a particular symbol.The �eld itself contains the relative address and the symbol address is simply added to it,exactly as a relative address is updated. (This same strategy can be used instead of relocationbits for relative addresses on machines whose architectures tend to make relative addressesinfrequent; the IBM 370 is an example.)The result of the cross-referencing process could be a ready-to-run program, with alladdresses absolute, or it could be single module with relative addresses, entry points andexternal references that can be used as input to further linkage steps. In the latter case, theinput must specify not only the modules to be linked but also the entry points to be retainedafter linkage. External references will be retained automatically if and only if they do notrefer to entry points of other input modules.11.2.2 Library SearchA language such as Ada requires that the semantic analyzer verify the correctness of all inter-module references. Thus during assembly all of the modules needed are already known. Thisis not the case for languages such as FORTRAN. Mathematical subroutines, I/O procedures,environment inquiries and the like are almost always supplied by the installation and placedin a library in target code format. After the �rst traversal of the input module list, externalreferences not corresponding to entry points may be looked up in this library. If a module inthe library has one or more of these symbols as entry points then it is added to the list andprocessed just as though it had come from the input. Clearly more than one library may besearched in the process of satisfying external references; the particular libraries and order ofsearch are speci�ed by the user.A library is often quite large, so it would be ine�cient to scan all of the modules in asearch for entry points. The entry point information is therefore normally gathered into acatalog during the process of constructing the library, and only the catalog is examined toselect appropriate modules. Since the modules of a library may have a high degree of internallinkage, the catalog should also specify the external symbols referenced by each module. Afterthe modules necessary to satisfy user external references have been determined, a transitiveclosure operation adds any others required by those already selected.11.3 Instruction EncodingAfter all attributes of target tree nodes have been computed, the information must be con-verted into target code suitable for execution. This process is similar to the code selectiondiscussed in Section 10.3, but somewhat di�erent speci�cation techniques are appropriate.After discussing an appropriate interface for the target code converter, we shall present anencoding mechanism and a speci�cation language.

244 Assembly11.3.1 Target CodeWe regard the target code as an abstract data type de�ned by eight operations:Module name (identifier string): Establish the name of the module being generated.Module size (length): Specify the length of the block of contiguous memory locations re-quired for the module being generated.Entry point (identifier string): Establish an entry point to the module being generated.Set location (relative address): Specify the load point at which subsequent target codeis to be placed in memory.Absolute text (target text , length): Place encoded target text into memory at the cur-rent load point. The length argument gives the amount of text to be placed. Afterthe text has been placed, the current load point is the point immediately beyond it.Internal reference (relative address): Place an encoded relative address into memoryat the current load point. After the address has been placed, the current load point isthe point immediately beyond it.External reference (offset , identifier string): Place an external reference into mem-ory at the current load point. The offset is the address relative to the external symbolidentifierstring . After the reference has been placed, the current load point is thepoint immediately beyond it.These operations provide the information summarized in Section 11.2, and would consti-tute the interface for a module that actually produced a target code �le. Some manufacturer'ssoftware may place restrictions upon parameter values, and some may provide facilities (suchas repetitions of data values) that cannot be reached via these operations.Module name , module size and entry point all provide speci�c information for thecontrol dictionary. Set location is used to reset the current load point at the beginning of acode sequence. It embodies the `scatter loading' concept in which the target code is broken upinto a number of compact blocks, each of which carries the address at which it is to be placed.These addresses need not be contiguous. We shall consider two speci�c implementations ofthis concept in Section 14.2.Only a small range of length parameters is possible for the absolute text operation onany given machine: There is a �xed set of instruction and instruction fragment lengths, andmost constants have a length dependent only upon their type and not upon their value. Onenotable exception is the string constant, which must be broken into smaller units to be usedwith the absolute text operation.There is no length parameter speci�ed for an internal or external reference. On mostcomputers, relative addresses are only useful as operands of a speci�c length, and hence thatlength is assumed.Absolute text, internal references and external references are distinguished because theymay be represented in very di�erent ways by the manufacturer's software. For a particulartarget computer there may even be several operating systems with quite di�erent targetcode formats. It is therefore wise for the compiler writer to design his target code moduleaccording to the abstract data type given here instead of attempting to merge absolute text ,internal reference and external reference into one operation and inserting relocationbits explicitly.11.3.2 The Encoding ProcessEach target tree node represents a label, storage reservation, constant or abstract machineinstruction. Label nodes are ignored by the encoding process, and storage reservation nodes

11.3 Instruction Encoding 245simply result in invocations of the set location operation. The remaining nodes must beencoded by invoking one or more of the last three operations de�ned in the previous section.Constants may appear as literal values to be incorporated directly into the target code, orthey may be components of address expressions. In the latter case, the result of the expressioncould be used as data or as an operand of an instruction. Literal values must be convertedusing the internal-to-target conversion operations of the constant table (Section 4.2.2), andthen inserted into the target code by absolute text . An address expression is evaluatedas outlined in Exercise 11.9. If the result is used as data then the appropriate target codeoperation is used to insert it; otherwise it is handled by the instruction encoding.In the simplest case the abstract instructions correspond to unique operation codes of thereal machine. In general, however, the correspondence is not so simple: One abstract opera-tion can represent several instructions, or one of several operation codes could be appropriatedepending upon the operand access paths. Decisions are thus made during instruction en-coding on the basis of the abstract operator and the attributes of the operand(s) just as inthe case of code generation.The basic instruction encoding operations are called formats. They are procedures thattake sets of values and add them to the target code so that the result is a single instruction.These procedures sometimes correspond to the instruction formats recognized by the targetmachine's control unit, and hence their name. In many cases, however, the instruction formatshows regularities that can be exploited to reduce the number of encoding formats. Forexample, the �ve instruction formats of the IBM 370 (Figure 11.5a) might correspond to onlythree encoding formats (Figure 11.5b).RR opcode R1 R2RX opcode R1 X2 B2 D2RS opcode R1 R3 B2 D2SI opcode I2 B1 D1SS opcode L1 L2 B1 D1 B2 D2a) Instruction formatsFR opcode R1 R2FI opcode IFM B Db) Encoding formatsFigure 11.5: IBM 370 FormatsAn instruction is encoded by calling a sequence of one or more format-encoding proce-dures. The process can be described in a language resembling a normal macro assemblylanguage. Figure 11.6 shows a portion of a description of the IBM 370 instruction encod-ing cast in this form. Each macro body speci�es the sequence of format invocations, usingconstants or macro parameters (denoted by the character `%' followed by the position of theparameter) as arguments. A separate directive, NAME, is used to associate the macro bodywith an instruction because many instructions can often use the same encoding procedure.

246 AssemblyAR NAME 1AHSR NAME 1BHMACRO ; Register,RegisterFR %0,%1,%2ENDMA NAME 5AHS NAME 5BHMACRO ; Register,Memory,IndexFR %0,%1,%3FM %2ENDMAP NAME 0FAHSP NAME 0FBHMACRO ; Memory,Length,Memory,LengthFR %0,%2,%4FM %1FM %3ENDMNote: Su�x `H' denotes hexadecimal.Figure 11.6: IBM 370 Instruction EncodingNAME directives may specify an argument, which becomes parameter 0 of the macro. InFigure 11.6 the NAME directive has been used to supply the hexadecimal operation code foreach instruction. (A hexadecimal constant begins with a digit and ends with `H'.) We use theIBM mnemonics to denote the instructions; in practice these macros would be representedby tables and the node type of an abstract operation would appear in place of the symbolicoperation code.Formal parameters of the macros in Figure 11.6 are described by comments. (Stringsfollowing `;' on the same line are comments.) The corresponding actual parameters are theoperands of the target tree node, and their values will have been established during codegeneration or address resolution. Note that a `memory' operand includes its base register butnot an index register. Thus the `FM' format takes a single memory address and encodes itas a base and displacement. This reects the fact that the index register is assigned by thecode generator, while the base register is determined during assembly. In other words, theabstract IBM 370 from which these macros were derived did not have the concept of a basedaccess.Consider the LAX expression a + b " [c]. If a were in register 1, b " in register 2 andc (multiplied by the appropriate element length) in register 3 then the addition could beperformed by a single IBM 370 add instruction with R1 = 1, B2 = 2, X2 = 3 and D2 adisplacement appropriate to the lower bound of the array being referenced. Given the macrosof Figure 11.6, however, this instruction could not be encoded because the abstract machinehas no concept of a based access. Clearly one solution to this problem is to give FM twoarguments and make the base register explicit in the abstract machine; another is to providethe abstract machine with two kinds of memory address: one in the code sequence and theother in data memory. We favor the latter solution because these two kinds of memory addressare speci�ed di�erently. The code generator de�nes the former by a label and the latter bya base register and displacement. The assembler mustpick a base register for the former but

11.3 Instruction Encoding 247A NAME 5AHS NAME 5BHMACRO ,LABEL ; Register,Memory,IndexFR %0,%1,%3FM1 %2ENDMMACRO ; Register,Base,Index,DisplacementFR %0,%1,%3FM2 %2,%4ENDM a) Selection of di�erent macrosA NAME 5AHS NAME 5BHMACRO ; Either patternFR %0,%1,%3IF @%2=LABELFM1 %2ELSEFM2 %2,%4ENDIFENDMb) Conditional within a macroFigure 11.7: Two Memory Operand Typesnot the latter. Because of these di�erences it is probably useful to have distinct target nodeformats for the two cases.Figure 11.7 shows a modi�cation of the macros of Figure 11.6 to allow our second solution.In Figure 11.7a the add instruction is associated with two macro bodies, and the attribute ofone of the parameters of the �rst is speci�ed. The speci�cation gives the attribute that theoperand must possess if this macro is to be selected. By convention, the macros associatedwith a given name are checked in the order in which they appeared in the de�nition; param-eters with no speci�ed attributes match anything. Figure 11.7b combines the two bodies,using a conditional to select the proper format invocation. Here the operator `@' is used toselect the attribute rather than the value of the parameter. This emphasizes the fact thatthere are two components of an operand, attribute and value, which must be distinguished.What constitutes an attribute of an operand, and what constitutes a value? These ques-tions depend intimately upon the design of the abstract machine and its relationship to theactual target instructions. We shall sketch a speci�c mechanism for de�ning and dealing withattributes as an illustration.The value and attribute of an operand are arbitrary bit patterns of a speci�ed length.They may be accessed and manipulated individually, using the normal arithmetic and bitwise-logical operators. Any expression yields a value consisting of a single bit pattern. Twoexpressions may be formed into a value/attribute pair by using the quote operator: e1"e2.(See Figure 11.8 for examples.) An operand is compatible with a parameter of a macro if thefollowing expression yields true :(@operand and @parameter) = parameterThus the operand R2 would be compatible with the parameters R2, EVENGR and GENREG

248 AssemblyANY SET 0"0 ; Any operandLABEL SET 10H"10H ; Code sequence memory operandEVENGR SET 20H"21H ; Even-numbered general registerODDGR SET 21H"21H ; Odd-numbered general registerGENREG SET 20H"20H ; Any general registerR0 SET 0"20H ; General register 0R1 SET 1"21H ; General register 1R2 SET 2"22H ; General register 2R3 SET 3"23H ; General register 3a) Symbol de�nitionsLABEL = 10H@LABEL = 10HR0+1 = 1@R0-1 = 17HR1+@LABEL = 11H@R3 and @EVENGR = 21H@R3 and @ODDGR = 21Hb) ExpressionsFigure 11.8: Values and Attributesin Figure 11.8; it would not be compatible with ODDGR or LABEL. Clearly any operand iscompatible with ANY, and it is this object that is supplied when a parameter speci�cationis omitted.Macro languages similar to the one sketched here have been used to specify instructionencoding in many contexts. Experience shows that they are useful, but if not carefully imple-mented can lead to very slow processors. It is absolutely essential to implement the formatsby routines coded in the implementation language of the compiler. Macros can be interpreted,but the interpretive code must be compact and carefully tailored to the interpretation pro-cess. The normal implementation of a macro processor as a string manipulator is inadequate.Names should be implemented as a compact set of integers so that access to lists of macrobodies is direct. Since the number of bodies associated with a name is usually small, linearsearch is adequate. Note that a tradeo� is possible between selection on the basis of the nameand selection on the basis of attributes.As a by-product of the encoding, it is possible to produce a symbolic assembly code versionof the program to aid in the debugging and maintenance of the compiler itself. If the macronames are speci�ed symbolically, as in Figures 11.6 and 11.7, these can be used as symbolicoperation codes in the listing. The uid that appears as an intrinsic attribute of the labelnodes can be converted into a normal identi�er by pre�xing a letter. Only constants needspecial treatment: a set of target value-to-character conversion procedures must be provided.11.4 Notes and ReferencesAssembly is seldom provided as a cleanly-separated module that can be invoked by anycompiler. Exceptions to this rule are IBSYS [Talmadge, 1963] and EMAS [Stephens,1974] both of which contain standard assembly modules. The IBSYS assembler requires thetarget code tree to reside on a sequential �le, while EMAS makes a collection of assemblyprocedures available as part of the standard library. IBM chose not to follow the IBSYS

11.4 Notes and References 249example in OS/360, probably because of complaints about performance degradation due tothe need to explicitly write the target code tree.The idea of using separate code sequences instead of speci�c storage reservation nodesin the target tree was discussed by Mealy [1963]. Talmadge [1963] shows how complexaddressing relationships among sequences can be implemented. His philosophy was to providecomplete exibility in the assembler (which was written once for each machine) in order toreduce e�ort that would otherwise be duplicated in every compiler. In practice, it seemsthat the duplicated e�ort is generally required to support quality code generation. Thus thecomplexity does not occur in target code produced by a compiler, but it is often found insymbolic assembly code produced by human programmers.Several `meta-assemblers' have been proposed and used to implement symbolic assemblylanguages. These systems provide mechanisms for specifying the instruction encoding processin terms of formats and macros as discussed in Section 11.3.2. Most of the basic ideas arecovered by Graham and Ingerman [1965] but the concept of including attributes in thepattern match does not occur until much later. [Language Resources, 1981]. The problemof span-dependence has been studied by a number of authors. Our treatment follows that ofHangelberger [1977] and Szymanski [1978] and is specially adapted for use in a compiler.In symbolic assemblers, more complex address expressions may appear and the order of thealgorithm may be altered thereby.Exercises11.1 Complete Figure 11.1 by adding rules to describe address expressions and constructthe attribute expression.expr .11.2 [Galler and Fischer, 1964] Consider the problem of mapping storage described byFORTRAN COMMON, DIMENSION, EQUIVALENCE and DATA statements ontoa sequence of contiguous blocks of storage (one for each COMMON area and one forlocal variables).(a) How can these statements be translated into a target tree of the form discussedin Section 4.1.4 and Figure 11.1?(b) Will the translation you describe in (a) ever produce more than one arbitrary -origin sequence? Carefully explain why or why not.(c) Does your target tree require any processing by the assembler in addition to thatdescribed in Section 11.1.1? If so, explain why.11.3 [Talmadge, 1963] Consider the concatenation of all arbitrary -origin sequences dis-cussed in Section 11.1.1.(a) Write a procedure to determine the length of an arbitrary -origin sequence.(b) Write a procedure to scan origin env , �nding two arbitrary -origin sequencesand concatenating them by altering the origin element record for the second.11.4 Consider the implementation of the span-dependence algorithm of Section 11.1.2.(a) Show that the algorithm has running time proportional to n2 in the worst case,where n is the number of span-dependent instructions.(b) De�ne a relocation table entry and write the update routine mentioned in step(5) of the algorithm.

250 Assembly11.5 [Szymanski, 1978] Modify the span-dependence analysis to allow target expressions ofthe form label � constant .11.6 Consider the code basing problem of Section 11.1.3.(a) De�ne any attributes necessary to maintain the state of q within a code sequence,and modify the rules of Figures 11.1 and 11.3 to include them.(b) Explain how the operations too short and lengthen (Section 11.1.2) must bealtered to handle this case. Would you prefer to de�ne other operations instead?Explain.11.7 [Robertson, 1979] The Data General Nova has an 8-bit address �eld, addressingrelative to the program counter is allowed, and any address may be indirect. Constantsmust be placed in the code sequence within 127 words of the instruction that referencesthem. If a jump target is further than 127 words from the jump then the address mustbe placed in the code sequence as a constant and the jump made indirect. (The size ofthe jump instruction is the same in either case.)(a) Give an algorithm for placing constants that takes advantage of any unconditionaljumps already present in the code, placing constants after them.(b) Indicate how the constant blocks might be considered span-dependent instruc-tions, whose size varies depending upon whether or not they contain jump targetaddresses.(c) Show that the problem of optimizing the span-dependence in (b) is NP-complete.11.8 [Talmadge, 1963] Some symbolic assemblers provide `multiple location counters',where each location counter de�nes a sequence in the sense of Section 11.1.1. Pseudooperations are available that allow the user to switch arbitrarily from one locationcounter to another.(a) Show how a target tree could represet arbitrary sequence changes by usinginternally-generated labels to associate `pieces' of the same sequence.(b) Some computers (such as the Control Data Cyber series) have instructions thatare smaller than a single memory element, but an address refers only to an entirememory element. How could labels be represented for such a machine? How doesthe choice of label representation impact the solution to (a)?(c) What changes to Figure 11.1 would be needed if we chose not to represent arbitrarysequence changes by internally-generated labels, but instead gave every `piece' ofthe same sequence the same uid ?(d) If we used the representation for sequences suggested in (c), how would the answerto (b) change?11.9 The ultimate value of an address embedded in the target code must be either a numberor a pair (external symbol, number). A number alone may represent either a numeric14operand or a relative address.(a) Suppose that A, B and C are labels. What form does the value of (A+B)-C take?Why is (A+B)+C a meaningless address expression?(b) Specify an attribute that could be used to distinguish the cases mentioned in (a).(c) If A were an external symbol, would your answer to (a) change? Would youranswer to (b) change? How?(d) Would you allow the expression (A+B)-(A+C), A an external symbol, B and Clabels? What form would its value take?

11.4 Notes and References 251(e) Use an attribute grammar to de�ne the language of legal address expressions.Make the value of the expression an attribute of the root.11.10 [Hedberg, 1963] What requirements are placed upon the external address resolutionprocess by FORTRAN COMMON blocks? Quote the FORTRAN standard to supportyour position, and then explain how these requirements might be satis�ed.11.11 Suppose that the target machine provided an instruction to add an immediate value toa register, but none to subtract an immediate value from a register. The addition is,however, a 2's complement addition so that subtraction can be accomplished by addingthe complement of an immediate value. How would you provide the complement of arelative address as an immediate operand?11.12 [General Electric Company, 1965] Several utility modules may require the samesupport functions, but optimizations may arise from integrating these support functionswith the utility modules. The result is that several modules may have identical entrypoints for the support functions but di�er in other entry points. Devise a library catalogthat will distinguish between primary and secondary entry points: A module will beselected only if one or more of its primary entry points corresponds to an unsatis�edexternal reference. Once a module has been selected, however, secondary entry pointscan be used to satisfy external references. Comment upon any user problems youforesee.

252 Assembly

Chapter 12Error HandlingError handling is concerned with failures due to many causes: errors in the compiler or itsenvironment (hardware, operating system), design errors in the program being compiled, anincomplete understanding of the source language, transcription errors, incorrect data, etc.The tasks of the error handling process are to detect each error, report it to the user, andpossibly make some repair to allow processing to continue. It cannot generally determinethe cause of the error, but can only diagnose the visible symptoms. Similarly, any repaircannot be considered a correction (in the sense that it carries out the user's intent); it merelyneutralizes the symptom so that processing may continue.The purpose of error handling is to aid the programmer by highlighting inconsistencies.It has a low frequency in comparison with other compiler tasks, and hence the time requiredto complete it is largely irrelevant, but it cannot be regarded as an `add-on' feature of acompiler. Its inuence upon the overall design is pervasive, and it is a necessary debuggingtool during construction of the compiler itself. Proper design and implementation of an errorhandler, however, depends strongly upon complete understanding of the compilation process.This is why we have deferred consideration of error handling until now.It is perhaps useful to make a distinction between the correctness of a system and itsreliability. The former property is derived from certain assumptions regarding both the prim-itives upon which the system is based and the inputs that drive it. For example, programveri�cation techniques might be used to prove that a certain compiler will produce correctobject programs for all source programs obeying the rules of the source language. This wouldnot be a useful property, however, if the compiler collapsed whenever some illegal sourceprogram was presented to it. Thus we are more interested in the reliability of the compiler:its ability to produce useful results under the weakest possible assumptions about the qualityof the environment, input data and human operator. Proper error handling techniques con-tribute to the reliability of a system by providing it with a means for dealing with violationsof some assumptions on which its design was based. (Theoretically, of course, this could beregarded simply as a relaxation of those assumptions; pragmatically, techniques for achievingcorrectness and reliability are quite di�erent.)We shall begin this chapter by considering some general principles of error handling. Adistinction will be made between errors detectable at compilation time and errors whosesymptoms do not appear until execution time. The compiler must deal with those in theformer class directly, and must provide support for the run-time system that allows it tohandle those in the latter class. Section 12.2 further classi�es compiler-detected errors, andexplains methods of recovering from erroneous input in order to obtain as much diagnosticinformation as possible from a single run. Support for run-time error handling is consideredin Section 12.3. 253

254 Error Handling12.1 General PrinciplesThe class of detectable errors is determined by the design of the programming language, notthe design of the compiler. An error handler should recognize and repair all detectable errorsoccurring in a program. Unfortunately, this goal often conicts with the principle that acorrect program should pay nothing for error handling. One compromise is to subdivide thedetectable errors into several classes and proceed in a stepwise fashion: The detection oferrors in di�erent classes is provided for by distinct options in the compiler or controlled byadditional monitoring code during execution.Almost by de�nition, error handling involves a mass of special cases and exceptions torules. It is thus very di�cult to provide any sort of clean, theoretical foundation for thisaspect of the compilation process. What we shall try to do in this section is to classify errorsand outline the broad strategies useful in dealing with these classes.12.1.1 Errors, Symptoms, Anomalies and LimitationsWe distinguish between the actual error and its symptoms. Like a physician, the error handlersees only symptoms. From these symptoms, it may attempt to diagnose the underlyingerror. The diagnosis always involves some uncertainty, so we may choose simply to report thesymptoms with no further attempt at diagnosis. Thus the word `error' is often used when`symptom' would be more appropriate.A simple example of the symptom/error distinction is the use of an undeclared identi�erin LAX. The use is only a symptom, and could have arisen in several ways:� The identi�er was misspelled on this use.� The declaration was misspelled or omitted.� The syntactic structure has been corrupted, causing this use to fall outside of the scopeof the declaration.Most compilers simply report the symptom and let the user perform the diagnosis.An error is detectable if and only if it results in a symptom that violates the de�nition ofthe language. This means that the error handling procedure is dependent upon the languagede�nition, but independent of the particular source program being analyzed. For example,the spelling errors in an identi�er will be detectable in LAX (provided that they do not resultin another declared identi�er) but not in FORTRAN, which will simply treat the misspellingas a new implicit declaration.Our goal in implementation should be to report each detectable error at the earliestopportunity. If the symptom can be noticed at compile time, then we should do so. Somecare must be taken, however, not to report errors before their symptoms occur. For example,the LAX expression (1/0) conforms to the syntax and static semantics of the language; thesymptom `division by zero' only occurs when the expression is actually evaluated duringexecution. It is important that the compiler not report an error in this case, even though itmight detect the problem (say, while folding constants). The reason is that this expressionmay never actually be evaluated, and hence the program may not be incorrect at all. (Anotherpossibility is that the programmer is attempting to force an execution-time error, perhaps tocheck out a new recovery mechanism.)We shall use the term anomaly to denote something that appears suspicious, but that wecannot be certain is an error. Anomalies cannot be derived mechanically from the languagede�nition, but require some exercise of judgement on the part of the implementor. As expe-rience is gained with users of a particular language, one can spot frequently-occurring errors

12.1 General Principles 255endi := 1;a) A legal fragment of an ALGOL 60 programend;i := 1;b) The probable intent of (a)for i := 1 step 1 until 2 � n+ 1c) A probable ine�ciency in SIMULAFigure 12.1: Anomaliesand report them as anomalies before their symptoms arise. An example of such a case is thefragment of ALGOL 60 shown in Figure 12.1a. Since ALGOL 60 treats text following endas a comment (terminated by else, end or ;), there is no inconsistency here. However, theappearance of := in the comment makes one suspicious that the user actually intended thefragment of Figure 12.1b. Many ALGOL 60 compilers will therefore report an anomaly inthis case.Note that a detectable error may appear as an anomaly before its symptoms arise: ALAX compiler could report the expression (1=0) as an anomaly even though its symptomswould not be detected until execution time. Reports of anomalies therefore di�er from errorreports in that they are simply warnings that the user may choose to suppress.Anomalies may be reported even though there is no reason whatever to believe thatthey represent true errors; some compilers are quite prepared to simply comment on theprogrammer's style. The SIMULA compiler for the Univac 1108, for example, diagnosesFigure 12.1c as poor style because { as in ALGOL 60 { the upper limit of the iteration isevaluated 2n + 1 times even though its value probably does not change during execution ofthe loop. Such reports may also be used to call the programmer's attention to nonstandardconstructs supported by the particular system on which he is running.A particular implementation normally places some limitations on the language de�nition,due to the �nite resources at its disposal. (Examples include the limitation of �nite-precisionarithmetic, a limit on the number of identi�ers in a program, the number of dimensions inan array or the maximum depth of parentheses in an expression.) Although violations ofimplementation-imposed constraints are not errors in the sense discussed above, they havethe same e�ect for the user. A major design goal is therefore to minimize the number of suchlimitations, and to make them as `reasonable' as possible. They should not be imposed lightly,simply to ease the task of the implementor, but should be based upon a careful analysis ofthe cost/bene�t ratio for user programs.12.1.2 ResponsesWe distinguish three possible levels of response to a symptom:1. Report: Provide the user with an indication that an error has occurred. Specify thesymptom, locate its position precisely, and possibly attempt a diagnosis.2. Recover: Make the state of the process (compilation, execution) consistent and continuein an attempt to �nd further errors.3. Repair: On the basis of the observed symptom, attempt a diagnosis of the error. Ifcon�dent that the diagnosis is correct, make an appropriate alteration in the programor data and continue.

256 Error HandlingBoth the compiler and the run-time system must at least report every symptom theydetect (level 1). Recovery (level 2) is generally provided only by the compiler, while repairmay be provided by either. The primary criterion for recovery techniques is that the systemmust not collapse, since in so doing it may take the error message (and even the preciselocation of the symptom) with it. There is nothing more frustrating than a job that abortswithout telling you why!A compiler that reports the �rst symptom detected and then terminates compilation is notuseful in practice, since one run would be needed for each symptom. (In an interactive setting,however, it may be reasonable for the compiler to halt at the �rst symptom, requiring theprogrammer to deal with it before continuing.) The compiler should therefore recover fromalmost all symptoms, allowing detection of as many as possible in a single run. Some errors(or restrictions) make it impossible for the compiler to continue; in this case it is best to givea report and terminate gracefully. We shall term such errors deadly, and attempt to minimizetheir number by careful language and compiler design.Recovery requires that the compiler make some alteration of its state to achieve con-sistency. This alteration may cause spurious errors to appear in later text that is actuallycorrect. Such spurious errors constitute an avalanche, and one of the major design criteriafor a recovery scheme is to minimize avalanches. We shall discuss this point in more detail inSection 12.2.If the compiler is able to diagnose and repair all errors with a high probability of success,then the program could safely be executed to permit detection of further errors. We must,however, be quite clear that a repair is not a correction. Much of the early literature on thissubject used these terms interchangeably. This has unfortunate connotations, particularly forthe novice, indicating that the compiler is capable of actually determining the programmer'sintent.Repair requires some circumspection, since the cost of execution could be very high andthe particular nature of the repair could render that execution useless or could cause it todestroy important data �les. In general, repair should not be attempted unless the userspeci�cally requests it.As in the case of recovery, we may classify certain errors as uneconomic or impossibleto repair. These are termed fatal, and may cause us to refuse to execute the program. If aprogram containing a fatal error is to be executed, the compiler should produce code to abortthe program when the error location is reached.12.1.3 Communication with the UserThe program listing is the primary document linking the user and the compiler. At a min-imum, the listing reproduces the source program that the compiler translated; it may alsoprovide indexes and cross-references to data items, labels and procedures. All error reportsmust indicate the relevant position of the symptom on the listing in addition to describingthe symptom.As indicated in Figure 1.3, the compiler itself should not produce the program listing. Aseparate listing editor uses the original source text and a compiler-generated error report �leto create the listing. Each error report speci�es the error number and a source text position.The reports are sorted according to source text position either by the compiler or by thelisting editor. As the listing editor creates the listing, it inserts the full text of the errormessage at the error location. A standard format, which causes the message to stand outin the listing, should be used: Special characters, printed in some part of the print line thatis normally blank, act as a ag. The position of the symptom is clearly marked, and theremainder of the line contains a brief description. This description should be readable (in the

12.1 General Principles 257user's natural language), restrained and polite. It should be stated in terms of what the userhas done (or not done) rather than in terms of the compiler's internal state. If the compilerhas recovered from the error, the nature of the recovery should be made clear so that anyresulting avalanche will be understandable.Ideally, error reports should occur in two places: at the point where the compiler noticedthe symptom, and in a summary at the end of the program. By placing a report at the pointof detection, the compiler can identify the coordinates of the symptom in a simple mannerand spare the programmer the task of switching his attention from one part of the listing toanother. The summary report directs the programmer to the point of error without requiringhim to scan the entire listing, reducing the likelihood that errors will be missed.Compiler error reports may be classi�ed into several levels according to severity:1. Note2. Comment3. Warning4. Error5. Fatal error6. Deadly errorLevels 1-3 are reports of anomalies: Notes refer to nonstandard constructs, and are onlyimportant for programs that will be transported to other implementations; comments criticizeprogramming style; warnings refer to possible errors. The remaining levels are reports ofactual errors or violations of limits. Errors at level 4 can be repaired, fatal errors suppressproduction of an executable program (but the compiler will recover from them), and deadlyerrors cause compilation to terminate.The user should be able to suppress messages below a given severity level. Both the defaultseverity cuto� and the number of reports possible on each level will vary with the design goalsof the compiler. A compiler for use in introductory programming courses should probablyhave a default cuto� of 0 or 1, and produce a plethora of comments and warnings; one foruse in a production operation with a single type of computer should probably have a cuto�of 3, and do very little repair. The ability to vary these characteristics is a key component inthe adaptability of a compiler.The programmer's ability to cope with errors seems to be inversely proportional to thedensity of errors. If the error density becomes very large, the compiler should probablyabandon the program and let the programmer deal with those errors found so far. (There isalways the chance that a job control error has been made, and the `program' is really a data �leor a program in another language!) It is di�cult to state a precise criterion for abandonment,but possibly one should consider this response when the number of errors exceeds one-tenthof the number of lines processed and is greater than 10.The error report �le is maintained by a module that provides a single operation:Error (position, severity, code)position: The source text position for the message.severity: One of the numbers 1-6, as discussed above.code: An integer defining the error.There is no need to supply additional information, such as symbols or context, in theerror report. For example, if the symptom is that a particular symbol is unde�ned, we donot need to include the symbol. This is because the position is located precisely, and themessage points directly to the symbol for which there is no de�nition. Further, the positiongiven by the report need not be the position reached by the lexical analyzer at the time the

258 Error Handlingerror was detected. We can retain position information for certain constructs and then usethat information later when we have su�cient context to diagnose an error. For example,suppose that a label was declared in a Pascal program and then never used. The error wouldbe diagnosed at the end of the procedure declaring the label, but we would give the positionof the declaration in the report and therefore the message `label never used' would pointdirectly to the declaration.12.2 Compiler Error RecoveryAll errors detected at compile time are detected during analysis of the source program. Dur-ing program synthesis, we can detect only compiler errors or violations of limits; these areinvariably fatal, and do not interest us in this section. Errors detected during analysis can beclassi�ed by the analysis task being carried out at the time:� Lexical. Errors in token formation, such as illegal characters or misspelled keywords.� Syntactic. Errors in structure formation, such as missing operators or parentheses.� Semantic. Errors in agreement, such as operands whose types are incompatible withtheir operator, or undeclared variables.If recovery is to be achieved, each analysis task must repair the errors it detects and passa consistent result to the next task. Unfortunately, this repair may be less than perfect;it usually leads to a local repair, rather than a repair in the sense of Section 12.1.2 andoften results in detection of related errors by subsequent tasks that have more contextualinformation.Any recovery scheme must be based upon redundant information present in the program.The higher the redundancy, the easier and more certain recovery will be. Since the amountof structure available to the error recovery procedure increases signi�cantly from the lexicallevel to the semantic level, competent semantic error recovery is considerably easier thancompetent recovery from lexical errors. We shall therefore begin by discussing recovery fromsemantic errors and work our way back through syntactic errors to lexical errors.12.2.1 Semantic ErrorsSemantic errors are detected when conditions embedded in the attribute grammar of thelanguage yield false. Recovery from semantic errors is simply a function of the attributegrammar itself. In Chapter 8 we emphasized the importance of guaranteeing that all attributesare de�ned under all circumstances, and noted that this implied the introduction of specialerror values for some attributes.If the attributes of an item can be determined unambiguously then the compiler canwork with the correct attributes after an error has been detected. This occurs in LAX withmultiple de�nitions of an identi�er in a range, possibly as a �eld selector or formal parameter.Operands on the right hand sides of identity declarations and assignments provide anotherexample, as do situations in which the operator fully determines the type of the requiredoperand(s). Finally, we have type declarations for which the storage requirements cannot bedetermined:type t = record a : integer; b : t end.The recovery is more di�cult if several attributes inuence the choice, or if the erroneoussymbol is not unambiguously determined. Consider the case of a binary operator indication,

12.2 Compiler Error Recovery 259none of whose associated operators is consistent with the pattern of operand types given. Thissymptom could result from an error in one of the operand expressions, or from an erroneousoperator indication. There is no way to be certain which error has occurred, although theprobability of the former is enhanced if one of the operands is consistent with some operatorassociated with the indication. In this case, the choice of operator should be based upon theconsistent operand, and might take into account the use of the result. If this choice is notcorrect, however, spurious errors may occur later in the analysis. To prevent an avalanchein this case, we should carry along the information that a semantic error has been repaired.Further error messages involving type mismatches of this result should then be suppressed.Another important class of semantic error is the undeclared identi�er. We have alreadynoted (Section 12.1.1) that this error may arise in several ways. Clearly we should producean error message if the problem was that the identi�er was misspelled on this use, but ifthe declaration were misspelled or omitted the messages attached to each use of the variableconstitute an avalanche, and should be suppressed.In order to distinguish between these cases, we might set up a de�nition table entry for theundeclared identi�er specifying as many properties as could be determined from the contextof the use. Subsequent occurrences could then be used to re�ne the properties, but errormessages would not be issued unless the properties were inconsistent. This strategy attemptsto distinguish the cases on the basis of frequency of use of an identi�er: At the �rst use anerror will be reported; thereafter we assume that the declaration is missing or erroneous anddo not make further reports. This method works well in practice. It breaks down when theprogrammer chooses an identi�er susceptible to a consistent misspelling, or when the textis entered into the machine by a typist prone to a certain type of error (usually a charactertransposition or replacement).The speci�c details of the consistency check are language dependent. As a concrete ex-ample, consider the algorithm used by the Whetstone Compiler for ALGOL 60 [Randelland Russell, 1964]. (There the algorithm is not used to suppress avalanches, but ratherto resolve forward references to declared identi�ers in a one-pass compilation.) The Whet-stone Compiler created a property set upon the �rst use of an (as yet) undeclared identi�er,with each element specifying a distinct property that could be deduced from local context(Table 12.1). The �rst three elements of Table 12.1 determine the form of the use, while theremaining nine elements retain information about its context. For each successive occurrence,a new set A0 was established and checked for consistency with the old one, A: The union ofthe two must be identical to either set (e.g. A must be a subset of A0 or A0 must be a subsetof A). If A0 is a superset of A, then the new use provides additional information.Suppose that we encounter the assignment p := q where neither p nor q have been seenbefore. We deduce that both p and q must have the form of simple variables, and thatvalues could be assigned to each; the type must therefore be real, integer or Boolean. Ifthe assignment r := p + s; were encountered later, we could deduce that p must possess anarithmetic (i.e. real or integer) value. This use of p is consistent with the former use, andprovides additional information. (Note that the same deduction can be applied to q, but thisrelationship is a bit too devious to pursue.) Figures 12.2a and 12.2b show the sets establishedfor the �rst and second occurrences of p. If the statement p[i] := 3; were now encountered,the union of Figure 12.2c with Figure 12.2b would indicate an inconsistency.If a declaration is available, we are usually not able to accept additional information aboutthe variable. There is one case in ALGOL 60 (and in many other languages) in which thedeclaration does not give all of the necessary information: A procedure used as a formalparameter might or might not have parameters of its own, so the declaration does not specifywhich of the properties fsimple; procg should appear (Figure 12.2d). That decision must bedeferred until a call of the procedure is encountered.

