
Refactoring Class Hierarchies with KABA

Gregor Snelting, Mirko Streckenbach

Universität Passau
Fakultät für Informatik

Germany

Refactoring Proposals for Class Hierarchies

Problem:

ñ Good design of a class hierarchy is hard

ñ Long maintenance increases entropy

⇒ Refactoring: Patterns to enhance code [Fowler ’99]

but:

ñ Most tools only help rewriting the code,
but can’t find good refactorings automatically

ñ Programmer has to care about preserving semantics

Introduction

The Snelting/Tip-Analysis [TOPLAS’00]

ñ Automatic generation of refactoring proposal

ñ Guaranteed preservation of behavior

ñ Refactoring with respect to a given set of clients

ñ Refactoring reacts to object’s member access patterns

ñ All objects contain only members they need

ñ Fine grained insight into program behavior

KABA: Implementation for Java

Introduction

The Snelting/Tip-Analysis [TOPLAS’00]

ñ Automatic generation of refactoring proposal

ñ Guaranteed preservation of behavior

ñ Refactoring with respect to a given set of clients

ñ Refactoring reacts to object’s member access patterns

ñ All objects contain only members they need

ñ Fine grained insight into program behavior

KABA: Implementation for Java

Introduction

The Snelting/Tip-Analysis [TOPLAS’00]

ñ Automatic generation of refactoring proposal

ñ Guaranteed preservation of behavior

ñ Refactoring with respect to a given set of clients

ñ Refactoring reacts to object’s member access patterns

ñ All objects contain only members they need

ñ Fine grained insight into program behavior

KABA: Implementation for Java

Related Work

ñ Opdyke [ACM ’93], Casais [OOS ’94],
Moore [OOPSLA ’96] :
No semantic guarantees

ñ Bowdidge and Griswold [TOSEM ’98] :
Not object-oriented

ñ Kataoka et al. [ICSM’01] :
Local, not global refactorings

ñ Tip et al. [OOPSLA’03] :
Semantic preserving, but less fine grained

Related Work

ñ Opdyke [ACM ’93], Casais [OOS ’94],
Moore [OOPSLA ’96] :
No semantic guarantees

ñ Bowdidge and Griswold [TOSEM ’98] :
Not object-oriented

ñ Kataoka et al. [ICSM’01] :
Local, not global refactorings

ñ Tip et al. [OOPSLA’03] :
Semantic preserving, but less fine grained

Related Work

ñ Opdyke [ACM ’93], Casais [OOS ’94],
Moore [OOPSLA ’96] :
No semantic guarantees

ñ Bowdidge and Griswold [TOSEM ’98] :
Not object-oriented

ñ Kataoka et al. [ICSM’01] :
Local, not global refactorings

ñ Tip et al. [OOPSLA’03] :
Semantic preserving, but less fine grained

Related Work

ñ Opdyke [ACM ’93], Casais [OOS ’94],
Moore [OOPSLA ’96] :
No semantic guarantees

ñ Bowdidge and Griswold [TOSEM ’98] :
Not object-oriented

ñ Kataoka et al. [ICSM’01] :
Local, not global refactorings

ñ Tip et al. [OOPSLA’03] :
Semantic preserving, but less fine grained

Technical Base

ñ Collection of member accesses
ñ Static: Points-to analysis
ñ Dynamic: Instrumented virtual machine

ñ Type constraints

ñ Concept lattices

Algorithm explained later;
full details see OOPSLA’04 paper, TOPLAS’00 paper,
and Mirko’s PhD thesis

Features

KABA can handle full Java:

ñ Support for full Java bytecode

ñ Stubs for native methods needed
Currently 180 stubs provided

ñ Transforms type-casts, instanceof and
exception-handlers

ñ Support for object creation with reflection

ñ Max program size:
20kLOC static variant, ∞ dynamic variant

ñ Practically validated by running testsuite with refactored
jlex source code

Features

KABA can handle full Java:

ñ Support for full Java bytecode

ñ Stubs for native methods needed
Currently 180 stubs provided

ñ Transforms type-casts, instanceof and
exception-handlers

ñ Support for object creation with reflection

ñ Max program size:
20kLOC static variant, ∞ dynamic variant

ñ Practically validated by running testsuite with refactored
jlex source code

Features

KABA can handle full Java:

ñ Support for full Java bytecode

ñ Stubs for native methods needed
Currently 180 stubs provided

ñ Transforms type-casts, instanceof and
exception-handlers

ñ Support for object creation with reflection

ñ Max program size:
20kLOC static variant, ∞ dynamic variant

ñ Practically validated by running testsuite with refactored
jlex source code

Features

KABA can handle full Java:

ñ Support for full Java bytecode

ñ Stubs for native methods needed
Currently 180 stubs provided

ñ Transforms type-casts, instanceof and
exception-handlers

ñ Support for object creation with reflection

ñ Max program size:
20kLOC static variant, ∞ dynamic variant

ñ Practically validated by running testsuite with refactored
jlex source code

Example

Example source code and its KABA refactoring:

class A {
int x, y, z;
void f() {
y = x;

}
}

class B extends A {
void f() {
y++;

}
void g() {
x++;
f();

}
void h() {
f();
x--;

}
}

class Client {
public static void
main(String[] args) {
A a1 = new A(); // A1
A a2 = new A(); // A2
B b1 = new B(); // B1
B b2 = new B(); // B2

a1.x = 17;
a2.x = 42;
if (...) { a2 = b2; }
a2.f();
b1.g();
b2.h();

}
}
}

⇒

Example (2)

KABA refactors according to member access patterns

ñ B objects have different behaviour:
one calls g, one calls h
=⇒ original class B is split into two unrelated classes

ñ A objects have related behaviour:
A2 calls A.f() in addition
=⇒ original class A is split into two subclasses

ñ A1 does not use A.y; A.z is dead

KABA determines most fine-grained refactoring which
preserves behaviour

ñ Option: merge classes, eg two topmost new classes
=⇒ refactoring less fine grained, but A1 bigger than

necessary

Example (2)

KABA refactors according to member access patterns

ñ B objects have different behaviour:
one calls g, one calls h
=⇒ original class B is split into two unrelated classes

ñ A objects have related behaviour:
A2 calls A.f() in addition
=⇒ original class A is split into two subclasses

ñ A1 does not use A.y; A.z is dead

KABA determines most fine-grained refactoring which
preserves behaviour

ñ Option: merge classes, eg two topmost new classes
=⇒ refactoring less fine grained, but A1 bigger than

necessary

Example (2)

KABA refactors according to member access patterns

ñ B objects have different behaviour:
one calls g, one calls h
=⇒ original class B is split into two unrelated classes

ñ A objects have related behaviour:
A2 calls A.f() in addition
=⇒ original class A is split into two subclasses

ñ A1 does not use A.y; A.z is dead

KABA determines most fine-grained refactoring which
preserves behaviour

ñ Option: merge classes, eg two topmost new classes
=⇒ refactoring less fine grained, but A1 bigger than

necessary

Example (2)

KABA refactors according to member access patterns

ñ B objects have different behaviour:
one calls g, one calls h
=⇒ original class B is split into two unrelated classes

ñ A objects have related behaviour:
A2 calls A.f() in addition
=⇒ original class A is split into two subclasses

ñ A1 does not use A.y; A.z is dead

KABA determines most fine-grained refactoring which
preserves behaviour

ñ Option: merge classes, eg two topmost new classes
=⇒ refactoring less fine grained, but A1 bigger than

necessary

Example (2)

KABA refactors according to member access patterns

ñ B objects have different behaviour:
one calls g, one calls h
=⇒ original class B is split into two unrelated classes

ñ A objects have related behaviour:
A2 calls A.f() in addition
=⇒ original class A is split into two subclasses

ñ A1 does not use A.y; A.z is dead

KABA determines most fine-grained refactoring which
preserves behaviour

ñ Option: merge classes, eg two topmost new classes
=⇒ refactoring less fine grained, but A1 bigger than

necessary

Example (3)

refactored program:
statements are unchanged, only types change

class Aa {
int x;

}

class Ab {
int y;
void f() {
y = x;

}
}

class B extends Ab {
void f() {
y++;

}
}

class Ba extends B {
void g() {
x++;
f();

}
}

class Bb extends B {
void h() {
f();
x--;

}
}

class Client {
public static void
main(String[] args) {

Aa a1 = new Aa(); // A1
Ab a2 = new Ab(); // A2
Ba b1 = new Ba(); // B1
Bb b2 = new Bb(); // B2

a1.x = 17;
a2.x = 42;
if (...) { a2 = b2; }
a2.f();
b1.g();
b2.h();

}
}

Doing this for full Java is not trivial!

