summaryrefslogtreecommitdiffhomepage
path: root/ir/ana/irlivechk.c
blob: 8f83cc99e8c62f651b0c87dcb91af04ce07fc757 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*
 * This file is part of libFirm.
 * Copyright (C) 2012 Inria Rhone-Alpes.
 */

/**
 * @file
 * @date    21.04.2007
 * @author  Sebastian Hack
 * @brief
 *
 * Liveness checks as developed by Benoit Boissinot, Fabrice Rastello and myself.
 *
 * The speciality here is, that nothing has to be recomputed if new nodes are created
 * or old ones deleted.
 *
 * This algo has one core routine check_live_end_internal() which performs the liveness check.
 * It only relies on the precomputation done in the constructor, which in turn needs:
 * - out edges
 * - the dominance tree
 * - data obtained from a depth-first-search
 *
 * The precomputation remains valid as long as the CFG is not altered.
 */
#include "irlivechk.h"

/* statev is expensive here, only enable when needed */
#define DISABLE_STATEV

#include "bitset.h"
#include "debug.h"
#include "dfs_t.h"
#include "irdom.h"
#include "irdump.h"
#include "iredges_t.h"
#include "irgraph_t.h"
#include "irgraph_t.h"
#include "irnode_t.h"
#include "irnodemap.h"
#include "statev_t.h"
#include <stdio.h>

typedef struct bl_info_t {
	const ir_node *block;      /**< The block. */

	unsigned be_tgt_calc : 1;
	unsigned id : 31;          /**< A tight number for the block.
	                                we're just reusing the pre num from
	                                the DFS. */
	bitset_t *red_reachable;   /**< Holds all id's if blocks reachable
	                                in the CFG modulo back edges. */

	bitset_t *be_tgt_reach;    /**< Target blocks of back edges whose
	                                sources are reachable from this block
	                                in the reduced graph. */
} bl_info_t;

struct lv_chk_t {
	ir_nodemap     block_infos;
	struct obstack obst;
	dfs_t         *dfs;
	int            n_blocks;
	bitset_t      *back_edge_src;
	bitset_t      *back_edge_tgt;
	bl_info_t    **map;
	DEBUG_ONLY(firm_dbg_module_t *dbg;)
};

static bl_info_t *get_block_info(lv_chk_t *lv, const ir_node *block)
{
	bl_info_t *info = ir_nodemap_get(bl_info_t, &lv->block_infos, block);
	if (info == NULL) {
		info                = OALLOC(&lv->obst, bl_info_t);
		info->id            = get_Block_dom_tree_pre_num(block);
		info->block         = block;
		info->red_reachable = bitset_obstack_alloc(&lv->obst, lv->n_blocks);
		info->be_tgt_reach  = bitset_obstack_alloc(&lv->obst, lv->n_blocks);
		info->be_tgt_calc   = 0;
		ir_nodemap_insert(&lv->block_infos, block, info);
	}
	return info;
}

/**
 * Compute the transitive closure on the reduced graph.
 * The reduced graph is the original graph without back edges.
 * Since that is a DAG, a reverse post order of the graph gives a toposort
 * which is ideally suited to compute the transitive closure.
 * Note also, that the DFS tree of the reduced graph is the same than the one
 * of the original graph. This saves us computing a new reverse post order.
 * We also can re-use the DFS tree of the original graph.
 */
static void red_trans_closure(lv_chk_t *lv)
{
	for (int i = 0, n = dfs_get_n_nodes(lv->dfs); i < n; ++i) {
		ir_node   *const bl = dfs_get_post_num_node(lv->dfs, i);
		bl_info_t *const bi = get_block_info(lv, bl);

		bitset_set(bi->red_reachable, bi->id);
		foreach_block_succ(bl, edge) {
			ir_node        *succ = get_edge_src_irn(edge);
			bl_info_t      *si   = get_block_info(lv, succ);
			dfs_edge_kind_t kind = dfs_get_edge_kind(lv->dfs, bl, succ);

			/*
			 * if the successor is no back edge, include all reachable
			 * blocks from there into the reachable set of the current node
			 */
			if (kind != DFS_EDGE_BACK) {
				assert(dfs_get_post_num(lv->dfs, bl) > dfs_get_post_num(lv->dfs, succ));
				bitset_or(bi->red_reachable, si->red_reachable);
			} else {
				/* mark block as a back edge src and succ as back edge tgt. */
				bitset_set(lv->back_edge_src, bi->id);
				bitset_set(lv->back_edge_tgt, si->id);
			}
		}

