
Cilk
Sprache für Parallelprogrammierung

IPD Snelting, Lehrstuhl für Programmierparadigmen David Soria Parra

Montag, 28. Juni 2010

Geschichte

Montag, 28. Juni 2010

Geschichte

Entwickelt 1994 am MIT Laboratory for Computer Science

Cilk 1: Continuations

Cilk 2 Einführung von cilk2c. Abstraktion von Continuation Passing.

Cilk 3 Fokussiertes SHM System

Cilk 4 Spekulative Berechnungen

Cilk 5 Debugger, Portabilität

2006 Kommerzialisierung

Montag, 28. Juni 2010

Cilk

+ =

Montag, 28. Juni 2010

Überblick

cilk2c

Montag, 28. Juni 2010

precompile

Überblick

cilk2c C compiler

Montag, 28. Juni 2010

Linkprecompile

Überblick

cilk2c Cilk
RuntimeC compiler

Montag, 28. Juni 2010

Geschichte

Cilk als reiner Preprozessor

Erstellt mehrere Varianten

Runtime System übernimmt Scheduling

Montag, 28. Juni 2010

Sprache

Montag, 28. Juni 2010

Parallelisierungsprimitive

int fib(int n) {
 int x, y;
 if (n > 2) {
 return n;
 }

 x = fib(n-1);
 y = fib(n-2);
 return (x + y);
}

Montag, 28. Juni 2010

Parallelisierungsprimitive

cilk int fib(int n) {
 int x, y;
 if (n > 2) {
 return n;
 }

 x = fib(n-1);
 y = fib(n-2);
 return (x + y);
}

Montag, 28. Juni 2010

Cilk Prozeduren

Definieren eine parallelisierbare Funktion

Werden zu einer langsamen und einer schnellen Variante compiliert

Schnelle Variante

Langsame Variante

Falls der Thread gestohlen wurde.

Montag, 28. Juni 2010

Parallelisierungsprimitive

cilk int fib(int n) {
 int x, y;
 if (n > 2) {
 return n;
 }

 x = spawn fib(n-1);
 y = spawn fib(n-2);
 return (x + y);
}

Montag, 28. Juni 2010

Parallelisierungsprimitive

cilk int fib(int n) {
 int x, y;
 if (n > 2) {
 return n;
 }

 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y); // impliziter sync
}

Montag, 28. Juni 2010

Synchronisation

Synchronisationspunkt für alle abhängigen Threads

Rückgabewerte können verwendet werden

Return als implizites sync.

Montag, 28. Juni 2010

Parallelisierungsprimitive

fib

fib fib fib fib

fib fib

sync sync

sync

Montag, 28. Juni 2010

Inlets

cilk int fib (int n)
{
 int x = 0;
 inlet void summer (int result) {
 x += result; return;
 }
 if (n<2) {
 return n;
 } else {
 summer(spawn fib (n-1));
 summer(spawn fib (n-2));
 sync;
 }
 return (x);
}

Montag, 28. Juni 2010

Cilk Prozeduren

Innere Funktion

Rückgabewerte von Spawns nutzen ohne sync.

Montag, 28. Juni 2010

Abort

Spekulatives Berechnen

Schachprogramme

Montag, 28. Juni 2010

Parallelisierungsprimitive

fib

fib fib fib fib

fib fib

sync sync

sync

Montag, 28. Juni 2010

Runtime

Montag, 28. Juni 2010

Memory Allocation

Runtime

Scheduler

SHM Locking

Montag, 28. Juni 2010

Memory Management

Private variablen und Rückgabewerte werden synchronisiert

Globale Variablen über Cilk_fence oder Cilk_lock
parallelisieren.

Montag, 28. Juni 2010

Randomized Work Stealing

Cilk: An Efficient Multithreaded Runtime System

Robert D. Blumofe Christopher F. Joerg Bradley C. Kuszmaul
Charles E. Leiserson Keith H. Randall Yuli Zhou

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

Cilk (pronounced “silk”) is a C-based runtime system for multi-
threaded parallel programming. In this paper, we document the effi-
ciency of the Cilk work-stealing scheduler, both empirically and ana-
lytically. We show that on real and synthetic applications, the “work”
and “critical path” of a Cilk computation can be used to accurately
model performance. Consequently, a Cilk programmer can focus on
reducing the work and critical path of his computation, insulated from
load balancing and other runtime scheduling issues. We also prove
that for the class of “fully strict” (well-structured) programs, the Cilk
scheduler achieves space, time, and communication bounds all within
a constant factor of optimal.

