summaryrefslogtreecommitdiff
path: root/cord/cordbscs.c
blob: 924bf44549e1198055751627c055c180b0b19395 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
/*
 * Copyright (c) 1993-1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program
 * for any purpose,  provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 *
 * Author: Hans-J. Boehm (boehm@parc.xerox.com)
 */
/* Boehm, October 3, 1994 5:19 pm PDT */
# include "gc.h"
# include "cord.h"
# include <stdlib.h>
# include <stdio.h>
# include <string.h>

/* An implementation of the cord primitives.  These are the only        */
/* Functions that understand the representation.  We perform only       */
/* minimal checks on arguments to these functions.  Out of bounds       */
/* arguments to the iteration functions may result in client functions  */
/* invoked on garbage data.  In most cases, client functions should be  */
/* programmed defensively enough that this does not result in memory    */
/* smashes.                                                             */

typedef void (* oom_fn)(void);

oom_fn CORD_oom_fn = (oom_fn) 0;

# define OUT_OF_MEMORY {  if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \
                          ABORT("Out of memory\n"); }
# define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); }

typedef unsigned long word;

typedef union {
    struct Concatenation {
        char null;
        char header;
        char depth;     /* concatenation nesting depth. */
        unsigned char left_len;
                        /* Length of left child if it is sufficiently   */
                        /* short; 0 otherwise.                          */
#           define MAX_LEFT_LEN 255
        word len;
        CORD left;      /* length(left) > 0     */
        CORD right;     /* length(right) > 0    */
    } concatenation;
    struct Function {
        char null;
        char header;
        char depth;     /* always 0     */
        char left_len;  /* always 0     */
        word len;
        CORD_fn fn;
        void * client_data;
    } function;
    struct Generic {
        char null;
        char header;
        char depth;
        char left_len;
        word len;
    } generic;
    char string[1];
} CordRep;

# define CONCAT_HDR 1

# define FN_HDR 4
# define SUBSTR_HDR 6
        /* Substring nodes are a special case of function nodes.        */
        /* The client_data field is known to point to a substr_args     */
        /* structure, and the function is either CORD_apply_access_fn   */
        /* or CORD_index_access_fn.                                     */

/* The following may be applied only to function and concatenation nodes: */
#define IS_CONCATENATION(s)  (((CordRep *)s)->generic.header == CONCAT_HDR)

#define IS_FUNCTION(s)  ((((CordRep *)s)->generic.header & FN_HDR) != 0)

#define IS_SUBSTR(s) (((CordRep *)s)->generic.header == SUBSTR_HDR)

#define LEN(s) (((CordRep *)s) -> generic.len)
#define DEPTH(s) (((CordRep *)s) -> generic.depth)
#define GEN_LEN(s) (CORD_IS_STRING(s) ? strlen(s) : LEN(s))

#define LEFT_LEN(c) ((c) -> left_len != 0? \
                                (c) -> left_len \
                                : (CORD_IS_STRING((c) -> left) ? \
                                        (c) -> len - GEN_LEN((c) -> right) \
                                        : LEN((c) -> left)))

#define SHORT_LIMIT (sizeof(CordRep) - 1)
        /* Cords shorter than this are C strings */


/* Dump the internal representation of x to stdout, with initial        */
/* indentation level n.                                                 */
void CORD_dump_inner(CORD x, unsigned n)
{
    register size_t i;

