Interprocedural Analysis

e [ he problem

e MVP: “"Meet” over Valid Paths

e Making context explicit

e Context based on call-strings

e Context based on assumption sets

(A restricted treatment; see the book for a more general treatment.)



The Problem: match entries with exits

proc fib(val z, u; res v)

1

|

[call £ib(x,0,¥)]3,

is

no

[z<3]?
\yes

[v:=u+1]3

|

. 4
[call fib(z-1,u,v)]E|.

[call fib(z—2,v,v)]9

end8




Preliminaries

Syntax for procedures

Programs: P, = begin Dy Sx end
Declarations: D ::= D; D | proc p(val z;res y) is'" S end

Statements: S :i=-.--[[call p(a,z)],

Example:

begin proc fib(val z, u; res v) is
if [2<3]2 then [v:=u+1]3
else ([call fib(z—l,u,v)]g; [call fib(z—2,v,v)]€75)
end”’;
[call £ib(x,0,¥)]9,
end



Flow graphs for procedure calls

(leall p(a, 2)]f?) = &
([call p(a, 2))Y) = {4}

([call p(a, 2)];) = {[call p(a,2)];}
(lcall p(a, 2)]) = {fe, tr}

([call p(a,2)]) = {(leiln), (Lu; L)}

if proc p(val z;res y) is" S end is in Dy

o (Vc;ty) is the flow corresponding to calling a procedure at ¢. and
entering the procedure body at ¢,, and

o (Vy:0,) is the flow corresponding to exiting a procedure body at /4,
and returning to the call at #,.



Flow graphs for procedure declarations

For each procedure declaration proc p(val z;res y) is’” S end’” of Dy:

init(p) = 4£n
final(lp) = {4z}
blocks(p) = {is'",end"} U blocks(S)
labels(p) = {fn, Ly} U labels(S)

flow(p)

{0, init(SNYU Flom(S) U{(¢,0,) | £ € final(S)}



Flow graphs for programs

For the program P, = begin D, S« end:

init,
finaly
blocks,
labels,

flow,

interflow,

init(Sx)

final(Sx)

U{b/OCKS(p) | proc p(val x;res y) is" S end® is in D}

Ublocks(Sx)

| {/abels(p) | proc p(val z;res y) is S end is in Dy}

Ulabels(Sx)

U{f/OW(p) | proc p(val x;res y) is" S end® is in Dy}

Uflow(Sx)

{(le, bn, Ly, by) | proc p(val x;res y) ist" S end® is in Dy
and [call p(a, z)]gi is in Sk}



Example:

begin proc fib(val z, u; res v) is'

if [z<3]2 then [v:=u+1]3
else ([call fib(z-1,u,v)]2; [call £ib(z-2,v,v)]%)
end8;
[call £ib(x,0,y)]7,
end

We have

flow, {(1,2),(2,3),(3,8),
(2,4),(4,1),(8;5),(5,6),(6;1),(8;7),(7,8),
(9;1),(8;10)}

interflowy, = {(9,1,8,10), (4,1,8,5), (6,1,8,7)}

and init, =9 and final, = {10}.



A naive formulation

Treat the three Kkinds of flow in the same way:

flow treat as
(01,42) | (£1,42)
(gc; gn) (667671)
(Ca; Or) | (L lr)

Equation system:

Ae(€) = fo(Ac(£))
Ac(®) = | {A() | (W, 0) e For ({0)cFor(fe)ecFulg

But there is no matching between entries and exits.



MVP: “Meet” over Valid Paths
Complete Paths

We need to match procedure entries and exits:

A complete path from ¢4 to ¢ in P, has proper nesting of procedure
entries and exits; and a procedure returns to the point where it was

called:
CPy 0, — €1 whenever ¢1 = /5
CPy o3 — 41, CPy, 44 whenever (£1,45) € flow,

CPy.o— L, CPy, 4, CPy , whenever P, contains [call p(a, z)]&f
and proc p(val z;res y) is'” S end'"

More generally: whenever (Y¢, 7y, 0., 0r) is an element of interflow, (or
interf/ow§ for backward analyses); see the book.



Valid Paths

A valid path starts at the entry node of Ps, all the procedure exits
match the procedure entries but some procedures might be entered but
not yet exited:

VP — VPt 4 whenever ¢ € Lab,

VP o, — 41 whenever £1 = /5

VP, 05 — £1, VP, 4, whenever (£1,45) €

VP;.o — e, CP , VP, ¢ whenever P, contains [call p(a, z)]ﬁj

and proc p(val x;res y) is'" S end

VP .o — le, VP, 4 whenever P, contains [call p(a, z)]&f
and proc p(val z;res y) is'" S end



The MVP solution
MVPo(0) = | |{fA) | £ € vpath.(£)}

MVPe(£) = | [{fAt) | £ € vpathy(£)}

where
vpatho(£) = {[l1, - ,ln_1]|mn>1 ANy =4LN][l1,---,4n] is @ valid path}
vpathe(£) = {[l1, - -,én]l |m>1ANEy=4LAN][l1,---,4y] is @ valid path}

The MVP solution may be undecidable for lattices satisfying the As-
cending Chain Condition, just as was the case for the MOP solution.



Making Context Explicit

Starting point: an instance (L,F,F,E, , f.) of a Monotone Framework
e the analysis is forwards, i.e. F = flow, and E = {init.};
e the complete lattice is a powerset, i.e. L = P(D);
e the transfer functions in F are completely additive; and
e cach f,is given by f)(Y) = U{ ¢p(d) | d € Y} where ¢, : D — P(D).