The Cilk runtime system currently runs on the Connection Ma-
chine CM5 MPP, the Intel Paragon MPP, the Silicon Graphics Power
Challenge SMP, and the MIT Phish network of workstations. Ap-
plications written in Cilk include protein folding, graphic rendering,
backtrack search, and the Socrates chess program, which won third
prize in the 1994 ACM International Computer Chess Championship.

Multithreading has become an increasingly popular way to implement
dynamic, highly asynchronous, concurrent programs [1, 8, 9, 10, 11,
12, 15, 19, 21, 22, 24, 25, 28, 33, 34, 36, 39, 40]. A multithreaded sys-
tem provides the programmer with a means to create, synchronize, and
schedule threads. Although the schedulers in many of these runtime
systems seem to perform well in practice, none provide users with a
guarantee of application performance. Cilk is a runtime system whose
work-stealing scheduler is efficient in theory as well as in practice.
Moreover, it gives the user an algorithmic model of application per-
formance based on the measures of “work” and “critical path” which
can be used to predict the runtime of a Cilk program accurately.

A Cilk multithreaded computation can be viewed as a directed
acyclic graph (dag) that unfolds dynamically, as is shown schemat-
ically in Figure 1. A Cilk program consists of a collection of Cilk

This research was supported in part by the Advanced Research Projects Agency under
Grants N00014-94-1-0985 and N00014-92-J-1310. Robert Blumofe is supported in part by
an ARPA High-Performance Computing Graduate Fellowship. Keith Randall is supported
in part by a Department of Defense NDSEG Fellowship.

To appear in the Proceedings of the Fifth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP ’95), Santa Barbara Califor-
nia, July 19–21, 1995. Also available on the web as ftp://ftp.lcs.mit.edu
/pub/cilk/PPoPP95.ps.Z.

level 0

level 1

level 2

level 3

: The Cilk model of multithreaded computation. Threads are
shown as circles, which are grouped into procedures. Each downward edge
corresponds to a spawn of a child, each horizontal edge corresponds to a spawn
of a successor, and each upward, curved edge corresponds to a data dependency.
The numbers in the figure indicate the levels of procedures in the spawn tree.

procedures, each of which is broken into a sequence of threads, which
form the vertices of the dag. Each thread is a nonblocking C func-
tion, which means that it can run to completion without waiting or
suspending once it has been invoked. As one of the threads from a
Cilk procedure runs, it can spawn a child thread which begins a new
child procedure. In the figure, downward edges connect threads and
their procedures with the children they have spawned. A spawn is
like a subroutine call, except that the calling thread may execute con-
currently with its child, possibly spawning additional children. Since
threads cannot block in the Cilk model, a thread cannot spawn chil-
dren and then wait for values to be returned. Rather, the thread must
additionally spawn a successor thread to receive the children’s return
values when they are produced. A thread and its successors are con-
sidered to be parts of the same Cilk procedure. In the figure, sequences
of successor threads that form Cilk procedures are connected by hori-
zontal edges. Return values, and other values sent from one thread to
another, induce data dependencies among the threads, where a thread
receiving a value cannot begin until another thread sends the value.
Data dependencies are shown as upward, curved edges in the figure.
Thus, a Cilk computation unfolds as a spawn tree composed of proce-
dures and the spawn edges that connect them to their children, but the
execution is constrained to follow the precedence relation determined
by the dag of threads.

