
RC23709 (W0508-162) August 31, 2005
Computer Science

IBM Research Report

An Operational Semantics and Type Safety Proof for C++-like
Multiple Inheritance

Daniel Wasserrab1, Tobias Nipkow2, Gregor Snelting1, Frank Tip3

1Universität Passau
Germany

2Technische Universität
München, Germany

3IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Operational Semantics and Type Safety Proof
for C++-Like Multiple Inheritance

Daniel Wasserrab
Universiẗat Passau

wasserra@fmi.uni-passau.de

Tobias Nipkow
Technische Universität

München
nipkow@in.tum.de

Gregor Snelting
Universiẗat Passau

snelting@fmi.uni-passau.de

Frank Tip
IBM T.J. Watson Research

Center
ftip@us.ibm.com

Abstract
We present, for the first time, an operational semantics and a
type system for a C++-like object-oriented language with both
shared and repeated multiple inheritance, together with a machine-
checked proof of type safety. The formalization uncovered several
subtle ambiguities in C++, which C++ compilers resolve by ad-hoc
means or which even result in uncontrolled run-time errors. The
semantics is formalized in Isabelle/HOL.

1. Introduction
Java has been a favorite target of language specifiers for close to a
decade. C++ has received much less attention, perhaps due to the
much greater complexity of the language. One of the main sources
of this complexity is the fact that C++ allows a complex form of
multiple inheritance, in which a combination of shared (“virtual”)
and repeated (“nonvirtual”) inheritance is permitted. Because of
this complexity, the behavior of operations on C++ class hierarchies
has traditionally been defined informally [25], and in terms of
implementation-level constructs such as virtual function tables (v-
tables) [24]. We are only aware of a few formal treatments—and
of no operational semantics—for C++-like languages with shared
and repeated multiple inheritance. In 1996, Rossie, Friedman, and
Wand [18] stated that “In fact, a provably-safe static type system
[. . .] is an open problem”, and to our knowledge this problem has
remained open until today.

The main contribution of this paper is a formal and executable
operational semantics for a language with C++-like multiple inher-
itance, with a machine-checked type-safety proof. This semantics
frees programmers and language implementors from the need to
discuss program behavior in terms of implementation-level con-
structs such as v-tables. Type safety is a language property which
can be summarized by the famous slogan “Well-typed programs
can’t go wrong”. Cardelli’s definition of type safety [5] demands
that no untrapped errors may occur (but controlled exceptions
are allowed). Our type safety proof is completely formalized and
machine-checked by the Isabelle/HOL theorem prover [12].

Our semantics builds on the multiple inheritance calculus de-
veloped by Rossie and Friedman [17], but goes well beyond that

work by providing an executable semantics and a type-safety proof.
Roughly speaking, our semantics extends a formal model for a sub-
set of Java called Jinja [9]. Jinja is a completely formal model of a
Java-like language defined in higher-order logic (HOL) in the theo-
rem prover Isabelle/HOL. C+, the language defined in this paper, is
derived from Jinja by moving from single to (shared and repeated)
multiple inheritance. In this paper we have refrained from present-
ing the formal definition of all of C+ but have concentrated on those
aspects that are affected by multiple inheritance. The rest is practi-
cally identical to Jinja and can be found elsewhere [9].

In the course of designing the semantics, we also discovered
several subtle ambiguities regarding member access and method
calls in C++. Compilers resolve such ambiguities in an ad-hoc man-
ner, or even produce code that leads to uncontrolled run-time errors.
C+ either disallows such ambiguities, or generates a controlled ex-
ception instead of an uncontrolled run-time error. We believe that
this approach should have been adopted for C++ as well.

Our interest in formalizing the semantics of multiple inheritance
is motivated by previous work by two of the present authors on: (i)
restructuring class hierarchies in order to reduce object size at run-
time [30], (ii) composition of class hierarchies in the context of
an approach for aspect-orientation [21], and (iii) refactoring class
hierarchies in order to improve their design [22, 20], In each of
these projects, class hierarchies aregenerated, multiple inheritance
may arise naturally, and additional program transformations are
then used to replace multiple inheritance by a combination of single
inheritance and delegation. We plan to use the formal semantics for
C+ to demonstrate such program transformations for eliminating
multiple inheritance to be semantics-preserving.