Another Example: Professors and Students
class Person {
String name;
String address;
int socialSecurityNumber;

}

class Professor extends Person {
String workAddress;
Student assistant;

Professor(String n, String wa)
{
name = n;
workAddress = wa;

}

void hireAssistant(Student s)
{
assistant = s;

}
}

class Student extends Person {
int studentId;
Professor advisor;

Student(String sn, String sa,
int si)

{
name = sn;
address = sa;
studentId = si;

}

void setAdvisor(Professor p)
{
advisor = p;

}
}

Professors and Students (cont.)

Client code:

class Sample1 {
static public void main(String[] args) {

Student s1 = new Student("Carl", "here", 12345678);
Professor p1 = new Professor("X", "there");
s1.setAdvisor(p1);

}
}

class Sample2 {
static public void main(String[] args) {

Student s2 = new Student("Susan", "also here", 87654321);
Professor p2 = new Professor("Y", "not there");
p2.hireAssistant(s2);

}
}

KABA’s refactoring

ñ Two kinds of students, two kinds of professors
ñ Method bodies are unchanged; but

all variables/members obtain new type
⇒ Class cohesion and information hiding is improved

Reason for KABA’s refactoring

class Sample1 {
static public void main(String[] args) {
Student s1 = new Student("Carl", "here", 12345678);
Professor p1 = new Professor("X", "there");
s1.setAdvisor(p1);

}
}

class Sample2 {
static public void main(String[] args) {
Student s2 = new Student("Susan", "also here", 87654321);
Professor p2 = new Professor("Y", "not there");
p2.hireAssistant(s2);

}
}

Refactored classes/objects contain only members they need!

Example: Interface Extraction

class Container {
Object[] storage=...;
int last=0;

void add(Object o) {
if(last<max())
storage[last++]=o;

}

Object get(int idx) {
return storage[idx];

}

int size() {
return last;

}

int max() {
return storage.length;

}
}

class Client {
static void print(Container c) {
for(int i=0;i!=c.size();++i)
System.err.println(c.get(i));

}

static void main(String[] args) {
Container c1=new Container();

c1.add("hello");
c1.add("world");

print(c1);
}

}

KABA’s refactoring

class Client {
static void print(Container c) {
for(int i=0;i!=c.size();++i)

System.err.println(c.get(i));
}

static void main(String[] args) {
Container c1=new Container();

c1.add("hello");
c1.add("world");

print(c1);
}

}

Two different interfaces separated from implementation

KABA’s refactoring

class Client {
static void print(Container c) {
for(int i=0;i!=c.size();++i)
System.err.println(c.get(i));

}

static void main(String[] args) {
Container c1=new Container();

c1.add("hello");
c1.add("world");

print(c1);
}

}

Two different interfaces separated from implementation

Case Studies

Today, KABA offers:

ñ Fine grained analysis of object behavior

ñ Semi-automatic simplification

⇒ Practical refactorings with respect
to object behavior

⇒ Evaluation of existing designs

Case Study: javac

Tree visitor from Java compiler
(JDK 1.3.1: 129 classes, 27211 LOC, 1878 test runs)

Original hierarchy:

Object ...tree.Tree$Visitor

...comp.Enter$MemberEnter

...tree.TreeTranslator

...comp.Gen

...comp.Enter

...comp.Check$Validator

...comp.Flow

...comp.Attr

...comp.TransInner$ClassMap

...comp.TransInner$FreeVarCollector

...comp.TransInner

...comp.TransTypes

Case Study: javac

Refactoring:

Object 1 ...tree.Tree$Visitor

2 ...tree.TreeTranslator

4 ...comp.Attr

1

8 ...tree.Tree$Visitor
...comp.Enter

1

9 ...tree.Tree$Visitor
...comp.Check$Validator

1

10 ...tree.Tree$Visitor
...comp.Enter$MemberEnter

1

11 ...tree.Tree$Visitor
...comp.Flow

1

12 ...comp.Gen

1

3 ...comp.TransInner

1

5 ...comp.TransTypes

1

6 ...comp.TransInner$FreeVarCollector

1

7 ...tree.TreeTranslator
...comp.TransInner$ClassMap

1

ñ Class structure unchanged, but members moved
ñ Improved cohesion with respect to client behavior

⇒ Overall design was good!