	}

}

static void compute_back_edge_chain(lv_chk_t *lv, const ir_node *bl)
{
	bl_info_t *bi = get_block_info(lv, bl);
	DBG((lv->dbg, LEVEL_2, "computing T_%d\n", bi->id));

	/* put all back edge sources reachable (reduced) from here in tmp */
	bitset_t *tmp = bitset_alloca(lv->n_blocks);
	bitset_copy(tmp, bi->red_reachable);
	bitset_set(tmp, bi->id);
	bitset_and(tmp, lv->back_edge_src);
	bi->be_tgt_calc = true;

	DBG((lv->dbg, LEVEL_2, "\treachable be src: %B\n", tmp));

	/* iterate over them ... */
	bitset_foreach(tmp, elm) {
		bl_info_t *si = lv->map[elm];

		/* and find back edge targets which are not reduced reachable from bl */
		foreach_block_succ(si->block, edge) {
			ir_node        *tgt  = get_edge_src_irn(edge);
			bl_info_t      *ti   = get_block_info(lv, tgt);
			dfs_edge_kind_t kind = dfs_get_edge_kind(lv->dfs, si->block, tgt);

			if (kind == DFS_EDGE_BACK && !bitset_is_set(bi->red_reachable, ti->id)) {
				if (!ti->be_tgt_calc)
					compute_back_edge_chain(lv, tgt);
				bitset_set(bi->be_tgt_reach, ti->id);
				bitset_or(bi->be_tgt_reach, ti->be_tgt_reach);
			}
		}
		bitset_clear(bi->be_tgt_reach, bi->id);
	}
}


static inline void compute_back_edge_chains(lv_chk_t *lv)
{
	DBG((lv->dbg, LEVEL_2, "back edge sources: %B\n", lv->back_edge_src));
	bitset_foreach(lv->back_edge_src, elm) {
		compute_back_edge_chain(lv, lv->map[elm]->block);
	}

	for (int i = 0, n = dfs_get_n_nodes(lv->dfs); i < n; ++i) {
		ir_node   *const bl = dfs_get_post_num_node(lv->dfs, i);
		bl_info_t *const bi = get_block_info(lv, bl);

		if (!bitset_is_set(lv->back_edge_tgt, bi->id)) {
			foreach_block_succ(bl, edge) {
				ir_node   *succ = get_edge_src_irn(edge);
				bl_info_t *si   = get_block_info(lv, succ);
				dfs_edge_kind_t kind = dfs_get_edge_kind(lv->dfs, bl, succ);

				if (kind != DFS_EDGE_BACK) {
					assert(dfs_get_post_num(lv->dfs, bl) > dfs_get_post_num(lv->dfs, succ));
					bitset_or(bi->be_tgt_reach, si->be_tgt_reach);
				}
			}
		}
	}

	for (int i = 0, n = dfs_get_n_nodes(lv->dfs); i < n; ++i) {
		ir_node const *bl = dfs_get_post_num_node(lv->dfs, i);
		bl_info_t     *bi = get_block_info(lv, bl);
		bitset_set(bi->be_tgt_reach, bi->id);
	}
}

lv_chk_t *lv_chk_new(ir_graph *irg)
{
	assure_irg_properties(irg, IR_GRAPH_PROPERTY_CONSISTENT_DOMINANCE);

	stat_ev_tim_push();
	lv_chk_t *res = XMALLOC(lv_chk_t);
	FIRM_DBG_REGISTER(res->dbg, "ir.ana.lvchk");
	ir_nodemap_init(&res->block_infos, irg);
	obstack_init(&res->obst);
	res->dfs           = dfs_new(irg);
	res->n_blocks      = dfs_get_n_nodes(res->dfs);
	res->back_edge_src = bitset_obstack_alloc(&res->obst, res->n_blocks);
	res->back_edge_tgt = bitset_obstack_alloc(&res->obst, res->n_blocks);
	res->map           = OALLOCNZ(&res->obst, bl_info_t*, res->n_blocks);