2. Multiple inheritance
2.1 An intuitive introduction to subobjects

C+ features bothrepeatedand sharedmultiple inheritance (cor-
responding tononvirtual and virtual inheritance in C++, respec-
tively). The difference between the two flavors of inheritance is
subtle, and only arises in situations where a classY indirectly in-
herits from the same classX via more than one path in the hier-
archy. In such cases,Y will contain oneor multipleX-subobjects,
depending on the kind of inheritance that is used. More precisely,
if only shared inheritance is used,Y will contain a single, shared
X-subobject, and if only repeated inheritance is used, the number
of X-subobjects inY is equal toN , whereN is the number of dis-
tinct paths fromX to Y in the hierarchy. If a combination of shared
and repeated inheritance is used, the number ofX-subobjects in an
Y -object will be between1 andN (a more precise discussion fol-
lows). C+ hierarchies with only single inheritance (the distinction
between repeated and shared inheritance is irrelevant in this case)
are semantically equivalent to Jinja class hierarchies.

1

class Top { int x, y; ... }
class Left : Top { ... }
class Right : Top { int y; ... }
class Bottom : Left, Right { int x; ... }

Top

Left Right

Bottom

Top

Right

Top

Left

Bottom

y

x y [Bottom,Bottom.Right.Top]

[Bottom,Bottom]

[Bottom,Bottom.Left]

[Bottom,Bottom.Left.Top]

[Bottom,Bottom.Right]

(a) (b) (c)
or a pointer to subobject B

:BA:BA
B is repeated subclass of A

subobject A directly contains subobject B

x

[Bottom,Bottom.Left.Top]

[Bottom,Bottom.Left]

[Bottom,Bottom.Right.Top]

[Bottom,Bottom.Right]

[Bottom,Bottom]

x y x y

y

x

Figure 1. The repeated diamond

class Top { void f() { ... }; ... }
class Left : virtual Top { ... }
class Right : virtual Top { void f() { ... }; ... }
class Bottom : Left, Right { ... }

Top

Left Right

Bottom

:BA
B is repeated subclass of A

f()

f()

A B :

(a)
B is shared subclass of A

Top

Bottom

Left

Right [Bottom,Bottom.Right]

[Bottom,Top]

[Bottom,Bottom.Left]

[Bottom,Bottom]

(b) (c)

[Bottom,Bottom.Left]

or a pointer to subobject B
subobject A directly contains subobject B:BA

[Bottom,Bottom.Right]

[Bottom,Top]

[Bottom,Bottom]

f()

f()

Figure 2. The shared diamond

Fig. 1(a) shows a small C++ class hierarchy. In these and subse-
quent figures, a solid arrow from classC to classD denotes the fact
thatD repeated-inherits fromC, and a dashed arrow from classC
to classD denotes the fact thatD shared-inherits fromC. Here, and
in subsequent examples, all methods are assumed to bevirtual
(i.e., dynamically dispatched), and all classes and inheritance rela-
tions are assumed to bepublic.

In Fig. 1(a), all inheritance is repeated. Since classBottom
repeated-inherits from classesLeft andRight, a Bottom-object
has one subobject of each of the typesLeft andRight. As Left
andRight each repeated-inherit fromTop, (sub)objects of these
types contain distinct subobjects of typeTop. Hence, for the C++
hierarchy of Fig.1(a), an object of typeBottom containstwo
distinct subobjectsof type Top. Fig. 1(b) shows the layout used
for a Bottom object by a typical compiler, given the hierarchy of
Fig. 1(a). Each subobject has local copies of the subobjects that it
contains, hence it is possible to lay out the object in a contiguous
block of memory without indirections.

Fig. 2(a) shows a similar C++ class hierarchy in which the
inheritance betweenLeft andTop and betweenRight andTop
is shared. Again, aBottom-object contains one subobject of each
of the typesLeft andRight, due to the use of repeated inheritance.
However, sinceLeft andRight both shared-inherit fromTop, the
Top-subobject contained in theLeft-subobject issharedwith the
one contained in theRight-subobject. Hence, for this hierarchy,
a Bottom-object will containa single subobjectof type Top. In
general, a shared subobject may be shared by arbitrarily many
subobjects, and requires an object layout with indirections (in the

form of virtual-base pointers) [24, p.266], although indirections
can be avoided in certain special cases [34, 26, 27]. Fig. 2(b) shows
a typical object layout for an object of typeBottom given the
hierarchy of Fig.2(a). Observe, that theLeft-subobject and the
Right-subobject each contain a pointer to the single sharedTop-
subobject.