Case Study: ANTLR

Syntax tree from ANTLR parser generator
(2.7.2: 108 classes, 38916 LOC, 84 test runs)

Original hierarchy:

Object ...GrammarElement ...AlternativeElement

...ActionElement

...BlockEndElement

...RuleRefElement

...GrammarAtom

...CharRangeElement

...AlternativeBlock

...RuleEndElement

...WildcardElement

...TokenRefElement

...StringLiteralElement

...CharLiteralElement

...TreeElement

...BlockWithImpliedExitPath

...RuleBlock

...SynPredBlock

...ZeroOrMoreBlock

...OneOrMoreBlock

Case Study: ANTLR

Fine-grained refactoring:

Object 1 ...GrammarElement
...AlternativeElement

2 ...AlternativeElement

9 ...GrammarElement

12 ...GrammarElement

17 ...AlternativeBlock

3

15

1

16 ...GrammarElement

1

4 ...GrammarElement

6 ...AlternativeElement

25 ...BlockWithImpliedExitPath

30 ...ActionElement

1

5 ...AlternativeElement

18 ...AlternativeElement
...AlternativeBlock

7

8 ...RuleRefElement

1

20 ...GrammarAtom

10 ...RuleRefElement

1

37 ...CharRangeElement

1

11 ...RuleRefElement

1

21 ...GrammarAtom

29 ...WildcardElement

1

26 ...ZeroOrMoreBlock

1

33 ...AlternativeBlock

1

36 ...AlternativeBlock
...RuleBlock

1

13 ...AlternativeElement

14 ...BlockEndElement

1

24 ...AlternativeBlock

27 ...RuleEndElement

1

28

1

19 ...AlternativeBlock

1

39 ...TreeElement

1

38 ...CharLiteralElement

1

22 ...GrammarAtom
...TokenRefElement

1

32 ...StringLiteralElement

1

23 ...AlternativeBlock
1

34 ...AlternativeBlock
...SynPredBlock

1

35 ...AlternativeBlock
...RuleBlock

1

31 ...OneOrMoreBlock

1

Complex object access patterns
⇒ Low functional cohesion of original design

Case Study: ANTLR

After more aggressive simplification:

Object 1
...GrammarElement

...AlternativeElement
...AlternativeBlock

2 ...RuleRefElement

3

3 ...AlternativeElement

6 ...AlternativeElement
...AlternativeBlock

8 ...GrammarAtom

4 ...BlockEndElement

2

11 ...AlternativeBlock

16 ...ActionElement

1

22 ...CharRangeElement

1

5 ...GrammarElement

1

14 ...RuleEndElement

2

7 ...AlternativeBlock

2

24 ...TreeElement

1

9 ...GrammarAtom
...TokenRefElement

1

15 ...WildcardElement

1

18 ...StringLiteralElement

1

23 ...CharLiteralElement

1

10 ...AlternativeBlock
1

12 ...BlockWithImpliedExitPath

19 ...AlternativeBlock
...SynPredBlock

1

20 ...AlternativeBlock
...RuleBlock

1

13 ...ZeroOrMoreBlock

1

17 ...OneOrMoreBlock

1

21 ...AlternativeBlock
...RuleBlock

1

Again improved functional cohesion
⇒ Original design questionable compared to javac

An Overview of KABA

The Algorithm (Snelting/Tip, TOPLAS ’00)

Step 1: Extract member accesses from source code P and
construct member access table T

ñ dynamic variant: extract all runtime accesses by objects
O.m() using instrumented JVM; add entry (O,C.m) to T
where C = staticLookup(type(O),m)

ñ static variant: use points-to to approximate dynamic
dispatch:
if o.m() ∈ P and O ∈ pt(o), add entry (O,C.m) to T

Details for this-pointers, instanceof etc. see paper

The Algorithm (Snelting/Tip, TOPLAS ’00)

Step 1: Extract member accesses from source code P and
construct member access table T

ñ dynamic variant: extract all runtime accesses by objects
O.m() using instrumented JVM; add entry (O,C.m) to T
where C = staticLookup(type(O),m)