    for (i = 0; i < (size_t)n; i++) {
        fputs("  ", stdout);
    }
    if (x == 0) {
        fputs("NIL\n", stdout);
    } else if (CORD_IS_STRING(x)) {
        for (i = 0; i <= SHORT_LIMIT; i++) {
            if (x[i] == '\0') break;
            putchar(x[i]);
        }
        if (x[i] != '\0') fputs("...", stdout);
        putchar('\n');
    } else if (IS_CONCATENATION(x)) {
        register struct Concatenation * conc =
                                &(((CordRep *)x) -> concatenation);
        printf("Concatenation: %p (len: %d, depth: %d)\n",
               x, (int)(conc -> len), (int)(conc -> depth));
        CORD_dump_inner(conc -> left, n+1);
        CORD_dump_inner(conc -> right, n+1);
    } else /* function */{
        register struct Function * func =
                                &(((CordRep *)x) -> function);
        if (IS_SUBSTR(x)) printf("(Substring) ");
        printf("Function: %p (len: %d): ", x, (int)(func -> len));
        for (i = 0; i < 20 && i < func -> len; i++) {
            putchar((*(func -> fn))(i, func -> client_data));
        }
        if (i < func -> len) fputs("...", stdout);
        putchar('\n');
    }
}

/* Dump the internal representation of x to stdout      */
void CORD_dump(CORD x)
{
    CORD_dump_inner(x, 0);
    fflush(stdout);
}

CORD CORD_cat_char_star(CORD x, const char * y, size_t leny)
{
    register size_t result_len;
    register size_t lenx;
    register int depth;

    if (x == CORD_EMPTY) return(y);
    if (leny == 0) return(x);
    if (CORD_IS_STRING(x)) {
        lenx = strlen(x);
        result_len = lenx + leny;
        if (result_len <= SHORT_LIMIT) {
            register char * result = GC_MALLOC_ATOMIC(result_len+1);

            if (result == 0) OUT_OF_MEMORY;
            memcpy(result, x, lenx);
            memcpy(result + lenx, y, leny);
            result[result_len] = '\0';
            return((CORD) result);
        } else {
            depth = 1;
        }
    } else {
        register CORD right;
        register CORD left;
        register char * new_right;
        register size_t right_len;

        lenx = LEN(x);

        if (leny <= SHORT_LIMIT/2
            && IS_CONCATENATION(x)
            && CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) {
            /* Merge y into right part of x. */
            if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) {
                right_len = lenx - LEN(left);
            } else if (((CordRep *)x) -> concatenation.left_len != 0) {
                right_len = lenx - ((CordRep *)x) -> concatenation.left_len;
            } else {
                right_len = strlen(right);
            }
            result_len = right_len + leny;  /* length of new_right */
            if (result_len <= SHORT_LIMIT) {
                new_right = GC_MALLOC_ATOMIC(result_len + 1);
                memcpy(new_right, right, right_len);
                memcpy(new_right + right_len, y, leny);
                new_right[result_len] = '\0';
                y = new_right;
                leny = result_len;
                x = left;
                lenx -= right_len;
                /* Now fall through to concatenate the two pieces: */
            }
            if (CORD_IS_STRING(x)) {
                depth = 1;
            } else {
                depth = DEPTH(x) + 1;
            }
        } else {
            depth = DEPTH(x) + 1;
        }
        result_len = lenx + leny;
    }
    {
      /* The general case; lenx, result_len is known: */
        register struct Concatenation * result;

        result = GC_NEW(struct Concatenation);
        if (result == 0) OUT_OF_MEMORY;
        result->header = CONCAT_HDR;
        result->depth = depth;
        if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
        result->len = result_len;
        result->left = x;
        result->right = y;
        if (depth >= MAX_DEPTH) {
            return(CORD_balance((CORD)result));
        } else {
            return((CORD) result);
        }
    }
}