2.2 The Rossie-Friedman Subobject Model

Rossie and Friedman [17] proposed a subobject model for C++-
style inheritance, and used that model to formalize the behavior of
method calls and field accesses. Informally, one can think of the
Rossie-Friedman model as an abstract representation of object lay-
out. Intuitively, asubobject1 identifies a component of typeD that
is embedded within a complete object of typeC. However, simply
defining a subobject type as a pair(C, D) would be insufficient,
because, as we have seen in Fig.1, aC-object may contain multi-
pleD-components in the presence of repeated multiple inheritance.
Therefore, a subobject is identified by a pair[C, Cs], whereC de-
notes the type of the “complete object”, and where thepath Cs
consists of a sequence of class namesC1 · · · · · Cn that encodes
the transitive inheritance relation betweenC1 andCn. There are
two cases here: Forrepeatedsubobjects we have thatC1 = C, and

1 In this paper, we follow the terminology of [17] and use the term “sub-
object” to refer both to the label that uniquely identifies a component of an
object type, as well as to components within concrete objects that are iden-
tified by such labels. In retrospect, the term “subobject label” would have
been better terminology for the former concept.

2

for sharedsubobjects, we have thatC1 is the least derived (most
general) shared base class ofC that containsCn. This scheme is
sufficient because shared subobjects are unique within an object
(i.e., there can be at most onesharedsubobject of typeS within
any object). More formally, for a given classC, the set of its sub-
objects, along with a containment ordering on these subobjects, is
inductively defined as follows:

1. [C, C] is the subobject that represents the “full”C-object.
2. if S1 = [C, Cs.X] is a subobject for classC whereCs is any

sequence of class names, andX shared-inherits fromY , then
S2 = [C, Y] is a subobject for classC that is directly contained
within subobjectS1.

3. if S1 = [C, Cs.X] is a subobject for classC whereCs is any
sequence of class names, andX repeated-inherits fromY , then
S2 = [C, Cs.X.Y] is a subobject for classC that is directly
contained within subobjectS1.

Fig. 1(c) and Fig.2(c) show subobject graphsfor the class hi-
erarchies of Fig.1 and Fig.2, respectively. Here, an arrow from
subobjectS to subobjectS′ indicates thatS′ is directly contained
in S or thatS has a pointer leading toS′. For a given subobject
S = [C, Cs.D], we callC thedynamic classof subobjectS andD
thestatic classof subobjectS. Associated with each subobject are
the members that occur in its static class. Hence, if an object con-
tains multiple subobjects with the same static class, it will contain
multiple copies of members declared in that class. For example, the
subobject graph of Fig.1(c) shows two subobjects with static class
Top, each of which has distinct fieldsx andy.

Intuitively, a subobject’s dynamic class represents the type of
the “full object” and is used to resolve dynamically dispatched
method calls. A subobject’s static class represents the declared type
of a variable that points to an (subobject of the full) object and is
used to resolve field accesses. In this paper, we use the Rossie-
Friedman subobject model to define the behavior of operations
such as method calls and casts as functions from subobjects to
subobjects. As we shall see shortly, it will be necessary in our
semantics to maintain full subobject information even for “static”
operations such as casts and field accesses.

Multiple inheritance can easily lead to situations where multiple
members with the same name are visible. In C++, many member
accesses that are seemingly ambiguous are resolved using the no-
tion of dominance[25]. A memberm in subobjectS′ dominatesa
memberm in subobjectS if S is contained inS′ (i.e., S′ occurs
belowS in the subobject graph). Member accesses are resolved by
selecting the unique dominant memberm if it exists; otherwise an
access is ambiguous2. For example, in Fig.2, aBottom-object sees
two declarations off(), one in classRight and one in classTop.
Thus a call(new Bottom())->f() seems ambiguous. But it is
not because in the subobject graph forBottom shown in Fig.2(c),
the definition off() in [Bottom, Bottom.Right] dominates the
one in [Bottom, Top]. On the other hand, the subobject graph in
Fig. 1(c) contains 3 definitions ofy in [Bottom, Bottom.Right],
[Bottom, Bottom.Right.Top], and [Bottom, Bottom.Left.Top].
As there is no unique dominant definition ofy here, a field access
(new Bottom())->y is ambiguous.