260 Error HandlingProperty Meaningsimple The use takes the form of a simple variable.array The use takes the form of an array reference.proc The use takes the form of a procedure call.value The object may be used in a context where a value is required.variable The object has a Boolean value.arithmetic The object has an arithmetic (i.e. integer or real) value.Boolean The object has a Boolean value.integer The object has an integer value.location The object is either a label or a switch.normal The object is not a label, switch or string.string The object is a string.nopar The object is a parameterless procedure.Table 12.1: Identi�er Properties in the Whetstone ALGOL Compilerfsimple; value; variablega) Property set for both p and q derived from p := qfsimple; value; variable; arithmeticgb) Property set for p derived from r := p+ s;farray; value; variablegc) Property set for p derived from p[i] := 3;procedure x(p); procedure p;d) A declaration that leaves properties unspeci�edFigure 12.2: Consistency Checks12.2.2 Syntactic ErrorsA syntactic error is one resulting in a program that is not a sentence in the (context-free)language being compiled. Recovery from syntactic errors can change the structure of theprogram and the entire semantic analysis. (Lexical errors with such far-reaching consequencesare considerably rarer.)Consider the grammar G = (N;T; P; Z) for the source language L. If we think of theelements of T � as being points in space, we might ask which sentence is `closest' to theerroneous program. We would then take this sentence as the correct version of the program,and de�ne the error as the transformation that carries the correct program into the incorrectone. This approach is called minimum-distance correction, and it requires that we de�ne ametric on the T � space. One way of de�ning this metric is to regard every transformation asa sequence of elementary transformations, each corresponding to a distance of 1. The usualelementary transformations are:� Insert one symbol� Delete one symbol� Replace one symbol by anotherGlobal minimum-distance correction, which examines the entire program, is currentlyimpractical. Moreover, a minimum-distance correction is often not the best: The minimum-distance correction for an ALGOL 60 statement containing more than one error would be

12.2 Compiler Error Recovery 261to precede it with comment! For ALGOL-like languages simpler methods that can changemore symbols are often superior. On the other hand, global minimum-distance correctionminimizes avalanches.The symptom of a syntactic error is termed a parser-de�ned error. Since we parse aprogram deterministically from left to right, the parser-de�ned error is the �rst symbol t suchthat ! is a head of some string in the language, but !t is not. For example, the string !of Figure 12.3a is certainly a head of a legal FORTRAN program, which might continue asshown in Figure 12.3b. If t is the end-of-statement marker, #, then !t is not the head ofany legal program. Hence # constitutes a parser-de�ned error. Possible minimum-distancecorrections are shown in Figure 12.3d. From the programmer's point of view, the �rst hasthe highest probability of being a correct program. This shows that a parser-de�ned errormay not always coincide with the point of the error in the user's eyes. This is especially truefor bracketing errors, which are generally the most di�cult to repair.DO 10 I = J(K,La) A head, !, of a FORTRAN program!)#�b) A possible continuation (# is end-of-statement)!#�c) A parser-de�ned errorDO 10 I = J,K,LDO 10 I = J(K,L)d) Two minimum-distance correctionsFigure 12.3: Syntax ErrorsAd hoc parsing techniques, and even some of the older formal methods, may fail to detectany errors at all in certain strings not belonging to the language. Other approaches (e.g. simpleprecedence) may delay the point of detection arbitrarily. The LL and LR algorithms willdetect the error immediately, and fail to accept t. This not only simpli�es the localization ofthe symptom in the listing, but also avoids the need to process any syntactically incorrect text.Recovery is eased, since the immediate context of the error is still available for examinationand alteration.If !t� 2 (T � � L) is an erroneous program with parser-de�ned error t, then to e�ectrecovery the parser must alter either ! or t� such that !0t� 2 L or !t0�0 2 L. Alteration of !is unpleasant, since it may involve undoing the e�ects of connection points. It will also slowthe processing of correct programs to permit backtrack when an error is detected. Thus weshall only consider alteration of the erroneous symbol t and the following string �.Our basic technique will be to recover from each error by the following sequence of steps:1. Determine a continuation, �, such that !� 2 L.2. Construct a set of anchors D = fd 2 T j � is a head of � and !�d is a head of somestring in Lg.3. Find the shortest string � 2 T � such that t� = �t00�0; t00 2 D.4. Discard � from the input string and insert the shortest string � 2 T � such that !�t00 isa head of some string in L.5. Resume the normal parse.

262 Error HandlingThis procedure can never cause the error recovery process to loop inde�nitely, since atleast one symbol (t00) of the input string is consumed each time the parser is restarted. Notealso that it is never necessary to actually alter the input string during step (4); the parseris simply advanced through the required steps. A dummy symbol of the appropriate kind iscreated at each symbol connection encountered during this advance.The sequence of connection points reported by the parser is always consistent when thiserror recovery technique is used. Semantic analysis can therefore proceed without checkingfor inconsistent input. Generated symbols, however, must be recognized as having arbitraryattributes. This is guaranteed by using special `erroneous' attribute values as discussed inthe previous section.It is clear from the example of Figure 12.3 that we can make no claim regarding the`correctness' of the continuation determined during step (1). The quality of the recovery in theeyes of the user depends upon the particular continuation chosen, but it seems unlikely that wewill �nd an algorithm that `optimizes' this choice at acceptable cost. We therefore advocatea process that can be incorporated into a parser generator and applied automatically withoutany e�ort on the part of the compiler writer. The most important bene�t is a guaranteethat the parser will recover from all syntactic errors, presenting only consistent input to thesemantic analyzer. This guarantee cannot be made with ad hoc error recovery techniques.P = fZ ! E#,E ! FE0,E0 ! +FE0, E0 ! �,F ! i, F ! (E)ga) Productions of the grammarZ ! E#E ! FE0E0 ! �F ! ib) Designated productions�q0i! q1q2i, q0(! q1q2(,�q1 ! �,�q2i! q3q4i, q2(! q3q5(,�q3#! q6q7#, q3)! q6q7), q3+! q6q8+,�q4i! q9,�q5(! q10,�q6 ! �,�q7 ! �,�q8+! q11,�q9 ! �,�q10i! q12q2i, q10(! q12q2(,�q11i! q13q4i, q11(! q13q5(,�q12)! q14,�q13#! q15q7#, q13)! q15q7), q13+! q15q8+,�q14 ! �,�q15 ! �c) The transitions of the parsing automaton (compare Figure 7.4)Figure 12.4: Adding Error Recovery to an LL(1) Parser

12.2 Compiler Error Recovery 263q0i+#q1q2i+#q1q3q4i+#q1q3q9 +#q1q3 +#q1q6q8 +#q1q6q11#a) Parse to the point of error detectionq1q6q11 D = fi(gq1q6q13q4q1q6q13q9q1q6q13 D = fi(#)+gq1q6q15q7q1q6q15q1q6q1b) Continuation to the �nal stateq1q6q11#q1q6q13q4#q1q6q13q9# i is generated by q4i! q9q1q6q13# the normal parse may now continuec) Continuation to the resume pointFigure 12.5: Recovery Using Figure 12.4cWe begin by designating one production for each nonterminal, such that the set of desig-nated productions contains no recursion. For example, in the production set of Figure 12.4awe would designate the productions listed in Figure 12.4b. (With this example the desig-nation is unique, a condition seldom encountered in larger grammars.) We then reorder theproductions for each nonterminal so that the designated production is �rst, and apply theparser generation algorithms of Chapters 5 and 7. As the transitions of the parsing automataare derived, certain of them are marked. When an error occurs during the parse, we choosea valid continuation by allowing the parsing automaton to carry out the marked transitionsuntil it reaches its �nal state. No input is read during this process, but at each step the setof input symbols that could be accepted is added to the set of anchors.Construction 5.23, as modi�ed in Section 7.2.1 for strong LL(1) grammars, was used togenerate the automaton of Figure 12.4c. The transitions were marked as follows (markedtransitions are preceded by an asterisk in Figure 12.4c):� Any transition introduced by step 3 or step 4 of the construction was marked.� The elements of H in step 5' are listed in the order discussed in the previous paragraph.The �rst transition q! ! qh[1]! of a group introduced by step 5' was marked.To see the details of the recovery, consider the erroneous sentence i+#. Figure 12.5a tracesthe actions of the automaton up to the point at which the error is detected. The continuationis traced in Figure 12.5b. Note that the input is simply ignored, and the stack is updatedas though the parser were reading symbols that caused it to make the marked transition. Ateach step, all terminal symbols that could be accepted are added to D. Figure 12.5c shows

264 Error Handling(1) Z ! E#(2) E ! E + F , (3) E ! F(4) F ! i, (5) F ! (E)a) The grammar0: Z ! �E ; # 4: F ! (�E) ; #+)E ! �F ; #+ E ! �F ;)+E ! �E + F ; #+ E ! �E + F ;)+F ! �i ; #+ F ! �i ;)+F ! �(E) ; #+ F ! �(E) ;)+1: Z ! E � ; # 5: E ! E + �F ; #+)E ! E � + F ; #+ F ! �i ; #+)F ! �(E) ; #+)2: E ! F � ; #+) 6: F ! (E �) ; #+)3: F ! i � ; #+) E ! E � + F ;)+7: E ! E + F � ; #+)8: F ! (E) � ; #+)b) States of the Automatoni () + # E F0 -4' 4 . . . 1 -31 . . . 5 *1'4 -4' 4 . . . 6 -35 -4' 4 . . . -26 . . -5' 5 .c) The transition function for the parserFigure 12.6: Error Recovery in an LR(0) Parserthe remainder of the recovery. No symbols are deleted from the input string, since # is inthe set of anchors. The parser now follows the continuation again, generating any terminalsymbols needed to cause it to make the marked transitions. When it reaches a point wherethe �rst symbol of the input string can be accepted, the normal parse resumes.Let us now turn to the LR case. Figure 12.6a shows a left-recursive grammar for the samelanguage as that de�ned by the grammar of Figure 12.4a. The designated productions are1, 3 and 4. If we reorder productions 2 and 3 and then apply Construction 5.33, we obtainthe states of Figure 12.6b. The situations are given in the order induced by the ordering ofthe productions and the mechanics of Construction 5.33. Figure 12.6c shows the transitiontable of the automaton generated from Figure 12.6b, incorporating shift-reduce transitions.The marked transition in each state (indicated by a prime) was the �rst shift, reduce orshift-reduce transition generated in that state considering the situations in order.An example of the LR recovery is given in Figure 12.7, using the same format as Fig-ure 12.5. The erroneous sentence is i+)i#. In this case,) does not appear in the set ofanchors and is therefore deleted.One obvious question raised by use of automatic syntactic error recovery is that of provid-ing meaningful error reports for the user. Fortunately, the answer is also obvious: Describe

12.2 Compiler Error Recovery 265q0i+)i#q0q1+)i#q0q1q5)i#a) Parse to the point of error detectionq0q1q5 D = fi (gq0q1 D = fi (+ #gb) Continuation to the �nal stateq0q1q5i# the normal parse may now continuec) Continuation to the resume pointFigure 12.7: LR Error Recoverythe repair that was made! This description requires one error number per token class (Sec-tion 4.1.1) to report insertions, plus a single error number to report deletions. Since tokenclasses are usually denoted by a �nite type, the obvious choice is to use the ordinal of thetoken class as the error number to indicate that a token of that class has been inserted.Missing or superuous closing brackets always present the danger that avalanches willoccur because brackets are inserted in (globally) unsuitable places. For this reason we musttake cognizance of error recovery when designing the grammar. In particular, we wish tomake bracketed constructs `visible' as such to the error recovery process. Thus the grammarshould be written to ensure that closing brackets appear in the anchor sets for any errorsthat could cause them to be deleted from the input string. This condition guarantees that anopening bracket will not be deleted by mistake and lead to an avalanche error at the matchingclosing bracket. It is easy to see that the grammar of Figure 12.4a satis�es the condition, butthat it would not if F were de�ned as follows:F ! i; F ! (F 0,F 0 ! E)12.2.3 Lexical ErrorsThe lexical analyzer recognizes two classes of lexical error: Violations of the regular grammarfor the basic symbols and illegal characters not belonging to the terminal vocabulary of thelanguage or, in languages with stropping conventions, misspelled keywords.Violations of the regular grammar for the basic symbols (`structural' errors), such as theillegal LAX oating point number :E2, are recovered in essentially the same way as syntaxerrors. Characters are not usually deleted from the input string, but insertions are made asrequired to force the lexical analyzer to either a �nal state or a state accepting the next inputcharacter. If a character can neither form part of the current token, nor appear as the �rstcharacter of any token, then it must be discarded. A premature transition to a �nal statecan make two symbols out of one, usually resulting in syntactic avalanche errors. A thirdpossibility is to skip to a symbol terminator like `space' and then return a suitable symboldetermined in an ad hoc manner. This is interesting because in most languages lexical errorsoccur primarily in numbers, where the kind of symbol is known.Invalid characters are usually deleted without replacement. Occasionally these charactersare returned to the parser so it can give a more informative report. This behavior violatesthe important basic principle that each analysis task should cope with its own errors.When keywords are distinguished by means of underlines or bracketed by apostrophes,the compiler has su�cient information available to attempt a more complete recovery bychecking for certain common misspellings. If we restrict ourselves to errors consisting of

266 Error Handlingsingle-character substitutions, insertions, omissions or transpositions then the length of thebasic symbol cannot change by more than one character. For each erroneous symbol thereexists a (relatively small) set of correct keywords that are identical to it if one of these errorsoccurred.If a spelling-correction algorithm is used, it should form a distinct module that tests apair of strings to determine whether they are equivalent under one of the four transformationslisted in the previous paragraph. The two strings should be in a standard form, chosen tospeed the test for equivalence. This module can be used in other cases also, such as to checkwhether an unde�ned identi�er is misspelled. The spelling-correction algorithm should notbe required to scan a list of candidate strings, since di�erent callers will generate candidatesin di�erent ways.The decision to provide spelling correction usually has far-reaching e�ects on the compilerdata structures: Searches for additional candidates to test against a misspelled word oftenhave a pattern di�erent from the normal accesses. This entails additional linkage, as well asthe additional information to facilitate `quick checks'. Such increases in data storage violateour previously-stated principle that an error-free program should not be required to pay forerror recovery.12.3 Run-Time ErrorsDuring execution of a program, the values of the data objects obey certain restrictions andrelationships, so that the operations of the program can be carried out. Most relationshipsresult either implicitly or explicitly from the language de�nition or implementation restric-tions. When the validity of these relationships cannot be determined from the context duringcompilation, they can be tested at run time with the help of the hardware or by code gen-erated by the compiler. If such a test fails, then a symptom of a run-time error has beendetected.Examples of such relationships are given in Figure 12.8. Since c��2 cannot be less than0, the compiler could prove that both the �rst and the third assertions in Figure 12.8b hold;in the case of 1 + c��2 6= 0, however, this would be costly. Frequently the �rst assertion willbe tested again at run time (and consequently the test could be omitted at compile time),because the computation and test of the storage mapping function is done by a standardlibrary routine.A run-time error report should give the symptom and location in the source program. Thecompiler must therefore provide at least the information needed by the run-time system tolocate the symptom of the error. If a more exact description or a diagnosis of the cause of theerror is required, the compiler must prepare additional information about the neighborhoodof the error and its dynamic environment. Debugging aids (like traces and snapshots) requiresimilar information from the compiler's symbol and de�nition tables.In this section we shall not consider run-time error handling in detail. Our concern willbe with the information that the compiler must provide to the run-time system to makecompetent error handling possible.12.3.1 Static Error LocationIn order to specify the exact location of an error in the program, it must be possible todetermine from the instruction position, z, the position, f(z), of the corresponding sourcetext in the program listing. This requires us to establish an appropriate coordinate systemfor the listing. The lines of the listing are usually chosen as the basis for this coordinatesystem, and are numbered in ascending order of appearance to facilitate location of a position

12.3 Run-Time Errors 267a : array [1 : 4; 1 : 4] of real;: : :b := a[3; i]=(1 + c��2)a) A LAX fragment1 � 3 � 41 � i � 41 + c��2 6= 0b) Relationships implied by the LAX de�nition and (a)J = K * Lc) A FORTRAN statementjKj < 248d) Relationship implied by the Control Data 6000 FORTRAN implementation and (c)ASSERT m = ne) Relationship explicitly stated by the programmerFigure 12.8: Implicit and Explicit Relationshipsin the program. The numbers may be chosen in various ways: One of the simplest is touse the address of the �rst instruction generated by the source line. (This numbering, likeothers discussed below, may contain gaps.) The contents of the location counter provides adirect reference to the program line if the compiler produces absolute code. If the compilerproduces relocatable code and the �nal target program is drawn from several sources, thenthe conversion f(z) �rst requires identi�cation of the (separately compiled) program unit bymeans of a load map produced when the units are linked. This map gives the absolute addressof each program unit. The relative address appearing on the listing is obtained by subtractingthe starting address from the address of the erroneous instruction.If the compiler has used several areas for instructions (Section 11.2), the monotonicity ofthe (relative) addresses is no longer guaranteed and we must use arbitrary sequence numbers.These numbers could be provided by the programmer himself or supplied by the compiler. Inthe latter case the number could be incremented for each line or for each construct of a givenclass (for example, assignments).When arbitrary sequence numbers are used, the compiler must either store f(z) in tabularform accessible to the run-time system or insert instructions into the target program to placethe current sequence number into some speci�ed memory location. If a table is given in a�le, a relationship between the table and the program must be established by the run-timesystem; no further cost is incurred. In the second case all information is held within theprogram and a run-time overhead in both time and space is implied.The line number, and even the position within the line, can be given for each instructionif a table is used. For dynamic determination of line numbers, the line number must be setin connection with a suitable syntactic unit of the source program. The instructions makingup an assignment, for example, do not always occur in the order in which they appear in thesource program. This is noticeable when the assignment is spread over several source lines.Of course the numbering need only be updated at those syntactic units that might fail; itmay be omitted for the empty statement in ALGOL 60, for example.

268 Error Handling12.3.2 Establishing the Dynamic EnvironmentRun-time errors usually lead to symptoms that can be described quite simply. Diagnosis of theerror from these symptoms is considerably more di�cult than diagnosis of compile time errorsbecause it must take account of the dynamic environment of the error: the values of dataobjects being manipulated and the path by which control arrived at the failure point. Mostof this information can be recovered from the contents of the memory at the failure point;the only di�culty lies in establishing the correct relationship to the source program. For thispurpose, the compiler should at least provide su�cient information in the source programlisting to enable the programmer to locate every data object in a printout of the memorycontents. This information, in conjunction with that discussed in Section 12.3.1, we shallterm cross-reference information; if it exists in tabular form, these tables are cross-referencetables.Analysis of a memory dump is always tedious. In order to provide a more convenientspeci�cation of the data objects, the compiler could generate templates similar to those neededto support garbage collection (Section 3.3.3). These templates can then be used by a run-timesupport routine to print the object in a suitable form. Templates may be incorporated intothe compiled program or written on an auxiliary �le. Extra storage is required by the formerapproach, cooperation of the loader and the operating system by the latter.A symbolic dump describes a single state of the computation | it is a `snapshot' of theprogram's execution. In order to achieve a full understanding of the symptom we often needinformation about how the program reached the failure point. There are two aspects of thisexecution history, the call hierarchy, which speci�es the procedures whose invocation has notyet ended, and the jump history, which de�nes the path taken through the procedures.The call hierarchy is embodied in the current state as a chain of procedure activationrecords. In order to represent it we extend the symbolic dump by attaching the procedurename and point of call to each procedure's activation record. (The former is obtained fromthe cross-reference tables, the latter from the return address.)The jump history, represented by the addresses of successful jumps, cannot be obtainedfrom the environment of the symptom. It must be stored explicitly during execution. Eitherthe compiler must generate speci�c instructions for this purpose, or the hardware must storethe addresses of successful jumps automatically (EDSAC 2 [Barron and Hartley, 1963]and the Siemens 7000 series are examples of such machines). The relevance of the jump historydiminishes with the `age' of the jumps; to save memory we would therefore retain only themost recent jump addresses. In some debugging systems for machine-oriented languages thenumber 4 is chosen, EDSAC 2 chose 41 and the Siemens 7000 chose 64. Loops rapidly �ll thejump history with useless information. It is thus better to store a sequence of identical jumpsas a single address with a cycle count. Cycles of length 2 can be represented in a similarmanner, but recognition of longer cycles does not seem worthwhile.In a language like LAX, which provides a variety of control structures, source programswill usually contain no jumps at all. The jump history is thus understandable only if thesequence of source language constructs that created it can be recovered. For this purpose onecan use the cross-referencing techniques of Section 12.3.1, augmented with information aboutthe kind of jump (conditional, case clause, repetition of a loop, etc.) The source languageconstructs need be determined from the cross-reference tables only when the dump actuallyoccurs, and then only for the jumps appearing in the jump history.We must always be aware of the possibility that the state of the memory may havebeen corrupted by the error, and that inconsistencies may be present that could cause theanalysis routines to loop or make further errors. During the output of a symbolic dump orjump history all information must be carefully examined for consistency. The compiler may

12.4 Notes and References 269provide redundant information, for example special bit patterns in particular places, to aidin this process.12.3.3 Debugging AidsA program can be tested by following its progress to normal termination or to some unusualevent. This can be done by tracing the jump addresses and/or procedure calls, tracing thevalues of certain data objects, or taking selective symbolic dumps. When working interac-tively, one can insert breakpoints to halt execution and permit examination and resetting ofvariables. The program can then be restarted at a speci�ed point, possibly after alterationof the call hierarchy. All of these techniques require the support of the compiler as discussedin Sections 12.3.1 and 12.3.2.All supervision mechanisms other than those speci�c to interactive execution can be pro-vided by modi�cation and recompilation of the program. With large programs this is quitecostly; in addition, the modi�cation can cause unrecognized side e�ects in the program'sbehavior. By concentrating the facilities in a test system independent of the compiler, thisproblem can be avoided. Such a solution increases the demands on the cross-reference ta-bles, since the test system is now in the position of having to use them to modify the targetprogram. If the same test system is to be used for several languages, then the structure andcontents of the cross-reference tables becomes a standard interface for all compilers.12.4 Notes and ReferencesThe user orientation of the error handling (understandable error reports, suppression of ava-lanches, run-time information in terms of the source program), and the principle that thecost of preventive tests should be as small as possible, obviously represent the main problemsof error handling today. Koster [1973] gives a good overview of the demands placed uponthe error handler. The implementation of PL/C [Conway and Wilcox, 1973] represents anattempt at extensive error recovery.Lyon [1974] gives an algorithm for global minimum-distance correction that requiresO(n2) space and O(n3) time to correct an n-symbol input string. Theoretical results[Peterson, 1972] indicate that improvement of these bounds is highly unlikely. A back-tracking method for global repair of syntactic errors is given by Levy [1975]; our approachis based upon some ideas of Irons [1963a] that were applied to top-down parsers by Gries[1971]. compiler construction gries 1971 R�ohrich [1978, 1980] formalized these ideas andextended them to LR parsers. The use of recovery sequences as error messages �rst appearedin the SP/k compiler [Holt et al., 1977]. Damerau [1964] has observed that over 80% ofall spelling errors in a particular retrieval system consisted of single-character substitutions,insertions, omissions or transpositions. This observation serves as the basis for most spellingcorrection algorithms, of which the one described by Morgan [1970] is typical.Dynamic updating of a variable containing a line number may consume signi�cant re-sources. Brinch-Hansen and Hartmann [1975] notes that up to 25% of the generated codefor a Sequential Pascal program may be devoted to line number bookkeeping. Kruseman-Aretz [1971] considers how this overhead can be minimized in the context of ALGOL 60,and Klint [1979] suggests that the information be obtained from a static analysis of theprogram rather than being maintained dynamically.Symbolic dumps in source language terms have been available since the early sixties.The papers by Seegm�uller [1963] and Bayer et al. [1967] summarize the information thecompiler must provide to support them. Other descriptions of this information can be found in

270 Error Handlingthe literature on symbolic debugging packages [Hall, 1975; Pierce, 1974; Satterthwaite,1972; Balzer, 1969; Gaines, 1969].Exercises12.1 De�ne the class of detectable errors for some language available at your installation.Which of these are detected at compile time? At run time? Are any of the detectableerrors left undetected? Have you made any such errors in your programming?12.2 We have classi�ed the LAX expression (1=0) as a compile-time anomaly, rather than acompile-time error. Some authors disagree, arguing that if the expression is evaluated atrun time it will lead to a failure and that if it can never be evaluated then the programis erroneous for other reasons. Write a cogent argument for or against (whichever youprefer) our classi�cation.12.3 The de�nition of the programming language Euclid speci�es minimum limitations thatmay be placed on programs by an implementation. For example, the de�nition re-quires that any compiler accept expressions having parentheses nested to depth 7, andprograms having environments nested to depth 31. The danger of setting such min-imum limits is pointed out by Sale [1977], who demonstrates that the requirementfor environments nested to depth 31 e�ectively precludes implementation of Euclidon Burroughs 6700 and 7700 equipment. Comment on the advantages and disadvan-tages of Euclid approach, indicating the scope of the problem and possible compromisesolutions.12.4 Consider some compiler running at your installation. How are its error messages com-municated to the user? If the result gives less information than the model we discussedin Section 12.1.3, argue for or against its adequacy. Were there any constraints on theimplementor forcing him to his choice?12.5 Experiment with some compiler running at your installation, attempting to createan avalanche based upon a semantic error. If you succeed, analyze the cause of theavalanche. Could it have been avoided? How? At what cost to correct programs?If you do not succeed, analyze the cause of your failure. Is the language subject toavalanches from semantic errors? Is the implementation very clever, possibly at somecost to correct programs?12.6 Under what conditions might a simple precedence analyzer [Gries, 1971] delay detec-tion of an error?12.7 [R�ohrich, 1980] Give an algorithm for designating productions of a grammar so thatthere is one production designated for each nonterminal, and the set of designatedproductions contains no recursion.12.8 Apply the syntactic error recovery technique of Section 12.2.2 to a recursive descentparser based upon extended BNF (Section 7.2.2).12.9 Apply both the automaton of Figure 12.4c and that of Figure 12.6c to the string(i(i+ i#. Do you feel that the recovery is reasonable?12.10 [Dunn and Waite, 1981] Consider the modi�cation of Figure 7.9 to support automaticerror recovery.

12.4 Notes and References 271(a) Assuming that the form of the table entry remained unchanged, how would youincorporate the de�nition of the continuation into the tables?(b) Based upon your answer to (a), write procedures parser error , get anchor andadvance parser to actually carry out the recovery. These procedures should benested in parser as follows, and parser should be modi�ed appropriately toinvoke them: parserparser_errorget_anchoradvance_parser(c) Carefully explain your mechanism for generating symbols. Does it require accessto information known only to the lexical analysis module? If so, how do you obtainthis information?12.11 [Morgan, 1970] Design an algorithm for checking the equivalence of two strings underthe transformations discussed in Section 12.2.3. How would you interface this algorithmto the analysis process discussed in Chapters 6 and 7? Be speci�c!12.12 Consider some compiler running at your installation. How is the static location ofa run-time error determined when using that compiler? To what extent could thedetermination be automated without making any change to the compiler? What (ifanything) would such automation add to the cost of running a correct program?12.13 [Kruseman-Aretz, 1971] A run-time error-reporting system for ALGOL 60 programsuses a variable lnc to hold the line number of the �rst basic symbol of the smalleststatement whose execution has begun but not yet terminated. We wish to minimizethe number of assignments to lnc . Give an algorithm that decides when assignmentsto lnc must be generated.12.14 Consider some compiler running at your installation. How is the dynamic environmentof a run-time error determined when using that compiler? To what extent could thedetermination be automated without making any change to the compiler? What (ifanything) would such automation add to the cost of running a correct program?12.15 [Bayer et al., 1967] Consider some language and machine with which you are familiar.De�ne a reasonable symbolic dump format for that language, and specify the infor-mation that a compiler must supply to support it. Give a detailed encoding of theinformation for the target computer, and explain the cost increase (if any) for runninga correct program.