ñ static variant: use points-to to approximate dynamic
dispatch:
if o.m() ∈ P and O ∈ pt(o), add entry (O,C.m) to T

Details for this-pointers, instanceof etc. see paper

The Algorithm (Snelting/Tip, TOPLAS ’00)

Step 1: Extract member accesses from source code P and
construct member access table T

ñ dynamic variant: extract all runtime accesses by objects
O.m() using instrumented JVM; add entry (O,C.m) to T
where C = staticLookup(type(O),m)

ñ static variant: use points-to to approximate dynamic
dispatch:
if o.m() ∈ P and O ∈ pt(o), add entry (O,C.m) to T

Details for this-pointers, instanceof etc. see paper

The Algorithm (Snelting/Tip, TOPLAS ’00)

Step 1: Extract member accesses from source code P and
construct member access table T

ñ dynamic variant: extract all runtime accesses by objects
O.m() using instrumented JVM; add entry (O,C.m) to T
where C = staticLookup(type(O),m)

ñ static variant: use points-to to approximate dynamic
dispatch:
if o.m() ∈ P and O ∈ pt(o), add entry (O,C.m) to T

Details for this-pointers, instanceof etc. see paper

The Algorithm: Example

Source code and its initial table:

class A {
int x, y, z;
void f() {
y = x;

}
}

class B extends A {
void f() {
y++;

}
void g() {
x++;
f();

}
void h() {
f();
x--;

}
}

class Client {
public static void
main(String[] args) {
A a1 = new A(); // A1
A a2 = new A(); // A2
B b1 = new B(); // B1
B b2 = new B(); // B2

a1.x = 17;
a2.x = 42;
if (...) { a2 = b2; }
a2.f();
b1.g();
b2.h();

}
}

⇒

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × ×
A1

A2 ×
B1 × ×
B2 × ×

A.f.this × × ×
B.f.this × ×
B.g.this × × ×
B.h.this × × ×

For methods, distinction between def (m) and dcl(m) increases precision

(C.m.this,def (C.m)) ∈ T “glue” together method and its this-pointer

The Algorithm (2)

Step 2: incorporate type constraints for semantics
preservation

ñ assignment constraints: x = y;
implies type(x) ≥ type(y) in refactored hierarchy
requires “row implication” x → y in table:
all members of x must also be members of y
⇒ copy entries from row x to row y

ñ dominance constraints: if B ≤ A both have member m,
and ∃o : (o,A.m) ∈ T , (o, B.m) ∈ T ,
newClass(B.m) ≤ newClass(A.m) must hold to avoid
ambiguities
requires “column implication” B.m → A.m in table

ñ implications are applied to T until no more entries are
added

Final table respects all type constraints; this guarantees
semantics preservation [Tip Acta Inf. ’00]

The Algorithm (2)

Step 2: incorporate type constraints for semantics
preservation

ñ assignment constraints: x = y;
implies type(x) ≥ type(y) in refactored hierarchy
requires “row implication” x → y in table:
all members of x must also be members of y
⇒ copy entries from row x to row y

ñ dominance constraints: if B ≤ A both have member m,
and ∃o : (o,A.m) ∈ T , (o, B.m) ∈ T ,
newClass(B.m) ≤ newClass(A.m) must hold to avoid
ambiguities
requires “column implication” B.m → A.m in table

ñ implications are applied to T until no more entries are
added

Final table respects all type constraints; this guarantees
semantics preservation [Tip Acta Inf. ’00]

The Algorithm (2)

Step 2: incorporate type constraints for semantics
preservation

ñ assignment constraints: x = y;
implies type(x) ≥ type(y) in refactored hierarchy
requires “row implication” x → y in table:
all members of x must also be members of y
⇒ copy entries from row x to row y

ñ dominance constraints: if B ≤ A both have member m,
and ∃o : (o,A.m) ∈ T , (o, B.m) ∈ T ,
newClass(B.m) ≤ newClass(A.m) must hold to avoid
ambiguities
requires “column implication” B.m → A.m in table

ñ implications are applied to T until no more entries are
added

Final table respects all type constraints; this guarantees
semantics preservation [Tip Acta Inf. ’00]

The Algorithm (2)

Step 2: incorporate type constraints for semantics
preservation

ñ assignment constraints: x = y;
implies type(x) ≥ type(y) in refactored hierarchy
requires “row implication” x → y in table:
all members of x must also be members of y
⇒ copy entries from row x to row y