CORD CORD_cat(CORD x, CORD y)
{
    register size_t result_len;
    register int depth;
    register size_t lenx;

    if (x == CORD_EMPTY) return(y);
    if (y == CORD_EMPTY) return(x);
    if (CORD_IS_STRING(y)) {
        return(CORD_cat_char_star(x, y, strlen(y)));
    } else if (CORD_IS_STRING(x)) {
        lenx = strlen(x);
        depth = DEPTH(y) + 1;
    } else {
        register int depthy = DEPTH(y);

        lenx = LEN(x);
        depth = DEPTH(x) + 1;
        if (depthy >= depth) depth = depthy + 1;
    }
    result_len = lenx + LEN(y);
    {
        register struct Concatenation * result;

        result = GC_NEW(struct Concatenation);
        if (result == 0) OUT_OF_MEMORY;
        result->header = CONCAT_HDR;
        result->depth = depth;
        if (lenx <= MAX_LEFT_LEN) result->left_len = lenx;
        result->len = result_len;
        result->left = x;
        result->right = y;
        if (depth >= MAX_DEPTH) {
            return(CORD_balance((CORD)result));
        } else {
            return((CORD) result);
        }
    }
}



CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len)
{
    if (len <= 0) return(0);
    if (len <= SHORT_LIMIT) {
        register char * result;
        register size_t i;
        char buf[SHORT_LIMIT+1];
        register char c;

        for (i = 0; i < len; i++) {
            c = (*fn)(i, client_data);
            if (c == '\0') goto gen_case;
            buf[i] = c;
        }
        buf[i] = '\0';
        result = GC_MALLOC_ATOMIC(len+1);
        if (result == 0) OUT_OF_MEMORY;
        strcpy(result, buf);
        result[len] = '\0';
        return((CORD) result);
    }
  gen_case:
    {
        register struct Function * result;

        result = GC_NEW(struct Function);
        if (result == 0) OUT_OF_MEMORY;
        result->header = FN_HDR;
        /* depth is already 0 */
        result->len = len;
        result->fn = fn;
        result->client_data = client_data;
        return((CORD) result);
    }
}

size_t CORD_len(CORD x)
{
    if (x == 0) {
        return(0);
    } else {
        return(GEN_LEN(x));
    }
}

struct substr_args {
    CordRep * sa_cord;
    size_t sa_index;
};

char CORD_index_access_fn(size_t i, void * client_data)
{
    register struct substr_args *descr = (struct substr_args *)client_data;

    return(((char *)(descr->sa_cord))[i + descr->sa_index]);
}

char CORD_apply_access_fn(size_t i, void * client_data)
{
    register struct substr_args *descr = (struct substr_args *)client_data;
    register struct Function * fn_cord = &(descr->sa_cord->function);

    return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data));
}

/* A version of CORD_substr that simply returns a function node, thus   */
/* postponing its work. The fourth argument is a function that may      */
/* be used for efficient access to the ith character.                   */
/* Assumes i >= 0 and i + n < length(x).                                */
CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f)
{
    register struct substr_args * sa = GC_NEW(struct substr_args);
    CORD result;

    if (sa == 0) OUT_OF_MEMORY;
    sa->sa_cord = (CordRep *)x;
    sa->sa_index = i;
    result = CORD_from_fn(f, (void *)sa, n);
    ((CordRep *)result) -> function.header = SUBSTR_HDR;
    return (result);
}

# define SUBSTR_LIMIT (10 * SHORT_LIMIT)
        /* Substrings of function nodes and flat strings shorter than   */
        /* this are flat strings.  Othewise we use a functional         */
        /* representation, which is significantly slower to access.     */

/* A version of CORD_substr that assumes i >= 0, n > 0, and i + n < length(x).*/
CORD CORD_substr_checked(CORD x, size_t i, size_t n)
{
    if (CORD_IS_STRING(x)) {
        if (n > SUBSTR_LIMIT) {
            return(CORD_substr_closure(x, i, n, CORD_index_access_fn));
        } else {
            register char * result = GC_MALLOC_ATOMIC(n+1);

            if (result == 0) OUT_OF_MEMORY;
            strncpy(result, x+i, n);
            result[n] = '\0';
            return(result);
        }
    } else if (IS_CONCATENATION(x)) {
        register struct Concatenation * conc
                        = &(((CordRep *)x) -> concatenation);
        register size_t left_len;
        register size_t right_len;