(A restricted treatment; see the book for a more general treatment.)



An embellished monotone framework

e I/ =P(A x D):

e the transfer functions in F’' are completely additive; and

e cach f; is given by f)(Z) = U{- x ¢p(d) | (8, d) € Z}.

Ignoring procedures, the data flow equations will take the form:

Ae (ﬁ) — fé(Ao (6))

for all labels that do not label a procedure call

| [{Ae(&) | (£,€) € For (£;0) € F}u.f.
for all labels (including those that label procedure calls)

Ao(£)



Example:

Detection of Signs Analysis as a Monotone Framework:

(Lsignafsigna F, E, Lsign f.sign) where Sign = {-,0,+} and

Lgign = P( Var, — Sign )

The transfer function fs'g” associated with the assignment [z := a]¢ is

5'%”(y) — U{ ¢S|gn sign) ‘ oSIgn c Y}
where Y C Var, — Sign and

$38" (0%8") = (08" [z — 5] | 5 € Aggn[lall (c¥E8")}



Example (cont.):

Detection of Signs Analysis as an embellished monotone framework

S|gn — 7D(- X (Var* — Slgn) )

The transfer function associated with [z := a]® will now be:

S|gn (2) = U{- o qu'gn o5en) | (B, 058" ) € 2}



Transfer functions for procedure declarations

Procedure declarations

proc p(val x;res y) is" S end®

have two transfer functions, one for entry and one for exit:

fo., fo, P& x D) — P& x D)

For simplicity we take both to be the identity function (thus incorpo-
rating procedure entry as part of procedure call, and procedure exit as
part of procedure return).



Transfer functions for procedure calls
Procedure calls [call p(a,z)]ﬁ"f have two transfer functions:

For the procedure call

fglc:P(-x D)—P(IA x D)

and it is used in the equation:

Ao(le) = fglc(Ao(éc)) for all procedure calls [call p(a,z)]&f

For the procedure return

fe%,zri PA x D) xP(&A x D) - P& x D)

and it is used in the equation:

Ae(ly) = fgzc’ﬁr( Ao(le) |, Ac(€r)) for all procedure calls [call p(a, z)]&f
(Note that Ao(4,) will equal Ae(¥;) for the relevant procedure exit.)




Procedure calls and returns

proc p(val x;res y)

Z

igtn
: fE(2)
s

| [call p(a,2)],*

f7.0.(2,2") J

endﬁf




Variation 1: ignore calling context upon return

proc p(val x;res y)

is

ln
| £l
lcall p(a, )] |-
[call p(a, 2)], | (
| fgi)gr i
| endeﬂ?
fi(Z) =o'y x op.(d) | (5,d)€Z N =---6---d---Z--}

f6.0(2,2") = f7.(2")



Variation 2: joining contexts upon return

proc p(val x;res y)

isen

i f]- i
[call p(a,2)]%| | —
74,
[call p(a, 2)]p |

\ fe, :

| endeﬂﬁ

fi(Z2) =o'y x op.(d) | (5,d) € Z NS =---5---d---

1202, 2") = 24 (Z2)u 25 (2"

7..

‘)



Different Kinds of Context

e Call Strings — contexts based on control
— Call strings of unbounded length

— Call strings of bounded length (k)

e Assumption Sets — contexts based on data
— Large assumption sets (£ = 1)

— Small assumption sets (k£ = 1)



Call Strings of Unbounded Length
A = Lab*

Transfer functions for procedure call

L2 = {0} x ¢.() | (5,d) € Z A
6 = 1[0, 4]}

12.0,(2,2") = {0} x ¢ 4, (d,d) | (5,d) € Z A
0, dyez A& =1[5¢l)



Example:

Recalling the statements:

proc p(val x;res y) is " S end [call p(a, z)]&f

Detection of Signs Analysis:

initialise formals
2" (0% = {o%" [w — slly — ]| s € Agglall (0°B"), " € {~,0,+}}

5382 (058", 055") = {038z > 035" ()] [y — 03B ()] [z — 035" (W)}

restore formals return result




Call Strings of Bounded Length
-=Lab§k

ransfer functions for procedure call

fi(2) = {0} x o7 (d) | (5 d)cZ A
= [0,£c]}}

f2.0(2,2") =\ J{{0} x ¢4, (d,d) | (5,d) € Z A
(¢",d)yez' AN & =1[64L]}



A special case: call strings of length

A = {A}

Note: this is equivalent to having no context information!

Specialising the transfer functions:

() =U{¢o7.(d) | de Y}

fooVY) =U{¢7.,(dd)|deY A deY'}

(We use that P(A x D) isomorphic to P(D).)



A special case: call strings of length k=1

A = Lab U {A}

Specialising the transfer functions:

f:(2) = J{{te} x #3.(d) | (6,d) € Z}

f2.0.(2,2") =\ JUH{6} x 674, (d,d) | (6,d) € Z A (Le,d) € Z'}



Large Assumption Sets (k= 1)
Al = P(D)

Transfer functions for procedure call

A2 =} x 91 (d) | (6,d) € Z A
5 ={d' |, d") ez}

12.0,(2,2") =\ J{{6} x ¢34 (d,d) | (5,d) € Z A
(5", dYe Z' Ao ={d"|(6,d") e Z}}



Small Assumption Sets (k= 1)
A =D

Transfer function for procedure call

fi(2) =J{{d} x ¢} (d) | (5, d) € Z}

2.0.(2, 2"y = JU{o} x ¢34 (d,d) | (5,d) € Z A
(d,d") e Z'}