272 Error Handling

Chapter 13OptimizationOptimization seeks to improve the performance of a program. A true optimum may be toocostly to obtain because most optimization techniques interact, and the entire process ofoptimization must be iterated until there is no further change. In practice, therefore, werestrict ourselves to a �xed sequence of transformations that leads to useful improvement incommonly-occurring cases. The primary goal is to compensate for ine�ciencies arising fromthe characteristics of the source language, not to lessen the e�ects of poor coding by theprogrammer. These ine�ciencies are inherent in the concept of a high level language, whichseeks to suppress detail and thereby simplify the task of implementing an algorithm.Every optimization is based upon a cost function, a meaning-preserving transformation,and a set of relationships occurring within some component of the program. Code size,execution time and data storage requirements are the most commonly used cost criteria; theymay be applied individually, or combined according to some weighting function.The boundary between optimization and competent code generation is fuzzy. We havechosen to regard techniques based upon processing of an explicit computation graph as opti-mizations. A computation graph is implicit in the execution-order traversal of the structuretree, as pointed out at the beginning of Chapter 10, but the code generation methods dis-cussed so far do not require that it ever appear as an explicit data structure. In this chapterwe shall consider ways in which a computation graph can be manipulated to improve theperformance of the generated code.Our treatment in this chapter di�ers markedly from that in the remainder of the text.The nature of most optimization problems makes computationally e�cient algorithms highlyunlikely, so the available techniques are all heuristic. Each has limited applicability andmany are quite complex. Rather than selecting a particular approach and exploring it indetail, we shall try to explain the general tasks and show how they �t together. Citations toappropriate literature will be given along with the discussion. In Section 13.1 we motivate thecharacteristics of the computation graph and sketch its implementation. Section 13.2 focuseson optimization within a region containing no jumps, while Section 13.3 expands our viewto a complete compilation unit. Finally, Section 13.4 gives an assessment of the gains to beexpected from various optimizations and the costs involved.13.1 The Computation GraphPro�table optimizations usually involve the implementation of data access operations, andhence the target form of these operations should be made explicit before optimization be-gins. Moreover, many optimizations depend upon the execution order, and others may alterthat order. These requirements make the structure tree an unsuitable representation of the273

274 Optimizationprogram being optimized. In the �rst place, the structure tree reects the semantics of thesource language and therefore suppresses detail. Secondly, execution-order tree traversalsdepend upon the values of speci�ed attributes and hence cannot be generated mechanicallyby the tools of Chapter 8.Data access operations are often implicit in the target machine code as well: They areincorporated into the access paths of instructions, rather than appearing as separate com-putations. Because of this, it is di�cult to isolate them and discover patterns that can beoptimized. The target tree is thus also an unsuitable representation for use by an optimizer.To avoid these problems, we de�ne the computation graph to have the following properties:� All source operations have been replaced by (sequences of) operations from the in-struction set of the target machine. Coercions appear as machine operations only ifthey result in code. Other coercions, which only alter the interpretation of the binaryrepresentation of a value, are omitted.� Every operation appears individually, with the appropriate number of operands.Operands are either intermediate results or directly-accessible values. Each value has aspeci�ed target type.� All address computations are explicit.� Assignments to program variables are separated from other operations.� Control ow operations are represented by conditional and unconditional jumps.Although based upon target machine operations, the computation graph is largelymachine-independent because the instruction sets of most Von Neumann machines are verysimilar.We assume that every operation has no more than one result. To satisfy this assumption,we either ignore any side e�ects of the machine instruction(s) implementing the operation orwe create a sequence of operations making those side e�ects explicit. In both cases we relyupon subsequent processing to generate the proper instructions. For example, the arithmeticoperations of some machines set the condition code as a side e�ect. We ignore this, producingcomparison operators (whose one result is placed in the condition code) where required.Peephole optimization (Section 13.2.3) will remove superuous comparisons in cases where apreceding arithmetic operation has properly set the condition code. The second approach isused to deal with the fact that on many machines the integer division instruction yields boththe quotient and the remainder. Here we create a sequence of two operations for both divand mod. The �rst operation in each case is divmod ; the second is a unary selector, div ormod respectively, that operates on the result of divmod . Common subexpression elimination(Section 13.2.1) will remove any superuous divmod operators.The atoms of the computation graph are tuples. A tuple consists of an operator of the(abstract) target machine and one or more operands, each of which is either a value knownto the compiler or the result of a computation described by a tuple. Each appearance of atuple in the computation graph is called a program point, and given an integer index greaterthan 0.Let o1 and o2 be operands in a computation graph. These operands are congruent ifthey are the same known value, or if they are the results of tuples t1 and t2 with the samenumbers of operands for which operator(t1) = operator(t2) and operandi(t1) is congruent tooperandi(t2) for all i. A unique operand identi�er is associated with each set of congruentoperands, and this identi�er is used to denote all of the operands in the set.Figure 13.1b has 12 program points and 9 distinct tuples. Values known to the compilerhave the corresponding source language constructs as their operand identi�ers. The fullde�nition of a tuple is given only at its �rst occurrence; subsequent occurrences are denoted

13.1 The Computation Graph 275V.i := aa " * y + V.j ; aa " := aa " + V.j ;a) A Pascal fragmentt1: aa " t1t2: t1 " t2t3: y " t5t4: t2 � t3 t8: t2 + t5t5: V.j " t9: t1 := t8t6: t4 + t5t7: V.i := t6b) The tuple sequence resulting from (a)Figure 13.1: Tuples and Operandsby the operand identi�er alone. Note that each operand identi�er denotes a single value. Forexample, V.j is the address of the j �eld of the record V , relative to the base of the activationrecord. This value is the sum of the o�set of V from the base of the activation record and theo�set of j from the base of the record. Both o�sets are known to the compiler, and hencethe sum is known. Also, contrast the representations of the two assignments. In the �rst,the target address (V.i) is known to the compiler, while in the second it is the content of apointer variable.A module very similar to the symbol table acts as a source of unique operand identi�ers.By analogy to Section 4.2.1, this module provides three operations:� initialize : Enter the standard entities.� give operand identifier (tuple spec)operand identifier : Obtain the operandidenti�er for a speci�ed tuple or known value.� give tuple(operand identifier) tuple spec : Obtain the tuple or known value hav-ing a speci�ed operand identi�er.Tuple spec is a variant record capable of describing any tuple or known value. Onepossible representation would be as two major variants, a value descriptor to specify a knownvalue and an operator plus an array of operand identi�ers to specify a tuple.A straight-line segment is a set of tuples, each of which will be executed exactly oncewhenever the �rst is executed. A straight-line segment of maximal length is called a basicblock. The ow graph of a compilation unit is a directed graph whose nodes are basic blocksand whose edges specify the possible execution sequences of those basic blocks. We alsosometimes consider extended basic blocks, which are subtrees of the ow graph. (Extendedbasic blocks correspond to nested conditional clauses and to the bodies of innermost loops thatcontain no jumps.) The value of every tuple depends ultimately upon some set of variables.If the value of any of these variables changes, then the value computed by the tuple will alsochange. Figure 13.2c is a directed acyclic graph illustrating such dependency for the tuplesof Figure 13.2b. A tuple is dependent upon a variable if there is a directed path in the graphfrom the node corresponding to the variable to the node corresponding to the tuple. Whenthe value of a variable is altered, any previously-computed value of a tuple depending uponthat variable becomes invalid. Note that a is treated as a single variable, whose value directlyinuences the value of t4 but not the value of t3.In general, evaluation of a particular tuple may use some operand values, de�ne someoperand values and invalidate some operand values. We can de�ne the following dependencysets for each tuple t:Ut = fo j o is a tuple or program variable operand of tgDt = fo j o is an operand de�ned by tgXt = fo j o is an operand invalidated by tg

276 Optimizationw := a[i] ; a[j] := x ; z := a[i] + z ;a) A Pascal fragmentt1: i " t6 : j " t1t2: t1 � 4 t7 : t6 � 4 t2t3: a + t2 t8 : a + t7 t3t4: t3 " t9 : x " t4t5: w := t4 t10: t8 := t9 t11: z "t12: t4 + t11t13: z := t12b) Tuple sequence resulting from (a)
i 1 2 3 4 5

z 11 12 13

a x

j 6 7 8 9 10c) Dependency graph for the tuples of (b)U D Xt1 fi g ft1g fgt2 ft1g ft2g fgt3 ft2g ft3g fgt4 ft3g ft4g fgt5 ft4g fw ; t5g fgt6 fj g ft6g fgt7 ft6g ft7g fgt8 ft7g ft8g fgt9 fx g ft9g fgt10 ft8; t9g ft10g ft4; t5; t12; t13gt11 fz g ft11g fgt12 ft3; t11g ft12g fgt13 ft12g fz ; t13g ft11; t12; t13gd) Dependency sets for the tuples of (b)Figure 13.2: Analyzing Array ReferencesThe rules of the language determine these sets. Figure 13.2d shows the sets for the tuplesof Figure 13.2b. It assumes that there are no other tuples in the program, and might di�erif that assumption were false. For example, suppose that the program contained a tuplet14 : t8 ". In that case, Dt10 = ft14g.The e�ect of an assignment to a pointer variable is similar to, but more extensive than, thatof an assignment to an array element. Pointer variables in Pascal or Ada potentially accessany anonymous target of any other pointer variable of the same type. In LAX or ALGOL 68,every object of the given target type is potentially accessible. A reference parameter of a

13.2 Local Optimization 277procedure has the same properties as a LAX or ALGOL 68 pointer in most languages, exceptthat the accessibility is limited to objects outside the current activation record. A procedurecall must be assumed to use and potentially modify every variable visible to that procedure,as well as every variable passed to it as a reference parameter.To construct the computation graph, we apply the storage mapping, target attributionand code selection techniques of Sections 10.1-10.3. These methods yield the tuples in anexecution order determined by the target attributes, in particular the register estimate. Theonly changes lie in the code selection process (Section 10.3), where the abstract nature of thecomputation graph must be reected.A new value class , generated , must be introduced in Figure 10.10. If the class ofa value descriptor is generated , the variant part contains a single id �eld specifying anoperand identi�er. Decision tables (such as Figure 10.13) do not have tests of operand valueclass in their condition stubs, nor do they generate di�erent instructions for memory andregister operands. The result is a signi�cant reduction in the table size (Figure 13.3). Notethat the gen routine calls in Figure 13.3 still specify machine operation codes, even thoughno instruction is actually being produced. This is done to emphasize the fact that the tuple'soperator is actually a machine operator. In this case we have chosen `A' to represent IBM370 integer addition. A tuple whose operator was A might ultimately be coded using an ARinstruction or appear as an access path of an RX-format instruction, but it would never resultin (say) a oating add.Result correct Y Y Y Y N N N Nl correct Y Y N N Y Y N Nr correct Y N Y N Y N Y Nswap(l,r) X Xgen(A,l,r) X X X Xgen(S,l,r) X X X Xgen(LCR,l,l) X XFigure 13.3: Decision Table for +(integer , integer) integer Based on Figure 10.13The gen routine's behavior is controlled by the operator and the operand descriptorclasses. When the operands are literal values and the operator is one made available by theconstant table, then the speci�ed computation is performed and the appropriate literal valuedelivered as the result. In this case, nothing is added to the computation graph. Memoryoperands (either addresses or values) are checked to determine whether they are directlyaddressable. If not, tuples are generated to produce the speci�ed results. In any case, thevalue descriptors are altered to class generated and an appropriate operand identi�er isinserted. Finally a tuple is generated to describe the current operation and the proper operandidenti�er is inserted into the value descriptor for the left operand.Although we have not shown it explicitly, part of the input to the gen routine speci�esthe program variables potentially used and destroyed. This information is used to derive thedependency sets. An example giving the avor of the process can be found in the descriptionof Bliss-11 [Wulf et al., 1975].13.2 Local OptimizationThe simplest approach to optimization is to treat each basic block as a separate unit, opti-mizing it without regard to its context. A computation graph is built for the basic block,transformed, and used to generate the �nal machine code. It is then discarded and the nextbasic block is considered.

278 OptimizationOur strategy for optimizing a basic block is to carry out the following steps in the orderindicated:1. Value Numbering : Perform a `symbolic execution' of the block, propagating symbolicvalues and eliminating redundant computations.2. Coding : Collect access paths for program variables and combine them with operationsto form valid target machine instructions, assuming an in�nite set of registers.3. Peephole Optimization: Attempt to combine sequences of instructions into single in-structions having the same e�ect.4. Register Allocation: Map the register set resulting from the coding step onto the avail-able target machine registers, generating spill code (code to save and/or restore registers)as necessary.Throughout this section we assume that all program variables are potentially accessedafter the end of the basic block, and that no tuple values are. The latter assumption fails foran expression-oriented language, and in that case we must treat the tuple representing the�nal value of the expression computed by the block as a program variable. Section 13.3 willconsider the more general case occurring as a result of global optimization.13.2.1 Value NumberingAccess computations for composite objects are rich sources of common subexpressions. Oneclassic example is the code for the following FORTRAN statement, used in solving three-dimensional boundary value problems:A(I; J;K) =(A(I; J;K � 1) +A(I; J;K + 1) +A(I; J � 1;K) +A(I; J + 1;K) +A(I � 1; J;K) +A(I + 1; J;K))=6:0The expression I + d1 � (J + d2 �K), where d1 and d2 are the �rst two dimensions of A, isgenerated (in combination with various constants) seven times. The value of this expressioncannot change during evaluation of the assignment statement if I, J and K are variables, andhence six of the seven occurrences are redundant.Value numbering is used to detect and eliminate common subexpressions in a basic block.The general idea is to simulate the computation described by the tuples, generating a newtuple if and only if the current one cannot be evaluated at compile time. Pseudo-variablesare kept for all of the tuples and program variables, and are updated to reect the state ofthe computation. Figure 13.4 de�nes the algorithm, and the example of Figure 13.5 gives theavor of the process. (Operand identi�ers of the form vi have been used in Figure 13.5c toemphasize the fact that a new set of tuples is being generated.)Simulation of t1 requires generation of v1, and sets the pseudo-variable a to 2. Tuple t2can then be evaluated by the compiler, setting pseudo-variable t2 to 2. No value is known forpseudo-variable X, so v2 must be generated. When we reach t7, the value of pseudo-variablet3 is v2 and hence the required computation is 2*v2. But a tuple for this computation will havealready been executed, and we have called its result v3. Thus 2�v2 is a common subexpressionthat may be eliminated; the only result of the simulation is to set pseudo-variable t7 to v3.Xt8 requires us to invalidate four pseudo-variables (the other three elements of Xt8 corre-spond to pseudo-variables that have never been given values), and resets the value of pseudo-variable a to v3. Then t2 and t10 can be fully simulated, while t9 is eliminated. Finally, t11

13.2 Local Optimization 279invalid := initialize_vn;for o 2 St [U t [D t] do PV[o] := invalid;for t := first tuple to last tuple dobeginif (t = "v"") and (PV[v] 6= invalid) thenfor o 2 Dt do PV[o] := PV[v]elsebeginT := evaluate (t);if not is_value (T , PV[t]) thenbeginresult := new_value (T) ;for o 2 Xt do PV[o] := invalid;for o 2 Dt do PV[o] := result;endendend; a) The algorithmOperation Meaninginitialize vn : value number Clear the output block and return the �rstvalue number.evaluate (tuple) : tuple Create a new tuple by replacing each t inthe argument by PV[t] . Return the newly-created tuple.is value (tuple , operand) : boolean If the last occurrence of tuple in the out-put block was associated with PV[operand]then return true , otherwise return false .new value (tuple) : value number Add tuple to the output block, associatingit with a new value number. Return thenew value number.b) Operations of the output moduleFigure 13.4: Value Numberingand t12 result in the last two tuples of Figure 13.5c. As can be seen from this example, valuenumbering recognizes common subexpressions even when they are written di�erently in thesource program.In more complex examples than Figure 13.5, the precise identity of the accessed objectmay not be known. For example, the value of a[i] in Figure 13.2a might be altered eventhough none of the assignment tuples in the corresponding straight-line segment has a[i] asa target. The analysis uses Xt10 to account for this phenomenon, yielding the basic blockof Figure 13.6. Note that the algorithm correctly recognizes the address of a[i] as being acommon subexpression.The last step in the value numbering process is to delete redundant assignments to programvariables (such as v1 in Figure 13.5c) and, as a byproduct, to develop use counts for all of thetuples. Figure 13.7 gives the algorithm. Since each tuple value is de�ned exactly once, andnever used before it is de�ned, USECOUNT [v] will give the number of uses of v at the endof the algorithm. The entries for program variables, on the other hand, may not be accuratebecause they include potential uses by procedures and pointer assignments.

280 Optimizationa := 2;b := a �X + 1;a := 2 �X;c := a+ 1 + b;a) A sequence of assignmentsTuple U D Xt1 : a := 2 fg fag ft2; t4; t5; t6; t9; t11; t12gt2 : a " fag ft2g fgt3 : X " fXg ft3g fgt4 : t2 � t3 ft2; t3g ft4g fgt5 : t4 + 1 ft4g ft5g fgt6 : b := t5 ft5g fb; t6g ft10; t11; t12gt3t7 : 2 � t3 ft3g ft7g fgt8 : a := t7 ft7g fa; t8g ft2; t4; t5; t6; t9; t11; t12gt2t9 : t2 + 1 ft2g ft9g fgt10: b " fbg ft10g fgt11: t9 + t10 ft9; t10g ft11g fgt12: c := t11 ft11g fc; t12g fgb) Tuples and sets for (a)v1: a := 2 v5: b := v4v2: X " v6: a := v3v3: 2 � v2 v7: v4 + v4v4: v3 + 1 v8: c := v7c) Transformed computation graphFigure 13.5: Common Subexpression EliminationThe analysis discussed in this section can be easily generalized to extended basic blocks.Each path through the tree of basic blocks is treated as a single basic block; when the controlow branches, we save the current information in order to continue the analysis on the otherbranch. Should constant folding determine that the condition of a conditional jump is �xed,we replace this conditional jump by an unconditional jump or remove it. In either case one ofthe alternatives and the corresponding basic block is superuous and its code can be deleted.These situations arise most frequently in automatically-generated code, or when the if : : :then : : : else construct, controlled by a constant de�ned at the beginning of the program, isused for conditional compilation.To generalize Figure 13.7, we begin by analyzing the basic blocks at the leaves of theextended basic block. The contents of USECOUNT are saved, and analysis restarted on av1: i " v6 : j " v11: v3 "v2: v1 � 4 v7 : v6 � 4 v12: z "v3: a+ v2 v8 : a+ v7 v13: v11 + v12v4: v3 " v9 : x " v14: z := v13v5: w := v4 v10: v8 := v9Figure 13.6: Value Numbering Applied to Figure 13.2

13.2 Local Optimization 281for o 2 S v [U v [D v] do USECOUNT[o] := 0;for o 2 fProgram variablesg do USECOUNT[o] := 1;for v := last tuple downto first tuple dobeginc := 0;for o 2 Dv dobeginc := c + USECOUNT[o];if o is a program variable then USECOUNT[o] := 0;end;if c = 0 then delete tuple velse kfor o 2 Uv do USECOUNT[o] := USECOUNT[o] + 1;end;Figure 13.7: Redundant Assignment Elimination and Use Countingpredecessor block by resetting each element of USECOUNT to the maximum of the saved valuesfor the successors. We cannot guarantee consistency in the use counts by this method, sincenot all of the use counts must reach their maxima along the same execution path. It turnsout, however, that this inconsistency is irrelevant for our purposes.13.2.2 CodingThe coding process is very similar to that of Section 10.3. We maintain a value descriptorfor each operand identi�er, and simulate the action of the target computer using these valuedescriptors as a data base. There is no need to maintain register descriptors, since we areassuming an in�nite supply.Figure 13.8 gives two possible codings of Figure 13.1a for the IBM 370. Our notation fordescribing the instructions is essentially that of Davidson and Fraser [1980]: `R[: : :]' means`contents of register : : : ' and `M[: : :]' means `contents of the memory location addressed by: : : '. Register numbers greater than 15 represent `abstract registers' of the in�nite-registermachine, while those less than 15 represent actual registers whose usage is prescribed by themapping speci�cation. (As discussed in Section 10.2.1, register 13 is used to address the localactivation record.)The register transfer notation of Figure 13.8 is independent of the target machine (al-though the particular descriptions of Figure 13.8b are speci�c to the IBM 370), and is usefulfor the peephole optimization discussed at the end of this section. Figure 13.8b is not acomplete description of the register transfers for the given instructions, but it su�ces for thecurrent example. Later we shall show an example that uses a more complete description.The di�erences between the left and right columns of Figure 13.8b stem from the choiceof the left operand of the multiply instruction, made when the second line was generated.Because the multiply is a two-address instruction, the value of the left operand will be replacedby the value of the result. Wulf et al. [1975] calls this operand the target path.In generating the left column of Figure 13.8b, we used Wulf's criterion: Operand v2 has ause count greater than 1, and consequently it cannot be destroyed by the operation because itwill be needed again. It should not lie on the target path, because then an extra instructionwould be needed to copy it. Since v3 is only used once, no extra instructions are requiredwhen it is chosen as the target path. Nevertheless, the code in the right column is two bytesshorter { why? The byte counts for the �rst six rows reect the extra instruction required topreserve v2 when it is chosen as the target path. However, that instruction is an LR rather

282 OptimizationTuple Use countv1: aa " 2v2: v1 " 2v3: y " 1v4: v2 � v3 1v5: V:j " 2v6: v4 + v5 1v7: V:i := v6v8: v2 + v5 1v9: v1 := v8a) Result of value numberingR[16] := M[R[13]+aa] R[16] := M[R[13]+aa]R[17] := M[R[13]+y] R[17] := M[R[16]+0]R[18] := R[17]R[17] := R[17]*M[R[16]+0] R[18] := R[18]*M[R[13]+y]R[17] := R[17]+M[R[13]+V:j] R[18] := R[18]+M[R[13]+V:j]M[R[13]+V:i] := R[17] M[R[13]+V:i] := R[18]R[18] := M[R[16]+0]R[18] := R[18]+M[R[13]+V:j] R[17] := R[17]+M[R[13]+V:j]M[R[16]+0] := R[18] M[R[16]+0] := R[17]32 bytes 30 bytes3 registers 4 registersb) Two possible codingsFigure 13.8: Coding Figure 13.1 for the IBM 370than an L and thus its cost is only two bytes. It happens that the last use of v2 involves anoperation with two memory operands, one of which must be loaded at a cost of 4 bytes! Ifthe last use involved an operation whose other operand was in a register, we could use an RRinstruction for that operation and hence the byte counts of the two codings would be equal.This example points up the fact that the criteria for target path selection depend stronglyupon the target computer architecture. Wulf's criterion is the proper one for the DEC PDP11,but not for the IBM 370.Figure 13.8b does not account for the fact that the IBM 370 multiply instruction requiresthe multiplicand to be in an odd register and leaves the product in a register pair. Theregister allocation process must enforce these conditions in any event, and it does not appearuseful to introduce extra notation for them at this stage. We shall treat the problem in detailin Section 13.2.4.13.2.3 Peephole OptimizationEvery tuple of the computation graph corresponds to some instruction of the target machine.It may be, however, that a sequence of several tuples can be implemented as a single instruc-tion. The purpose of peephole optimization is to combine such tuples, reducing the size ofthe basic block and the number of intermediate values. There are two basic strategies:� Each instruction of the target machine is de�ned in terms of register transfers. Theoptimizer determines the overall register transfer of a group of instructions and seeks asingle instruction with the same e�ects [Davidson and Fraser, 1980].

13.2 Local Optimization 283� A set of patterns describing instruction sequences is developed, and a single instructionassociated with each. When the optimizer recognizes a given pattern in the basic block,it performs the associated substitution [Tanenbaum et al., 1982].Instruction Register transfersMOV s; d d := s; CC:=s?0ADD s; d d := d+ s; CC:=d+ s?0CMP s; d CC:=s?dBc l if CC=c then PC := lINC d d := d+ 1; CC:=d+ 1?0d and s match any PDP11 operand address.c matches any condition.l matches any label.a) DEC PDP11Instruction Register transfersL r; x r := x;A r; x r := r + x; CC:=r + x?0C r; x CC:=r?xBc l if CC=c then PC:=lr matches any register.x matches any RX-format operand.c matches any condition.l matches any label.b) IBM 370Figure 13.9: Register Transfer DescriptionsFigure 13.9 illustrates register transfer descriptions of PDP11 and IBM 370 instructions;no attempt at completeness has been made in either case. Upper-case identi�ers and specialcharacters are matched as they stand, while lower-case identi�ers represent generic patternsas indicated. (Note that in Figure 13.9b the description of an add instruction �ts both Aand AR; there is no need to distinguish these instructions until assembly, when they couldbe encoded by the technique of Section 11.3.2.) Literal characters in the patterns are chosensimply for their mnemonic value. The optimizer needs no concept of machine operations;optimization is carried out solely on the basis of pattern matching and replacement. Thusthe process is machine-independent { all machine dependence is concentrated in the registertransfer descriptions themselves.In Section 13.1 we asserted that extra comparisons introduced to allow us to ignore theside e�ect of condition code setting in arithmetic instructions could easily be removed. Theexample of Figure 13.10 illustrates the steps involved. (Abstract registers have numberslarger than 7, and we assume that register 5 addresses the local activation record.) Notethat the combined e�ect of the move and compare instructions (Figure 13.10d) is identical tothe e�ect of the move instruction (line 3 of Figure 13.10c). The optimizer discovers this bypattern matching, and replaces the pair (move, compare) by the single move.A two-instruction `window' was su�cient to detect the redundant comparison in the ex-ample of Figure 13.10. When a computer provides memory updating instructions that areequivalent to simple load/operate/store sequences, the optimizer needs to examine instructiontriples rather than pairs.

284 Optimizationa := b+ c; if a< 0 then goto L;a) A straight-line segment involving local variablest1: b "t2: c "t3: t1 + t2t4: a := t3t5: t3?0t6: JGT (t5)Lb) The tuple sequence for (a) after value numberingR[8] := M[R[5]+b]; CC := M[R[5]+b]?0;R[8] := R[8]+M[R[5]+c]; CC := R[8]+M[R[5]+c]?0;M[R[5]+a] := R[8]; CC := R[8]?0;CC := R[8]?0;if CC = GT then PC := L;c) Register transfers for instructions implementing (b)R[8] := M[R[5]+b];R[8] := R[8]+M[R[5]+c];M[R[5]+a] := R[18];CC := R[8]?0;if CC = GT then PC := L;d) After eliminating redundant transfers from (c)M[R[5]+a] := R[8]; CC := R[8]?0;e) The combined e�ect of lines 3 and 4 in (d)Figure 13.10: Comparison� � � := � � � + 1a) Incrementing an arbitrary locationti : tj " tj is the address : : :tk: ti + 1 Increment the valuetl : tj := tk Store the resultb) The tuple sequence for (a) after value numberingR[8] := M[R[9]];R[8] := R[8]+1;M[R[9]]:=R[8];c) Registers transfers for (b) after redundant transfer eliminationM[R[9] := M[R[9]]+1;d) The overall e�ect of (c)Figure 13.11: Generating an Increment

13.2 Local Optimization 285Figure 13.11 shows how an increment instruction is generated. The `: : : ' in Figure 13.11astands for an arbitrarily complex address expression that appears on both sides of the assign-ment. This expression is recognized as common during value numbering, and the address itdescribes appears as an operand identi�er (Figure 13.11b).Davidson and Fraser [1980] assert that windows larger than 3 are not required. Ad-ditional evidence for this position comes from Tanenbaum's 1982 table of 123 optimizationpatterns. Only seven of these were longer than three instructions, and none of the sevenresulted in just a single output instruction. Three of them converted addition or subtractionof 2 to two increments or decrements, the other four produced multi-word move instructionsfrom successive single-word moves when the addresses were adjacent. All of these patternswere applied rather infrequently.The optimizations of Figures 13.10 and 13.11 could be speci�ed by the following patterns ifwe used the second peephole optimization method mentioned at the beginning of this section:MOV a; b CMP a; 0) MOV a; bMOV a; b ADD 1,b MOV b; a) INC a(The second pattern assumes that b is not used elsewehere.)Any �nite-state pattern matching technique, such as that of Aho and Corasick [1975],can be modi�ed to e�ciently match patterns such as these. (Modi�cation is required toguarantee that the item matching the �rst occurrence of a or b also matches subsequentoccurrences.) A complete description of a particular algorithm is given by Ramamoorthyand Jahanian [1976]. As indicated earlier, an extensive set of patterns may be required.(Tanenbaum and his coauthors 1982 give a representative example.) The particular set ofpatterns that will prove useful depends upon the source language, compiler code generationand optimization strategies, and target machine. It is developed over time by examiningthe code output by the compiler and recognizing areas of possible improvement. There isnever any guarantee that signi�cant optimizations have not been overlooked, or that uselesspatterns have not been introduced. On the other hand, the processing is signi�cantly fasterthan that for the �rst method because it is unnecessary to `rediscover' the patterns for eachpair of instructions.13.2.4 Local Register AllocationThe classical approach to register allocation determines the register assignment `on the y' asthe �nal code is being output to the assembler. This determination is based upon attributescalculated by previous traversals of the basic block, and uses value descriptors to maintainthe state of the allocation. We solve the register pair problem by computing a size andalignment for each abstract register. (Thus the abstract register becomes a block in the senseof Section 10.1.) In the right column of Figure 13.8b, R[16] and R[17] each have size 1 andalignment 1 but R[18] has size 2 and alignment 2 because of its use as a multiplicand. Othermachine-speci�c attributes may be required. For example, R[16] is used as a base registerand thus cannot be assigned to register 0 on the IBM 370.A register assignment algorithm similar to that described in Section 10.3.1 can be used.The only modi�cation lies in the choice of a register to free. In Figure 10.12 we chose theleast-recently accessed register; here we should choose the one whose next access is furthest inthe future. (Belady [1966] has shown this strategy to be optimal in the analogous problemof determining which page to replace in a virtual memory system.) We can easily obtainthis information at the same time we compute the other attributes mentioned in the previousparagraph. Note that all of the attributes used in register allocation must be computed afterpeephole optimization; the peephole optimizer, by combining instructions, may alter some ofthe attribute values.

286 OptimizationFigure 10.12 makes use of a register state copy that indicates existence of a memorycopy of the register content. If it has been necessary to spill a register then the assignmentalgorithm knows that it is in the copy state. However, as the example of Figure 13.8 shows,a register (e.g. R[16]) may be in the copy state because it has been loaded from a memorylocation whose content will not be altered. In order to make use of this fact, we must guaranteethat no side e�ect will invalidate the memory copy. The necessary information is available inthe sets D and X associated with the original tuples, and must be propagated by the valuenumbering and coding processes.When we are dealing with a machine like the IBM 370, the algorithm of Figure 10.12should make an e�ort to maximize the number of available pairs by appropriate choice of afree register to allocate. Even when this is done, however, we may reach a situation in whichno pair is free but at least two registers are free. We can therefore free a pair by freeing oneregister, and we might free that register by moving its content to the second free registerat a cost of two bytes. If the state of one of the candidate registers is copy , then it canbe freed at a cost of two bytes if and only if its next use is the proper operand of an RRinstruction (either operand if the operation is commutative). It appears that we cannot loseby using an LR instruction. However, suppose that the value being moved must ultimately(due to other conicts) be saved in memory. In that case, we are simply paying to postponethe inevitable! We conclude that the classical strategy cannot be guaranteed to produce anoptimum assignment on a machine with double-length results.13.3 Global OptimizationCode is ultimately produced by the methods discussed in Section 13.2, one basic block ata time. The purposes of global optimization are to perform global rearrangement of thecomputation graph and to provide contextual information at the basic block boundaries. Forexample, in Section 13.2 we assumed that all program variables were potentially accessedafter the end of each basic block. Thus the algorithm of Figure 13.7 initialized USECOUNT[v]to 1 for all program variables v . A global analysis of the program might show, however, thatthere was no execution path along which certain of these variables were used before beingreset. USECOUNT[v] could be initialized to 0 for those variables, and this might result ineliminating more tuples.We shall �rst sketch the process by which information is collected and disseminated overthe computation graph, and then discuss two common global transformations. The lastsection considers ways of allocating registers globally, thus increasing register utilization andavoiding mismatches at basic block boundaries.It is important to emphasize that none of the algorithms discussed in Section 13.2 shouldprecede global optimization. Papers appearing in the literature often combine value number-ing with the original generation of tuples, but doing so may prevent global optimization bydestroying congruence of tuples in di�erent basic blocks.13.3.1 Global Data Flow AnalysisThe information derived by global data ow analysis consists of sets de�ned at particularprogram points. Two types of set may be interesting: a set of operand identi�ers and a set ofprogram points. For example, we might de�ne a set LIVE (b) at the end of each basic blockb as the set of operand identi�ers that were used after the end of b before being reset. Thisset could then be used in initializing USECOUNT as discussed above.Sets of program points are useful when we need to �nd all the uses of an operand thatcould be a�ected by a particular de�nition of that operand, and vice-versa. Global constant

13.3 Global Optimization 287propagation is a good example of this kind of analysis. As the computation graph is beingbuilt, we accumulate a list of all of the program points at which an operand is given a constantvalue. During global data ow analysis we de�ne a set USES (o, p) at each program pointp as the set of program points potentially using the value of o de�ned at p . Similarly, a setDEFS (o, p) is the set of program points potentially de�ning the value of operand o used atprogram point p . For each element of the list of constant de�nitions, we can then �nd all ofthe potential uses. For each potential use, in turn, we can �nd all other potential de�nitions.If all de�nitions yield the same constant then this constant can be substituted for the operanduse in question. Finally, if we substitute constants for all operand uses in a tuple then thetuple can be evaluated and its program point added to the list. The process terminates whenthe list is empty.For practical reasons, global data ow analysis is carried out in two parts. The �rstpart gathers information within a single basic block, summarizing it in sets de�ned at theentry and/or exit points. This drastically reduces the number of sets that must be processedduring the second part, which propagates the information over the ow graph. The result ofthe second part is then again sets de�ned at the entry and/or exit points of basic blocks. Thesesets are �nally used to distribute the information within the block. A complete treatment ofthe algorithms used to propagate information over the ow graph is beyond the scope of thisbook. Kennedy [1981] gives a good survey, and Hecht [1977] covers the subject in depth.As an example, consider the computation of LIVE (b) . We characterize the ow graphfor this computation by two sets:PRED(b) = fh j h is an immediate predecessor of b in the ow graphgSUCC(b) = fh j h is an immediate successor of b in the ow graphgAn operand is then live on exit from a block b if it is used by any block in SUCC (b) beforeit is either de�ned or invalidated. Moreover, if a block h 2 SUCC (b) neither de�nes norinvalidates the operand, then it is live on exit from b if it is live on exit from h . Symbolically:LIV E(b) = [h2SUCC(b)[IN(h) [THRU(h) \ LIV E(h)] (13.1)IN (h) is the set of operand identi�ers used in h before being de�ned or invalidated, andTHRU (h) is the set of operand identi�ers neither de�ned nor invalidated in h .We can solve the system of set equations (13.1) iteratively as shown in Figure 13.12. Thisalgorithm is O(n2), where n is the number of basic blocks: At most n � 1 executions ofthe repeat statement are needed to make a change in a basic block b available to anotherarbitrary basic block b' . The actual number of iterations depends upon the sequence in whichthe basic blocks are considered and the complexity of the program. For programs withoutexplicit jumps the cost can be reduced to two iterations, if the basic blocks are ordered sothat inner loops are processed before the loops in which they are contained.Computation of the sets USES (o, p) and DEFS (o, p) provides a more complex exam-ple of global ow analysis. We begin by computing REACHES (b) , the set of program pointsthat de�ne values valid at the entry point of basic block b . Let DEF (b) be the set of programpoints within b whose de�nitions remain valid at the end of b , and let VALID (b) be theset of program points whose de�nitions are not changed or invalidated in b . REACHES (b) isthen de�ned by:REACHES(b) = [h2PRED(b)[DEF (h) [V ALID(h) \REACHES(h)] (13.2)