        left_len = LEFT_LEN(conc);
        right_len = conc -> len - left_len;
        if (i >= left_len) {
            if (n == right_len) return(conc -> right);
            return(CORD_substr_checked(conc -> right, i - left_len, n));
        } else if (i+n <= left_len) {
            if (n == left_len) return(conc -> left);
            return(CORD_substr_checked(conc -> left, i, n));
        } else {
            /* Need at least one character from each side. */
            register CORD left_part;
            register CORD right_part;
            register size_t left_part_len = left_len - i;

            if (i == 0) {
                left_part = conc -> left;
            } else {
                left_part = CORD_substr_checked(conc -> left, i, left_part_len);
            }
            if (i + n == right_len + left_len) {
                 right_part = conc -> right;
            } else {
                 right_part = CORD_substr_checked(conc -> right, 0,
                                                  n - left_part_len);
            }
            return(CORD_cat(left_part, right_part));
        }
    } else /* function */ {
        if (n > SUBSTR_LIMIT) {
            if (IS_SUBSTR(x)) {
                /* Avoid nesting substring nodes.       */
                register struct Function * f = &(((CordRep *)x) -> function);
                register struct substr_args *descr =
                                (struct substr_args *)(f -> client_data);

                return(CORD_substr_closure((CORD)descr->sa_cord,
                                           i + descr->sa_index,
                                           n, f -> fn));
            } else {
                return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
            }
        } else {
            char * result;
            register struct Function * f = &(((CordRep *)x) -> function);
            char buf[SUBSTR_LIMIT+1];
            register char * p = buf;
            register char c;
            register int j;
            register int lim = i + n;

            for (j = i; j < lim; j++) {
                c = (*(f -> fn))(j, f -> client_data);
                if (c == '\0') {
                    return(CORD_substr_closure(x, i, n, CORD_apply_access_fn));
                }
                *p++ = c;
            }
            *p = '\0';
            result = GC_MALLOC_ATOMIC(n+1);
            if (result == 0) OUT_OF_MEMORY;
            strcpy(result, buf);
            return(result);
        }
    }
}

CORD CORD_substr(CORD x, size_t i, size_t n)
{
    register size_t len = CORD_len(x);

    if (i >= len || n <= 0) return(0);
        /* n < 0 is impossible in a correct C implementation, but       */
        /* quite possible  under SunOS 4.X.                             */
    if (i + n > len) n = len - i;
#   ifndef __STDC__
      if (i < 0) ABORT("CORD_substr: second arg. negative");
        /* Possible only if both client and C implementation are buggy. */
        /* But empirically this happens frequently.                     */
#   endif
    return(CORD_substr_checked(x, i, n));
}

/* See cord.h for definition.  We assume i is in range. */
int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1,
                         CORD_batched_iter_fn f2, void * client_data)
{
    if (x == 0) return(0);
    if (CORD_IS_STRING(x)) {
        register const char *p = x+i;

        if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big");
        if (f2 != CORD_NO_FN) {
            return((*f2)(p, client_data));
        } else {
            while (*p) {
                if ((*f1)(*p, client_data)) return(1);
                p++;
            }
            return(0);
        }
    } else if (IS_CONCATENATION(x)) {
        register struct Concatenation * conc
                        = &(((CordRep *)x) -> concatenation);


        if (i > 0) {
            register size_t left_len = LEFT_LEN(conc);

            if (i >= left_len) {
                return(CORD_iter5(conc -> right, i - left_len, f1, f2,
                                  client_data));
            }
        }
        if (CORD_iter5(conc -> left, i, f1, f2, client_data)) {
            return(1);
        }
        return(CORD_iter5(conc -> right, 0, f1, f2, client_data));
    } else /* function */ {
        register struct Function * f = &(((CordRep *)x) -> function);
        register size_t j;
        register size_t lim = f -> len;

        for (j = i; j < lim; j++) {
            if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
                return(1);
            }
        }
        return(0);
    }
}