2.3 Casts in C+

In the discussion that follows, we will assumee to be an expression
declared to be of typeD. A cast(C)e is anup-castif D is a direct or
indirect subclass ofC, and such an up-cast is statically type-correct
if [D, D] contains exactly one subobject whose static class isC. At
run-time, whene may point to a subobjectS = [C′, · · ·D], for

2 In some cases, C++ uses the static class of the receiver for further
disambiguation. This will be discussed shortly.

some subclassC′ of D, the up-cast will always succeed and result
in the selection of the unique subobject contained inS whose static
class isC. A cast(C)e is a down-castif D is a supertype ofC.
At run-time, whene may point to a subobjectS = [C′, · · ·D], for
some subclassC′ of D, this down-cast will succeed if there is a
unique subobjectS′ that containsS, and whose static class isC.

C++ has three cast operators for traversing class hierarchies,
each of which has significant limitations3. Most commonly used
(and used in the examples presented later in this section) are so-
called C-style casts. C-style casts may be used to cast between ar-
bitrary unrelated types, although some static checking is performed
on up-casts (e.g., a C-style up-cast is statically rejected if the re-
ceiver’s type does not contain a unique subobject whose static class
is the type being casted to). C-style casts cannot be used to down-
cast along a shared inheritance relation. When used incorrectly, C-
style casts may cause run-time errors. Thestatic cast operator
only performs compile-time checks (e.g., to ensure that a unique
subobject of the target type exists) and disallows casting between
unrelated types.static cast cannot be used to down-cast along a
shared inheritance relation. When used incorrectly,static cast
may cause run-time errors. Thedynamic cast operator has the
desirable property that failing casts result in controlled exceptions
(when the operand is of a reference type) or the special valueNULL
(when the operand is a pointer). Unlike the previous two opera-
tors, down-casting along shared inheritance relations is allowed,
anddynamic cast may be used to cast between unrelated types.
However, a subtle limitation exists: Adynamic cast is statically
incorrect when applied to an expression whose declared type does
not declare virtual methods. Clearly, none of these three C++ cast
operators always provides the desired, type-safe behavior.

In C+, we have defined a type-safe variation onstatic cast
that throws controlled exceptions in cases where down-casting
fails. An alternative would be to define a variation ondynamic cast
that does not suffer from the problems discussed above.

2.4 Examples

We will now discuss several examples to illustrate the subtleties
that arise in the C++ inheritance model.

Example 1.Dynamic dispatch behavior can be counterintuitive
in the presence of multiple inheritance. One might expect for a
method call always to dispatch to a method definition in a super-
class or subclass of the type of the receiver expression. Consider,
however, the “shared diamond” example of Fig.2, where a method
f() is defined in classesRight andTop. Now assume that the fol-
lowing C++ code is executed (note the implicit up-cast toLeft in
the assignment):

Left* b = new Bottom(); b->f();

One might expect the method call to dispatch toTop :: f(). But in
fact it dispatches tof() in classRight, which is neither a superclass
nor a subclass ofLeft. The reason is that up-casts do not switch off
dynamic dispatch, which is based on the receiver object’s dynamic
class. The dynamic class ofb remainsBottom after the cast, and
sinceRight :: f() dominatesTop :: f(), the former is called.

This makes sense from an application viewpoint: Imagine the
top class to be a “Window”, the left class to be a “Window with
menu”, the right class to be a “Window with border”, the bottom
class to be a “Window with border and menu”, andf() to compute
the available window space. Then, a “Window with border and
menu” object which is casted to “Window with menu” pretends
not to have a border anymore (border methods cannot be called).

3 The remaining two cast operators in C++,const cast and
reinterpret cast are irrelevant for the issues studied in this paper.

3

class A {...}
class B { void f(); }
class C {...}
class D : A, B { void f() {...}; }
class E : B, C { void f() {...}; }

B* b;
if (...)

b = new D();
else

b = new E();
b->f();

B f() CA

D Ef() f()

(a)

A vptr

B vptr

D

&D:f −delta(B)

&D:f 0 A & D vtable

B vtable

delta−values:after Call f()

before Call f()

&E:f

If:

E

C vptr

B vptr

&E:f −delta(C)

0

C vtable

B & E vtable

before Call f()

after Call f()

Else:

this−pointer:

(b)

Figure 3. C++ fragment demonstrating dynamically varying sub-
object context

But for the area computation, the hidden border must be taken into
account, thusf() from “Window with border” must be called.