288 Optimizationfor all basic blocks b dobeginIN (b) := ;; THRU (b) := fall operand identifiersg;for t := last tuple downto first tuple dobeginIN (b) := (IN (b) - Dt - Xt) [Ut ;THRU (b) := THRU (b) - Dt - Xt ;end;LIVE (b) := ;end;repeatchanged := false;for all basic blocks b dobeginold := LIVE (b);LIVE (b) := Sh 2 SUCC (b) [IN (h) [THRU (h) \ LIVE (h)];changed := changed or (LIVE (b) 6= old);end;until not changed;Figure 13.12: Computation of LIVE (b)Note the similarity between equations (13.1) and (13.2). It is clear that essentially thesame algorithm can be used to solve both sets of equations. Similar systems of equationsappear in most global data ow analysis problems, and one can show that a particular prob-lem can be handled by a standard algorithm simply by showing that the sets and rules forcombining them at junctions satisfy the axioms of the algorithm.The computation of DEF (b) and VALID (b) is described in Figure 13.13a. It usesauxiliary sets DF (o) which specify, for each operand identi�er o , the program points whosede�nitions of o reach the ends of the basic blocks containing those program points. OnceDEF (b) and VALID (b) are known for every basic block, REACHES (b) can be computedby solving the system of set equations (2). Finally, a simple scan (Figure 13.13b) su�cesto de�ne DEFS (o, p) at each program point. USES (o, p) is computed by scanning theentire program and, for each tuple p that uses o , adding p to USES (o, q) for every q 2DEFS (o, p) .13.3.2 Code MotionThe address expression for a[i; j] in the Pascal fragment of Figure 13.14a is common to bothbranches of the conditional statement, although there is no path from one to the other overwhich the value remains unchanged. The second implementation of Figure 13.14b shows howwe can move the computation, with the assignment, forming an epilogue to the conditional.This code motion transformation reduces the code size but leaves the execution time un-changed. In the third implementation of Figure 13.14b we have moved a computation whosevalue does not change in the inner loop to the prologue of that loop. Here the execution timeis reduced and the code size is increased slightly.A key consideration in code motion is safety : The transformation is allowed when thetransformed program will deliver the same result as the original, and will terminate ab-normally only if the original would have terminated abnormally. (Note that the abnormaltermination may occur in a di�erent place.) In Figure 13.14, the value of i div k does notchange in the inner loop. Moving that computation to the prologue of the inner loop would be

13.3 Global Optimization 289unsafe, however, because if k were zero the transformed program would terminate abnormallyand the original would not.We can think of code motion as a combination of insertions and deletions. An insertionis safe if the expression being inserted is available at the point of insertion. An expression isavailable at a given point if it has been computed on every path leading to that point andnone of its operands have been altered since the last computation. Clearly the program'sresult will not be changed by the inserted code if the inserted expression is available, andif the inserted code were to terminate abnormally then the original program would haveterminated abnormally at one of the earlier computations. This argument guarantees thesafety of the �rst transformation in Figure 13.14b. We �rst insert the address computationand assignment to a[i; j], making it an epilogue of the conditional. The original computationsin the two branches are then redundant and may be removed.C : array [operand_identifier] of program_point;for all operand identifiers o do DF (o) := ;;for all basic blocks b dobeginfor all operand identifiers o do C[o] := 0;for i := first program point of b to last program point of b dobeginfor o 2 Xt (i) do C[o] := 0;for o 2 Dt (i) do C[o] := i;end;DEF (b) := ;;for all operand identifiers o doif C[o] 6= 0 thenbeginDEF (b) := DEF (b) [fC[o] g;DF (o) := DF (o) [fC[o] g;end;end;for all basic blocks b dobeginVALID (b) := ;;for all operand identifiers o doif o 2 THRU (b) then VALID (b) := VALID (b) [DF (o);end; a) Computation of DEF (b) and VALID (b)TR := REACHES (b);for i := first program point of b to last program point of b dobeginDEFS (o , i) := ;;for o 2 Ut (i) do DEFS (o , i) := TR \ DF (o);for o 2 Dt (i) [Xt (i) do TR := TR - DF (o);for o 2 Dt (i) do TR := TR [fi g;end; b) Computation of DEFS (o, p)Figure 13.13: Computing a Set of Program Points

290 OptimizationThe second transformation in Figure 13.14b involves an insertion where the inserted ex-pression is not available, but where it is anticipated. An expression is anticipated at a givenpoint if it appears on every execution path leaving that point and none of its operands couldbe altered between the point in question and the �rst computation on each path. In ourexample, (i� 1) � n is anticipated in the prologue of the j loop, but i div k is not. Thereforeit is safe to insert the former but not the latter. Once the insertion has been made, thecorresponding computation in the epilogue of the conditional is redundant because its valueis available.Let AVAIL (b) be the set of operand identi�ers available on entry to basic block b andANTIC (b) be the set of operand identi�ers anticipated on exit from b . These sets are de�nedby the following systems of equations:AVAIL(b) = \h2PRED(b)[OUT (h) [THRU(h) \AVAIL(h)]ANTIC(b) = \h2SUCC(b)[ANLOC(h) [THRU(h) \ANTIC(h)]Here OUT (b) is the set of operand identi�ers de�ned in b and not invalidated after their lastde�nition, and ANLOC (b) is the set of operand identi�ers for tuples computed in b beforeany of their operands are de�ned or invalidated.The main task of the optimizer is to �nd code motions that are safe and pro�table (reducethe cost of the program according to the desired measure). Wulf et al. [1975] considers`� � !' code motions that move computations from branched constructs to prologues andepilogues. (The center column of Figure 13.14 illustrates an ! motion; an � motion wouldhave placed the computation of a[i; j] before the compare instruction.) He also discussesthe movement of invariant computations out of loops, as illustrated by the right column ofFigure 13.14. If loops are nested, invariant code is moved out one region at a time. Moreland Renvoise [1979] present a method for moving a computation directly to the entranceblock of the outermost strongly-connected region in which it is invariant.13.3.3 Strength ReductionFigure 13.15 gives yet another implementation of Figure 13.14a for the IBM 370. The codeis identical to that of the right-hand column of Figure 13.14b, except that the expression(i� 1) �n has been replaced by an initialization and increment of R5. It is easy to see that inboth cases the sequence of values taken on by R5 is 0, n, 2n, 3n, : : : This strength reductiontransformation reduces the execution time, but its e�ect on the code size is unpredictable.Allen et al. [1981] gives an extensive catalog of strength reductions. The major im-provement in practice comes from simplifying access to arrays, primarily multidimensionalarrays, within loops. We shall therefore consider only strength reductions involving expres-sions of this kind. All of these transformations are based upon the fact that multiplication isdistributive over addition.Let S be a strongly-connected component of the computation graph. A region constantis an expression whose value is unchanged in S, and an induction value is one de�ned onlyby tuples having one of the following forms:j � k�ji := ji "

13.3 Global Optimization 291
for i := 1 to n dofor j := 1 to n doif j > k then a[i, j] := 0 else a[i, j] := i div k ;a) A Pascal fragmentLA R0,1 LA R0,1 LA R0,1C R0,n(R13) C R0,n(R13) C R0,n(R13)BH ENDI BH ENDI BH ENDIB BODI B BODI B BODIINCI A R0,=1 INCI A R0,=1 INCI A R0,=1BODI ST R0,i(R13) BODI ST R0,i(R13) BODI ST R0,i(R13)C R0,n(R13) C R0,n(R13) C R0,n(R13)BH ENDJ BH ENDJ BH ENDJL R5,i(R13)S R5,=1M R4,n(R13)B BODJ B BODJ B BODJINCJ A R0,=1 INCJ A R0,=1 INCJ A R0,=1BODJ ST R0,j(R13) BODJ ST R0,j(R13) BODJ ST R0,j(R13)C R0,k(R13) C R0,k(R13) C R0,k(R13)BNH ELSE BNH ELSE BNH ELSESR R1,R1 SR R1,R1 SR R1,R1L R3,i(R13)S R3,=1M R2,n(R13)A R3,j(R13)SLA R3,2ST R1,a-4(R3,R13)B ENDC B ENDC B ENDCELSE L R0,i(R13) ELSE L R0,i(R13) ELSE L R0,i(R13)SRDA R0,32 SRDA R0,32 SRDA R0,32D R0,k(R13) D R0,k(R13) D R0,k(R13)L R3,i(R13) ENDC L R3,i(R13)S R3,=1 S R3,=1M R2,n(R13) M R2,n(R13)A R3,j(R13) A R3,j(R13) ENDC L R3,j(R13)AR R3,R5SLA R3,2 SLA R3,2 SLA R3,2ST R1,a-4(R3,R13) ST R1,a-4(R3,R13) ST R1,a-4(R3,R13)ENDC L R0,j(R13) L R0,j(R13) L R0,j(R13)C R0,n(R13) C R0,n(R13) C R0,n(R13)BL INCJ BL INCJ BL INCJENDJ L R0,i(R13) ENDJ L R0,i(R13) ENDJ L R0,i(R13)C R0,n(R13) C R0,n(R13) C R0,n(R13)BL INCI BL INCI BL INCIENDI ENDI ENDI(142 bytes) (118 bytes) (120 bytes)b) IBM 370 implementationsFigure 13.14: Code Motion

292 OptimizationLA R0,1C R0,n(R13)BH ENDISR R5,R5 (i� 1) � n initially 0B BODIINCI A R0,=1A R5,=n Increment (i� 1) � nBODI ST R0,i(R13)LA R0,1C R0,n(R13)BH ENDJB BODJINCJ A R0,=1BODJ ST R0,j(R13)C R0,k(R13)BNH ELSESR R1,R1B ENDIFELSE L R0,i(R13)SRDA R0,32D R0,k(R13)ENDIF L R3,j(R13)AR R3,R5SLA R3,2ST R1,a-4(R3,R13)L R0,j(R13)C R0,n(R13)BL INCJENDJ L R0,i(R13)C R0,n(R13)BL INCIENDI (118 bytes)Figure 13.15: Strength Reduction Applied to Figure 13.14bHere j and k are either induction values or region constants and i is an induction variable.The set of induction values is determined by assuming that all values de�ned in the regionare induction values, and then deleting those that do not satisfy the conditions [Allen et al.,1981]. The induction values in Figure 13.16 are i, t2, t3 and t7.To perform a strength reduction transformation on Figure 13.16, we de�ne a variableV1 to hold the value t9. An assignment must be made to this variable prior to enteringthe strongly-connected region, and at program points where t9 has been invalidated and yett2 � d1 is anticipated. For example, t9 is invalidated by t8 in Figure 13.16, and yet t2 � d1is anticipated at that point. An assignment V1 := t2 � d1 should therefore be inserted justbefore l2. Since t2 is the value of i ", i := t7; V1 := t2 � d1 is equivalent to V1 := (t2 + 1) � d1;i := t7. Using the distributive law, and recalling the invariant that V1 always holds the valueof t9(= t2 � d1), this sequence can be written as V1 := V1+ d1; i := t7. Figure 13.17 shows theresult of the transformation, after appropriate decomposition into tuples.We could now apply exactly the same reasoning to Figure 13.17, noting that V1, t28, t29,t31, t35 and t49 are now induction values. The obvious variables then hold t32, t36 and t41.

13.3 Global Optimization 293for i := 1 to n do a[j; i] := a[k; i] + a[m; i];a) A Pascal fragmentt1: i := 1 l2 : t2 t2t2: i " t9 : t2 � d1 t9t3: n " t10: k " t21: j "t4: t2?t3 t11: t10 + t9 t22: t21 + t9t5: JGT (t4)l3 t12: t11 � 4 t23: t22 � 4t6: JMP l2 t13: a+ t12 t24: a+ t23l1: t2 t14: t13 " t25: t24 := t20t7: t2 + 1 t2 t2t8: i := t7 t9 t3t15: m " t4t16: t15 + t9 t26: JLT (t4)l1t17: t16 � 4 l3:t18: a+ t17t19: t18 "t20: t14 + t19b) Computation graph for (a)Figure 13.16: Finding Induction Valuest1 l2: t28 t28t2 t10 t21t3 t31: t10 + t28 t40: t21 + t28t4 t32: t31 � 4 t41: t40 � 4t5 t33: a+ t32 t42: a+ t41t27: V1 := d1 t34: t33 " t43: t42 := t39t6 t28 t2l1: t28: V1 " t15 t3t29: t28 + d1 t35: t15 + t28 t4t30: V1 := t29 t36: t33 � 4 t26t2 t37: a+ t36 l3:t7 t38: t37 "t8 t39: t34 + t38Figure 13.17: Figure 13.16b After One Strength ReductionUnfortunately, none of these variables have simple recurrence relations. Four more variables,to hold t28 � 4, t10 � 4, t15 � 4 and t21 � 4 must be de�ned. Although tedious, the processis straightforward; a complete algorithm is given by Allen et al. [1981]. As can be seenfrom this simple example, the number of variables introduced grows rapidly. Many of thesevariables will later be eliminated because their functions have been e�ectively taken over byother variables. This is the case after further processing of Figure 13.17, where the functionof V1 is taken over by the variable implementing t28 �4. In fact, the program variable i can beomitted in this loop if the test for termination is changed to use one of the derived inductionvariables.Clearly strength reduction must precede code motion. The strength reduction process gen-erates many extra tuples that are constant within the strongly connected region and henceshould be moved to its prologue. It is also clear that strength reduction must be iterated if itis to be e�ective. The proliferation of derived induction variables, with concomitant initializa-tion and incrementing, may cause a signi�cant increase in code size. Thus strength reductionis strictly an execution time optimization, and usually involves a time/space tradeo�. Scar-

294 Optimizationborough and Kolsky [1980] advocate judicious preprocessing of subscript expressions inan e�ort to reduce the growth due to strength reduction.13.3.4 Global Register AllocationAs discussed in Section 13.2.4, local register allocation considers each basic block in isolation.Values that live across basic block boundaries are generally program variables, and are storedin memory. Thus it is unnecessary to retain values in registers from one basic block to thenext. The global optimizations discussed so far alter this condition. They tend to increase thenumber of operands whose lifetimes include more than one basic block, and if such operandsmust be kept in memory then much of the advantage is lost. It is absolutely essential that wetake a more global view in allocating registers in order to minimize the number of additionalfetch, store and copy register instructions.Most global register allocation strategies allow program variables to compete equally forregisters with other operands. Some care must be taken, however, since program variables maybe accessible over paths that are e�ectively concealed from the compiler. It is probably bestto exclude program variables from the allocation when such paths are available. As indicatedin Section 13.1, this is a property of the source language and the necessary restrictions willvary from compiler to compiler.Day [1970] discusses the general register allocation problem and gives optimal solutionsfor the basic strategies. These solutions provide standards for measuring the e�ectiveness ofheuristics, but are themselves too expensive for use in a production compiler. Two faster,non-optimal procedures are also discussed. All of these algorithms assume a homogeneousset of registers. Late in the paper, Day mentions that the problem of register pairs mightbe solved by running the allocation twice. The �rst run would be given only the values thatmust be assigned to one register of a pair (or both). Input to the second run would includeall items, but attach a very high pro�t to each assignment made by the �rst run.One of the problems with global register allocation is the large number of operands thatmust be considered. In spite of the previous global optimizations, the majority of theseoperands have lifetimes contained within a basic block. We would like to perform the expen-sive global allocation procedure on only those operands whose lifetimes cross a basic blockboundary, allocating the remainder by the cheaper methods of Section 13.2.4. If we do this,however, we run the risk of allocating all registers globally and hence generating very poorlocal code. Beatty [1974] suggests that we divide the local register allocation process intotwo phases, determining the number of registers required (`allocation') and deciding whichregisters will be used (`assignment'). The requirements set by the �rst phase are used indetermining global register usage, and then the unclaimed registers are assigned in each basicblock individually.All data items that live across basic block boundaries are initially assumed to be inmemory, but all instructions that can take either register or memory operands are assumedto be in their register-register form. Explicit loads and stores are inserted where required,and the processes of Sections 13.2.1-13.2.3 are carried out. The methods of Section 13.2.4are applied to determine the number of registers required locally. With this information, aglobal analysis [Beatty, 1974] is used to guide load-store motion (code motion involvingonly the loads and stores of operands live across basic block boundaries) and global registerassignment. As the assignment proceeds, some (but not necessarily all) loads and storeswill become redundant and be deleted. When the global analysis is complete, we apply theallocation of Section 13.2.4 to assign local registers.Real computers usually have annoying asymmetries in register capability that wreak havocwith uniform register allocation schemes. It is necessary to provide a mechanism for incor-

13.4 E�cacy and Cost 295porating such asymmetries in order to avoid having to exclude certain registers from theallocation altogether. One allocation scheme [Chaitin et al., 1981; Chaitin, 1982] thatavoids the problem is based on graph coloring (Section B.3.3). The constraints on allocationare expressed as an interference graph, a graph with one node for each register, both abstractand actual. An edge connects two nodes if they interfere (i.e. if they exist simultaneously).Clearly all of the machine registers interfere with each other. In the left column of Figure 13.8,R[17] and R[18] do not interfere with each other, although they both interfere with R[16];all abstract registers interfere with each other in the right column. If there are n registers, aregister assignment is equivalent to an n-coloring (Section B.3.3) of the interference graph.Many asymmetry constraints are easily introduced as interferences. For example, anyabstract register used as a base register on the IBM 370 interferes with machine register0. Similarly, we can solve a part of the multiplication problem by making the abstractmultiplicand interfere with every even machine register and de�ning another abstract registerthat interferes with every odd machine register and every abstract register that exists duringthe multiply. This guarantees that the multiplicand goes into an odd register and that aneven register is free, but it does not guarantee that the multiplicand and free register form apair.The coloring algorithm [Chaitin et al., 1981] used for this problem di�ers from that ofSection B.3.3 because the constraints are di�erent: There we are trying to �nd the minimumnumber of colors, assuming that the graph is �xed; here we are trying to �nd an n-coloring,and the graph can be changed to make that possible. (Spilling a value to memory removessome of the interferences, changing the graph.) Any node with fewer than n interferences doesnot a�ect the coloring, since there will be a color available for it regardless of the colors chosenfor its neighbors. Thus it (and all edges incident upon it) can be deleted without changingwhether the graph can be n-colored. If we can continue to delete nodes in this manner untilthe entire graph disappears, then the original was n-colorable. The coloring can be obtainedby adding the nodes back into the graph in the reverse order of deletion, coloring each as itis restored.If the coloring algorithm encounters a node with n or more interferences, it must make adecision about which node to spill. A separate table is used to give the cost of spilling eachregister, and the register is chosen for which cost/(incident edges) is as small as possible.Some local intelligence is included: When a computation is local to a basic block, and noabstract register lifetimes end between its de�nition and last use, the cost of spilling it is setto in�nity. The cost algorithm also accounts for the facts that some computations can beredone instead of being spilled and reloaded, and that if the source or target of a registercopy operation is spilled then that operation can be deleted. It is possible that a particularspill can have negative cost!Unfortunately, the introduction of spill code changes the conditions of the problem. Thus,after all spill decisions are made, the original program is updated with spill code and theallocation re-run. Chaitin claims that the second iteration usually succeeds, but it maybe necessary to insert more spill code and try again. To reduce the likelihood of multipleiterations, one can make the �rst run with n� k registers instead of n registers.13.4 E�cacy and CostWe have discussed a number of transformations in this chapter. Do they provide an improve-ment commensurate with the cost of performing them? In some sense this is a meaninglessquestion, because it is too broad. Each user has a de�nition of `commensurate', which willvary from one program to another. The best we can do is to try to indicate the costs and

296 Optimizationbene�ts of some of the techniques we have discussed and leave it to the compiler writer tostrike, under pressure from the marketplace, a reasonable balance.By halving the code size required to implement a language element that accounts for 1%of a program we reduce the code size of that program by only 0.5%, which certainly does notjustify a high compilation cost. Thus it is important for the compiler writer to know the milieuin which his compiler will operate. For example, elimination of common subexpressions, codemotion and strength reduction might speed up a numerical computation solving a problemin linear algebra by a factor of 2 or 3. The same optimizations often improve non-numericprograms by scarcely 10%. Carter's 1982 measurements of 95,000 lines of Pascal, primarilynon-numeric code, shows that the compiler would typically be dealing with basic blockscontaining 2-4 assignments, 10-15 tuples and barely 2 common subexpressions!Static analysis does not, of course, tell the whole story. Knuth [1971a] found in his studyof FORTRAN that less than 4% of a program generally accounts for half of its running time.This phenomenon was exploited by Dakin and Poole [1973] to implement an interactive texteditor as a mixture of interpreted and directly-executed code. Their measurements showedthat in a typical editing session over 97% of the execution involved less than 10% of thecode, and more than half of the code was never used at all. Finally, Knuth discovered thatover 25% of the running times of the FORTRAN programs he pro�led was spent performinginput/output. Measure RatiosLocal/None Global/None Global/LocalCompilation time Min. 0.8 1.0 1.2Avg. 0.9 1.4 1.4Max. 1.0 1.6 1.6Code space Min. 0.42 0.38 0.89Avg. 0.54 0.55 1.02Max. 0.69 0.66 1.19Execution time Min. 0.32 0.19 0.58Avg. 0.50 0.42 0.82Max. 0.72 0.61 0.94Table 13.1: Evaluation of PL/1L [Cocke and Markstein, 1980]Actual measurements of optimization e�cacy and cost are rare in the literature, and thesample size is invariably small. It is thus very di�cult to draw general conclusions. Table 13.1summarizes a typical set of measurements. Cocke and Markstein [1980] PL/1L, an ex-perimental optimizing compiler for a PL/1-like language, was run over each of four programsseveral times. A di�erent level of optimization was speci�ed for each compilation of a givenprogram, and measurements made of the compilation time, code space used for the resultingobject program, and execution time of the resulting object program on a set of data. Atevery level the compiler allocated registers globally by the graph coloring algorithm sketchedin Section 13.3.4. No other optimizations were performed at the `None' level. The `Local' op-timizations were those discussed in Section 13.2.1, and the `Global' optimizations were thosediscussed in Sections 13.3.1 through 13.3.3. It is not clear what (if any) peephole optimizationwas done, although the global register allocation supposedly deleted redundant comparisonsfollowing arithmetic operations by treating the condition code as another allocatable register[Chaitin et al., 1981]. The reduction in compilation time for local optimization clearly illus-trates the strong role that global register allocation played in the compilation time �gures.Local optimization reduced the number of nodes in the interference graph, thus more thancovering its own cost. One of the test programs was also compiled by the standard optimizing

13.4 E�cacy and Cost 297PL/1 compiler in a bit less than half of the time required by the PL/1L compiler. OPT=0was selected for the PL/1 compiler, and local optimization for the PL/1L compiler. Thisratio changed slightly in favor of the PL/1 compiler (0.44 to 0.38) when OPT=2 and `global'were selected. When the same program was rewritten in FORTRAN and compiled usingFORTRAN H, the ratios OPT=0/local and OPT=2/global were almost identical at 0.13.(Section 14.2.3 discusses the internals of FORTRAN H.)In the late 1970's, Wulf and his students attempted to quantitatively evaluate the size ofthe object code produced by an optimizing compiler. They modeled the optimization processby the following equation: K(C;P) = Ku(C;P) �Yi Oi(C)K(C;P) is the cost (code space) of program P compiled with compiler C, and Ku is the cor-responding unoptimized cost. Each Oi(C) is a measure of how e�ectively compiler C appliesoptimization i to reduce the code size of a typical program, assuming that all optimizations1; : : : ; i � 1 have already been done. They were never able to validate this model to theirsatisfaction, and hence the work never reached publication. They did, however, measure thefactors Oi(C) for Bliss-11 [Wulf et al., 1975] (Table 13.2).Index Description Factor1 Evaluating constant expressions 0.9382 Dead code elimination 0.983 Peephole optimization 0.884 Algebraic laws 0.9755 CSE in statements 0.9876 CSE in basic blocks 0.9737 Global CSE 0.9878 Global register allocation 0.9759 Load/store motion 0.98710 Cross jumping 0.97211 Code motion 0.98512 Strength reduction -Table 13.2: Optimization Factors for Bliss-11 Wulf et al. [1975]We have considered optimizations 1 and 4 of Table 13.2 to precede formation of the com-putation graph; the remainder of 1-6 constitute the local optimizations of Section 13.2. Thusthe product of these factors (roughly 0.76) should approximate the e�ect of local optimizationalone. Similarly, the product of factors 7-12 (roughly 0.91) should approximate the additionalimprovement due to global optimization. Comparing this latter �gure with the last columnof Table 13.1 shows the deleterious e�ect of strength reduction on code space discussed inSection 13.3.3.The �rst column of Table 13.1 shows a code size improvement signi�cantly better than0.76, implying that the PL/1L compiler generates poorer initial code than Bliss-11, leavingmore to be gained by simple optimizations. This should not be taken as a criticism. Afterall, using a sophisticated code generator with an optimizer is a bit like vacuuming the o�cebefore the cleaning crew arrives! Davidson and Fraser [1980] take the position that codegeneration should be trivial, producing instructions to simulate a simple stack machine onan in�nite-register analog of the target computer. They then apply the optimizations ofSection 13.2, using a fragment bounded by labels (i.e. a path in an extended basic block) inlieu of a basic block.

298 OptimizationExercises13.1 Show how the dependency sets would be derived when building a computation graphthat represents a LAX program for a target machine of your choice.13.2 Assume that the FORTRAN assignment statementA(I; J;K) =(A(I; J;K � 1) +A(I; J;K + 1) +A(I; J � 1;K) +A(I; J + 1;K) +A(I � 1; J;K) +A(I + 1; J;K))=6:0constitutes a single basic block.(a) Write the initial tuple sequence for the basic block.(b) Derive a new tuple sequence by the algorithm of Figure 13.4a.(c) Code the results of (b), using register transfers that describe the instructions ofsome machine with which you are familiar.13.3 Give an example, for some machine with which you are familiar, of a common subex-pression satisfying each of the following conditions. If this is impossible for one or moreof the conditions, carefully explain why.(a) Always cheaper to recompute than save.(b) Never cheaper to recompute than save.(c) Cheaper to recompute i� it must be saved in memory.13.4 Explain how the �rst method of peephole optimization described in Section 13.2.3 couldbe used to generate patterns for the second. Would it be feasible to combine the twomethods, backing up the second with the �rst? Explain.13.5 Assume that the register management algorithm of Figure 10.12 is to be used in anoptimizing compiler. De�ne precisely the conditions under which all possible changesin register state will occur.13.6 Show how the D and X sets are propagated through the value numbering and codingprocesses to support the decisions of Exercise 13.5, as described in Section 13.2.4.13.7 Give examples of safe code motions in which the following behavior is observed:(a) The transformed program terminates abnormally in a di�erent place than theoriginal, but with the same error.(b) The transformed program terminates abnormally in a di�erent place than theoriginal, with a di�erent error.13.8 Consider a Pascal if statement with integer constant bounds. Assume that the lowerbound is smaller than the upper bound, which is smaller thanmaxint. Instead of usingthe schema of Figure 3.10c, the implementor chooses the following:i := e1; t := e3;l1: : : : (* Body of the loop *)i := i+ 1;if i � t then goto l1;(a) Explain why no strength reduction can be carried out in this loop.(b) Suppose that we ignore the explanation of (a) and carry out the transformationanyway. Give a speci�c example in which the transformed program terminatesabnormally but the original does not. Restrict the expressions in your exampleto those arising from array subscript calculations. Your array bounds must bereasonable (i.e. arrays with maxint elements are unreasonable).

Chapter 14ImplementationIn earlier chapters we have developed a general framework for the design of a compiler. Wehave considered how the task and its data structures could be decomposed, what tools andstrategies are available to the compiler writer, and what problems might be encountered.Given a source language, target machine and performance goals for the generated code wecan design a translation algorithm. The result of the design is a set of module speci�cations.This chapter is concerned with issues arising out of the implementation of these speci�ca-tions. We �rst discuss the decisions that must be made by the implementors and the criteriathat guide these decisions. Unfortunately, we can give no quantitative relationship betweendecisions and criteria! Compiler construction remains an art in this regard, and the successfulcompiler writer must simply develop a feel for the inevitable compromises. We have there-fore included three case studies of successful compilers that make very di�erent architecturaldecisions. For each we have tried to identify the decisions made and show the outcome.14.1 Implementation DecisionsMany valid implementations can generally be found for a set of module speci�cations. In fact,an important property of a module is that it hides one or more implementation decisions. Byvarying these decisions, one obtains di�erent members of a `family' of related programs. All ofthe members of such a family carry out the same task (de�ned by the module speci�cations)but generally satisfy di�erent performance criteria. In our case, we vary the pass structureand data storage strategies of the compiler to satisfy a number of criteria presented in Sec-tion 14.1.1. Despite this variation, however, the module speci�cations remain unchanged.This point is an extremely important one to keep in mind, especially since many implemen-tation languages provide little or no support for the concept of a module as a distinct entity.With such languages it is very easy to destroy the modular decomposition during develop-ment or maintenance, and the only protection one has against this is eternal vigilance and athorough understanding of the design.14.1.1 CriteriaMaintainability, performance and portability are the three main criteria used in making im-plementation decisions. The �rst is heavily inuenced by the structure of the program, anddepends ultimately on the quality of the modular design. Unfortunately, given current imple-mentation languages, it is sometimes necessary to sacri�ce some measure of maintainabilityto achieve performance goals. Such tradeo�s run counter to our basic principles. We do notlightly recommend them, but we recognize that in some cases the compiler will not run at all299

300 Implementationunless they are made. We do urge, however, that all other possibilities be examined beforesuch a decision is taken.Performance includes memory requirements, secondary storage requirements and process-ing time. Hardware constraints often place limits on performance tradeo�s, with time theonly really free variable. In Sections 14.1.2 and 14.1.3 we shall be concerned mainly withtradeo�s between primary and secondary storage driven by such constraints.Portability can be divided into two sub-properties often called rehostability and retar-getability. Rehosting is the process of making the compiler itself run on a di�erent machine,while retargeting is the process of making it generate code for a di�erent machine. Rehosta-bility is largely determined by the implementation language and the performance tradeo�sthat have been made. Suppose, for example, that we produce a complete design for a Pascalcompiler, specifying all modules and interfaces carefully. If this design is implemented bywriting a FORTRAN program that uses only constructs allowed by the FORTRAN standard,then there is a good chance of its running unchanged on a wide variety of computers. If, onthe other hand, the design is implemented by writing a program in assembly language for theControl Data 6000 series then running it on another machine would involve a good deal ofe�ort.Even when we �x both the design and the implementation language, performance consid-erations may a�ect rehostability. For example, consider the use of bit vectors (say as parserdirector sets or error matrices, or as code generator decision table columns) when the imple-mentation language is Pascal. One possible representation is a set, another is a packed arrayof Boolean. Unfortunately, some Pascal implementations represent all sets with the samenumber of bits. This usually precludes large sets, and the bit vectors must be implementedas arrays of sets or packed arrays of Boolean. Other implementations only pack arrays to thebyte level, thus making a packed array of Boolean eight times as large as it should be. Clearlywhen the compiler is rehosted from a machine with one of these problems to a machine withthe other, di�erent implementations of bit vectors may be needed to meet performance goals.Neither of the situations in the two previous paragraphs a�ected the design (set of mod-ules and interfaces). Rehostability is thus quite evidently a property of the implementation.Retargetability, on the other hand, is more dependent upon the design. It requires a cleanseparation between the analysis and synthesis tasks, since the latter must be redesigned inorder to retarget the compiler. If the target machine characteristics have been allowed toinuence the design of the analysis task as well as the synthesis task, then the redesign willbe more extensive. For example, suppose that the design did not contain a separate constanttable module. Operations on constants were carried out wherever they were needed, followingthe idiosyncrasies of the target machine. Retargeting would then involve redesign of everymodule that performed operations on constants, rather than redesign of a single module.Although the primary determinant of retargetability is the design, implementation mayhave an e�ect in the form of tradeo�s between modularity and performance that destroy theanalysis/synthesis interface. Such tradeo�s also degrade the maintainability, as indicated atthe beginning of this section. This should not be surprising, because retargeting a compiler is,after all, a form of maintenance: The behavior of the program must be altered to �t changingcustomer requirements.14.1.2 Pass StructureIt often becomes obvious during the design of a compiler that the memory (either actualor virtual) available to a user on the host machine will not be su�cient for the code of thecompiler and the data needed to translate a typical program. One strategy for reducing thememory requirement is analogous to that of a dentist's o�ce in which the patient sits in