	/* fill the map which maps pre_num to block infos */
	for (int i = res->n_blocks; i-- > 0; ) {
		ir_node   *irn = dfs_get_pre_num_node(res->dfs, i);
		bl_info_t *bi  = get_block_info(res, irn);
		assert(bi->id < res->n_blocks);
		assert(res->map[bi->id] == NULL);
		res->map[bi->id] = bi;
	}

	/* first of all, compute the transitive closure of the CFG *without* back edges */
	red_trans_closure(res);

	/* compute back edge chains */
	compute_back_edge_chains(res);

#ifdef DEBUG_libfirm
	DBG((res->dbg, LEVEL_1, "liveness chk in %+F\n", irg));
	for (int i = res->n_blocks; i-- > 0; ) {
		const ir_node   *irn = dfs_get_pre_num_node(res->dfs, i);
		const bl_info_t *bi  = get_block_info(res, irn);
		DBG((res->dbg, LEVEL_1, "lv_chk for %d -> %+F\n", i, irn));
		DBG((res->dbg, LEVEL_1, "\tred reach: %B\n", bi->red_reachable));
		DBG((res->dbg, LEVEL_1, "\ttgt reach: %B\n", bi->be_tgt_reach));
	}
#endif

	DBG((res->dbg, LEVEL_1, "back edge src: %B\n", res->back_edge_src));
	DBG((res->dbg, LEVEL_1, "back edge tgt: %B\n", res->back_edge_tgt));

	stat_ev_tim_pop("lv_chk_cons_time");
	return res;
}

void lv_chk_free(lv_chk_t *lv)
{
	dfs_free(lv->dfs);
	obstack_free(&lv->obst, NULL);
	ir_nodemap_destroy(&lv->block_infos);
	free(lv);
}

unsigned lv_chk_bl_xxx(lv_chk_t *lv, const ir_node *bl, const ir_node *var)
{
	assert(is_Block(bl));
	assert(is_liveness_node(var));
	stat_ev_cnt_decl(uses);
	stat_ev_cnt_decl(iter);

	stat_ev_ctx_push_fmt("lv_chk", "%u", get_irn_idx(var));
	stat_ev_tim_push();

	/* If there is no dominance relation, go out, too */
	int            res    = 0;
	const ir_node *def_bl = get_nodes_block(var);
	if (!block_dominates(def_bl, bl)) {
		stat_ev("lv_chk_no_dom");
		goto end;
	}

	/*
	 * If the block in question is the same as the definition block,
	 * the algorithm is simple. Just check for uses not inside this block.
	 */
	if (def_bl == bl) {
		stat_ev("lv_chk_def_block");
		DBG((lv->dbg, LEVEL_2, "lv check same block %+F in %+F\n", var, bl));
		foreach_out_edge(var, edge) {
			ir_node *use = get_edge_src_irn(edge);
			if (!is_liveness_node(use))
				continue;

			stat_ev_cnt_inc(uses);
			ir_node *use_bl = get_nodes_block(use);
			if (is_Phi(use)) {
				int pos = get_edge_src_pos(edge);
				use_bl  = get_Block_cfgpred_block(use_bl, pos);

				if (use_bl == bl) {
					DBG((lv->dbg, LEVEL_2, "\tphi %+F in succ %+F,%d -> live end\n", use, use_bl, pos));
					res |= lv_chk_state_end;
				}
			}

			if (use_bl != def_bl) {
				res = lv_chk_state_end | lv_chk_state_out;
				goto end;
			}
		}

		goto end;
	} else {
		/*
		 * this is the more complicated case.
		 * We try to gather as much information as possible during looking
		 * at the uses.
		 *
		 * Note that we know for sure that bl != def_bl. That is sometimes
		 * silently exploited below.
		 */
		const bl_info_t *bli = get_block_info(lv, bl);
		const bl_info_t *def = get_block_info(lv, def_bl);
		(void)def;
		DBG((lv->dbg, LEVEL_2,
		     "lv check %+F (def in %+F #%d) in different block %+F #%d\n",
		     var, def_bl, def->id, bl, bli->id));

		bitset_t *uses = bitset_alloca(lv->n_blocks);
		foreach_out_edge(var, edge) {
			ir_node *user = get_edge_src_irn(edge);

			/* if the user is no liveness node, the use does not count */
			if (!is_liveness_node(user))
				continue;

			stat_ev_cnt_inc(uses);