The execution time of any Cilk program on a parallel computer
with processors is constrained by two parameters of the computa-
tion: the work and the critical path. The work, denoted , is the
time used by a one-processor execution of the program, which cor-
responds to the sum of the execution times of all the threads. The
critical path length, denoted , is the total amount of time required
by an infinite-processor execution, which corresponds to the largest
sum of thread execution times along any path. With processors, the

Geordneter DAG

2x Varianten einer Funktion

Nanoscheduler

Microscheduler

Montag, 28. Juni 2010

DAG

Well-structured DAG

Effizientes Work Stealing möglich

Nanoscheduler

Scheduled Prozeduren auf einem Prozessor

Eincompiliert in das Programm

Microscheduler

Scheduling über eine fixe Anzahl Prozessoren

Work Steal Algorithmuis

Montag, 28. Juni 2010

Stealing

CPU 1

Queue

CPU 2

Queue
Steal

Montag, 28. Juni 2010

Stealing

CPU 1 CPU 2

Fast FuncSlow Func

Montag, 28. Juni 2010

Stealing

Nach dem Steal wird die langsame Variante ausgeführt

Stellt Datenzugriffe von abhängigen Threads sicher

Montag, 28. Juni 2010

Erwartete Laufezeit

24 CHAPTER 2. PROGRAMMING IN CILK

state1 = alloca(state_size);

/* fill in *state1 with data */

spawn foo(state1);

if (SYNCHED)

state2 = state1;

else

state2 = alloca(state_size);

/* fill in *state2 with data */

spawn bar(state2);

sync;

Figure 2.13: An illustration of the use of SYNCHED to save storage and enhance locality.

and commences work on the child. (Here, we use the convention that the stack grows downward,

and that items are pushed and popped from the “bottom” of the stack.) When the child returns,

the bottom of the stack is popped (just like C) and the parent resumes. When another processor

requests work, however, work is stolen from the top of the stack, that is, from the end opposite to

the one normally used by the worker.

Cilk’s work-stealing scheduler executes any Cilk computation in nearly optimal time. From an

abstract theoretical perspective, there are two fundamental limits to how fast a Cilk program could

run. Let us denote with TP the execution time of a given computation on P processors. The work
of the computation is the total time needed to execute all threads in the dag. We can denote the

work with T1, since the work is essentially the execution time of the computation on one processor.

Notice that with T1 work and P processors, the lower bound TP ≥ T1/P must hold.
7

The second

limit is based on the program’s span , —textbf, denoted by T∞, which is the execution time of

the computation on an infinite number of processors, or equivalently, the time needed to execute

threads along the longest path of dependency. The second lower bound is simply TP ≥ T∞.

Cilk’s work-stealing scheduler executes a Cilk computation on P processors in time TP ≤
T1/P + O(T∞), which is asymptotically optimal. Empirically, the constant factor hidden by the

big O is often close to 1 or 2 [5], and the formula

TP ≈ T1/P + T∞ (2.1)

is a good approximation of runtime. This performance model holds for Cilk programs that do not

use locks. If locks are used, Cilk does not guarantee anything. (For example, Cilk does not detect

deadlock situations.)

We can explore this performance model using the notion of parallelism , which is defined

as P = T1/T∞. The parallelism is the average amount of work for every step along the span.

Whenever P � P , that is, the actual number of processors is much smaller than the parallelism of

7This abstract model of execution time ignores memory-hierarchy effects, but is nonetheless quite accurate [5].