14.1 Implementation Decisions 301Data Structure Tasks ReferenceSymbol table Lexical analysis Chapter 6Parse table Parsing Chapter 7De�nition table Name analysis Chapter 9Semantic analysis Chapter 9Memory mapping Section 10.1Target attribution Section 10.2Decision tables Code selection Section 10.3Address table Assembly Chapter 11Table 14.1: Decomposition via Major Data Structuresa chair and is visited in turn by the dentist, hygienist and x-ray technician: The programis placed in the primary storage of the machine and the phases of the compiler are `passedby the program', each performing a transformation of the data in memory. This strategy isappropriate for systems with restricted secondary storage capability. It does not require thatintermediate forms of the program be written and then reread during compilation; a singleread-only �le to hold the compiler itself is su�cient. The size of the program that can becompiled is limited, but it is generally possible to compile programs that will completely �llthe machine's memory at execution time. (Source and intermediate encodings of programsare often more compact than the target encoding.)Another strategy is analogous to that of a bureau of motor vehicles in which the applicant�rst goes to a counter where application forms are handed in, then to another where writtentests are given, and so on through the eye test, driving test, cashier and photographer: Thecompiler `passes over the program', repeatedly reading and writing intermediate forms, untilthe translation is complete. This strategy is appropriate for systems with secondary storagethat can support several simultaneously-open sequential �les. The size of the program thatcan be compiled is limited by the �ling system rather than the primary memory. (Of courseprimary memory will limit the complexity of the program as discussed in Chapter 1.)Either strategy requires us to decompose the compilation into a sequence of transforma-tions, each of which is completed before the next is begun. One fruitful approach to thedecomposition is to consider relationships between tasks and large data structures, organiz-ing each transformation around a single data structure. This minimizes the information owbetween transformations, narrowing the interfaces. Table 14.1 illustrates the process for atypical design. Each row represents a transformation. The �rst column gives the central datastructure for the tasks in the second column. It participates in only the transformation cor-responding to its row, and hence no two of these data structures need be held simultaneously.Our second strategy places an extra constraint upon the intermediate representations ofthe program: They must be linear, and each will be processed sequentially. The transforma-tions are carried out by passes, where a pass is a single scan, in either direction, of a linearintermediate representation of the program. Each pass corresponds to a traversal of thestructure tree, with forward passes corresponding to depth-�rst, left-to-right traversals andbackward passes corresponding to depth-�rst, right-to-left traversals. Under this constraintwe are limited to AAG(n) attribution; the attribute dependencies determine the number ofpasses and the tasks carried out in each. It is never necessary to build an explicitly-linkedstructure tree unless we wish to change traversals. (An example is the change from a depth-�rst, left-to-right traversal of an expression tree to an execution-order traversal based uponregister counts.)The basic Pascal �le abstraction is a useful one for the linear intermediate representationsof the program. A module encapsulates the representation, providing an element type and a

302 Implementationsingle window variable of that type. Operations are available to empty the sequence, add thecontent of the window to the sequence, get the �rst element of the sequence into the window,get the next element of the sequence into the window, and test for the end of the sequence.This module acts as a `pipeline' between the passes of the compiler, with each operatingdirectly on the window. By implementing the module in di�erent ways we can cause thecommunicating passes to operate as coroutines or to interact via a �le.While secondary storage is larger than primary storage, constraints on space are notuncommon. Moreover, a signi�cant fraction of the passes may be I/O-bound and henceany reduction in the size of an intermediate representation will be reected directly in thecompilation time. Our communication module, if it writes information to a �le, shouldtherefore encode that information carefully to avoid redundancy. In particular, the elementwill usually be a variant record and the communication module should transmit only theinformation present in the stated variant (rather than always assuming the largest variant).Further compression may be possible given a knowledge of the meanings of the �elds. Forexample, in the token of Figure 4.1 the line number �eld of coordinates changes only rarely,and need be included only when it does change. The fact that the line number is present canbe encoded by the classi�cation �eld in an obvious way. Because most tokens are completelyspeci�ed by the classi�cation �eld alone, this optimization can reduce the size of a token �leby 30%.14.1.3 Table RepresentationWe have seen how the requirements for table storage are reduced by organizing each passaround a table and then discarding that table at the end of the pass. Further reduction canbe based upon the restricted lifetime of some of the information contained in the table. Forexample, consider a block-structured language with a left-to-right attribute grammar (suchas Pascal). The de�nition table entries for the entities declared locally are not used after therange in which those entities were declared has been left. They can therefore be thrown awayat that point.Pascal is admittedly a simple case, but even in languages with more complex attribute re-lationships de�nition table entities are only accessed during processing of a program fragment.One purpose of the de�nition table is to abstract information from the program, making itmore accessible during processing. This purpose can only be served if the entry is, in fact,accessed. Thus it is often reasonable to destroy de�nition table entries when the fragmentin which they are accessed has been left, and re-create them when that fragment is enteredagain.A table entry can only be destroyed if its information is no longer needed, can be recom-puted from other information, or can be stored in the structure tree in a position where it canbe recovered before it is needed next. The last condition is most easily satis�ed if forwardand backward passes alternate, but it can also occur in other situations. We shall see severalexamples of this `distribution' of attribute information in Section 14.2.1.Unfortunately, many implementation languages do not support freeing of storage. Evenfor those where it is nominally supported, the implementation is often poor. The compilerwriter can avoid this problem by managing his own dynamic storage, only making requestsfor storage allocation and never returning storage to the system. The basic strategy for ablock-structured language is quite simple: All storage allocated for a given table is held in asingle one-way list. A pointer indicates the most-recently delivered element. When a programfragment that will add elements to the table is entered, this pointer is remembered; whenthe fragment is left, its value is restored. If a new element is needed then the pointer of thecurrent element is checked. If it is nil, storage allocation is requested and a pointer to the

14.2 Case Studies 303resulting block placed in the current element. In any case the pointer to the most-recentlydelivered element is advanced along the list. Thus the list acts like a stack, and its �nal lengthis the maximum number of entries the table required at one point in the compilation.The disadvantage of this strategy is that the storage requirements are those that wouldobtain if all tables in each pass reached their maximum requirement simultaneously. Oftenthis is not the case, and hence larger programs could have been accommodated if storage forunused entries had been returned to the operating system.Every pass that manipulates constant values must include the necessary operations ofthe abstract data type constant table discussed in Section 4.2.2. Constant table de�nes aninternal representation for each type of value. This representation can be used as an attributevalue, but any manipulation of it (other than assignment) must be carried out by constanttable operations. We pointed out in Section 4.2.2 that the internal representation might sim-ply describe an access function for a data structure within the constant table module. Thisstrategy should be used carefully in a multipass compiler to avoid broadening the interfacebetween passes: The extra data structure should usually not be retained intact and trans-mitted from one pass to the next via a separate �le. Instead, all of the information abouta constant should be added to the linearized form of the attributed structure tree at an ap-propriate point. The extra data structure is then reconstituted as the linearized tree is readin. The string table is a common exception to the approach suggested above. Careful designof the compiler can restrict the need for string table access to two tasks: lexical analysisand assembly. (This is true even though it may be used to store literal strings and stringsrepresenting the fractions of oating point numbers as well as identi�ers.) Thus the stringtable is often written to a separate �le at the completion of lexical analysis. It is only retrievedduring assembly when the character representations of constants must be converted to targetcode, and identi�ers must be incorporated into external symbol dictionaries.14.2 Case StudiesWe have discussed criteria for making implementation decisions and indicated how the passstructure and table representation are a�ected by such decisions. This section analyzes threecompilers, showing the decisions made by their implementors and the consequences of thosedecisions. Our interest is to explore the environment in which such decisions are made and toclarify their interdependence. We have tried to choose examples that illustrate the importantpoints, and that have been used routinely in a production setting. Pragmatic constraints suchas availability of design or maintenance documentation and understandability of the compileritself were also inuential.14.2.1 GIER ALGOLThis compiler implements ALGOL 60 on GIER, a machine manufactured by Regnecentralen,Copenhagen. The decision to develop the compiler was taken in January, 1962 and the �nalproduct was delivered in February, 1963. It implemented all of ALGOL 60 except integerlabels, arrays as value parameters, and own arrays. The compiler was intended to run on aminimum GIER con�guration consisting of 1024 40-bit words of 8.8 microsecond core memoryand a 128,000 word drum (320 tracks of 40 words each).Previous experience with ALGOL compilers led the designers to predict a code size ofabout 5000 words for the GIER compiler. They chose to organize the compiler as a sequenceof passes over linearized representations of the program. Each intermediate representationconsists of a sequence of 10-bit bytes. The interpretation of this sequence depends upon the

304 ImplementationPass Task(s) Description1 Lexical analysis Analysis and check of hardware representation. Con-version to reference language. Strings are assembled.2 Lexical analysis Identi�er matching. In the output, each distinct iden-ti�er is associated with an integer between 512 and1022.3 Syntactic analysis Analysis and check of delimiter structure. Delimitersof multiple meaning are replaced by distinctive delim-iters. Extra delimiters are inserted to facilitate laterscanning.4 Collection of declarations and speci�cations at the be-gin of blocks and in procedure headings. Rearrange-ments of procedure calls.5 Name analysis Distribution of identi�er descriptions. Storage map-ping Storage allocation for variables.6 Semantic analysis Check the types and kinds of identi�ers and otheroperands. Conversion to reverse polish notation.7 Code generation Generation of machine instructions for expressions.Allocation of working variables.8 Assembly Final addressing of the program. Segmentation intodrum tracks. Production of �nal machine code.9 Rearrangement of the program tracks on the drumTable 14.2: Pass Structure for the GIER ALGOL Compilerpasses accessing it; it is a unique encoding of a speci�c data structure. Use of relativelysmall, uniform units improves the e�ciency of the encoding and allows the implementorsto use common basic I/O routines for all passes. The latter consideration is perhaps mostimportant for compilers implemented in machine code. As we indicated in Section 14.1.2,however, a multi-pass compiler is often I/O bound and hence specially tailored machine codeI/O routines might result in a signi�cant performance improvement. We should emphasizethat such a decision should only be made on the basis of careful measurement, but theimplementor should make it possible by an appropriate choice of representation.Assuming that about half of the core memory would be used for code in each pass, simplearithmetic shows that 10 passes will be required. This value was not taken as a target tobe met, but merely as an indication of the number to be expected. Passes were generallyorganized around major data structures, with the additional proviso that large tables shouldbe combined with simple code and vice-versa.Table 14.2 shows the �nal structure, using the descriptions given by Naur [1964] and thecorresponding tasks discussed in this book.Lexical analysis is divided into two passes in order to satisfy the code size/table sizerelationship mentioned in the last paragraph: Since up to 510 identi�ers are allowed, andthere is no restriction on identi�er length, it is clear that the maximum possible space mustbe made available for the symbol table. Thus the remainder of the lexical analysis was placedin another pass. Here we have a decision that should be validated by measurements made onthe running compiler. In the �nal system, each pass had 769 words of core memory available(the remainder was occupied by the control code). Pass 1 used 501 words of program and132 words of data, plus a 40-word bu�er for long character strings; pass 2 used 89 words forprogram and 62 words for data. Unless the pass 1 code could be reduced signi�cantly byusing a di�erent algorithm or data structure, or the allowance of 510 identi�ers was found tobe excessive, the decision to split the two tasks stands.

14.2 Case Studies 305Note the interdependence of the decisions about representation of tokens and form of theintermediate code. A 10-bit byte allows values in the range [0,1023]. By using the subrange[512,1022] for identi�ers, one e�ectively combines the classification and symbol �elds ofFigure 4.1. Values less than 512 classify non-identi�er tokens, in most cases characterizingthem completely. Only constants need more than a single byte using this scheme, and weknow that constants occur relatively infrequently. Interestingly, only string constants arehandled in pass 1. Those whose machine representations do not exceed 40 bits are replacedby a marker byte followed by 4 bytes holding the representation. Longer strings are savedon the drum and replaced in the code by a marker byte followed by 4 bytes giving the drumtrack number and relative address. In the terminology of Section 4.2.2, the constant table hasseparate �xed-length representations for long and short strings. Numeric constants remain inthe text as strings of bytes, one corresponding to each character of the constant.Pass 3 performs the normal syntactic analysis, and also converts numeric and logicalconstants to a ag byte followed by 4 bytes giving the machine representation. Again in theterminology of Section 4.2.2, the internal and target representations of numeric constants areidentical. (The ag byte simply serves as the classification �eld of Figure 4.1; it is not partof the constant itself.) Naur's description of the compiler strongly suggests that parsing iscarried out by the equivalent of a pushdown automaton while the lexical analysis of pass 1is more ad-hoc. As we have seen, numeric constants can be handled easily by a pushdownautomaton. The decision to process numeric and logical constants in pass 3 rather than inpass 1 was therefore probably one of convenience.The intermediate output from pass 3 consists of the unchanged identi�ers and constants,and a transformed set of delimiters that precisely describe the program's structure. It ise�ectively a sequence of connection point numbers and tokens, with the transformed delimitersspecifying structure connections and each identi�er or constant specifying a single symbolconnection plus the associated token.Attribute ow is generally from declaration to use. Since declaration may follow usein ALGOL 60, reverse attribute ow may occur. Pass 4 is a reverse pass that collects alldeclarative information of a block at the head of the block. It merely simpli�es subsequentprocessing.In pass 5, the de�nition table is actually distributed through the text. Each identi�er isreplaced by a 4-byte group that is the corresponding de�nition table entry. It gives the kind(e.g. variable, procedure), result type, block number, relative address and possibly additionalinformation. Thus GIER ALGOL does not abstract entities as proposed in Section 4.2.3, butdeposits the necessary information at the leaves of the structure tree. This example empha-sizes the fact that possessions and de�nitions are separate. GIER ALGOL uses possessionsvirtually identical to those discussed in connection with Figure 9.21 to control placement ofthe attributes during pass 5, but it has no explicit de�nition table at all.Given the attribute propagation performed by passes 4 and 5, the attribution of pass 6 isLAG(1). This illustrates the interaction between attribute ow and pass structure. Given anattribute grammar, we must attempt to partition the relationships and semantic functionsso that they fall into separable components that can be �t into the overall implementationmodel. This partitioning is beyond the current state of the art for automatic generators.We can only carry out the partitioning by hand and then use analysis tools based upon thetheorems of Chapter 8 to verify that we have not made any mistake.Address calculations are carried out during both pass 7 and pass 8. Backward referencesare resolved by pass 7; pass 8 is backward over the program, and hence can trivially resolveforward references. Literal pooling is also done during pass 7. All of the constants used inthe code on one drum track appear in a literal pool on that track.

306 Implementation14.2.2 Z�urich PascalThe �rst Pascal compiler was developed during the years 1969-71 for Control Data 6000series hardware at the Institut f�ur Informatik, Eidgen�ossische Technische Hochschule, Z�urich.Changes were made in Pascal itself as a result of experience with the system, and a newimplementation was begun in July, 1972. This project resulted in a family of two compilers,Pascal-P and Pascal-6000, having a single overall design. Pascal-P is a portable compilerthat produces code for a hypothetical stack computer; the system is implemented by writingan interpreter for this machine. Pascal-6000 produces relocatable binary code for ControlData 6000 series machines. The two compilers were completed in March, 1973 and July,1974 respectively. Descendants of these two compilers comprised the bulk of the Pascalimplementations in existence in 1982, ten years after their development was initiated.Written in Pascal itself, the Z�urich compilers have a one-pass, recursive descent architec-ture that reects the freedom from storage constraints a�orded by the Control Data machine.6000 series processors permit a user direct access to 131,072 60-bit words of 1 microsecondcore memory. Even the more common con�guration installed at the time Z�urich Pascal wasdeveloped provided each user with a maximum of about 40,000 words. (This is almost 60times the random-access memory available for the GIER ALGOL compiler.)Pascal provides no linguistic mechanisms for de�ning packages or abstract data types,and hence all explicit modules in the compilers are procedures or variables. The e�ect of apackage must be obtained by de�ning one or more variables at a given level and providing acollection of procedures to manipulate them. Encapsulation can be indicated by comments,but cannot be enforced. Similarly, an abstract data type is implemented by de�ning a typeand providing procedures to manipulate objects of that type. Lack of linguistic support forencapsulation encourages the designer to consider a program as a single, monolithic unit.Control of complexity is still essential, however, and leads to an approach known as stepwisere�nement. This technique is particularly well-suited to the development of recursive descentcompilers.Stepwise re�nement is subtly di�erent from modular decomposition as a design methodol-ogy. Instead of dividing the problem to be solved into a number of independent subproblems,it divides the solution into a number of development steps. A painter uses stepwise re�nementwhen he �rst sketches the outlines of his subject and then successively �lls in detail and addscolor; an automobile manufacturer uses modular decomposition when he combines engine,power train and coachwork into a complete product. Table 14.3 lists the development stepsused in the Z�urich Pascal project, with the descriptions given by Ammann [1975] and thecorresponding tasks discussed in this book.Step Task(s) Description1 Lexical analysis Syntactic analysis Syntax analysis for syntactically cor-rect programs2 Syntactic error recovery Treatment of syntactic errors3 Semantic analysis Analysis of the declarations4 Semantic analysis Treatment of declaration errors5 Memory mapping Address allocation6 Code selection Assembly Code generation7 Optimization Local improvement of the generatedcodeTable 14.3: Development Steps for the Z�urich Pascal Compilers

14.2 Case Studies 307basic symbolprogramblock constanttype simple typefield listlabel declarationconstant declarationtype declarationvariable declarationprocedure declarationparameter listbody statementselectorvariablecallexpressionsimple expressionterm factorassignmentcompound statementgoto statementif statementcase statementwhile statementrepeat statementfor statementwith statementFigure 14.1: The Structure of the Z�urich Pascal CompilersThe overall structure of the compiler was established in step 1; Figure 14.1 shows thisstructure. Each line represents a procedure, and nesting is indicated by indentation. At thisstep the procedure bodies had the form discussed in Section 7.2.2, and implemented an EBNFdescription of the language.Lexical analysis is carried out by a single procedure that follows the outline of Chapter 6.It has no separate scanning procedures, and it incorporates the constant table operationsfor conversion from source to internal form. Internal form and target form are identical. Nointernal-to-target operators are used, and the internal form is manipulated directly via normalPascal operations.There is no symbol table. Identi�ers are represented internally as packed arrays of 10characters { one 60-bit word. If the identi�er is shorter than 10 characters then it is paddedon the right with spaces; if it is longer then it is truncated on the right. (We have alreadydeplored this strategy for a language whose de�nition places no constraints upon identi�erlength.) Although the representation is �xed-length, it still does not de�ne a small enoughaddress space to be used directly as a pointer or table index. Name analysis therefore requiressearching and, because there may be duplicate identi�ers in di�erent contexts, the search spacemay be larger than in the case of a symbol table. Omission of the symbol table does not save

308 Implementationmuch storage because most of the symbol table lookup mechanism must be included in thename analysis.Syntactic error recovery is carried out using the technique of Section 12.2.2. A minormodi�cation was needed because the stack is not accessible when an error is detected: Eachprocedure takes an anchor set as an argument. This set describes the anchors after reductionof the nonterminal corresponding to the procedure. Symbols must be added to this setto represent anchors within the production currently being examined. Of course all of thecode to update the anchors, check for errors, skip input symbols and advance the parse wasproduced by hand. This augmentation of the basic step 1 routines constituted step 2 ofthe compiler development. The basic structure of Figure 14.1 remained virtually unchanged;common routines for error reporting and skipping to an anchor were introduced, with theformer preceding the basic symbol routine (so that lexical errors could be reported) and thelatter following it (so that the basic symbol routine could be invoked when skipping).Step 3 was concerned with building the environment attribute discussed in Section 9.1.1.Two record types, identrec and structrec, were added to the existing compiler. The envi-ronment is a linked data structure made up of records of these types. There is one identrecper declared identi�er, and those for identi�ers declared in the same range are linked as anunbalanced binary tree. An array of pointers to tree roots constitutes the de�nition of thecurrent addressing environment. Three of the de�nition table operations discussed in Sec-tion 9.2 (add a possession to a range, search the current environment, search a given range)are implemented as common routines while the others are coded in line. Entering and leavinga range are trivial operations, involving pointer assignment only, while searching the currentenvironment is complex. This is exactly the opposite of Figure 9.21, which requires complexbehavior on entry to and exit from a range with simple access to the current environment.The actual discrepancy between the two techniques is reduced, however, when we recall thatthe Z�urich compiler does not perform symbol table lookups.Each identrec carries attribute information as well as the linkages used to implement thepossession table. Thus the possessions and de�nitions are combined in this implementation.The type attribute of an identi�er is represented by a pointer to a record of type structrec,and there is one such record for every de�ned type. Certain types (as for example scalartypes) are de�ned in terms of identi�ers and hence a structrec may point to an identrec. Theidentrec contains an extra link �eld, beyond those used for the range tree, to implement listsof identi�ers such as scalar constants, record �elds and formal parameters.The procedures of Figure 14.1 can be thought of as carrying out a depth-�rst, left-to-right traversal of the parse tree even though that tree never has an explicit incarnation.Since only one pass is made over the source program, the attribution rules must meet theLAG(1) condition. They were simply implemented by Pascal statements inserted into theprocedures of Figure 14.1 at the appropriate points. Thus at the conclusion of step 3 thebodies of these procedures still had the form of Section 7.2.2, but contained additional Pascalcode to calculate the environment attribute. As discussed in Section 8.3.2, attribute storageoptimization led to the representation of the environment attribute as a linked, global datastructure rather than an item stored at each parse tree node. The interesting part of thestructure tree is actually represented by the hierarchy of activation records of the recursivedescent procedures. Attribute values attached to the nodes are stored as values of localvariables of these procedures.During step 4 of the re�nement the remainder of the semantic analysis was added tothe routines of Figure 14.1. This step involved additional attribution and closely followedthe discussion of Chapter 9. Type de�nitions were introduced for the additional attributes,global variables were declared for those attributes whose storage could be optimized, and localvariables were declared for the others. The procedures of Figure 14.1 were augmented by the

14.2 Case Studies 309Pascal code for the necessary attribution rules, and functions were added to implement therecursive attribute functions.Ammann [1975] reports that steps 1-4 occupied a bit more than 6 months of the 24-monthproject and accounted for just over 2000 of the almost 7000 lines in Pascal-6000. Steps 5 and6 for Pascal-P were carried out in less than two and a half months and resulted in about 1500lines of Pascal, while the corresponding numbers for Pascal-6000 were thirteen months and4000 lines. Step 7 added another three and a half months to the total cost of Pascal-6000,while increasing the number of lines by less than 1000.The abstract stack computer that is the target for the Pascal-P compiler is carefullymatched to Pascal. Its elementary operators and data types are those of Pascal, as areits memory access paths. There are special instructions for procedure entry and exit thatprovide exactly the e�ect of a Pascal procedure invocation, and an indexed jump instructionfor implementing a case selection. Code generation for such a machine is clearly trivial, andwe shall not consider this part of the project further.Section 10.1 describes storage allocation in terms of blocks and areas. A block is an objectwhose size and alignment are known, while an area is an object that is still growing. In Pascal,blocks are associated with completely-de�ned types, whereas areas are associated with typesin the process of de�nition and with activation records. Thus Pascal-6000 represents blocksby means of a size �eld in every structrec. The actual form of this �eld varies with thetype de�ned by the structrec; there is no uniform "size" attribute like that of Figure 10.1.Because of the recursive descent architecture and the properties of Pascal, the lifetime of anarea coincides with the invocation of one of the procedures of Figure 14.1 in every case. Forexample, an area corresponding to a record type grows only during an invocation of the �eldlist procedure. This means that the speci�cation of an area can be held in local variablesof a procedure. Step 5 added these local variable declarations and the code to process areagrowth to the procedures of Figure 14.1. The size �eld was also added to structrec in thisstep.Step 6 was the �rst point at which a `foreign' structure { the structure of the targetmachine { appeared. This re�nement was thus the �rst that added a signi�cant numberof procedures to those of Figure 14.1. The added procedures e�ectively act as modules forsimulation and assembly.As we pointed out earlier, no explicit structure tree is ever created by Pascal-6000. Thismeans that the structure tree cannot be decorated with target attributes used to determinean improved execution order and then traversed according to this execution order for codeselection. Pascal-6000 thus computes no target attributes other than the value descriptors ofSection 10.3.1. They are used in conjunction with a set of register descriptors and registerallocation operations to perform a machine simulation exactly as discussed in Section 10.3.1.The recursive descent architecture once again manifests itself in the fact that global storageis provided for only one value descriptor. Most value descriptors are held as local variables ofprocedures appearing in Figure 14.1, with the global variable describing the `current' value {the one that would lie at the `top of the stack'.The decision tables describing code selection are hand-coded as Pascal conditionals andcase statements within the analysis procedures. Code is generated by invoking register alloca-tion procedures, common routines such as load and store, and assembly interface proceduresfrom Table 14.4.The �rst four operations of Table 14.4 assemble target code sequentially; Pascal-6000 doesnot have the concept of separate sequences discussed in Section 11.1.1. A `location counter'holds the current relative address, which may be accessed by any routine and saved as alabel. The third operand of a 30-bit instruction may be either an absolute value or a relativeaddress, and gen30 has a fourth parameter to distinguish these cases. Forward references are

310 ImplementationProcedure Descriptionnoop Force code alignment to a word boundarygen15 Assemble a 15-bit instructiongen30 Assemble a 30-bit instructiongen60 Assemble a 60-bit constantsearchextid Set up an external referenceins Satisfy a given forward referencelgohead Output PIDL and ENTRlgotext Output TEXTlgoend Output XFER and LINKTable 14.4: Pascal-6000 Assembly Operationshandled by ins, which allows a relative address to be stored at a given position in the codealready assembled.In keeping with the one-pass architecture, Pascal-6000 retains all of the code for a singleprocedure. The assembly `module' is initialized when the `body' procedure (Figure 14.1) isinvoked, and a complete relocatable deck is output at the end of this invocation to �nalizethe `module'. Pascal-6000 uses Control Data's standard relocatable binary text as its targetcode, in keeping with our admonition at the beginning of Section 11.2. We shall discuss thelayout of that text here in some detail as an illustration; another example, the IBM 370 objectmodule, will be given at the end of the next section.PIDL 34 1 0name lengthXFER 46 1 0Start symbol 0ENTR 36 2n 0symbol1 00 address1: : :symboln 00 addressn

TEXT 40 n+ 1 addressrelocation bitstext1: : :textnLINK 44 n 0symbol1field1;1 : : :f ield1;i symsymbol2 field2;1: : :Figure 14.2: Control Data 6000 Series Relocatable Binary CodeA relocatable subprogram is a logical record composed of a sequence of tables (Figure 14.2),which are simply blocks of information with various purposes. The �rst word of each tablecontains an identifying code and speci�es the number of additional 60-bit words in the table.As with any record, a relocatable subprogram may be preceded by a pre�x table containingarbitrary information (such as the date compiled, version of the compiler, etc.), but the �rstcomponent of the subprogram proper is the program identi�cation and length (PIDL) table.PIDL is conventionally followed by an entry point (ENTR) table that associates entry pointsymbols with the locations they denote (Section 11.2.1), but in fact the loader places noconstraints on either the number or the position(s) of any tables other than PIDL.The body of the subprogram is made up of TEXT tables. Each TEXT table speci�es ablock of up to 15 words, the �rst of which should be loaded at the speci�ed address. Fourrelocation bits are used for each text word (hence the limit of 15 text words). References toexternal symbols are not indicated by the relocation bits, which only distinguish absolute andsigned relative addresses. External references are speci�ed by LINK tables: For each external

14.2 Case Studies 311symbol, a sequence of operand �eld de�nitions is given. The loader will add the address ofthe external symbol to each of the �elds so de�ned. Thus a call of "sqrt", for example, wouldappear in the TEXT table as an RJ (return jump) instruction with the absolute value 0 asits operand. This 0-�eld would then be described in a LINK table by one of the operand �eldde�nitions following the symbol sqrt. When the loader had determined the address of sqrt itwould add it to the 0-�eld, thus changing the instruction into RJ sqrt. There is no restrictionon the number of LINK tables, the number of times a symbol may appear or the number of�eld de�nitions that may follow a single symbol. As shown in Figure 14.2, each �eld de�nitionoccupies 30 bits, each symbol occupies 60 bits, and a symbol may be split between words.The transfer (XFER) table is conventionally associated with a main program. It givesthe entry point to which control is transferred after the loader has completed loading theprogram. Again, however, the loader places no restriction on the number of XFER tablesor the subprograms with which they are associated. An XFER table is ignored if its startsymbol begins with a space, or if a new XFER whose start symbol does not begin with aspace is encountered. The only requirement is that, by the time the load is completed, a startsymbol that is an entry point of some loaded subprogram has been speci�ed.Internal and external references, either of which may occur in a 30-bit instruction, arerepresented quite di�erently in the target code. This is reected at the assembly interfaceby the presence of searchextid. When a 30-bit instruction is emitted, gen30 checks a globalpointer. If it is not nil then it points to an external symbol, and gen30 adds the targetlocation of the current instruction's third operand to a list rooted in that symbol. This listwill ultimately be used by lgoend to generate a LINK table. The global pointer checked bygen30 is set by searchextid and cleared to nil by gen30. When the code generator emits a30-bit instruction containing an external reference it therefore �rst invokes searchextid withthe external identi�er and then invokes gen30 with the absolute value 0 as the third operand.Section 11.3.1 gives an alternative strategy.14.2.3 IBM FORTRAN HThe major design goal for FORTRAN H was production of e�cient object code. IBM begandevelopment of the compiler in 1963, using FORTRAN as the implementation language onthe 7094. The initial version was used to compile itself for System/360, producing overhalf a million 8-bit bytes of code. Running on System/360, the compiler optimized itself,reducing its size by about 25%. It was then rewritten to take advantage of language extensionspermitting e�cient bit manipulation and introducing a form of record access. This reducedcompilation time by about 35% and allowed the compiler to compile itself on a 262,140 bytecon�guration. Major development of FORTRAN H was completed in 1967, but modi�cationand enhancement has been a continuous process since then. The details presented in thissection correspond to release 17 of the compiler [IBM, 1968]. The entire program unit beingcompiled is held in main storage by the FORTRAN H compiler. This is done to simplifythe optimizer, which accesses the program text randomly and rearranges it. It does implylimitations on the size of a compilable unit, but such limitations are less serious for FORTRANthan for ALGOL 60 or Pascal because the language design supports separate compilation ofsmall units.As shown in Table 14.5, the compiler has �ve major phases. Code for these phases isoverlaid, with a total of 13 overlay segments. A maximum of about 81,000 bytes of code isactually in the memory at any one time (this maximum occurs during phase 20), and theminimum storage in which a compilation can be carried out is about 89,000 bytes.FORTRAN is a rather unsystematic language, and Phase 10 reects this. The unit ofprocessing is a complete statement, which is read into a bu�er, packed to remove superuous

312 ImplementationPhase Task(s) Description10 Lexical analysis, Syntacticanalysis; Semantic analysis Convert source text to operator-operand pairsand information table entries. Detect syntac-tic errors.15 Syntactic analysis; Seman-tic analysis; Memory map-ping; Target attribution Convert operator-operand pairs to quadru-ples. Operator identi�cation and consistencychecks. Convert constants and assign relativeaddresses to constants, variables and arrays.20 Target attribution; Optimi-zation Eliminate common subexpressions, performlive / dead analysis and strength reduction,and move constant expressions out of loops.Assign registers and determine the sizes ofcode blocks. Optimize jump targets.25 Code selection; Assembly Convert quadruples into System/360 machinecode. Create an object module.30 Error reporting Record appropriate messages for errors en-countered during previous phases.Table 14.5: Phase Structure of the IBM FORTRAN H Compilerspaces, and then classi�ed. Based upon the classi�cation, ad hoc analysis routines are used todeal with the parts of the statement. All of these routines have similar structures: They scanthe statement from left to right, extracting each operand and making an entry for it in thede�nition table if one does not already exist, and building a linear list of operator/operandpairs. The operator of the pair is the operator that preceded the operand; for the �rst pairit is the statement class. An operand is represented by a pointer to the de�nition table plusits type and kind (constant, simple variable, array, etc.) The type and kind codes are also inthe de�nition table entry, and are retained in the list solely to simplify access.Phase 10 performs only a partial syntactic analysis of the source program. It does notdetermine the tree structure within a statement, but it does extract the statement numberand classify some delimiters that have multiple meaning. For example, it replaces `(' by `leftarithmetic parenthesis', `left subscript parenthesis' or `function parenthesis' as appropriate.Name analysis is rudimentary in FORTRAN because the meaning of an identi�er is inde-pendent of the structure of a program unit. This means that no possessions are required, andthe symbol and de�nition tables can be integrated without penalty. Symbol lookup uses asimple linear scan of the chained de�nition table entries, but the organization of the chains isFORTRAN-speci�c: There is one ordered chain for each of the six possible identi�er lengths,and each chain is doubly-linked with the header pointing to the center of the chain. Thus asearch on any chain only involves half the entries. (The header is moved as entries are addedto a chain, in order to maintain the balance.) Constants, statement numbers and commonblock names also have entries in the de�nition table. Three chains are used for constants, onefor each allowable length (4, 8 or 16 bytes), and one each for statement numbers and commonblock names.The only semantic analysis done during Phase 10 is `declaration processing'. Type, di-mension, common and equivalence statements are completely processed and the results sum-marized in the de�nition table. Because FORTRAN does not require that identi�ers bedeclared, attribute information must also be gathered from applied occurrences. A minor useof the attribute information is in the classi�cation of left parentheses (mentioned above), be-cause FORTRAN does not make a lexical distinction between subscript brackets and functionparentheses.