ñ dominance constraints: if B ≤ A both have member m,
and ∃o : (o,A.m) ∈ T , (o, B.m) ∈ T ,
newClass(B.m) ≤ newClass(A.m) must hold to avoid
ambiguities
requires “column implication” B.m → A.m in table

ñ implications are applied to T until no more entries are
added

Final table respects all type constraints; this guarantees
semantics preservation [Tip Acta Inf. ’00]

The Algorithm (2)

Step 2: incorporate type constraints for semantics
preservation

ñ assignment constraints: x = y;
implies type(x) ≥ type(y) in refactored hierarchy
requires “row implication” x → y in table:
all members of x must also be members of y
⇒ copy entries from row x to row y

ñ dominance constraints: if B ≤ A both have member m,
and ∃o : (o,A.m) ∈ T , (o, B.m) ∈ T ,
newClass(B.m) ≤ newClass(A.m) must hold to avoid
ambiguities
requires “column implication” B.m → A.m in table

ñ implications are applied to T until no more entries are
added

Final table respects all type constraints; this guarantees
semantics preservation [Tip Acta Inf. ’00]

The Algorithm: Example (cont‘d)
incorporate assignment constraints a1→ A1, a2→ b2, . . .
incorporate dominance constraints dcl(B.f)→ dcl(A.f), . . .

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 ×
A1

A2 ×
B1 × ×
B2 × ×

A.f.this × × ×
B.f.this × ×
B.g.this × × ×
B.h.this × × ×

⇒

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × × × ×
A1 ×
A2 × × × ×
B1 × × × × × × ×
B2 × × × × × × ×

A.f.this × × × ×
B.f.this × × × ×
B.g.this × × × × × × ×
B.h.this × × × × × × ×

assignment/dominance constraints can interfere
⇒ fixpoint iteration

The Algorithm: Example (cont‘d)
incorporate assignment constraints a1→ A1, a2→ b2, . . .
incorporate dominance constraints dcl(B.f)→ dcl(A.f), . . .

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 ×
A1 ◦
A2 ×
B1 × ×
B2 × ×

A.f.this × × ×
B.f.this × ×
B.g.this × × ×
B.h.this × × ×

⇒

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × × × ×
A1 ×
A2 × × × ×
B1 × × × × × × ×
B2 × × × × × × ×

A.f.this × × × ×
B.f.this × × × ×
B.g.this × × × × × × ×
B.h.this × × × × × × ×

assignment/dominance constraints can interfere
⇒ fixpoint iteration

The Algorithm: Example (cont‘d)
incorporate assignment constraints a1→ A1, a2→ b2, . . .
incorporate dominance constraints dcl(B.f)→ dcl(A.f), . . .

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ↓ ↓ ×
b2 ◦ ◦ ×
A1 ◦
A2 ×
B1 × ×
B2 × ×

A.f.this × × ×
B.f.this × ×
B.g.this × × ×
B.h.this × × ×

⇒

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × × × ×
A1 ×
A2 × × × ×
B1 × × × × × × ×
B2 × × × × × × ×

A.f.this × × × ×
B.f.this × × × ×
B.g.this × × × × × × ×
B.h.this × × × × × × ×

assignment/dominance constraints can interfere
⇒ fixpoint iteration

The Algorithm: Example (cont‘d)
incorporate assignment constraints a1→ A1, a2→ b2, . . .
incorporate dominance constraints dcl(B.f)→ dcl(A.f), . . .

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ↓ ↓ ×
b2 ◦ ◦◦ ← × ×
A1 ◦
A2 ×
B1 × ×
B2 × ×

A.f.this × × ×
B.f.this × ×
B.g.this × ◦ ← × ×
B.h.this × ◦ ← × ×

⇒

A
.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × × × ×
A1 ×
A2 × × × ×
B1 × × × × × × ×
B2 × × × × × × ×

A.f.this × × × ×
B.f.this × × × ×
B.g.this × × × × × × ×
B.h.this × × × × × × ×

assignment/dominance constraints can interfere
⇒ fixpoint iteration

The Algorithm (3)

Step 3: compute concept lattice [Ganter & Wille 99] from final
table

ñ concept lattices are natural inheritance structures

ñ each lattice element represents a new class

ñ lattice displays class members above elements

ñ lattice displays all variables having new class as its new
type below element

Beautiful theory and algorithms for concept lattices!