Montag, 28. Juni 2010

Overhead

Procedure Frame Allokation

Sicherung des State vor jedem Spawn

Frame Check nach jedem Spawn

Procedure Frame Freigabe

Aber gering in der Praxis

Montag, 28. Juni 2010

Beispiele

Montag, 28. Juni 2010

Beispiele

Fast lineare Skalierung

Schachprogramm
Sokrates

Abhängig von der
Parallelisierung

26 CHAPTER 2. PROGRAMMING IN CILK

with span w/o span
Program T1 Work T∞ P T8 T1/T8 T �1 T1/T �1 T �8
blockedmul 41.7 40.8 0.00114 35789 5.32 7.8 38.6 1.08 4.96
bucket 6.4 6.1 0.0318 192 1.02 6.3 6.2 1.036 1.02
cholesky 25.1 22.5 0.0709 317 3.68 6.8 14.9 1.68 2.32
cilksort 5.9 5.6 0.00503 1105 0.87 6.7 5.7 1.023 0.862
fft 13.0 12.5 0.00561 2228 1.92 6.8 11.2 1.16 1.85
fib 25.0 19.2 0.000120 160000 3.19 7.8 2.7 9.26 0.344
heat 63.3 63.2 0.191 331 8.32 7.6 63.0 1.0048 8.15
knapsack† 112.0 104.0 0.000212 490566 14.3 7.8 79.2 1.41 8.99
knary 53.0 43.0 2.15 20 20.2 2.6 12.7 4.17 9.19
lu 23.1 23.0 0.174 132 3.09 7.5 22.6 1.022 2.98
magic 6.1 5.5 0.0780 71 0.848 7.2 3.2 1.88 0.472
notempmul 40.4 39.8 0.0142 2803 4.96 8.0 37.5 1.077 4.71
plu 196.1 194.1 1.753 112 30.8 6.4 188.7 1.04 30.7
queens† 216.0 215.0 0.00156 137821 19.4 11.0 199.0 1.085 17.7
spacemul 39.3 38.9 0.000747 52075 4.91 8.0 37.1 1.059 4.73
strassen 4.2 4.1 0.154 27 0.767 5.5 4.2 1.0096 0.773
rectmul 5.0 5.0 0.000578 8599 0.638 7.8 4.6 1.082 0.606
barnes-hut 112.0 112.0 0.629 181 14.8 7.6 108.6 1.03 14.6

Figure 2.14: The performance of example Cilk programs. Time is measured in seconds. Measurements are
only for the core algorithms. Programs labeled by a dagger (†) are nondeterministic, and thus, the running
time on one processor is not the same as the work performed by the computation.

2. Run the program with your preferred level of the option --stats (see Section 2.2).

Figure 2.14 shows speedup measurements that were taken of the example programs distributed
with Cilk-5.2. Do not expect these timings to be exactly reproducible in Cilk 5.4.6. We mea-
sured execution time on one processor T1, execution time on eight processors T8, work, span T∞,
and parallelism P = T1/T∞. To determine the overhead of the span measurements, we repeated
the experiment without span mesurements. The execution times and the overhead due to span
measurements are reported in columns T �

1, T �
8 and T1/T �

1.
The machine used for the test runs was an otherwise idle Sun Enterprise 5000 SMP, with 8

167-megahertz UltraSPARC processors, 512 megabytes of main memory, 512 kilobytes of L2 cache,
16 kilobytes of instruction L1 cache, and 16 kilobytes of data L1 cache, using two versions of Cilk-5
both compiled with gcc 2.8.1 and optimization level -O3.

The speedup column T1/T8 gives the time of the 8-processor run of the parallel program com-
pared to that of the 1-processor run (or work, in the case of the nondeterministic programs) of the
same parallel program.

Two of the example programs, queens and knapsack, which are marked by a dagger (†) in
the figure, are nondeterministic programs. Since the work of these programs depends on how they
are scheduled, a superlinear speedup can occur. For these programs, the running time on one
processor is not the same as the work performed by the computation. For the other (deterministic)
programs, the measures of T1 and work should be the same. In practice, differences occur, which are
caused by a lack of timing accuracy. Because it reports work and span measurements, Cilk allows
meaningful speedup measurements of programs whose work depends on the actual runtime schedule.
Conventionally, speedup is calculated as the one-processor execution time divided by the parallel

Montag, 28. Juni 2010

Fazit/Einsatz

Montag, 28. Juni 2010

Fazit

Sprache

Basierend auf C

Wenige Spracherweiterungen

Work Steal Algorithmus

Einsatz

Akademisch

Montag, 28. Juni 2010

Literatur

D. Daily, C. E. Leiserson, Using Cilk to Write Multiprocessor Chess Programs, MIT Laboratory
of Computer Science, 2001

C. E. Leiserson, Cilk 5.4.6 Reference Manual, MIT Laboratory of Computer Science, 1998

M. Frigo, K. H. Randall, C. E. Leiserson, The Implementation of the Cilk-5 Multithreaded
Language, MIT Laboratory of Computer Science, 1998

C. F. Joerg, The Cilk System for Parallel Multithreaded Computing, MIT Department of
Electrical Engineering and Computer Science, 1996

Montag, 28. Juni 2010