14.2 Case Studies 313Phase 15 completes the syntactic analysis, converting the lists of operator/operand pairsto lists of quadruples where appropriate. Each quadruple consists of an operator, a target typeand three pointers to the de�nition table. This means that phase 15 also creates a de�nitiontable entry for every anonymous intermediate result. Such `temporary names' are treatedexactly like programmer-de�ned variables in subsequent processing, and may be eliminated byvarious optimizations. The quadruples are chained in a correct (but not necessarily optimum)execution order and gathered into basic blocks.Semantic analysis is also completed during phase 15, with all operator identi�cation andconsistency checking done as the quadruples are built. The target type is expressed as ageneral type (logical, integer, real) plus an operand type (short, long) for each operand andfor the result.The syntactic and semantic analysis tasks of phase 15 are carried out by an overlay segmentknown as PHAZ15, which also gathers de�ned/used information for common subexpressionand dead variable analysis. This information is stored in basic block headers as discussedin Chapter 13. Finally, PHAZ15 links the basic block headers to both their predecessorsand their successors, describing the owgraph of the program and preparing for dominanceanalysis.CORAL is the second overlay segment of phase 15, which carries out the memory mappingtask. The algorithm is essentially that discussed in Section 10.1, but its only function is toassign addresses to constants and variables (in other words, to map the activation record).There are no variant records, but equivalence statements cause variables to share storage. Byconvention, the activation record base is in register 13. The layout of the activation record isgiven in Figure 14.3. It is followed immediately by the code for the program unit. (Rememberthat storage allocation is static in FORTRAN.) The size of the save area (72 bytes) and itsalignment (8) are �xed by the implementation, as is the size of the initial contents for register12 (discussed below). Storage for the computed GOTO tables and the parameter lists hasalready been allocated storage by Phase 10. CORAL allocates storage for constants �rst, thenfor simple variables and then for arrays. Local variables and arrays mentioned in equivalencestatements come next, completing this part of the activation record. Finally the commonblocks speci�ed by the program unit are mapped as separate areas.Save areaInitial contents for register 12Branch tables for computed GOTO'sParameter listsConstants and local variablesAddress values (`adcons')Namelist dictionariesCompiler-generated temporariesLabel addressesFigure 14.3: FORTRAN H Activation RecordSystem/360 access paths limit the maximum displacement to 4095. When a larger dis-placement is generated during CORAL processing, the compiler de�nes an adcon variable{ a new activation record base { and resets the displacement to normal variable for furtherprocessing. CORAL does not place either adcons or temporaries into the activation recordat this time, because they may be deleted during optimization.Phase 20 assigns operands to registers. If the user has speci�ed optimization level 0, thecompiler treats the machine as having one accumulator, one base register and one register forspecifying jump addresses (Table 14.6). Machine simulation (Section 10.3.1) is used to avoid

314 Implementationredundant loads and stores, but no change is made in the execution order of the quadruples.Attributes are added to the quadruples, specifying the register or base register used for eachoperand and for the result.Level 1 optimization makes use of a pool of general-purpose registers, as shown in Ta-ble 14.6. Register 13 is always reserved as the base of the activation record. A decisionabout whether to reserve some or all of registers 9-12 is made on the basis of the number ofquadruples output by phase 15. This statistic is available prior to register allocation, and itpredicts the size of the subprogram code. Once the register pool is �xed, phase 20 performslocal register assignment within basic blocks and global assignment over the entire programunit. Again, the order of the quadruples is unchanged and attributes giving the registers usedfor each operand or memory access path are added to the quadruples.Common subexpression elimination, live/dead analysis, code motion and strength reduc-tion are all performed at optimization level 2. The register assignment algorithms used onthe entire program unit at level 1 are then applied to each loop of the modi�ed program,starting with the innermost and ending with the entire program unit. This guarantees thatthe register assignment within an inner loop will be determined primarily by the activityof operands within that loop, whereas at level 1 it may be inuenced by operand activityelsewhere in the program.The basic implementation used for a branch is to load the target address of the branchinto a register and then execute an RR-format branch instruction. This requires an adcon forevery basic block whose �rst instruction is a branch target. If a register already happened tohold an address less than 4096 bytes lower than the branch target, however, both the load andthe adcon would be unnecessary. A single RX-format branch instruction would su�ce. Thusthe compiler reserves registers to act as code bases. To understand the mechanism involved,we must consider the layout of information in storage more carefully.Assignment at optimization levelRegister 0 1,20 Operands and results123 Not used4 Operands and results5 Branch addresses Selectedlogical operands6 Operands representing in-dex values7 Base addresses89 Not used10 Code bases or operands andresults1112 Adcon base13 Activation record base14 Computed GOTO Logicalresults of comparisons Operands and results15 Computed GOTOTable 14.6: General-Purpose Register Assignment by FORTRAN H

14.2 Case Studies 315We have already seen that phase 15 allocates activation record storage for constantsand programmer-de�ned variables, generating adcons as necessary to satisfy the displace-ment limit of 4095. When register allocation is complete, all adcons and temporary vari-ables that have not been eliminated are added to the activation record. The adconsmust all be directly addressable, since they must be loaded to provide base addresses formemory access. If they are not all within 4095 bytes of the activation record base thenthe reserved register 12 is assumed to contain either the address of the �rst adcon or(base address of the activation record + 4096), whichever is larger. It is assumed thatthe number of adcons will never exceed 1024 (although this is theoretically possible, giventhe address space of System/360) and hence all adcons will be directly accessible via eitherregister 12 or register 13. (Note that a fail-safe decision to reserve register 12 can be madeon the basis of the phase 15 output, without regard to the number of quadruples.)If the number of quadruples output from phase 15 is large enough, register 11 will bereserved and initialized to address the 4096th byte beyond that addressed by register 12.Similarly, for a larger number of quadruples, register 10 will be reserved and initialized to anaddress 4096 larger than register 11. Finally, register 9 will be reserved and initialized for aneven larger number of quadruples. Phase 20 can calculate the maximum possible address ofeach basic block. Those lying within 4096 bytes of one of the reserved registers are markedwith the register number and displacement. The adcon corresponding to the basic block labelis then deleted. (These deletions, plus the ultimate shortening of the basic blocks due tooptimization of the branch instructions, can never invalidate the addressability conditions onthe basic blocks.)The branch optimization described in the previous paragraphs is carried out only atoptimization levels 1 and 2. At optimization level 0 the basic implementation is used for allbranches.Phase 25 uses decision tables to select the proper sequence of machine instructions. Thealgorithm is basically that of Section 10.3.2, except that the action stub of the decision tableis simply a sequence of instruction templates. Actions such as swap and lreg (Figure 10.13)have already been carried out during phase 20. There is conceptually one table for everyquadruple operator. Actually, several tables are associated with families of operators, andthe individual operator modi�es the skeletons as they are extracted. The condition is selectedby a 4-bit status, which may have somewhat di�erent meanings for di�erent operators. It isused as an index to select the proper column of the table, which in turn identi�es the templatesto be used in implementing the operator.FORTRAN H generates System/360 object modules, which are sequences of 80-charactercard images (Figure 14.4). Each card image is output by a normal FORTRAN formattedwrite statement. The �rst byte contains 2, which is the communication control characterSTX (start of text). All other �elds left blank in Figure 14.4 are unused. Columns 2-4 and73-80 contain alphanumeric information as indicated, with the serial number consisting ofa four-character deck identi�er and a four-digit sequence number. The remaining columnssimply contain whatever character happens to have the value of the corresponding byte as itsEBCDIC code. Thus 24-bit (3-byte) addresses occupy three columns and halfword (2-byte)integers occupy two columns. Even though the length �eld n has a maximum value of 56, itoccupies a halfword because System/360 has no byte arithmetic.Comparing Figure 14.4 with Figure 14.2, we see that essentially the same elements arepresent. END optionally carries a transfer address, thus subsuming XFER. ESD plays theroles of both PIDL and ENTR, and also speci�es the symbols from LINK. Its purpose isto describe the characteristics of the control sections associated with global symbols, andto de�ne short, �xed-length representations (the esdid's) for those symbols. The esdid incolumns 15-16 identi�es a deck or external; only one symbol of these types may appear on

316 Implementation1 2-4 5 6-8 9-10 11-12 13-14 15-16 17-72 73-80ESD n esdid symbols serialTXT address n esdid text serialRLD n Relocations serialEND address esdid seriala) Object module card images1-8 9 10-12 13 14-16Deck characters 0 offset lengthEntry characters 1 address ldidExternal characters 2b) Symbols1-2 3-4 5 6-8Position Relocation f addressesdid esdidc) RelocationsFigure 14.4: IBM System/360 Relocatable Binary Codean ESD card. Entry symbols identify the control sections to which they belong (ldid), andtherefore they may be placed on any ESD card where space is available.RLD provides the remaining function of LINK, and also that of the relocation bits inTEXT. Each item of relocation information modi�es the �eld at the absolute location speci�edin the position esdid and address by either adding or subtracting the value identi�ed by therelocation esdid. Byte f determines whether the value will be added or subtracted, and alsospeci�es the width of the �eld being modi�ed (which may be 1, 2, 3 or 4 bytes). If a sequenceof relocations involve the same esdid's then these speci�cations are omitted from the secondand subsequent relocations. (The rightmost bit of f is 1 if the following relocation does notspecify esdid's, 0 otherwise.)The decision to use relocation bits on the Control Data machine and the RLD mechanismon System/360 reects a fundamental di�erence in the instruction sets: 30-bit instructionson the 6000 Series often reference memory directly, and therefore relocatable addresses arecommon in the text. On System/360, however, all references to memory are via values inregisters. Only the adcons are relocatable and therefore relocatable addresses are quite rarein the text.14.3 Notes and ReferencesMost implementation decisions are related to performance in one way or another, and musteither be made on the basis of hard data or validated on that basis when the compiler isrunning. It is well known that performance problems are elusive, and that most programmers

14.3 Notes and References 317have incorrect ideas about the source of bottlenecks in their code. Measurement of criticalparameters of the compiler as it is running is thus imperative. These parameters include thesizes of various data structures and the states of various allocation and lookup mechanisms,as well as an execution histogram [Waite, 1973b]. The only description of GIER ALGOL inthe open literature is the paper by Naur [1964] cited earlier, but a very similar compiler fora variant of Pascal was discussed in great detail by Hartmann [1977].Ammann [1975] gives an excellent account in German of the development of Z�urich Pascal,and partial descriptions are available in English Ammann [1974, 1977].In addition to the Program Logic Manual, [IBM, 1968] descriptions of FORTRAN H havebeen given by Lowry and Medlock [1969] and Scarborough and Kolsky [1980]. Thesetreatments concentrate on the optimization performed by Phase 20, however, and give verylittle information about the compiler as a whole.

318 Implementation

Appendix AThe Sample ProgrammingLanguage LAXIn this Appendix we de�ne the sample programming language LAX (LAnguage eX ample),upon which the concrete compiler design examples in this book are based. LAX illustratesthe fundamental problems of compiler construction, but avoids uninteresting complications.We shall use extended Backus-Naur form (EBNF) to describe the form of LAX. Thedi�erences between EBNF and normal BNF are:� Each rule is terminated by a period.� Terminal symbols of the grammar are delimited by apostrophes. (Thus the metabrackets`<' and `>' of BNF are superuous.)� The following abbreviations are permitted:Abbreviation MeaningX ::= �(�): X ::= �Y : Y ::= �:X ::= �[�]: X ::= � j �(�):X ::= �u+: X ::= �Y : Y ::= u j Y u:X ::= �u�: X ::= �[u+]:X ::= � jj t: X ::= �(t�)�:Here �, � and are arbitrary right-hand sides of rules, Y is a symbol that does notappear elsewhere in the speci�cation, u is either a single symbol or a parenthesizedright-hand side, and t is a terminal symbol.For a more complete discussion of EBNF see Section 5.1.4.The axiom of the grammar is program. EBNF rules marked with an asterisk in thisAppendix are included to aid in the description of the language, but they do not participatein the derivation of any sentence. Thus they de�ne useless nonterminals in the sense ofChapter 5.A.1 Basic SymbolsAn identi�er is a freely-chosen representation for a type, label, object, procedure, formal pa-rameter or �eld selector. It is given meaning by a construct of the program. The appearancesat which an identi�er is given a meaning are called de�ning occurrences of that identi�er. Allother appearances of the identi�er are called applied occurrences.319

320 The Sample Programming Language LAXA.1.0.1 * basic symbol ::= identifier j denotation j delimiter:A.1.0.2 identifier ::= letter([0 0](letter j digit))�:A.1.0.3 letter ::= 0a0 j 0b0 j 0c0 j 0d0 j 0e0 j 0f 0 j 0g0 j 0h0 j 0i0j 0j0 j 0k0 j 0l0 j 0m0 j 0n0 j 0o0 j 0p0 j 0q0 j 0r0j 0s0 j 0t0 j 0u0 j 0v0 j 0w0 j 0x0 j 0y0 j 0z0:A.1.0.4 digit ::= 000 j 010 j 020 j 030 j 040 j 050 j 060 j 070 j 080 j 090:A.1.0.5 denotation ::= integer j floating point:A.1.0.6 integer ::= digit+:A.1.0.7 floating point ::= digit+scale j digit� 0:0digit+[scale]:A.1.0.8 scale ::= 0e0 [0 +0 j 0�0] integer:A.1.0.9 * delimiter ::= special j keyword:A.1.0.10 * special ::= 0 +0 j 0 �0 j 0 �0 j 0=0 j 0 <0 j 0 >0 j 0 =0 j 0 "0j 0 :0 j 0;0 j 0:0 j 0;0 j 0(0 j 0)0 j 0[0 j 0]0 j 0==0 j 0 :=0 j 0 ==0 :A.1.0.11 * keyword ::= 0and0 j 0array0 j 0begin0 j 0case0j 0declare0 j 0div0 j 0do0 j 0else0 j 0end0j 0for0 j 0from0 j 0goto0 j 0if 0 j 0is0j 0mod0 j 0new0 j 0not0 j 0of 0 j 0or0j 0procedure0 j 0record0 j 0ref 0 j 0then0 j 0to0 j 0type0 j 0while0:A.1.0.12 * comment ::= 0(�0 arbitrary 0�)0:Note: arbitrary does not contain `�)'Integer and oating point denotations have the usual meaning.Keywords are reserved identi�ers that can only be used as indicated by the rules of theEBNF speci�cation. We have used boldface type to represent keywords in the book only toenhance readability. This convention is not followed in the grammar, where the keywords aresimply strings to be processed.Comments, spaces and newlines may not appear within basic symbols. Two adjacentbasic symbols must be separated by one or more comments, spaces or newlines unless one ofthe basic symbols is a special. Otherwise comments, spaces and newlines are meaningless.An upper case letter is considered to be equivalent to the corresponding lower case letter.A.2 Program StructureA.2.0.1 program ::= block:A.2.0.2 * range ::= block j statement list j iteration j record type j procedure:A.2.0.3 block ::= 0declare0 (declaration jj 0;0) 0begin0(statement jj 0;0) 0end0:A.2.0.4 statement list ::= statement jj 0;0 :A.2.0.5 statement ::= label definition� (expression j iteration j jump):A.2.0.6 label definition ::= identifier 0 :0 :A.2.0.7 iteration ::= 0while0 expression loopj 0for0 identifier 0from0 expression 0to0 expression loop:A.2.0.8 loop ::= 0do0 statement list 0end0:A.2.0.9 jump ::= 0goto0 identifier:See Section A.3 for declarations, record types and procedures, and Section A.4 for expres-sions.A.2.1 ProgramsA program speci�es a computation by describing a sequence of actions. A computationspeci�ed in LAX may be realized by any sequence of actions having the same e�ect as the

A.2 Program Structure 321one described here for the given computation. The meaning of constructs that do not satisfythe rules given here is unde�ned. Whether, and in what manner, a particular implementationof LAX gives meaning to unde�ned constructs is outside the scope of this de�nition.Before translation, a LAX program is embedded in the following block, which is thentranslated and executed:declare standard declarations begin program endThe standard declarations provide de�ning occurrences of the prede�ned identi�ers givenin Table A.1. These declarations cannot be expressed in LAX.Identi�er Meaningboolean Logical typefalse Falsityinteger Integer typenil Reference to no objectreal Floating point typetrue TruthTable A.1: Prede�ned Identi�ersA.2.2 Visibility RulesThe text of a range, excluding the text of ranges nested within it, may contain no morethan one de�ning occurrence of a given identi�er. Every applied occurrence of an identi�ermust identify some de�ning occurrence of that identi�er. Unless otherwise stated, the de�ningoccurrence D identi�ed by an applied occurrence A of the identi�er I is determined as follows:1. Let R be the text of A, and let B be the block in which the LAX program is embedded.2. Let R0 be the smallest range properly containing R, and let T be the text of R0 excludingthe text of all ranges nested within it.3. If T does not contain a de�ning occurrence of I, and R0 is not B, then let R be R0 andgo to step (2).4. If T contains a de�ning occurrence of I then that de�ning occurrence is D.Identifier is a de�ning occurrence in the productions for label definition (A.2.0.6), itera-tion (A.2.0.7), variable declaration (A.3.0.2), identity declaration (A.3.0.7), procedure dec-laration (A.3.0.8), parameter (A.3.0.10), type declaration (A.3.0.12) and field (A.3.0.14).All other instances of identifier are applied occurrences.A.2.3 BlocksThe execution of a block begins with a consistent renaming : If an identi�er has de�ningoccurrences in this block (excluding all blocks nested within it) then those de�ning occurrencesand all applied occurrences identifying them are replaced by a new identi�er not appearingelsewhere in the program.After the consistent renaming, the declarations of the block are executed in the sequencethey were written and then the statements are executed as described for a statement list(Section A.2.4). The result of this execution is the result of the block. The extent of theresult of a block must be larger than the execution of that block.

322 The Sample Programming Language LAXA.2.4 Statement ListsExecution of a statement list is begun by executing the �rst statement in the list. Theremaining statements in the list are then executed in the sequence in which they were writtenunless the sequence is altered by executing a jump (Section A.2.6). If a statement is followedby a semicolon then its result (if any) is discarded when its execution is �nished. The resultof the last statement in a statement list is the result of the statement list; if the last statementdoes not deliver a result then the statement list does not deliver a result.A.2.5 IterationsThe iteration while expression do statement list endis identical in meaning to the conditional clause:if expression thenstatement list;while expression do statement list endendThe iterationfor identifier from initial value to final value do statement list endis identical in meaning to the block:declare a : integer; b : integerbegina := initial value; b := final value;if not (a > b) thendeclare identifier is a : integer begin statement list end;while a < b doa := a + 1;declare identifier is a : integer begin statement list endend (* while *)end (* if *)endHere a and b are identi�ers not appearing elsewhere in the program.An iteration delivers no result.A.2.6 Labels and JumpsIf an identi�er has an applied occurrence in a jump then the de�ning occurrence identi�edmust be in a label de�nition. A jump breaks o� the execution of the program at the point ofthe jump, and resumes execution at the labelled expression, iteration or jump.A jump delivers no result.

A.3 Declarations 323A.3 DeclarationsA.3.0.1 declaration ::= variable declarationj identity declarationj procedure declarationj type declaration:A.3.0.2 variable declaration ::= identifier 0 :0 type specificationj identifier 0 :00array0 0[0 (bound pair jj 0;0) 0]0 0of 0 type specification:A.3.0.3 type specification ::= identifierj 0ref 0 type specificationj 0ref 0 array typej procedure type:A.3.0.4 bound pair ::= expression 0 :0 expression:A.3.0.5 array type ::= 0array0 0[0 0;0� 0]0 0of 0 type specification:A.3.0.6 procedure type ::=0procedure0 [0(0 (type specification jj 0;0) 0)0] [result type]:A.3.0.7 identity declaration ::=identifier 0is0 expression 0 :0 type specification:A.3.0.8 procedure declaration ::= 0procedure0 identifier procedure:A.3.0.9 procedure ::= [0(0 (parameter jj 0;0) 0)0] [result type] 0;0 expression:A.3.0.10 parameter ::= identifier 0 :0 type specification:A.3.0.11 result type ::= 0 :0 type specification:A.3.0.12 type declaration ::= 0type0 identifier 0 =0 record type:A.3.0.13 record type ::= 0record0 (field jj 0;0) 0end0:A.3.0.14 field ::= identifier 0 :0 type specification:A.3.0.15 * type ::= type specification j array type j procedure type:See Section A.4 for Expressions.A.3.1 Values, Types and ObjectsValues are abstract entities upon which operations may be performed, types classify valuesaccording to the operations that may be performed upon them, and objects are the concreteinstances of values that are operated upon. Two objects are equal if they are instances of thesame value. Two objects are identical if references (see below) to them are equal. Every objecthas a speci�ed extent, during which it can be operated upon. The extents of denotations,the value nil (see below) and objects generated by new (Section A.4.4) are unbounded; theextents of other objects are determined by their declarations.The prede�ned identi�ers boolean, integer and real represent the types of truth values,integers and oating point numbers respectively. Values of these types are called primitivevalues, and have the usual meanings.An instance of a value of type ref t is a variable that can refer to (or contain) an objectof type t. An assignment to a variable changes the object to which the variable refers, butdoes not change the identity of the variable. The prede�ned identi�er nil denotes a value oftype ref t, for arbitrary t. Nil refers to no object, and may only be used in a context thatspeci�es the referenced type t uniquely.Values and objects of array and record types are composite. The immediate componentsof an array are all of the same type, and the simple selectors are integer tuples. The immediatecomponents of a record may be of di�erent types, and the simple selectors are represented byidenti�ers. No composite object may have a component of its own type.

324 The Sample Programming Language LAXValues of a procedure type are speci�cations of computations. If the result type is omitted,then a call of the procedure yields no result and the procedure is called a proper procedure;otherwise it is called a function procedure.If two types consist of the same sequence of basic symbols and, for every identi�er in thatsequence, the applied occurrences in one type identify the same de�ning occurrence as theapplied occurrences in the other, then the two types are the same. In all other cases, the twotypes are di�erent.A.3.2 Variable DeclarationsA variable referring to an unde�ned value (of the speci�ed type) is created, and the identi�errepresents this object. The extent of the created variable begins when the declaration isexecuted and ends when execution of the smallest range containing the declaration is complete.If the variable declaration has the formidentifier : tthen the created variable is of type ref t, and may refer to any value of type t. If, on theother hand, it has the formidentifier : array [l1 : u1; : : : ; ln : un] of tthen the created variable is of type ref array type, and may only refer to values havingthe speci�ed number of immediate components. The type of the array is obtained fromthe variable declaration by deleting `identifier:' and each bound pair e1 : e2; array [l1 :u1; : : : ; ln : un] of t speci�es an array of this type with (u1 � l1 + 1) � � � � � (un � ln + 1)immediate components of type t. The bounds li and ui are integers with li � ui.A.3.3 Identity DeclarationsA new instance of the value (of the speci�ed type) resulting from evaluation of the expressionis created, and the identi�er represents this object. If the expression yields an array orreference to an array, the new instance has the same bounds. The extent of the createdobject is identical to the extent of the result of the expression.A.3.4 Procedure DeclarationsA new instance of the value (of the speci�ed procedure type) resulting from copying the basicsymbol sequence of the procedure is created, and the identi�er represents this object. Theextent of the created object begins when the declaration is executed and ends when executionof the smallest block containing the declaration is complete.Evaluation of the expression of a function procedure must yield a value of the givenresult type.The procedure type is obtained from the procedure declaration by deleting `identifier'and `; expression', and removing `identifier :' from each parameter.A.3.5 Type DeclarationsThe identi�er represents a new record type de�ned according to the given speci�cation.A.4 ExpressionsA.4.0.1 expression ::= assignment j disjunction:A.4.0.2 assignment ::= name 0 :=0 expression:A.4.0.3 disjunction ::= conjunction j disjunction 0or0 conjunction:

A.4 Expressions 325A.4.0.4 conjunction ::= comparison j conjunction 0and0 comparison:A.4.0.5 comparison ::= relation[eqop relation]:A.4.0.6 eqop ::= 0 =0 j 0 ==0 :A.4.0.7 relation ::= sum [relop sum]:A.4.0.8 relop ::= 0 <0 j 0 >0 :A.4.0.9 sum ::= term j sum addop term:A.4.0.10 addop ::= 0 +0 j 0 �0 :A.4.0.11 term ::= factor j term mulop factor:A.4.0.12 mulop ::= 0 �0 j 0=0 j 0div0 j 0mod0:A.4.0.13 factor ::= primary j unop factor:A.4.0.14 unop ::= 0 +0 j 0 �0 j 0not0:A.4.0.15 primary ::= denotation j name j 0(0expression0)0 j block j clause:A.4.0.16 name ::= identifierj name 0:0 identifierj name 0[0 (expression jj 0;0) 0]0j name 0 "0j 0new0 identifierj procedure call:A.4.0.17 procedure call ::= name 0(0 (argument jj 0;0) 0)0:A.4.0.18 argument ::= expression:A.4.0.19 clause ::= conditional clause j case clause:A.4.0.20 conditional clause ::= 0if 0 expression 0then0 statement list 0end0j 0if 0 expression 0then0 statement list 0else0 statement list 0end0:A.4.0.21 case clause ::=0case0 expression 0of 0(case label 0 :0 statement list jj 0==0)0else0 statement list 0end0:A.4.0.22 case label ::= integer:A.4.1 Evaluation of ExpressionsThis grammar ascribes structure to an expression in the usual way. Every subexpression(assignment, disjunction, conjunction, etc.) may be evaluated to yield a value of a certaintype. The operands of an expression are evaluated collaterally unless the expression is adisjunction or a conjunction (see Section A.4.3). Each operator indication denotes a set ofpossible operations, with the particular one meant in a given context being determined by theoperand types according to Table A.2. When the type of value delivered by an operand doesnot satisfy the requirements of a operation, a coercion sequence can be applied to yield a valuethat does satisfy the requirements. Any ambiguities in the process of selecting computationsand coercions is resolved in favor of the choice with the shortest total coercion sequencelength.It must be possible to determine an operation for every operator indication appearing ina program.A.4.2 CoercionsThe context in which a language element (statement, argument, expression, operand, nameas a component of an indexed object, procedure call, etc.) appears may permit a statedset of types for the result of that element, prescribe a single type, or require that the resultbe discarded. When the a priori type of the result does not satisfy the requirements of the

326 The Sample Programming Language LAXIndication Operand Type Result OperationLeft Right Type:= ref t t ref t assignmentor boolean boolean disjunctionand conjunction== ref t ref t boolean identity= m m equality< less than> greater than+ a a addition� a subtraction� multiplicationdiv integer integer integer divisionmod remainder= real real real divisionnot boolean boolean complement+ a a no operation� negationHere t denotes any type, m denotes any non-reference type and a denotes integer or real type.Table A.2: Operator Identi�cationcontext, coercion is employed. The coercion consists of a sequence of coercion operationsapplied to the result. If several types are permitted by the context then the one leading tothe shortest coercion sequence will be selected.Coercion operations are:� Widen: Convert from integer to oating point.� Deprocedure: Invoke a parameterless procedure (see Section A.4.5). This is the onlycoercion that can be applied to the left-hand side of an assignment.� Dereference: Replace a reference by the object to which it refers. Dereferencing mayalso be speci�ed explicitly by using the content operation (see Section A.4.4). Nilcannot be dereferenced.� Void : Discard a computed value. If the value to be discarded is a parameterless proce-dure or a reference to such a procedure, the procedure must be invoked and its result(if any) discarded.A.4.3 OperationsAn assignment causes the variable yielded by the left operand to refer to a new instanceof the value yielded by the right operand. The result of the assignment is the referenceyielded by the left operand. Assignments to nil are not permitted, nor are assignments ofreferences or procedures in which the extent of the value yielded by the right operand issmaller than the extent of the reference yielded by the left operand. Assignment of compositeobjects is carried out by collaterally assigning the components of the value yielded by theright operand to the corresponding components of the reference yielded by the left operand.For array assignments, the reference and value must have the same number of dimensions andcorresponding dimensions must have the same numbers of elements.

A.4 Expressions 327The expression a or b has the meaning if a then true else b.The expression a and b has the meaning if a then b else false.The expression not a has the meaning if a then false else true.Identity yields true if the operand values are identical variables.Equality has the usual meaning. Composite values are equal if each element of one isequal to the corresponding element of the other. Arrays can only be equal if they have thesame dimensions, each with the same number of elements. Procedure values are equal if theyare identical.Relational operators for integer and real types are de�ned as usual.The arithmetic operators +;� (unary and binary), �; = have the usual meaning as long asthe values of all operands and results lie in the permitted range and division by zero does notoccur. div (integer division) and mod (remainder) are de�ned only when the value of theright operand is not 0. Their results are then the same as those of the following expressions:i div j = 8<:� j��� ij ���k if ij < 0j ijk otherwisei mod j = (i� (i div j) � j)Here jxj is the magnitude of x and bxc is the largest integer not larger than x.A.4.4 NamesIdenti�ers name objects of speci�ed types created by declarations. If an applied occurrenceof an identi�er is a name then the de�ning occurrence identi�ed by it may not be in a typedeclaration, label de�nition or �eld.In the �eld selection name:identifier the name must (possibly after coercion) yield arecord or reference to a record. The record type must contain a field that provides a de�ningoccurrence of the identi�er, and it is this de�ning occurrence which is identi�ed by identifier.If the name yields a record then the result of the �eld selection is the value of the �eld selected;otherwise the result of the �eld selection is a reference to this �eld.In the index selection name[j1; : : : ; jn] the name must (possibly after coercion) yield ann-dimensional array or a reference to an n-dimensional array. The name and subscript ex-pressions ji are evaluated collaterally. If the name yields an array then the result of the indexselection is the value of the element selected; otherwise the result of the index selection is areference to this element.In the content operation name " the name must (possibly after coercion) yield a variable.The result of the content operation is the value referred to.The generator new t yields a new variable that can reference objects of type t.A.4.5 Procedure CallsIn the procedure call p(a1; : : : ; an) the name p must (possibly after coercion) yield an objectof procedure type having n parameters (n � 0). The name p and argument expressions ai areevaluated collaterally. Let P = (p1 : t1; : : : ; pn : tn): expression be the result of evaluatingthe name, and let ri be the result of evaluating ai. The procedure call is then evaluated asfollows (copy rule):1. If n = 0 then the procedure call is replaced by (expression), otherwise the procedurecall is replaced by the blockdeclare p1 is r1 : t1; : : : ; pn is rn : tn begin expression end

328 The Sample Programming Language LAX2. The block (or parenthesized expression) is executed. If it is not left by a jump, theresult is coerced to the result type of P (or voided, in the case of a proper procedure).3. As soon as execution is completed, possibly by a jump, the substitution of step 1 isreversed (i.e. the original call is restored).The value yielded by the coercion in step (2) is the result of the procedure call.A.4.6 ClausesThe expression in a conditional clause must deliver a Boolean result. If this result is truethen the �rst statement list will be executed and its result will be taken as the result of theconditional clause; otherwise the second statement list will be executed and its result will betaken as the result of the conditional clause. The �rst alternative of a one-sided conditionalclause, in which the second alternative is omitted, is voided.The expression in a case clause must deliver an integer result. When the value of theexpression is i and one of the case labels is i, the statement list associated with that caselabel will be executed and its result will be taken as the result of the case clause; otherwisethe statement list following else will be executed and its result will be taken as the result ofthe case clause. All case labels in a case clause must be distinct.The component statement lists of a clause must be balanced to ensure that the type ofthe result yielded is the same regardless of which alternative was chosen. Balancing involvescoercing the result of each component statement list to a common type. If there is no onetype to which all of the result types are coercible then all the results are voided. When thetype returned by the clause is uniquely prescribed by the context then this type is chosenas the common result type for all alternatives. If the context of the expression is such thatseveral result types are possible, the one leading to the smallest total number of coercions ischosen.