#undef CORD_iter
int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data)
{
    return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data));
}

int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data)
{
    if (x == 0) return(0);
    if (CORD_IS_STRING(x)) {
        register const char *p = x + i;
        register char c;

        for(;;) {
            c = *p;
            if (c == '\0') ABORT("2nd arg to CORD_riter4 too big");
            if ((*f1)(c, client_data)) return(1);
            if (p == x) break;
            p--;
        }
        return(0);
    } else if (IS_CONCATENATION(x)) {
        register struct Concatenation * conc
                        = &(((CordRep *)x) -> concatenation);
        register CORD left_part = conc -> left;
        register size_t left_len;

        left_len = LEFT_LEN(conc);
        if (i >= left_len) {
            if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) {
                return(1);
            }
            return(CORD_riter4(left_part, left_len - 1, f1, client_data));
        } else {
            return(CORD_riter4(left_part, i, f1, client_data));
        }
    } else /* function */ {
        register struct Function * f = &(((CordRep *)x) -> function);
        register size_t j;

        for (j = i; ; j--) {
            if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) {
                return(1);
            }
            if (j == 0) return(0);
        }
    }
}

int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data)
{
    size_t len = CORD_len(x);
    if (len == 0) return(0);
    return(CORD_riter4(x, len - 1, f1, client_data));
}

/*
 * The following functions are concerned with balancing cords.
 * Strategy:
 * Scan the cord from left to right, keeping the cord scanned so far
 * as a forest of balanced trees of exponentialy decreasing length.
 * When a new subtree needs to be added to the forest, we concatenate all
 * shorter ones to the new tree in the appropriate order, and then insert
 * the result into the forest.
 * Crucial invariants:
 * 1. The concatenation of the forest (in decreasing order) with the
 *     unscanned part of the rope is equal to the rope being balanced.
 * 2. All trees in the forest are balanced.
 * 3. forest[i] has depth at most i.
 */

typedef struct {
    CORD c;
    size_t len;         /* Actual length of c   */
} ForestElement;

static size_t min_len [ MAX_DEPTH ];

static int min_len_init = 0;

int CORD_max_len;

typedef ForestElement Forest [ MAX_DEPTH ];
                        /* forest[i].len >= fib(i+1)            */
                        /* The string is the concatenation      */
                        /* of the forest in order of DECREASING */
                        /* indices.                             */

void CORD_init_min_len()
{
    register int i;
    register size_t last, previous, current;

    min_len[0] = previous = 1;
    min_len[1] = last = 2;
    for (i = 2; i < MAX_DEPTH; i++) {
        current = last + previous;
        if (current < last) /* overflow */ current = last;
        min_len[i] = current;
        previous = last;
        last = current;
    }
    CORD_max_len = last - 1;
    min_len_init = 1;
}


void CORD_init_forest(ForestElement * forest, size_t max_len)
{
    register int i;

    for (i = 0; i < MAX_DEPTH; i++) {
        forest[i].c = 0;
        if (min_len[i] > max_len) return;
    }
    ABORT("Cord too long");
}

/* Add a leaf to the appropriate level in the forest, cleaning          */
/* out lower levels as necessary.                                       */
/* Also works if x is a balanced tree of concatenations; however        */
/* in this case an extra concatenation node may be inserted above x;    */
/* This node should not be counted in the statement of the invariants.  */
void CORD_add_forest(ForestElement * forest, CORD x, size_t len)
{
    register int i = 0;
    register CORD sum = CORD_EMPTY;
    register size_t sum_len = 0;