Example 2. Consider the “repeated diamond” of Fig.1, and
assume that a methodf() is defined inRight. Now, consider the
following sequence of (implicit and explicit) casts, followed by a
method call:

Top* t; Left* l; Right* r; Bottom* b;
b = new Bottom();
l = b; t = l; r = (Right*) t;
r->f();

The down-cast to(Right∗) is statically allowed in C++, but
the method call leads to a run-time error (in our semantics, an
exception is thrown). The same example for the “shared diamond”
is statically incorrect in C++ if a C-style cast orstatic cast is
used, because down-casts from shared superclasses are disallowed.
However, C++ would allow the use ofdynamic cast in that case.

Example 3.The next example illustrates the need to track some
subobject information at run-time, and how this complicates the
semantics. Consider the program fragment in Fig.3(a), whereb
points to aB-subobject. This subobject occurs in two different
“contexts”, namely either as a[D, D.B] subobject (if the then-case of
theif statement is executed), or as an[E, E.B] subobject (if the else-
case is executed). Note that executing the assignmentsb = new D()
andb = new E() involve an implicit up-cast to typeB. Depending
on the context, the callb->f() will dispatch toD :: f() or E :: f().
Now, executing the body of thisf() involves an implicit assignment
of b to its this pointer. Since the static type ofb is B, and the
static type ofthis is the class containing its method, an implicit
down-cast (toD or to E, depending on the context) is needed. At

compile time it is not known which cast will happen at run-time,
and the compiler must keep track of some additional information
to determine the cast that must be performed.

In a typical C++ implementation, a cast actually implies chang-
ing the pointer value in the presence of multiple inheritance, as is
illustrated in Fig.3(b). The up-cast fromD to B (then-case, up-
per part of Fig.3(b)) is implemented by adding the offset of the
[D, D.B]-subobject within theD object to the pointer to theD ob-
ject. Afterwards, the pointer points to the[D, D.B]-subobject. As we
discussed, the subsequent callb->f() requires that the pointer be
down-casted toD again. This cast is implemented by adding the
negative offset−delta(B) of the [D, D.B]-subobject to the pointer.
The else-case (lower part of Fig.3(b)) is analogous, but involves a
different offset, which happens to be 0. In other words, the offsets
in the then- and else-cases are different, and we do not know until
run-time which offset has to be used. To this end, C++ compilers
typically extend the virtual function table (vtable) [24] with “delta”
values, that, for each vtable entry, record the offset that has to be
added to thethis-pointer in order to ensure that it points to the
correct subobject after the cast (Fig.3(b), left part).

Our semantics correctly captures the information needed for
performing casts, without referring to compiler data structures such
as vtable entries and offsets.

Example 4.The following example shows how C++ sometimes
resolves ambiguities in an ad-hoc manner. In the “repeated dia-
mond” of Fig. 1, let us assume that we have declared a method
f() in classTop, and execute the following code:

Left* b = new Bottom(); b->f();

Note that the assignment performs an implicit up-cast to typeLeft,
and that the method call is statically correct because a single defi-
nition of f() is visible.

However, at run-time the dynamic class of the subobject
[Bottom, Bottom.Left] associated withb is used to resolve the
dynamic dispatch. The dynamic class ofb is Bottom, andb has
two Top subobjects containingf (andx). As neither definition of
f() dominates the other, the call tob->f() is ambiguous.

Note that the code forf exists only once, but this code will
be called with an ambiguousthis-pointer at run-time: is it the
one pointing to the[Bottom, Bottom.Left.Top] subobject, or
the one pointing to the[Bottom, Bottom.Right.Top] subobject?
Each of these subobject has its own fieldx, and thesex’s may
have different values at run-time when referenced byf(), lead-
ing to ambiguous program behavior. C++ uses the static type of
b to resolve the ambiguity and generate a unique vtable entry for
f(). As b’s static type isLeft, the “delta” part of the vtable en-
try will cause the dynamic object of typeBottom (and thus the
this-pointer) to be cast to[Bottom, Bottom.Left.Top], andnot
to [Bottom, Bottom.Right.Top].

While this may seem to be a “natural” way to resolve the ambi-
guity, it makes the result of dynamic dispatch—which, intuitively,
is basedsolelyon an object’sdynamictype—additionally depen-
dent on the object’s static type. We can model this solution, but it
makes the semantics of the method call more complex. Therefore,
we decided not to follow C++ in our C+ semantics, but to make
the ambiguity visible by throwing an exception instead. We believe
this is what C++ should also do, instead of hiding the ambiguity
and “polluting” the mechanism of dynamic dispatch.