The Algorithm: Example (cont‘d)

Concept lattice generated from final table:
A

.x

A
.y

A
.z

d
cl

(A
.f

)

d
ef

(A
.f

)

d
cl

(B
.f

)

d
ef

(B
.f

)

d
cl

(B
.g

)

d
ef

(B
.g

)

d
cl

(B
.h

)

d
ef

(B
.h

)

a1 ×
a2 × ×
b1 ×
b2 × × × ×
A1 ×
A2 × × × ×
B1 × × × × × × ×
B2 × × × × × × ×

A.f.this × × × ×
B.f.this × × × ×
B.g.this × × × × × × ×
B.h.this × × × × × × ×

⇒

(o,m) ∈ T ⇐⇒ γ(o) ≤ µ(m)

fine-grained insight into object behaviour!

The Algorithm (4)

Step 4: simplify concept lattice

ñ remove “empty” elements

ñ merge elements

ñ move members up

ñ remove multiple
inheritance
(always possible!)

ñ ...

semi-automatic
semantics preserving!

Final refactoring
for example:

can be simplified further

The Algorithm (4)

Step 4: simplify concept lattice

ñ remove “empty” elements

ñ merge elements

ñ move members up

ñ remove multiple
inheritance
(always possible!)

ñ ...

semi-automatic
semantics preserving!

Final refactoring
for example:

can be simplified further

Analysis Challenges

Refactorings for large programs too fine-grained

ñ Semi-automatic simplification of the class hierarchy

New class hierarchy contains multiple inheritance

ñ Removed by moving members “towards” the original
hierarchy

Static analysis does not scale beyond 10 kLOC

ñ Dynamic analysis
ñ Omits pointers and creates simpler hierarchies
ñ Preserves only behavior for test suite

Analysis Challenges

Refactorings for large programs too fine-grained

ñ Semi-automatic simplification of the class hierarchy

New class hierarchy contains multiple inheritance

ñ Removed by moving members “towards” the original
hierarchy

Static analysis does not scale beyond 10 kLOC

ñ Dynamic analysis
ñ Omits pointers and creates simpler hierarchies
ñ Preserves only behavior for test suite

Analysis Challenges

Refactorings for large programs too fine-grained

ñ Semi-automatic simplification of the class hierarchy

New class hierarchy contains multiple inheritance

ñ Removed by moving members “towards” the original
hierarchy

Static analysis does not scale beyond 10 kLOC

ñ Dynamic analysis
ñ Omits pointers and creates simpler hierarchies
ñ Preserves only behavior for test suite

The KABA Editor

ñ Browsing of the refactored class hierarchy
ñ Manual application of basic refactorings

ñ Move member
ñ Create/Delete inheritance
ñ Add/Merge classes

ñ More complex algorithms
ñ Simplification
ñ Removal of multiple inheritance

ñ Detailed error messages if transformation
changes program semantics

The KABA Editor

“Raw” class hierarchy as generated by KABA

The KABA Editor

Interactive refactoring: Merging two classes

The KABA Editor

Interactive refactoring: Violation of semantics

KABA: Conclusion

KABA’s analysis:

ñ Semantics preserving refactorings

ñ Client specific

ñ Based on fine grained program analysis

KABA’s features:

ñ Semantics preserving refactoring editor

ñ Automated code transformation

KABA’s results:

ñ Practical refactorings automatically

ñ Usable as a design evaluation tool

KABA: Conclusion

KABA’s analysis:

ñ Semantics preserving refactorings

ñ Client specific

ñ Based on fine grained program analysis

KABA’s features:

ñ Semantics preserving refactoring editor

ñ Automated code transformation

KABA’s results:

ñ Practical refactorings automatically

ñ Usable as a design evaluation tool

KABA: Conclusion

KABA’s analysis:

ñ Semantics preserving refactorings

ñ Client specific

ñ Based on fine grained program analysis

KABA’s features:

ñ Semantics preserving refactoring editor

ñ Automated code transformation

KABA’s results:

ñ Practical refactorings automatically

ñ Usable as a design evaluation tool

	Case Studies
	The KABA Editor
	Interactive Refactoring