    while (len > min_len[i + 1]) {
        if (forest[i].c != 0) {
            sum = CORD_cat(forest[i].c, sum);
            sum_len += forest[i].len;
            forest[i].c = 0;
        }
        i++;
    }
    /* Sum has depth at most 1 greter than what would be required       */
    /* for balance.                                                     */
    sum = CORD_cat(sum, x);
    sum_len += len;
    /* If x was a leaf, then sum is now balanced.  To see this          */
    /* consider the two cases in which forest[i-1] either is or is      */
    /* not empty.                                                       */
    while (sum_len >= min_len[i]) {
        if (forest[i].c != 0) {
            sum = CORD_cat(forest[i].c, sum);
            sum_len += forest[i].len;
            /* This is again balanced, since sum was balanced, and has  */
            /* allowable depth that differs from i by at most 1.        */
            forest[i].c = 0;
        }
        i++;
    }
    i--;
    forest[i].c = sum;
    forest[i].len = sum_len;
}

CORD CORD_concat_forest(ForestElement * forest, size_t expected_len)
{
    register int i = 0;
    CORD sum = 0;
    size_t sum_len = 0;

    while (sum_len != expected_len) {
        if (forest[i].c != 0) {
            sum = CORD_cat(forest[i].c, sum);
            sum_len += forest[i].len;
        }
        i++;
    }
    return(sum);
}

/* Insert the frontier of x into forest.  Balanced subtrees are */
/* treated as leaves.  This potentially adds one to the depth   */
/* of the final tree.                                           */
void CORD_balance_insert(CORD x, size_t len, ForestElement * forest)
{
    register int depth;

    if (CORD_IS_STRING(x)) {
        CORD_add_forest(forest, x, len);
    } else if (IS_CONCATENATION(x)
               && ((depth = DEPTH(x)) >= MAX_DEPTH
                   || len < min_len[depth])) {
        register struct Concatenation * conc
                        = &(((CordRep *)x) -> concatenation);
        size_t left_len = LEFT_LEN(conc);

        CORD_balance_insert(conc -> left, left_len, forest);
        CORD_balance_insert(conc -> right, len - left_len, forest);
    } else /* function or balanced */ {
        CORD_add_forest(forest, x, len);
    }
}


CORD CORD_balance(CORD x)
{
    Forest forest;
    register size_t len;

    if (x == 0) return(0);
    if (CORD_IS_STRING(x)) return(x);
    if (!min_len_init) CORD_init_min_len();
    len = LEN(x);
    CORD_init_forest(forest, len);
    CORD_balance_insert(x, len, forest);
    return(CORD_concat_forest(forest, len));
}


/* Position primitives  */

/* Private routines to deal with the hard cases only: */

/* P contains a prefix of the  path to cur_pos. Extend it to a full     */
/* path and set up leaf info.                                           */
/* Return 0 if past the end of cord, 1 o.w.                             */
void CORD__extend_path(register CORD_pos p)
{
     register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]);
     register CORD top = current_pe -> pe_cord;
     register size_t pos = p[0].cur_pos;
     register size_t top_pos = current_pe -> pe_start_pos;
     register size_t top_len = GEN_LEN(top);

     /* Fill in the rest of the path. */
       while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) {
         register struct Concatenation * conc =
                        &(((CordRep *)top) -> concatenation);
         register size_t left_len;

         left_len = LEFT_LEN(conc);
         current_pe++;
         if (pos >= top_pos + left_len) {
             current_pe -> pe_cord = top = conc -> right;
             current_pe -> pe_start_pos = top_pos = top_pos + left_len;
             top_len -= left_len;
         } else {
             current_pe -> pe_cord = top = conc -> left;
             current_pe -> pe_start_pos = top_pos;
             top_len = left_len;
         }
         p[0].path_len++;
       }
     /* Fill in leaf description for fast access. */
       if (CORD_IS_STRING(top)) {
         p[0].cur_leaf = top;
         p[0].cur_start = top_pos;
         p[0].cur_end = top_pos + top_len;
       } else {
         p[0].cur_end = 0;
       }
       if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID;
}

char CORD__pos_fetch(register CORD_pos p)
{
    /* Leaf is a function node */
    struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]);
    CORD leaf = pe -> pe_cord;
    register struct Function * f = &(((CordRep *)leaf) -> function);

    if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf");
    return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data));
}

void CORD__next(register CORD_pos p)
{
    register size_t cur_pos = p[0].cur_pos + 1;
    register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);
    register CORD leaf = current_pe -> pe_cord;