Example 5.C++ allows method overriding withcovariant(i.e.,
more specific) return types, and so does C+4. Unrestricted covari-
ance can lead to ambiguities. In the context of the repeated diamond
of Fig. 1 with a fieldx declared in classTop, consider:

4 We also allowcontravariant (i.e. more general) parameter types in
method overriding. In C++ parameter types must be invariant (otherwise
it is overloading, which we do not support).

4

class A { Top f(); }
class B : A { Bottom f(); }

A* a = new B();
(a->f())->x = 42;

Statically, everything seems fine: because the type ofa is A, the
type ofa->f() is Top, which has a (unique) fieldx. However, if
we allowed the redefinition off(), at run-timea->f() evaluates
to aBottom object and the field access will be ambiguous. Hence,
C++ and C+ requireunique covariance: if the old return type isC
and the new return type isD, then there must exist a unique path
from D back toC.

3. Formalization
Our meta-language HOL conforms largely to everyday mathemat-
ical notation. This section introduces further non-standard notation
and in particular a few basic data types with their primitive opera-
tions.

3.1 Basic notation — The meta language

TypesThe basic types of truth values, natural numbers and integers
are calledbool, nat, andint. The space of total functions is denoted
by⇒. Type variables are written′a, ′b, etc. The notationt::τ means
that HOL termt has HOL typeτ .

Pairscome with the two projection functionsfst :: ′a× ′b⇒ ′a
andsnd:: ′a× ′b⇒ ′b. We identify tuples with pairs nested to the
right: (a, b, c) is identical to(a, (b, c)) and ′a× ′b× ′c is identical
to ′a× (′b× ′c).

Sets(type ′a set) follow the usual mathematical convention.
Lists(type ′a list) come with the empty list[], the infix construc-

tor ·, the infix@ that appends two lists, and the conversion function
setfrom lists to sets. Variable names ending in “s” usually stand for
lists and|xs| is the length ofxs. The standard functionmap, which
maps a function to every element in a list, is also available.

Function updateis defined as follows:
f (a := b) ≡ λx. if x = a then b else f x
wheref :: ′a⇒ ′b, x :: ′a andy :: ′b.

datatype ′a option= None| Some′a

adjoins a new elementNone to a type ′a. All existing elements
in type ′a are also in ′a option, but are prefixed bySome. For
succinctness we writebac instead ofSome a. Hencebool option
has the valuesbTruec, bFalsec andNone.

Partial functionsare modeled as functions of type′a ⇒ ′b op-
tion, whereNonerepresents undefinedness andf x = bycmeansx is
mapped toy. Instead of′a⇒ ′b optionwe write ′a ⇀ ′b, call such
functionsmaps, and abbreviatef (x:=byc) to f (x 7→ y). The lat-
ter notation extends to lists:f ([x1,. . .,xm] [7→] [y1,. . .,yn]) means
f (x1 7→y1). . .(xi 7→yi), wherei is the minimum ofmandn. The no-
tation works for arbitrary list expressions on both sides of[7→], not
just enumerations. Multiple updates likef (x7→y)(xs[7→]ys) can be
written asf (x 7→ y, xs[7→] ys). The mapλx. Noneis writtenempty,
andempty(. . .), where. . . are updates, abbreviates to[. . .]. For ex-
ample,empty(x7→y, xs[7→]ys) becomes[x 7→ y, xs[7→] ys].

The domain of a map is defined asdom m≡ {a | m a 6= None}.
Functionmap-of turns an list of pairs into a map:

map-of [] = empty
map-of(p·ps) = map-of ps(fst p 7→ snd p)

3.2 Names, paths, and base classes

Typecnameis the (HOL) type of class names. The (HOL) variables
C andD will denote class names,CsandDsare paths. We introduce
the type abbreviation

path= cname list

Programs are denoted byP. For the moment we do not need to
know what programs look like. Instead we assume the following
predicates describing the class structure of a program:

• P ` C≺R D meansD is a repeated base class ofC.
• P ` C≺S D meansD is a shared base class ofC.
• �∗ means(≺R ∪ ≺S)∗.
• is-class P Cmeans classC is defined inP.