Appendix BUseful Algorithms For DirectedGraphsThe directed graph is a formalism well-suited to the description of syntactic derivations, datastructures and control ow. Such descriptions allow us to apply results from graph theoryto a variety of compiler components. These results yield standard algorithms for carryingout analyses and transformations, and provide measures of complexity for many commontasks. In this appendix we summarize the terminology and algorithms most important to theremainder of the book.B.1 TerminologyB.1 DefinitionA directed graph is a pair (K;D); where K is a �nite, nonempty set and D is a subset ofK �K. The elements of K are called the nodes of the graph, and the elements of D are theedges. �Figure B.1a is a directed graph, and Figure B.1b shows how this graph might be representedpictorially. K = f1; 2; 3; 4gD = f(1; 2); (1; 3); (4; 4); (2; 3); (3; 2); (3; 4)ga) The components of the graph
1

2 3

4b) Pictorial representation
K[1] K[2] K[3]c) The condensation graphFigure B.1: A Directed Graph329

330 Useful Algorithms For Directed GraphsIn many cases, a label function, f , is de�ned on the nodes and/or edges of a graph. Sucha function associates a label, which is an element of a �nite, nonempty set, with each node oredge. We then speak of a graph with node or edge labels. The labels serve as identi�cation ofthe nodes or edges, or indicate their interpretation. This is illustrated in Figure B.1b, wherea function has been provided to map K into the set f1; 2; 3; 4g.B.2 DefinitionA sequence (k0; : : : ; kn) of nodes in a directed graph (K;D), n � 1, is called a path of lengthn if (ki � 1; ki) 2 D; i = 1; : : : ; n. A path is called a cycle if k0 = kn. �An edge may appear more than once in a path: In the graph of Figure B.1, the sequence ofedges (2,3), (3,2), (2,3), (3,4), (4,4), (4,4) de�nes the path (2,3,2,3,4,4,4) of length 6.B.3 DefinitionLet (K;D) be a directed graph. Partition K into equivalence classes Ki such that nodes uand v belong to the same class if and only if there is a cycle to which u and v belong. Let Dibe the subset of edges connecting pairs of nodes in Ki. The directed graphs (Ki;Di) are thestrongly connected components of (K;D). �The graph of Figures B.1a and B.1b has three strongly connected components:K1 = f1g;D1 = fgK2 = f4g;D2 = f(4; 4)gK3 = f2; 3g;D3 = f(2; 3); (3; 2)gOften we deal with graphs in which all nodes of a strongly connected component areidentical with respect to some property of interest. When dealing with this property, we cantherefore replace the original graph with a graph having one node for each strongly connectedcomponent.B.4 DefinitionLet P = fK1; : : : ;Kng be a partition of node set of a directed graph (K;D). The reductionof (K;D) with respect to the partition P is the directed graph (K 0;D0) such that K 0 =fk1; : : : ; kng and D0 = f(ki; kj) j i 6= j; and (u; v) is an element of D for some u 2 Ki andv 2 Kjg. �We term the subsets Ki of an (arbitrary) partition blocks. The reduction with respect tostrongly connected components is the condensation graph.The condensation graph of Figure B.1b is shown in Figure B.1c. Since every cycle lieswholly within a single strongly connected region, the condensation graph has no cycles.B.5 DefinitionA directed acyclic graph is a directed graph that contains no cycles. �B.6 DefinitionA directed acyclic graph is called a tree with root k0 if for every node k 6= k0 there existsexactly one path (k0; : : : ; k). �These two special classes of graphs are illustrated in Figure B.2.If a tree has an edge (k; k0); we say that k0 is a child of k and k is the parent of k0. Notethat De�nition B.6 permits a node to have any number of children. Because the path fromthe root is unique, however, every node k 6= k0 has exactly one parent. The root, k0; is theonly node with no parent. A tree has at least one leaf, which is a node with no children. If

B.1 Terminology 331
4 5 6 7 8

1 2 3

0

9a) A directed acyclic graph
1

0

32

4 5 6 7 8b) A treeFigure B.2: Special Cases of Directed Graphsthere is a path in a tree from node k to node k0, we say that k0 is a descendant of k and k isan ancestor of k0.B.7 DefinitionA tree is termed ordered if, for every node, a linear order is de�ned on the children of thatnode. �If we list the children of a node k0 in an ordered tree, we shall always do so in the sense ofthe ordering; we can therefore take the enumeration as the ordering. The �rst child of k0 isalso called the left child ; the child node that follows k in the order of successors of k0 is calledthe right sibling of k. In Figure B.2b, for example, we might order the children of a nodeaccording to the magnitude of their labels. Thus 1 would be the left child of 0, 2 would bethe right sibling of 1, and 3 the right sibling of 2. 3 has no right siblings and there is norelationship between 6 and 7.In an ordered tree, the paths leaving the root can be ordered lexicographically: Considertwo paths x = (x0; : : : ; xm) and y = (y0; : : : ; yn) with m � n and x0 = y0 being the root.Because both paths begin at the root, there exists some i � 0 such that xj = yj; j = 0; : : : ; i.We say that x < y either if i = m and i < n; or if xi+1 < yi+1 according to the ordering of thechildren of xi(= yi). Since there is exactly one path from the root to any node in the tree,this lexicographic ordering of the paths speci�es a linear ordering of all nodes of the tree.B.8 DefinitionA cut in a tree (K;D) is a subset, C, of K such that for each leaf km 2 (K;D) exactly oneelement of C lies on the path (k0; : : : ; km) from the root k0 to that leaf. �Examples of cuts in Figure B.2b are f0g; f1; 2; 3g; f1; 2; 7; 8g and f4; 5; 6; 7; 8g.In an ordered tree, the nodes of a cut are linearly-ordered on the basis of the ordering ofall nodes. When we describe a cut in an ordered tree, we shall always write the nodes of thatcut in the sense of this order.

332 Useful Algorithms For Directed GraphsB.9 DefinitionA spanning forest for a directed graph (K;D) is a set of trees f(K1;D1); : : : ; (Kn;Dn)g suchthat the Ki's partition K and each Di is a (possibly empty) subset of D. �All of the nodes of a directed graph can be visited by traversing the trees of some spanningforest. The spanning forest used for such a traversal is often the one corresponding to adepth-�rst search:procedure depth_first_search (k : node);begin mark k as having been visited;for each successor k' of k doif k' has not yet been visited then depth_first_search (k')end; (* depth_first_search *)To construct a spanning forest, this procedure is applied to an arbitrary unvisited node andrepeated so long as such nodes exist.A depth-�rst search can also be used to number the nodes in the graph:B.10 DefinitionA depth-�rst numbering is a permutation (k1; : : : ; kn) of the nodes of a directed graph (K;D)such that k1 is the �rst node visited by a particular depth-�rst search, k2 the second and soforth. �Once a spanning forest f(K1;D1); : : : ; (Kn;Dn)g has been de�ned for a graph (K;D) the setD can be partitioned into four subsets:� Tree edges, elements of D1 [� � � [Dn.� Forward edges, (kp; kq) such that kp is an ancestor of kq in some tree Ki; but (kp; kq) isnot an element of Di.� Back edges, (kq; kp) such that either kp is an ancestor of kq in some tree Ki or p = q.� Cross edges, (kp; kq) such that kp is neither an ancestor nor a descendant of kq in anytree Ki.These de�nitions are illustrated by Figure B.3.Figure B.3b shows a spanning forest and depth-�rst numbering for the graph of Fig-ure B.3a. The forest has two trees, whose roots are nodes 1 and 7 respectively. All edgesappearing in Figure B.3b are tree edges. In Figure B.3a (using the numbers of Figure B.3b),(1,3) is a forward edge, (4,2) and (7,7) are back edges, and (5,4), (7,3) and (7,6) are crossedges.B.2 Directed Graphs as Data StructuresDirected graphs can be implemented as data structures in di�erent ways. It can be shownthat the e�ciency of graph algorithms depends critically upon the representation chosen, andthat some form of list is usually the appropriate choice for applications in compilers. Weshall therefore use the abstract data type of Figure B.4 for the algorithms described in thisAppendix.A directed graph is instantiated by a variable declaration of the following form:g : graph (node count , max edges);The structure of the graph is then established by a sequence of calls g.define edge (: : :).Note that the module embodies only the structure of the graph; further properties, such asnode or edge labels, must be stored separately.

B.2 Directed Graphs as Data Structures 333

a) A directed graph
1 3

6 7

5

42

b) A depth-�rst numbering and spanning forest for (a)Figure B.3: Depth-First NumberingA directed graph that is a tree can, of course, be represented by the abstract data typeof Figure B.4. In this case, however, a simpler representation (Figure B.5) could also beused. This simpli�cation is based upon the fact that any node in a tree can have at most oneparent. Note that the edges do not appear explicitly, but are implicit in the node linkage.The abstract data structure is set up by instantiating the module with the proper numberof nodes and then invoking define edge once for each edge to specify the nodes at its headand tail. If it is desired that the order of the sibling list reect a total ordering de�ned onthe children of a node, then the sequence of calls on define edge should be the opposite ofthis order.A partition is de�ned by a collection of blocks (sets of nodes) and a membership relationnode 2 block . The representation of the partition must be carefully chosen so that operationsupon it may be carried out in constant time. Figure B.6 de�nes such a representation.When a partition module is instantiated, its block set is empty. Blocks may be created byinvoking new block , which returns the index of the new block. This block has no membersinitially. The procedure add node is used to make a given node a member of a given block.Since each node can be a member of only one block, this procedure must delete the givennode from the block of which it was previously a member (if such exists).The status of a partition can be determined by invoking number of blocks , block cont-aining , node count , first node and next node . If a node does not belong to any block,then block containing returns 0; otherwise it returns the number of the block of which thenode is a member. Application of the function node count to a block yields the number ofnodes in that block. The procedures first node and next node work together to access allof the members of a block: A call of first node returns the �rst member of a speci�c block.(If the block is empty then first node returns 0.) Each subsequent invocation of next nodereturns the next member of that block. When all members have been accessed, next nodereturns 0.

334 Useful Algorithms For Directed Graphsmodule graph (n , e : public integer)(* Representation of a directed graphn = Number of nodes in the graphe = Maximum number of edges in the graph *)var node : array [1 .. n] ofrecord inward,outward,next_in,next_out: integer end;edge : array [1 .. e] ofrecord head ,tail,next_in,next_out: integer end;i , edge_count : integer;procedure next_succ (n , e : integer) : integer;(* Obtain the next successor of a nodeOn entry - n = Node for which a successor is desirede = First unexplored edge *)begin (* next_succ *)if e = 0 then next_succ := 0else beginnode[n].next_out:=edge[e].next_out;next_succ:=edge[e].tailend;end; (* next_succ *)procedure next_pred (n , e : integer) : integer;(* Obtain the next predecessor of a nodeOn entry - n = Node for which a predecessor is desirede = First unexplored edge *)begin (* next_pred *)if e = 0 then next_pred := 0else beginnode[n].next_in:=edge[e].next_in;next_pred:=edge[e].headend;end; (* next_pred *)public procedure define_edge (hd , tl : integer);begin (* define_edge *)edge_count := edge_count + 1; (*edge_count�maximum not tested *)with edge[edge_count] do beginhead := hd ; tail := tl ; next_in := node[tl].inward;next_out := node[hd].outwardend;node[hd].outward := node[tl].inward := edge_count;end; (* define_edge *)public function first_successor (n : integer) : integer;begin first_successor := next_succ (n , node[n].outward) end;public function next_successor (n : integer) : integer;begin next_successor := next_succ (n , node[n].next_out) end;public function first_predecessor (n : integer) : integer;begin first_predecessor := next_pred (n , node[n].inward) end;public function next_predecessor (n : integer) : integer;begin next_predecessor := next_pred (n , node[n].next_in) end;begin (* graph *)for i := 1 to n dowith node[i] do inward := outward := next_in := next_out := 0;edge_count := 0end; (* graph *)Figure B.4: Abstract Data Type for a Directed Graph

B.2 Directed Graphs as Data Structures 335

4 5 6 7 8

321

0

Solid lines represent tree edges. Dashed lines represent actual links maintained by the treemodule. a) Pictorial representationmodule tree (n : public integer);(* Representation of a treen = Number of nodes in the tree *)var node :array [1 .. n]of record parent ,child,sibling:integer end;i : integer;public procedure define_edge (hd , tl : integer);begin (* define_edge *)with node[tl] dobegin parent := hd ; sibling := node[hd].child end;node[hd].child := tl ;end; (* define_edge *)public function parent (n : integer) : integer;begin parent := node[n].parent end;public function child (n : integer) : integer;begin child := node[n].child end;public function sibling (n : integer) : integer;begin sibling := node[n].sibling end;begin (* tree *)for i := 1 to n do with node[i] do parent := child := sibling := 0;end; (* tree *) b) Abstract data typeFigure B.5: Simpli�cation for a TreeThe membership relation is embodied in a doubly-linked list. Each node speci�es the blockof which it is a member, and each block speci�es the number of members. Figure B.6 uses asingle array to store both node and block information. This representation greatly simpli�esthe treatment of the doubly-linked list, since the last and next �elds have identical meaningsfor node and block entries. The member �eld speci�es the number of members in a block entry,but the block of which the node is a member in a node entry. For our problems, the numberof partitions can never exceed the number of nodes. Hence the array is allocated with twiceas many elements as there are nodes in the graph being manipulated. (Element 0 is includedto avoid zero tests when accessing the next element in a node list.) The �rst half of the arrayis indexed by the node numbers; the second half is used to specify the blocks of the partition.Note that the user is not aware of this o�set in block indices because all necessary translationis provided by the interface procedures.

336 Useful Algorithms For Directed GraphsB.3 Partitioning AlgorithmsIn this section we discuss algorithms for partitioning the node set of a graph according tothree criteria that are particularly important in compiler construction: strong connectivity,compatibility of a partition and a function, and nonadjacency. All of the algorithms arede�ned in terms of the representations presented in Section B.2.module partition (n : public integer);(* Representation of a partition on of a set of n nodes *)varp : array [0 .. 2*n] of record member, last, next: integer end;i , number_of_blocks, next_node_state : integer;public function block_count : integer;begin block_count := number_of_blocks end;public function new_block : integer;begin new_block := number_of_blocks := number_of_blocks + 1 end;public procedure add_node (node , block : integer);begin (* add_node *)with p[node] dobeginif member 6= 0 then (* Remove node from its previous block *)beginp[member].member := p[member].member - 1;p[last].next := next; p[next].last := last ;end;member := block ;p[block + n].member := p[block + n].member + 1;last := member; next := p[block + n].next;p[last].next := p[next].last := node;end;end; (* add_node *)public function block_containing (node : integer) : integer;begin block_containing := p[node].member end;public function node_count (block : integer) : integer;begin node_count := p[block + n].member end;public function first_node (block : integer) : integer;begin first_node := next_node_state := p[block + n].next end;public function next_node : integer;begin (* next_node *)if next_node_state = 0 then next_node := 0else next_node := next_node_state := p[next_node_state].next;end; (* next_node *)begin (* partition *)for i := 1 to 2 * n do with p[i] do member := last := next := 0;number_of_blocks := next_node_state := 0;end; (* partition *)Figure B.6: Abstract Data Type for a Partition

B.3 Partitioning Algorithms 337B.3.1 Strongly Connected ComponentsWe begin the determination of the strongly connected components of a directed graph by usinga depth-�rst search to obtain a spanning forest and a corresponding depth-�rst numberingof the nodes. Suppose that kz is the �rst node (in the depth-�rst numbering) that belongsto a strongly connected component of the graph. Then, by construction, all other nodes ofthe component must belong to the spanning forest subtree, Tz, whose root is kz. We termkz the root of the strongly connected component (with respect to the given spanning forest).Every node, k, of Tz either belongs to the strongly connected component with root kz or itbelongs to a subtree Tx of Tz; with root kx, and kx is the root of another strongly connectedcomponent. (It is possible that k = kx.) These notions are illustrated by Figure B.1: Node 2is the root of a strongly-connected component of Figure B.1. The only other node in thiscomponent is 3, which is a descendant of 2 in the spanning forest subtree rooted at 2. Thissubtree has three nodes. Nodes 2 and 3 belong to the strongly-connected region, and node 4is the root of a strongly-connected region containing only itself.There must be a path from the root of a strongly-connected component to itself. Let kzbe the root, and suppose that the path contained a node k < kz. If this were the case then kwould be an ancestor of kz in the tree, contradicting the hypothesis that kz is the root of thestrongly-connected region. This observation is the basis for recognizing a strongly-connectedregion: During the depth-�rst search that numbers the nodes of the spanning forest, we keeptrack of the lowest-numbered ancestor reachable from a node. (We assume that a node isreachable from itself.) As we back out of the search, we check each node to see whether anyancestors are reachable from it. If not, then it is the root of a strongly-connected component.The algorithm makes use of a �xed-depth stack (Figure B.7) for holding nodes. (No nodeis ever stacked more than once, and hence the stack depth can never exceed the number ofnodes.) The crucial property of this module is that it provides a constant-time test to discoverwhether a node is on the stack.Figure B.8 gives the complete algorithm for identifying strongly connected components.Note that strongly connected components has a graph as a parameter. This is not avariable declaration, so no new graph is instantiated. The value of the parameter is a referenceto the argument graph; the argument graph is not copied into the procedure.module fixed_depth_stack (public maximum_depth : integer);(* Representation of a stack no deeper than maximum_depth *)var stack : array [1 .. maximum_depth] of integer;i , top : integer;public procedure push (n : integer);begin stack[n] := top ; top := n end;public procedure pop : integer;var n : integer;begin n := top; top := stack[n]; stack[n] := 0; pop := n end;public function member (n : integer) : boolean;begin member := stack[n] 6= 0 end;public function empty : boolean;begin empty := top < 0 end;begin (* fixed_depth_stack *)for i := 1 to maximum_depth do stack[i] := 0;top := - 1;end; (* fixed_depth_stack *)Figure B.7: Abstract Data Type for a Fixed-Depth Stack

338 Useful Algorithms For Directed Graphsprocedure strongly_connected_components (g : graph; p : partition);(* Make p define the strongly-connected components of g *)var lowlink: array [1 .. g.n] of integer;i , counter, root : integer;s : fixed_depth_stack (g.n);procedure depth_first_search (node : integer);var serial, k , b , w : integer;begin (* depth_first_search *)serial := lowlink[node] := counter := counter + 1;s.push (node);k := g.first_successor (node);while k 6= 0 do beginif lowlink[k] = 0 then depth_first_search (k));if s.member (k) thenlowlink[node] := min (lowlink[node], lowlink[k]);k := g.next_successor (node)end;if lowlink[node] = serial then beginb := p.new_block;repeat s.pop (w); p.add_node (w , b) until w = node;endend; (* depth_first_search *)begin (* strongly_connected_components *)for i := 1 to lowlink[i] := 0;counter := 0 ; root := 1;while counter 6= g.n dobeginwhile lowlink[root] 6= 0 do root := root + 1;depth_first_search (root);end;end; (* strongly_connected_components *)Figure B.8: Partitioning Into Strongly Connected ComponentsThe algorithm traverses the nodes of the graph in the order of a depth-�rst number-ing. Each activation of depth first search corresponds to a single node of the graph.Lowlink[i] speci�es the lowest-numbered (in the depth-�rst numbering) node reachablefrom node i . (The lowlink array is also used to indicate the nodes not yet visited.) The�xed-depth stack contains all nodes from which it is possible to reach an ancestor of the cur-rent node. Note that all access to a node is in terms of its index in the graph g ; the index ofa node in the depth-�rst numbering appears only in lowlink and the local variable serialof depth first search .B.3.2 Re�nementConsider a graph (K;D) and a partition P = fPp; : : : ; Pkg of Q with m � 2. We wish to �ndthe partition R = fR1; : : : ; Rrg with smallest r such that:� Each Rk is a subset of some Pj (`R is a re�nement of P 0).� If a and b are elements of Rk then, for each (a; x) 2 D and (b; y) 2 D, x and y areelements of some one Rm (`R is compatible with D0).

B.3 Partitioning Algorithms 339The state minimization problem discussed in Section 6.2.2 and the determination of struc-tural equivalence of types from Section 9.1.2 can both be cast in this form.The obvious strategy for making a re�nement is to check the successors of all nodes in asingle element of the current partition. This element must be split if two nodes have successorsin di�erent elements of the partition. To obtain the re�nement, split the element so that thesetwo nodes lie in di�erent elements. The re�ned partition is guaranteed to satisfy condition(1). The process terminates when no element must be split. Since a partition in whicheach element contains exactly one node must satisfy condition (2), the process of successivere�nement must eventually terminate. It can be shown that this algorithm is quadratic inthe number of nodes.By checking predecessors rather than successors of the nodes in an element, it is possibleto reduce the asymptotic behavior of the algorithm to O(n log n); where n is the number ofnodes. This reduction is achieved at the cost of a more complex algorithm, however, and maynot be worthwhile for small problems. In the remainder of this section we shall discuss theO(n log n) algorithm, leaving the simpler approach to the reader (Exercise B.6).procedure refine (p : partition; f : graph);(* Make p be the coarsest partition compatible with p and f *)var pending : fixed_depth_stack (f.n);i : integer;procedure split (block : integer);var inv :inverse (f ,block,p); (* Construct the inverse of block *)b , k , n : integer;begin (* split *)k := inv.next_block;while k 6= 0 dobegin (* P k [f�1 (block) 6= ; but not P k � f�1 (block) *)b := p.new_block;while (n := inv.common_node) 6= 0 do p.add_node (n , b);if pending.member (k) or(p.element_count (k) < p.element_count (b))then pending.push (b)else pending.push (k)k := inv.next_block;endend; (* split *)begin (* refine *)for i := 1 to p.block_count do pending.push (i);repeat pending.pop (i); split (i) until pending.emptyend; (* refine *) Figure B.9: Re�nement AlgorithmThe re�nement procedure of Figure B.9 accepts a graph G = (K;D) and a partitionfP1; : : : ; Pmg of K with m � 2. The elements of D correspond to a mapping f : K ! K forwhich (k; k0) is an element of D if f(k) = k0. Refine inspects the inverse mappings f�1(Pj).A set Pk must be split into two subsets if and only if Pk \ f�1(Pj) is nonempty for somej, and yet Pk is not a subset of f�1(Pj). The two subsets are then P 0k = (Pk \ f�1(Pj))and P 00k = Pk � P 0k. This split must be carried out once for every Pj . If Pj contributes tothe splitting of Pk and is itself split later, both subsets must again be used to split otherpartitions.

340 Useful Algorithms For Directed GraphsThe �rst step in each execution of the split procedure is to construct the inverse of blockPj . Next the blocks Pk for which Pk \ f�1(Pj) is nonempty but Pk is not a subset of f�1(Pj)are split and the smaller of the two components is returned to the stack of blocks yet to beconsidered.Figure B.10 de�nes an abstract data type that can be used to represent f�1(Pj). Wheninverse is instantiated, it represents an empty set. Nodes are added to the set by invokinginv node . After all nodes belonging to inverse (j) have been added to the set, we wish toconsider exactly those blocks that contain elements of inverse (j) but are not themselvessubsets of inverse (j) . The module allows us to obtain a block satisfying these constraintsby invoking next block . (If next block returns 0, no more such blocks exist.) Once a blockhas been obtained, successive invocations of common node yield the elements common to thatblock and inverse (j) . Note that each of the operations provided by the abstract data typerequires constant time.B.3.3 ColoringThe problem of minimizing the number of rows in a parse table can be cast as a problemin graph theory as follows: Let each row correspond to a node. Two nodes k and k0 areadjacent (connected by edges (k; k0) and (k0; k)) if the corresponding rows are incompatibleand therefore cannot be combined. We seek a partition of the graph such that no two adjacentnodes belong to the same block of the partition. The rows corresponding to the nodes in asingle block of the partition then have no incompatibilities, and can be merged. Clearly wewould like to �nd such a partition having the smallest number of blocks, since this will resultin maximum compression of the table.This problem is known in graph theory as the coloring problem, and the minimum numberof partitions is the chromatic number of the graph. It has been shown that the coloring prob-lem is NP-complete, and hence we seek algorithms that e�ciently approximate the optimumpartition.Most approximation algorithms are derived from backtracking algorithms that decidewhether a given number of colors is su�cient for the speci�ed graph. If such an algorithmis given a number of colors equal to the number of nodes in the graph then it will neverneed to backtrack, and hence all of the mechanism for backtracking can be removed. A goodbacktracking algorithm contains heuristics designed to prune large portions of the search tree,which, in this case, implies using as few colors as possible for trial colorings. But it is justthese heuristics that lead to good approximations when there is no backtracking!A general approach is to make the most constrained decisions �rst. This can be doneby sorting the nodes in order of decreasing incident edge count. The �rst node colored hasthe maximum number of adjacent nodes and hence rules out the use of its color for as manynodes as possible. We then choose the node with the most restrictive constraint on its colornext, resolving ties by taking the one with most adjacent nodes. At each step we color thechosen node with the lowest possible color.Figure B.11 gives the complete coloring algorithm. We assume that g contains no cyclesof length 1. (A graph with cycles of length 1 cannot be colored because some node is adjacentto itself and thus, by de�nition, must have a di�erent color than itself.) First we partition thenodes according to number of adjacencies, coloring any isolated nodes immediately. Becauseof our assumptions, block g.n of sort must be empty. The coloring loop then scans thenodes in order of decreasing adjacency count, seeking the most restrictive choice of colors.This node is then assigned the lowest available color, and that color is made unavailable toall of the node's neighbors. Note that we mark a node as having been colored by moving itto block g.n of the sort partition.

B.3 Partitioning Algorithms 341module inverse (f : graph; b : integer; p : partition);(* Representation of f�1 (b) with respect to partition p *)var node : array [1..f.n]of integer;block : array [1..p.block_count] of record first_node, link ,count : integer end;i , j , block_list, node_list : integer;public procedure inv_node (n : integer);var b : integer;begin (* inv_node *)b := p.block_containing (n);with block[b] dobeginif count = 0 then begin link :=block_list; block_list:=b end;node[n] := first_node; first_node := n ;count := count + 1endend; (* inv_node *)public function next_block : integer;begin (* next_block *)while block_list6= 0 andblock[block_list].count = p.node_count (block_list) doblock_list := block[block_list].link;if block_list = 0 then next_block := 0elsebeginnext_block := block_listwith block[block_list] dobegin node_list := first_node; block_list := link end;endend; (* next_block *)public function common_node : integer;begin (* common_node *)if node_list = 0 then common_node := 0else begin common_node:=node_list; node_list:=node[node_list] endend; (* common_node *)begin (* inverse *)for i := 1 to p.block_count do with block[i] dofirst_node := count := 0;block_list := 0;i := p.first_node (b);while i 6= 0 dobeginj := f.first_predecessor (i);while j 6= 0 do begininv_node (j); j := f.next_predecessor (j)end;i := p.next_node;endend; (* inverse *)Figure B.10: Abstract Data Type for an Inverse

342 Useful Algorithms For Directed Graphsprocedure coloring (g : graph; p : partition);(* Make p define a coloring of g *)var sort : partition (g.n);choice : array [1 .. g.n] of integer;available : array [1 .. g.n , 1 .. g.n] of boolean;i , j , k , uncolored, min_choice, node , color : integer;begin (* coloring *)for i := 1 to g.n dobeginj := sort.new_block;choice[i] := g.nfor j := 1 to g.n do available[i, j] := true;end;uncolored := 0;for i := 1 to g.n doif g.first_successor (i) = 0 then p.add_node (i , 1)elsebeginj := 1; while g.next_successor 6= 0 do j := j + 1;sort.add_block (i , j); uncolored := uncolored +1;end;for i := 1 to uncolored dobeginmin_choice := g.n + 1;for j := g.n downto 1 dobegink := sort.first_node (j);while k 6= 0 dobeginif choice[k] < min_choice thenbegin node := k ; min_choice := choice[k] end;k := sort.next_node;endend;sort.add_node (node,g.n);(* Remove the node from further consideration*)color:=1; while not available[color,node] do color:=color+1;p.add_node (node, color);j := g.first_successor (node);while j 6= 0 dobeginif available[color, j] thenbeginavailable[color,j] := false ;choice[j] := choice[j]-1end;j := g.next_successor (node);endendend; (* coloring *)Figure B.11: Coloring Algorithm

B.4 Notes and References 343B.4 Notes and ReferencesFor further information about graph theory, the interested reader should consult the booksby Berge [1962] or Harary [1969].The representations of graphs and partitions discussed in Section B.2 are chosen to havethe least impact on the complexity of the algorithms that follow. Further insight into therationale underlying these representations can be obtained from the book by Aho et al.[1974]. Both the algorithm for identifying strongly connected components and the partitioningalgorithm are drawn from this book.Proofs of the NP-completeness of the graph coloring problem are given byKarp [1972] andAho et al. [1974]. It can also be shown that most approximation algorithms perform poorlyon particular graphs. Johnson [1974] demonstrates that each of the popular algorithms hasan associated class of graphs for which the ratio of the approximate to the true chromaticnumber grows linearly with the number of vertices. Further work by Garey and Johnson[1976] indicates that it is unlikely that any fast algorithm can guarantee good approximationsto the chromatic number. The algorithm presented in Section B.3.3 has been proposed bya number of authors [Wells, 1971; D�urre, 1973; Brelaz, 1979]. It has been incorporatedinto an LALR(1) parser generator [Dencker, 1977] and has proven satisfactory in practice.Further experimental evidence in favor of this algorithm has also been presented by D�urre[1973].ExercisesB.1 The graph module of Figure B.4 is unpleasant when the number of edges is not knownat the time the module is instantiated: If e is not made large enough then the programwill fail, and if it is made too large then space will be wasted.(a) Change the module de�nition so that the array edge is not present. Instead, eachedge should be represented by a record allocated dynamically by define edge .(b) What is the lifetime of the edge storage in (a)? How can it be recovered?B.2 Modify the module of Figure B.5 to save space by omitting the parent �eld of eachnode. Provide access to the parent via the sibling pointer of the last child. Whatadditional information is required? If the two versions of the module were implementedon a machine with which you are familiar, would there be any di�erence in the actualstorage requirements for a node? Explain.B.3 Consider the partition module of Figure B.6.(a) Show that if array p is de�ned with lower bound 1, execution of add node mayabort due to an illegal array reference. How can this error be avoided if the lowerbound is made 1? Why is initialization of p[0] unnecessary?(b) What changes would be required if we wished to remove a node from all blocksby using add node to add it to a �ctitious block 0?(c) Under what circumstances would the use of first node and next node to scana block of the partition be unsatisfactory? How could this problem be overcome?B.4 Explain why the elements of stack are initialized to 0 in Figure B.7 and why the popoperation resets the element to 0. Could top be set to 0 initially also?

344 Useful Algorithms For Directed GraphsB.5 Consider the application of strongly connected components to the graph of Fig-ure B.3a. Assume that the indexes of the node in the graph were assigned `by column':The leftmost node has number 1, the next three have numbers 2-4 (from the top) andthe rightmost three have numbers 5-7. Also assume that the lists of edges leaving anode are ordered clockwise from the 12 o'clock position.(a) Show that the nodes will be visited in the order given by Figure B.3b.(b) Give a sequence of snapshots showing the procedure activations and the changesin lowlink .(c) Show that the algorithm partitions the graph correctly.B.6 Consider the re�nement problem of Section B.3.2.(a) Implement a Boolean procedure split(block) that will re�ne block accordingto the successors of its nodes: If all of the successors of nodes in block lie inthe same block of p , then split(block) returns false and p is unchanged.Otherwise, suppose that the successors of nodes in block lie in n distinct blocks,n > 1. Add n�1 blocks to p and distribute the nodes of block among block andthese new blocks on the basis of their successor blocks. Split(block) returnstrue in this case.(b) Implement refine as a loop that cycles through the blocks of p , applying splitto each. Repeat the loop so long as any one of the applications of split yieldstrue . (Note that for each repetition of the loop, the number of blocks in p willincrease by at least one.)B.7 Consider the problem of structural equivalence of types discussed in Section 9.1.2. Wecan solve this problem as follows:(a) De�ne a graph, each of whose nodes represents a single type. There is an edgefrom node k1 to node k2 if type k1 `depends upon' type k2. (One type `dependsupon' another if its de�nition uses that type. For example, if k1 is declared to beof type refk2 then k1 `depends upon' k2.)(b) De�ne a partition that groups all of the `similarly de�ned' types. (Two types are`similarly de�ned' if their type de�nitions have the same structure, ignoring anytype speci�cations appearing in them. For example, refk1 and refk2 are `similarlyde�ned'.)(c) Apply the re�nement algorithm of Section B.3.2. Assume that array types are`similarly de�ned' if they have the same dimensions, and record types are `similarlyde�ned' if they have the same �eld identi�ers in the same order. Apply theprocedure outlined above to the structural equivalence problem of Exercise 2.2.B.8 Consider the problem of state minimization discussed in Section 6.2.2. The state dia-gram is a directed graph with node and edge labels. It de�nes a function f(i; s), wherei is an input symbol selected from the set of edge labels and s is a state selected fromthe set of node labels.(a) Assume that the state diagram has been completed by adding an error state, sothat there is an edge for every input symbol leaving every node. De�ne a three-block partition on the graph, with the error state in one block, all �nal statesin the second and all other states in the third. Consider the edges of the statediagram to de�ne a set of functions, fi, one per input symbol. Show that the statesof the minimum automaton correspond to the nodes of the reduction of the state

B.4 Notes and References 345diagram with respect to the re�nement of the three block partition compatiblewith all fi.(b) Show that De�nition B.1 permits only a single edge directed from one speci�c nodeto another. Is this limitation enforced by Figure B.4? If so, modify Figure B.4 toremove it.(c) Modify Figure B.4 to allow attachment of integer edge labels.(d) Modify Figure B.9 to carry out the re�nement of a graph with edge labels, treatingeach edge label as a distinct function.(e) Modify the result of (d) to make completion of the state diagram unnecessary:When a particular edge label is missing, assume that its destination is the errorstate.