    /* Leaf is not a string or we're at end of leaf */
    p[0].cur_pos = cur_pos;
    if (!CORD_IS_STRING(leaf)) {
        /* Function leaf        */
        register struct Function * f = &(((CordRep *)leaf) -> function);
        register size_t start_pos = current_pe -> pe_start_pos;
        register size_t end_pos = start_pos + f -> len;

        if (cur_pos < end_pos) {
          /* Fill cache and return. */
            register size_t i;
            register size_t limit = cur_pos + FUNCTION_BUF_SZ;
            register CORD_fn fn = f -> fn;
            register void * client_data = f -> client_data;

            if (limit > end_pos) {
                limit = end_pos;
            }
            for (i = cur_pos; i < limit; i++) {
                p[0].function_buf[i - cur_pos] =
                        (*fn)(i - start_pos, client_data);
            }
            p[0].cur_start = cur_pos;
            p[0].cur_leaf = p[0].function_buf;
            p[0].cur_end = limit;
            return;
        }
    }
    /* End of leaf      */
    /* Pop the stack until we find two concatenation nodes with the     */
    /* same start position: this implies we were in left part.          */
    {
        while (p[0].path_len > 0
               && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) {
            p[0].path_len--;
            current_pe--;
        }
        if (p[0].path_len == 0) {
            p[0].path_len = CORD_POS_INVALID;
            return;
        }
    }
    p[0].path_len--;
    CORD__extend_path(p);
}

void CORD__prev(register CORD_pos p)
{
    register struct CORD_pe * pe = &(p[0].path[p[0].path_len]);

    if (p[0].cur_pos == 0) {
        p[0].path_len = CORD_POS_INVALID;
        return;
    }
    p[0].cur_pos--;
    if (p[0].cur_pos >= pe -> pe_start_pos) return;

    /* Beginning of leaf        */

    /* Pop the stack until we find two concatenation nodes with the     */
    /* different start position: this implies we were in right part.    */
    {
        register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]);

        while (p[0].path_len > 0
               && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) {
            p[0].path_len--;
            current_pe--;
        }
    }
    p[0].path_len--;
    CORD__extend_path(p);
}

#undef CORD_pos_fetch
#undef CORD_next
#undef CORD_prev
#undef CORD_pos_to_index
#undef CORD_pos_to_cord
#undef CORD_pos_valid

char CORD_pos_fetch(register CORD_pos p)
{
    if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) {
        return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]);
    } else {
        return(CORD__pos_fetch(p));
    }
}

void CORD_next(CORD_pos p)
{
    if (p[0].cur_pos < p[0].cur_end - 1) {
        p[0].cur_pos++;
    } else {
        CORD__next(p);
    }
}

void CORD_prev(CORD_pos p)
{
    if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) {
        p[0].cur_pos--;
    } else {
        CORD__prev(p);
    }
}

size_t CORD_pos_to_index(CORD_pos p)
{
    return(p[0].cur_pos);
}

CORD CORD_pos_to_cord(CORD_pos p)
{
    return(p[0].path[0].pe_cord);
}

int CORD_pos_valid(CORD_pos p)
{
    return(p[0].path_len != CORD_POS_INVALID);
}

void CORD_set_pos(CORD_pos p, CORD x, size_t i)
{
    if (x == CORD_EMPTY) {
        p[0].path_len = CORD_POS_INVALID;
        return;
    }
    p[0].path[0].pe_cord = x;
    p[0].path[0].pe_start_pos = 0;
    p[0].path_len = 0;
    p[0].cur_pos = i;
    CORD__extend_path(p);
}