			/* if the user is a phi, the use is in the predecessor
			 * furthermore, prepare a mask so that in the case where
			 * bl (the block in question) coincides with a use, it
			 * can be marked live_end there. */
			int      mask   = lv_chk_state_in;
			ir_node *use_bl = get_nodes_block(user);
			if (is_Phi(user)) {
				int pos = get_edge_src_pos(edge);
				use_bl  = get_Block_cfgpred_block(use_bl, pos);
				if (use_bl == NULL)
					continue;
				mask   |= lv_chk_state_end;
			}


			/* if the use block coincides with the query block, we
			 * already gather a little liveness information.
			 * The variable is surely live there, since bl != def_bl
			 * (that case is treated above). */
			if (use_bl == bl)
				res |= mask;

			const bl_info_t *bi = get_block_info(lv, use_bl);
			bitset_set(uses, bi->id);
		}
		DBG((lv->dbg, LEVEL_2, "\tuses: %B\n", uses));

		/* get the dominance range which really matters. all uses outside
		 * the definition's dominance range are not to consider. note,
		 * that the definition itself is also not considered. The case
		 * where bl == def_bl is considered above. */
		unsigned min_dom = get_Block_dom_tree_pre_num(def_bl) + 1;
		unsigned max_dom = get_Block_dom_max_subtree_pre_num(def_bl);

		/* prepare a set with all reachable back edge targets.
		 * this will determine our "looking points" from where
		 * we will search/find the calculated uses. */
		const bitset_t *Tq = bli->be_tgt_reach;

		/* now, visit all viewing points in the temporary bitset lying
		 * in the dominance range of the variable. Note that for reducible
		 * flow-graphs the first iteration is sufficient and the loop
		 * will be left. */
		DBG((lv->dbg, LEVEL_2, "\tbe tgt reach: %B, dom span: [%u, %u]\n", Tq,
		     min_dom, max_dom));
		size_t i = bitset_next_set(Tq, min_dom);
		while (i <= max_dom) {
			const bl_info_t *ti                   = lv->map[i];
			bool             use_in_current_block = bitset_is_set(uses, ti->id);

			stat_ev_cnt_inc(iter);

			/*
			 * This is somewhat tricky. Since this routine handles both, live in
			 * and end/out we have to handle all the border cases correctly.
			 * Each node is in its own red_reachable set (see calculation
			 * function above). That means, that in the case where bl == t, the
			 * intersection check of uses and reachability below will always
			 * find an intersection, namely t.
			 *
			 * However, if a block contains a use and the variable is dead
			 * afterwards, it is not live end/out at that block. Besides
			 * back-edge target. If a var is live-in at a back-edge target it
			 * is also live out/end there since the variable is live in the
			 * underlying loop. So in the case where t == bl and that is not
			 * a back-edge target, we have to remove that use from consideration
			 * to determine if the var is live out/end there.
			 *
			 * Note that the live in information has been calculated by the
			 * uses iteration above.
			 */
			if (ti == bli && !bitset_is_set(lv->back_edge_tgt, ti->id)) {
				DBG((lv->dbg, LEVEL_2, "\tlooking not from a back edge target and q == t. removing use: %d\n", ti->id));
				bitset_clear(uses, ti->id);
			}

			/* If we can reach a use, the variable is live there and we say goodbye */
			DBG((lv->dbg, LEVEL_2, "\tlooking from %d: seeing %B\n",
			     ti->id, ti->red_reachable));
			if (bitset_intersect(ti->red_reachable, uses)) {
				res |= lv_chk_state_in | lv_chk_state_out | lv_chk_state_end;
				goto end;
			}

			/*
			 * if we deleted a use do to the commentary above, we have to
			 * re-add it since it might be visible from further view points
			 * (we only need that in the non-reducible case).
			 */
			if (use_in_current_block)
				bitset_set(uses, ti->id);

			i = bitset_next_set(Tq, get_Block_dom_max_subtree_pre_num(ti->block) + 1);
		}

	}

end:
	stat_ev_tim_pop("lv_chk_query_time");
	stat_ev_cnt_done(uses, "lv_chk_uses");
	stat_ev_cnt_done(iter, "lv_chk_iter");
	stat_ev_ctx_pop("lv_chk");

	return res;
}