346 Useful Algorithms For Directed Graphs

ReferencesWe have repeatedly stressed the need to derive information about a language from the def-inition of that language rather than from particular implementation manuals or textbooksdescribing the language. In this book, we have used the languages listed below as sources ofexamples. For each language we give a reference that we consider to be the `language de�ni-tion'. Any statement that we make regarding the language is based upon the cited reference,and does not necessarily hold for particular implementations or descriptions of the languagefound elsewhere in the literature.Ada The de�nition of Ada was still under discussion when this book went to press. We havebased our examples upon the version described by Ichbiah [1980].ALGOL 60 Naur [1963].ALGOL 68 van Wijngaarden et al. [1975].BASIC Almost every equipment manufacturer provides a version of this language, and thestrongest similarity among them is the name. We have followed the standard for `min-imal BASIC' ANSI [1978b].COBOL ANSI [1968]Euclid Lampson et al. [1977]FORTRAN We have drawn examples from both the 1966 ANSI [1966] and 1978 ANSI[1978a] standards. When we refer simply to `FORTRAN', we assume the 1978 standard.If we are pointing out di�erences, or if the particular version is quite important, then weuse `FORTRAN 66' and `FORTRAN 77' respectively. (Note that the version describedby the 1978 standard is named `FORTRAN 77', due to an unforeseen delay in publicationof the standard.)LIS Rissen et al. [1974].LISP The examples for which we use LISP depend upon its applicative nature, and hence werely upon the original descriptionMcCarthy [1960] rather than more modern versions.MODULA-2 Wirth [1980].Pascal Pascal was in the process of being standardized when this book went to press. Wehave relied for most of our examples on the User Manual and Report Jensen andWirth [1974] but we have also drawn upon the draft standard Addyman [1980]. Theexamples from the latter have been explicitly noted as such.SIMULA Nygaard et al. [1970].SNOBOL-4 Griswold et al. [1971].ACM [1961]. ACM compiler symposium 1960. Communications of the ACM, 4(1):3{84.Addyman, A.M. [1980]. A draft proposal of Pascal. ACM SIGPLAN Notices, 15(4):1{66.Aho, Alfred V. and Corasick, M. J. [1975]. E�cient string matching: An aid to biblio-graphic search. Communications of the ACM, 18(6):333{340.347

348 ReferencesAho, Alfred V., Hopcroft, J. E., and Ullman, Jeffrey D. [1974]. The Design andAnalysis of Computer Algorithms. Addision Wesley, Reading, MA.Aho, Alfred V. and Johnson, Stephen C. [1976]. Optimal code generation for expressiontrees. Journal of the ACM, 23(3):488{501.Aho, Alfred V., Johnson, Stephen C., and Ullman, Jeffrey D. [1977]. Code gener-ation for machines with multiregister operations. Journal of the ACM, pages 21{28.Aho, Alfred V. and Ullman, Jeffrey D. [1972]. The Theory of Parsing, Translation,and Compiling. Prentice-Hall, Englewood Cli�s.Aho, Alfred V. and Ullman, Jeffrey D. [1977]. Principles of Compiler Design. AddisionWesley, Reading, MA.Allen, F. E., Cocke, J., and Kennedy, K. [1981]. Reduction of operator strength. In[Muchnick and Jones, 1981], pages 79{101. Prentice-Hall, Englewood Cli�s.Ammann, U. [1974]. The method of structured programming applied to the development ofa compiler. In Proceedings of the International Computing Symposium 1973, pages 94{99.North-Holland, Amsterdam, NL.Ammann, U. [1975]. Die Entwicklung eines Pascal-Compilers nach der Methode des Struk-turierten Programmierens. Ph.D. thesis, Eidgen�ossischen Technischen Hochschule Z�urich.Ammann, U. [1977]. On code generation in a Pascal compiler. Software{Practice and Expe-rience, 7:391{423.Anderson, T., Eve, J., and Horning, J. J. [1973]. E�cient LR(1) parsers. Acta Infor-matica, 2:12{39.ANSI [1966]. FORTRAN. American National Standards Institute, New York. X3.9-1966.ANSI [1968]. COBOL. American National Standards Institute, New York. X3.23-1968.ANSI [1978a]. FORTRAN. American National Standards Institute, New York. X3.9-1978.ANSI [1978b]. Minimal BASIC. American National Standards Institute, New York. X3.9-1978.Asbrock, B. [1979]. Attribut-Implementierung und -Optimierung f�ur Attributierte Gram-matiken. Master's thesis, Fakult�at f�ur Informatik, Universit�at Karlsruhe, FRG.Baker, T. P. [1982]. A one-pass algorithm for overload resolution in Ada. ACM Transactionson Programming Languages and Systems, 4(4):601{614.Balzer, R. M. [1969]. EXDAMS - extendable debugging and monitoring system. In SpringJoint Computer Conference, volume 34 of AFIPS Conference Proceedings, pages 567{580.AFIPS Press, Montvale, NJ.Banatre, J. P., Routeau, J. P., and Trilling, L. [1979]. An event-driven compilingtechnique. Communications of the ACM, 22(1):34{42.Barron, D. W. and Hartley, D. F. [1963]. Techniques for program error diagnosis onEDSAC2. Computer Journal, 6:44{49.

References 349Barth, J. M. [1977]. Shifting garbage collection overhead to compile time. Communicationsof the ACM, 20(7):513{518.Bauer, Friedrich L. and Eickel, Jurgen, editors [1976]. Compiler Construction: AnAdvanced Course, volume 21 of Lecture Notes in Computer Science. Springer Verlag, Hei-delberg, New York.Bayer, Rudolf, Wiehle, H., Gries, David, Paul, Manfred, and Bauer, Fried-rich L. [1967]. The ALCOR ILLINOIS 7090/7094 post mortem dump. Communicationsof the ACM, 10(12):804{808.Beatty, J. C. [1974]. Register assignment algorithm for generation of highly optimized objectcode. IBM Journal of Research and Development, 18(1):20{39.Belady, L. A. [1966]. A study of replacement algorithms for a virtual storage computer.IBM Systems Journal, 5(2):613{640.Bell, J. R. [1974]. A compression method for compiler precedence tables. In [Rosenfeld,1974], pages 359{362. North-Holland, Amsterdam, NL.Berge, C. [1962]. The Theory of Graphs and Its Applications. Wiley, New York.Bochman, G. V. [1976]. Semantic evaluation from left to right. Communications of theACM, 19(2):55{62.Bochmann, G. V. and Lecarme, O. [1974]. A (truly) usable and portable compiler writingsystem. In Rosenfeld, J. L., editor, Information Processing 74, pages 218{221. North-Holland, Amsterdam, NL.Borowiec, J. [1977]. Pragmatics in a compiler production system. In , volume 47 of LectureNotes in Computer Science. Springer Verlag, Heidelberg, New York.Brelaz, D. [1979]. New methods to color the vertices of a graph. Communications of theACM, 22(4):251{256.Brinch-Hansen, P. and Hartmann, A. C. [1975]. Sequential Pascal report. Technicalreport, California Institute of Technology, Pasadena.Brown, W. S. [1977]. A realistic model of oating-point computation. In Rice, J. R., editor,Mathematical Software III, pages 343{360. Academic Press, New York.Brown, W. S. [1981]. A simple but realistic model of oating-point computation. Technicalreport, Bell Telephone Laboratories, Murray Hill, NJ. Computing Science Technical Report83.Bruno, J. L. and Lassagne, T. [1975]. The generation of optimal code for stack machines.Journal of the ACM, 22(3):382{396.Bruno, J. L. and Sethi, Ravi [1976]. Code generation for a one-register machine. Journalof the ACM, 23(3):382{396.Busam, V. A. [1971]. On the structure of dictionaries for compilers. ACM SIGPLAN Notices,6(2):287{305.Carter, Lynn Robert [1982]. An analysis of Pascal programs. Technical report, UMIResearch Press, Ann Arbor, MI.

350 ReferencesCercone, N., Kraus, M., and Boates, J. [1982]. Lexicon design using perfect hashfunctions. SIGSOC Bulletin, 13(2):69{78.Chaitin, Gregory J. [1982]. Register allocation & spilling via coloring. ACM SIGPLANNotices, 17(6):98{105.Chaitin, Gregory J., Cocke, John, Chandra, A. K., Auslander, Marc A., Hop-kins, Martin E., and Markstein, Peter W. [1981]. Register allocation via coloring.Computer Languages, 6:47{57.Chomsky, N. [1956]. Three models for the description of language. IRE Transactions onInformation Theory, IT-2:113{124.Cichelli, R. J. [1980]. Minimal perfect hash functions made simple. Communications of theACM, 23(1):17{19.Clark, D. W. and Green, C. C. [1977]. An empirical study of list structure in LISP.Communications of the ACM, 20(2):78{87.Cocke, John and Markstein, Peter W. [1980]. Measurement of code improvement al-gorithms. In Lavington, S. H., editor, Information Processing 80, pages 221{228. North-Holland, Amsterdam, NL.Cody, William J. and Waite, William M. [1980]. Software Manual for the ElementaryFunctions. Prentice-Hall, Englewood Cli�s.Constantine, L. L., Stevens, W. P., and Myers, G. J. [1974]. Structured design. IBMSystems Journal, 2:115{139.Conway, R. andWilcox, T. R. [1973]. Design and implementation of a diagnostic compilerfor PL/1. Communications of the ACM, 16(3):169{179.Dakin, R. J. and Poole, Peter Cyril [1973]. A mixed code approach. Computer Journal,16(3):219{222.Damerau, F. [1964]. A technique for computer detection and correction of spelling errors.Communications of the ACM, 7(3):171{176.Davidson, J. W. and Fraser, C. W. [1980]. The design and application of a retargetablepeephole optimizer. ACM Transactions on Programming Languages and Systems, 2(2):191{202.Day, W. H. E. [1970]. Compiler assignment of data items to registers. IBM Systems Journal,9(4):281{317.Dencker, Peter [1977]. Ein neues LALR-System. Master's thesis, Fakult�at f�ur Informatik,Universit�at Karlsruhe, FRG.DeRemer, F. L. [1969]. Practical translators for LR(k) languages. Technical report, MIT,Cambridge, MA. MAC-TR-65.DeRemer, F. L. [1971]. Simple LR(k) grammars. Communications of the ACM, 14(7):453{460.DeRemer, F. L. [1974]. Lexical Analysis, pages 109{120. Springer Verlag, Heidelberg, NewYork.

References 351Deutsch, L. P. and Bobrow, D. G. [1976]. An e�cient, incremental, automatic garbagecollector. Communications of the ACM, 19:522{526.Dijkstra, E. W. [1960]. Recursive programming. Numerische Mathematik, 2:312{318.Dijkstra, E. W. [1963]. An ALGOL 60 translator for the x1. Annual Review in AutomaticProgramming, 3:329{345.DIN [1980]. Programmiersprache PEARL. Beuth-Verlag. DIN 66253.Dunn, R. C. [1974]. Design of a Higher-Level Language Transput System. Ph.D. thesis,University of Colorado, Boulder, CO.Dunn, R. C. and Waite, William M. [1981]. SYNPUT. Technical report, Department ofElectrical Engineering, University of Colorado, Boulder, CO.D�urre, Karl [1973]. An algorithm for coloring the vertices of an arbitrary graph. In Deussen,P., editor, 2. Jahrestagung der Gesellschaft f�ur Informatik Karlsruhe, 1972, volume 78of Lecture Notes in Economics and Mathematical Systems, pages 82{89. Springer Verlag,Heidelberg, New York.Elson, M. and Rake, S. T. [1970]. Code-generation technique for large language compilers.IBM Systems Journal, 9(3):166{188.Fang, I. [1972]. FOLDS, a Declarative Formal Language De�nition System. Ph.D. thesis,Stanford University, CA.Gaines, R. S. [1969]. The Debugging of Computer Programs. Ph.D. thesis, Princeton Uni-versity, Princeton, NJ.Galler, B. A. and Fischer, M. J. [1964]. An improved equivalence algorithm. Communi-cations of the ACM, 7(5):301{303.Gallucci, M. A. [1981]. SAM/SAL. An Experiment Using an Attributed Grammar. Ph.D.thesis, University of Colorado, Boulder, CO.Ganzinger, H. [1978]. Optimierende Erzeugung von �Ubersetzerteilen aus implementierung-sorientierten Sprachbeschreibungen. Ph.D. thesis, Technische Universit�at M�unchen.Garey, M. S. and Johnson, D. S. [1976]. The complexity of near-optimal graph coloring.Journal of the ACM, 23(1):43{49.General Electric Company [1965]. Ge-625/635 general loader reference manual. Tech-nical Report CPB-1008B, General Electric Company, Phoenix, AZ.Giegerich, R. [1979]. Introduction to the compiler generating system MUG2. TechnicalReport TUM-INFO 7913, Institut f�ur Mathematik und Informatik, Technische Universit�atM�unchen.Glanville, R. S. and Graham, S. L. [1978]. A new method for compiler code generation.In Conference Record of the Fifth Principles of Programming Languages, pages 231{240.ACMg.Goos, G. and Kastens, U. [1978]. Programming languages and the design of modularprograms. In Hibbard, Peter and Schuman, Stephen, editors, Constructing Quality Software,pages 153{186. North-Holland, Amsterdam, NL.

352 ReferencesGordon, M. [1979]. The Denotational De�nition of Programming Languages. An Introduc-tion. Springer Verlag, Heidelberg, New York.Graham, M. L. and Ingerman, P. Z. [1965]. An assembly language for reprogramming.Communications of the ACM, 8(12):769{773.Grau, A. A., Hill, U., and Langmaack, H. [1967]. Translation of ALGOL 60. SpringerVerlag, Heidelberg, New York.Gries, David [1971]. Compiler Construction for Digital Computers. WILEY, New York.Griffiths, M. [1973]. Relationship between de�nition and implementation of a language. InBauer, Friedrich L., editor, Advanced Course on Software Engineering, volume 81 of LectureNotes in Economics and Mathematical Systems, pages 76{110. Springer Verlag, Heidelberg,New York.Griswold, R. E. [1972]. The Macro Implementation of SNOBOL4. Freeman, San Francisco.Griswold, R. E., Poage, J. F., and Polonsky, I. P. [1971]. The SNOBOL4 ProgrammingLanguage. Prentice-Hall, Englewood Cli�s, second edition.Guttag, John V. [1975]. The speci�cation and application to programming of abstractdata types. Technical Report CSRG-59, Computer Systems Research Group, University ofToronto, Ont.Guttag, John V. [1977]. Abstract data types and the development of data structures. Com-munications of the ACM, 20(6):396{404.Habermann, A. N. [1973]. Critical comments on the programming language Pascal. ActaInformatica, 3:47{58.Haddon, Bruce Kenneth and Waite, William M. [1978]. Experience with the universalintermediate language janus. Software{Practice and Experience, 8:601{616.Hall, A. D. [1975]. FDS. a FORTRAN debugging system overview and installers guide.Technical Report Computer Science Technical Report 29, Bell Telephone Laboratories,Murray Hill, NJ.Hangelberger, P. [1977]. Ein Algorithmus zur L�osung des Problems der kurzen Spr�unge.Elektronische Rechenanlagen, 19:68{71.Harary, F. [1969]. Graph Theory. Addision Wesley, Reading, MA.Hartmann, A. C. [1977]. A Concurrent Pascal Compiler for Minicomputers, volume 50 ofLecture Notes in Computer Science. Springer Verlag, Heidelberg, New York.Hecht, M. S. [1977]. Flow Analysis of Computer Programs. North-Holland, Amsterdam,NL.Hedberg, R. [1963]. Design of an integrated programming and operating system part III. theexpanded function of the loader. IBM Systems Journal, 2:298{310.Hill, Ursula [1976]. Special run-time organization techniques for ALGOL 68. In [Bauerand Eickel, 1976], pages 222{252. Springer Verlag, Heidelberg, New York.Hoare, Charles Anthony Robert and Wirth, N. [1973]. An axiomatic de�nition ofthe programming language Pascal. Acta Informatica, 3:335{355.

References 353Holt, R. C., Barnard, David T., Cordy, James R., and Wortman, David B.[1977]. SP/k: a system for teaching computer programming. Communications of the ACM,20(5):301{309.Horning, J. J., Lalonde, W. R., and Lee, E. S. [1972]. An LALR(k) parser genera-tor. In Freiman, C. V., editor, Information Processing 71, pages 513{518. North-Holland,Amsterdam, NL.Housden, R.J.W. [1975]. On string concepts and their implementation. Computer Journal,18(2):150{156.Hunt, H. B. I., Szymanski, Thomas G., and Ullman, Jeffrey D. [1975]. On thecomplexity of LR(k) testing. In Conference Proceedings of the Second ACM Symposium onPrinciples of Programming Languages, pages 137{148. ACMg.IBM [1968]. IBM System/360 operating system FORTRAN IV (H) compiler program logicmanual. Technical Report Y28-6642-3, IBM Corporation.ICC [1962]. Symbolic Languages in Data Processing. Gordon and Breach, New York.Ichbiah, J. D. [1980]. Ada Reference Manual, volume 106 of Lecture Notes in ComputerScience. Springer Verlag, Heidelberg, New York.Irons, E. T. [1961]. A syntax-directed compiler for ALGOL 60. Communications of theACM, 4(1):51{55.Irons, E. T. [1963a]. An error correcting parse algorithm. Communications of the ACM,6(11):669{673.Irons, E. T. [1963b]. Towards more versatile mechanical translators. In Experimental Arith-metic, High Speed Computing and Mathematics, volume 15 of Proceedings of Symposia inApplied Mathematics, pages 41{50. American Mathematical Society, Providence, RI.Jansohn, Hans-Stephan, Landwehr, Rudolph, and Goos, Gerhard [1982]. Experi-ence with an automatic code generator generator. ACM SIGPLAN Notices, 17(6):56{66.Jazayeri, M. [1981]. A simpler construction showing the intrinsically exponential complexityof the circularity problem for attribute grammars. Journal of the ACM, 28(4):715{720.Jazayeri, M., Ogden, W. F., and Rounds, W. C. [1975]. On the complexity of thecircularity test for attribute grammars. In Conference Record of the Second Principles ofProgramming Languages, pages 119{129. ACMg.Jazayeri, M. and Pozefsky, D. P. [1977]. Algorithms for e�cient evaluation of multi-pass attribute grammars without a parse tree. Technical Report TP77-001, Department ofComputer Science, University of North Carolina, Chapel Hill, NC.Jazayeri, M. and Walter, K. G. [1975]. Alternating semantic evaluator. In Proceedingsof the ACM National Conference, pages 230{234. ACMg.Jensen, Kathleen andWirth, Niklaus [1974]. Pascal User Manual and Report, volume 18of Lecture Notes in Computer Science. Springer Verlag, Heidelberg, New York.Johnson, D. S. [1974]. Worst case behavior of graph coloring algorithms. In Proceedings ofthe Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing, pages513{523. Utilitas Mathematica Publishing, Winnipeg, Canada.

354 ReferencesJohnson, W. L., Porter, J. H., Ackley, S. I., and Ross, Douglas T. [1968]. Automaticgeneration of e�cient lexical processors using �nite state techniques. Communications ofthe ACM, 11(12):805{813.Johnston, J. B. [1971]. Contour model of block structured processes. ACM SIGPLANNotices, 6(2):55{82.Joliat, M. L. [1973]. On the Reduced Matrix Representation of LR(k) Parser Tables. Ph.D.thesis, University of Toronto.Joliat, M. L. [1974]. Practical minimization of LR(k) parser tables. In [Rosenfeld, 1974],pages 376{380. North-Holland, Amsterdam, NL.Jones, C. B. and Lucas, P. [1971]. Proving correctness of implementation techniques. InEngeler, E., editor, Symposium on Semantics of Algorithmic Languages, volume 188 ofLecture Notes in Mathematics, pages 178{211. Springer Verlag, Heidelberg, New York.Karp, R. M. [1972]. Reducibility among combinatorial problems. InMiller and Thatcher[1972], pages 85{104. Plenum Press, New York.Kastens, Uwe [1976]. Systematische Analyse semantischer Abh�angigkeiten. In Program-miersprachen, number 1 in Informatik Fachberichte, pages 19{32. Springer Verlag, Heidel-berg, New York.Kastens, Uwe [1980]. Ordered attribute grammars. Acta Informatica, 13(3):229{256.Kastens, Uwe, Zimmermann, Erich, and Hutt, B. [1982]. GAG: A practical compilergenerator. In , volume 141 of Lecture Notes in Computer Science. Springer Verlag, Heidel-berg, New York.Kennedy, K. [1981]. A survey of data ow analysis techniques. In D., Muchnick Steven S.Jones Neil, editor, Program Flow Analysis: Theory and Applications, pages 5{54. Prentice-Hall, Englewood Cli�s.Kennedy, K. and Ramanathan, J. [1979]. A deterministic attribute grammar evaluatorbased on dynamic sequencing. ACM Transactions on Programming Languages and Systems,1:142{160.Kennedy, K. and Warren, S. K. [1976]. Automatic generation of e�cient evaluatorsfor attribute grammars. In Conference Record of the Third Principles of ProgrammingLanguages, pages 32{49. ACMg.Klint, P. [1979]. Line numbers made cheap. Communications of the ACM, 22(10):557{559.Knuth, D. E. [1962]. History of writing compilers. Computers and Automation, 11:8{14.Knuth, D. E. [1965]. On the translation of languages from left to right. Information andControl, 8(6):607{639.Knuth, D. E. [1968a]. Fundamental Algorithms, volume 1 of The Art of Computer Program-ming. Addision Wesley, Reading, MA.Knuth, D. E. [1968b]. Semantics of context-free languages. Mathematical Systems Theory,2(2):127{146. see [Knuth, 1971b].

References 355Knuth, D. E. [1969]. Seminumerical Algorithms, volume 2 of The Art of Computer Pro-gramming. Addision Wesley, Reading, MA.Knuth, D. E. [1971a]. An empirical study of FORTRAN programs. Software{Practice andExperience, 1:105{133.Knuth, D. E. [1971b]. Semantics of context-free languages: Correction. MathematicalSystems Theory, 5:95{96.Knuth, D. E. [1973]. Sorting and Searching, volume 3 of The Art of Computer Programming.Addision Wesley, Reading, MA.Koster, C. H. A. [1969]. On in�nite modes. ACM SIGPLAN Notices, 4(3):109{112.Koster, C. H. A. [1971]. A�x grammars. In [Peck, 1971], pages 95{109. North-Holland,Amsterdam, NL.Koster, C. H. A. [1973]. Error reporting, error treatment and error correction in ALGOLtranslation. part 1. In Deussen, P., editor, 2. Jahrestagung der Gesellschaft f�ur InformatikKarlsruhe, 1972, volume 78 of Lecture Notes in Economics and Mathematical Systems.Springer Verlag, Heidelberg, New York.Koster, C. H. A. [1976]. Using the CDL compiler-compiler. In [Bauer and Eickel, 1976],pages 366{426. Springer Verlag, Heidelberg, New York.Kruseman-Aretz, F. E. J. [1971]. On the bookkeeping of source-text line numbers duringthe execution phase of ALGOL 60 programs. In MC-25 Informatica Symposium, volume 37of Mathematical Centre Tracts, pages 6.1{6.12. Mathematisch Centrum, Amsterdam.Lampson, B. W., London, R. L., Horning, J. J., Popek, G. L., and Mitchell, J. G.[1977]. Report on the programming language Euclid. ACM SIGPLAN Notices, 12(2):1{79.Landin, P. J. [1964]. The mechanical evaluation of expressions. Computer Journal, 6(4):308{320.Langmaack, Hans [1971]. Application of regular canonical systems to grammars translatablefrom left to right. Acta Informatica, 1:111{114.Language Resources [1981]. Language Resources Pascal System BL/M-86 Binding Lan-guage Speci�cation. Language Resources Inc., Boulder, CO.Lesk, Michael E. [1975]. LEX { a lexical analyzer generator. Technical report, Bell Tele-phone Laboratories, Murray Hill, NJ. Computing Science Technical Report 39.Levy, J. [1975]. Automatic correction of syntax-errors in programming languages. ActaInformatica, 4:271{292.Lewis, P. M., Rosenkrantz, D. J., and Stearns, R. E. [1974]. Attributed translations.Journal of Computer and System Sciences, 9(3):279{307.Lewis, P. M. and Stearns, R. E. [1969]. Property grammars and table machines. Infor-mation and Control, 14(6):524{549.Liskov, B. and Zilles, S. [1974]. Programming with abstract data types. ACM SIGPLANNotices, 9(4):50{59.

356 ReferencesLowry, E. S. and Medlock, C. W. [1969]. Object code optimization. Communications ofthe ACM, 12(1):13{22.Lucas, P. and Walk, K. [1969]. On the formal description of PL/1. Annual Review inAutomatic Programming, 6(3):105{181.Lyon, G. [1974]. Syntax-directed least-error analysis for context-free languages: A practicalapproach. Communications of the ACM, 17(1):3{14.McCarthy, John [1960]. Recursive functions of symbolic expressions and their computationby machine, part 1. Communications of the ACM, 3(4):184{195.McClure, R. M. [1972]. An appraisal of compiler technology. In AFIPS: Conference Pro-ceedings of the Spring Joint Computer Conference, volume 40. AFIPS Press, Montvale,NJ.McIlroy, M. D. [1974]. ANS FORTRAN charts. Technical report, Bell Telephone Labora-tories, Murray Hill, NJ. Computer Science Technical Report 13.McKeeman, W. M. [1965]. Peephole optimization. Communications of the ACM, 8(7):443{444.McLaren, M. D. [1970]. Data matching, data alignment, and structure mapping in PL/1.ACM SIGPLAN Notices, 5(12):30{43.Mealy, George H. [1963]. A generalized assembly system. Technical Report RM-3646-PR,Rand Corporation, Santa Monica, CA.Miller, R. E. and Thatcher, J. W., editors [1972]. Complexity of Computer Computa-tions. Plenum Press, New York.Mock, O., Olsztyn, J., Strong, J., Steel, T. B., Tritter, A., and Wegstein, J.[1958]. The problem of programming communications with changing machines: Proposedsolution. Communications of the ACM, 1(2):12{18.Morel, E. and Renvoise, C. [1979]. Global optimization by suppression of partial redun-dancies. Communications of the ACM, 22(11):96{103.Morgan, D. L. [1970]. Spelling correction in system programs. Communications of theACM, 13:90{94.Morris, F. L. [1978]. A time- and space-e�cient garbage compaction algorithm. Communi-cations of the ACM, 21(8):662{665.Morrison, R. [1982]. The string is a simple data type. ACM SIGPLAN Notices, 17(3):46{52.Moses, J. [1970]. The function of function in LISP. SIGSAM Bulletin, pages 13{27.Muchnick, S. S. and Jones, N. D., editors [1981]. Program Flow Analysis: Theory andApplications. Prentice-Hall, Englewood Cli�s.Naur, Peter [1963]. Revised report on the algorithmic language ALGOL 60. Communica-tions of the ACM, 6(1):1{17.Naur, Peter [1964]. The design of the GIER ALGOL compiler. Annual Review in AutomaticProgramming, 4:49{85.

References 357Nygaard, K., Dahl, O., and Myrhaug, B. [1970]. SIMULA 67 Common Base Language- Publication S-22. Norwegian Computing Center, Oslo.Pager, D. [1974]. On eliminating unit productions from LR(k) parsers. In Loeckx, J., editor,Automata, Languages and Programming, volume 14 of Lecture Notes in Computer Science,pages 242{254. Springer Verlag, Heidelberg, New York.Palmer, E. M., Rahimi, M. A., and Robinson, R. W. [1974]. E�ciency of a binarycomparison storage technique. Journal of the ACM, 21(3):376{384.Parnas, D. L. [1972]. On the criteria to be used in decomposing systems into modules.Communications of the ACM, 15(12):1053{1058.Parnas, D. L. [1976]. On the design and development of program families. IEEE Transac-tions on Software Engineering, SE-2(1):1{9.Peck, J. E. L., editor [1971]. ALGOL 68 Implementation. North-Holland, Amsterdam, NL.Persch, Guido, Winterstein, Georg, Dausmann, Manfred, and Drossopoulou,Sophia [1980]. Overloading in preliminary Ada. ACM SIGPLAN Notices, 15(11):47{56.Peterson, T. G. [1972]. Syntax Error Detection, Correction and Recovery in Parsers. Ph.D.thesis, Stevens Institute of Technology, Hoboken, NJ.Pierce, R. H. [1974]. Source language debugging on a small computer. Computer Journal,17(4):313{317.Pozefsky, D. P. [1979]. Building E�cient Pass-Oriented Attribute Grammar Evaluators.Ph.D. thesis, University of North Carolina, Chapel Hill, NC.Quine, W. V. O. [1960]. Word and Object. Wiley, New York.R�aih�a, K. [1980]. Bibliography on attribute grammars. ACM SIGPLAN Notices, 15(3):35{44.R�aih�a, K. and Saarinen, M. [1977]. An optimization of the alternating semantic evaluator.Information Processing Letters, 6(3):97{100.R�aih�a, K., Saarinen, M., Soisalon-Soininen, E., and Tienari, M. [1978]. The compilerwriting system HLP (Helsinki Language Processor). Technical Report A-1978-2, Depart-ment fo Computer Science, University of Helsinki, Finland.Ramamoorthy, C. V. and Jahanian, P. [1976]. Formalizing the speci�cation of targetmachines for compiler adaptability enhancement. In Proceedings of the Symposium onComputer Software Engineering, pages 353{366. Polytechnic Institute of New York.Randell, B. and Russell, L. J. [1964]. ALGOL 60 Implementation. Academic Press, NewYork.Richards, M. [1971]. The portability of the BCPL compiler. Software{Practice and Experi-ence, 1:135{146.Ripken, K. [1977]. Formale Beschreibung von Maschinen, Implementierungen und Opti-mierender Machinecoderzeugung Aus Attributierten Programmgraphen. Ph.D. thesis, Tech-nische Universita�at M�unchen.

358 ReferencesRissen, J. P., Heliard, J. C., Ichbiah, J. D., and Cousot, P. [1974]. The system imple-mentation language LIS, reference manual. Technical Report 4549 E/EN, CII Honeywell-Bull, Louveciennes, France.Robertson, E. L. [1979]. Code generation and storage allocation for machines with span-dependent instructions. ACM Transactions on Programming Languages and Systems,1(1):71{83.R�ohrich, J. [1978]. Automatic construction of error correcting parsers. Technical ReportInterner Bericht 8, Universit�at Karlsruhe.R�ohrich, J. [1980]. Methods for the automatic construction of error correcting parsers. ActaInformatica, 13(2):115{139.Rosen, S. [1967]. Programming and Systems and Languages. Mc Grawhill.Rosenfeld, J. L., editor [1974]. Information Processing 74. North-Holland, Amsterdam,NL.Rosenkrantz, D. J. and Stearns, R. E. [1970]. Properties of deterministic top-downgrammars. Information and Control, 17:226{256.Ross, D. T. [1967]. The AED free storage package. Communications of the ACM, 10(8):481{492.Rutishauser, H. [1952]. Automatische Rechenplanfertigung bei Programm-gesteuertenRechenmaschinen. Mitteilungen aus dem Institut f�ur Angewandte Mathematik der ETH-Z�urich, 3.Sale, Arthur H. J. [1971]. The classi�cation of FORTRAN statements. Computer Journal,14:10{12.Sale, Arthur H. J. [1977]. Comments on `report on the programming language Euclid'.ACM SIGPLAN Notices, 12(4):10.Sale, Arthur H. J. [1979]. A note on scope, one-pass compilers, and Pascal. Pascal News,15:62{63.Salomaa, Arto [1973]. Formal Languages. Academic Press, New York.Samelson, K. and Bauer, Friedrich L. [1960]. Sequential formula translation. Commu-nications of the ACM, 3(2):76{83.Satterthwaite, E. [1972]. Debugging tools for high level languages. Software{Practice andExperience, 2:197{217.Scarborough, R. G. and Kolsky, H. G. [1980]. Improved optimization of FORTRANobject programs. IBM Journal of Research and Development, 24(6):660{676.Schulz, Waldean A. [1976]. Semantic Analysis and Target Language Synthesis in a Trans-lator. Ph.D. thesis, University of Colorado, Boulder, CO.Seegm�uller, G. [1963]. Some remarks on the computer as a source language machine.In Popplewell, C.M., editor, Information processing 1962, pages 524{525. North-Holland,Amsterdam, NL.

References 359Sethi, Ravi and Ullman, Jeffrey D. [1970]. The generation of optimal code for arithmeticexpressions. Journal of the ACM, 17(4):715{728.Steele, G. L. [1977]. Arithmetic shifting considered harmful. ACM SIGPLAN Notices,12(11):61{69.Stephens, P. D. [1974]. The IMP language and compiler. Computer Journal, 17:216{223.Stevenson, D. A. [1981]. Proposed standard for binary oating-point arithmetic. Computer,14(3):51{62.Szymanski, T. G. [1978]. Assembling code for machines with span-dependent instructions.Communications of the ACM, 21(4):300{308.Talmadge, R. B. [1963]. Design of an integrated programming and operating system partii. the assembly program and its language. IBM Systems Journal, 2:162{179.Tanenbaum, A. S. [1976]. Structured Computer Organization. Prentice-Hall, EnglewoodCli�s.Tanenbaum, A. S. [1978]. Implications of structured programming for machine architecture.Communications of the ACM, 21(3):237{246.Tanenbaum, Andrew S., van Staveren, H., and Stevenson, J. W. [1982]. Usingpeephole optimization on intermediate code. ACM Transactions on Programming Languagesand Systems, 4(1):21{36.Tennent, R. D. [1981]. Principles of Programming Languages. Prentice-Hall, EnglewoodCli�s.Tienari, M. [1980]. On the de�nition of an attribute grammar. In Semantics-DirectedCompiler Construction, volume 94 of Lecture Notes in Computer Science, pages 408{414.Springer Verlag, Heidelberg, New York.Uhl, J�urgen, Drossopoulou, Sophia, Persch, Guido, Goos, Gerhard, Dausmann,Manfred, Winterstein, Georg, and Kirchg�assner, Walter [1982]. An AttributeGrammar for the Semantic Analysis of Ada, volume 139 of Lecture Notes in ComputerScience. Springer Verlag, Heidelberg, New York.van Wijngaarden, A., Mailloux, B. J., Lindsey, C. H., Meertens, L. G. L. T.,Koster, C. H. A., Sintzoff, M., Peck, J. E. L., and Fisker, R. G. [1975]. Revisedreport on the algorithmic language ALGOL 68. Acta Informatica, 5:1{236.Waite, William M. [1973a]. Implementing Software for Non-Numerical Applications. Pren-tice-Hall, Englewood Cli�s.Waite, William M. [1973b]. A sampling monitor for applications programs. Software{Practice and Experience, 3(1):75{79.Waite, William M. [1976]. Semantic analysis. In [Bauer and Eickel, 1976], pages157{169. Springer Verlag, Heidelberg, New York.Wegbreit, B. [1972]. A generalised compactifying garbage collector. Computer Journal,15:204{208.Wegner, P. [1972]. The vienna de�nition language. ACM Computing Surveys, 4(1):5{63.

360 ReferencesWells, M. B. [1971]. Elements of Combinatorial Computing. Pergamon Press, Oxford.Wilcox, T. R. [1971]. Generating Machine Code for High-Level Programming Languages.Ph.D. thesis, Computer Science Department, Cornell University, Ithaca, NY.Wilhelm, R. [1977]. Baum Transformatoren: Ein Vergleich mit Baum-Transduktoren undAspekte der Implementierung. Ph.D. thesis, Technische Universit�at M�unchen.Wirth, Niklaus [1980]. Modula-2. Technical report, Eidgen�ossische Technische Hochschule,Z�urich. Bericht Nr. 36.Wulf, William A., Johnsson, Richard K., Geschke, Charles M., Hobbs, Ste-ven O., and Weinstock, Charles B. [1975]. The Design of an Optimizing Compiler.American Elsevier, new York.