3.3 Subobjects

We slightly change the appearance of subobjects in comparison
with Rossie-Friedman style: we use a tuple with a class and a path
component where a path is represented as a list of classes. So e.g. a
Rossie-Friedman subobject[Bottom,Bottom.Left] is translated
into (Bottom,[Bottom,Left]).

The subobject definitions are parameterized by a programP.
First we defineSubobjsR P, the subobjects whose path consists
only of repeated inheritance relations:

is-class P C

(C, [C]) ∈ SubobjsR P

P` C≺R D (D, Cs) ∈ SubobjsR P

(C, C·Cs) ∈ SubobjsR P

Now we defineSubobjs P, the set of all subobjects:

(C, Cs) ∈ SubobjsR P

(C, Cs) ∈ Subobjs P

P` C�∗ C′ P` C′≺S D (D, Cs) ∈ SubobjsR P

(C, Cs) ∈ Subobjs P

We have shown that both this definition and the one by Rossie and
Friedman yield pairs(C, [C1, . . . , Cn]) such thatC1 ≺R · · · ≺R

Cn and eitherC = C1 or C �∗ C′ ≺S C1 for someC′.

3.4 Path functions

Functionlast on lists returns the topmost class in a path (w.r.t. the
class hierarchy),butlastchops off the last element.

Function@p appends two paths. It is similar to@ but has to take
into account that the second path may begin with a shared class, in
which case the first path just disappears:

Cs@p Cs′≡ if last Cs= hd Cs′ then Cs@ tl Cs′ else Cs′

The following property holds under the assumption that programP
is well-formed.

If (C, Cs) ∈ Subobjs Pand (last Cs, Ds) ∈ Subobjs P
then (C, Cs@p Ds) ∈ Subobjs P.

A well formed program requires certain natural constraints of the
program such as the class hierarchy relation to be irreflexive.

Ordering on paths:

(C, Cs) ∈ Subobjs P (C, Ds) ∈ Subobjs P Cs= butlast Ds

P,C ` Cs@1 Ds

(C, Cs) ∈ Subobjs P P̀ last Cs≺S D

P,C ` Cs@1 [D]

The reflexive and transitive closure of@1 is writtenv.

5

4. Abstract syntax of C+
We do not define a concrete syntax for C+, just an abstract syntax.
The translation of the C++-subset corresponding to C+ into abstract
syntax is straightforward and will not be discussed here.

In the sequel we use the following (HOL) variable conventions:
V is a (C+) variable name,F a field name,M a method name,e an
expression,v a value, andT a type.

In addition tocname(class names) there are also the (HOL)
types vname (variable and field names), andmname (method
names). We do not assume that these types are disjoint.

4.1 References

A reference refers to a subobject within an object. Hence it is a
pair of anaddressthat identifies the object on the heap (see§6.1
below) and a path identifying the subobject. Formally:

reference= addr× path

The path represents the dynamic context of a subobject as a result
of previous casts (as explained in§2.4), and corresponds to the
result of adding “delta” values to an object pointer in the standard
“vtable” implementation. Note that our semantics does not emulate
the standard implementation, but is more abstract.

As an example, consider Fig.3. Let us assume that theelse
statement is executed, thenbwill have the reference value(a, [E, B])
wherea is the memory address of the newE object, and[E, B] rep-
resents the fact that this object has been upcast toB andb in fact
points to theB subobject.

4.2 Values and Expressions

A C+ value (abbreviatedval) can be

• a booleanBool b, whereb :: bool, or
• an integerIntg i, wherei :: int, or
• a referenceRef r, wherer :: reference, or
• the null referenceNull, or
• the dummy valueUnit.

C+ is an imperative but an expression-based language where state-
ments are expressions that evaluate toUnit. The followingexpres-
sions(of HOL typeexpr) are supported by C+:

• creation of new object:new C
• casting:Cast C e
• literal value:Val v
• binary operation:e1 �bop� e2 (wherebop is one of+ or =)
• variable accessVar V and variable assignmentV := e
• field accesse.F{Ds} and field assignmente1.F{Ds} := e2

(whereDs is the path to the subobject whereF is declared)
• method call:e.M(es)
• block with locally declared variable:{V:T; e}
• sequential composition:e1; e2

• conditional:if (e) e1 else e2

(do not confuse with HOL’sif b then x else y)
• while loop:while (e) e′

The constructorsVal and Var are needed in our meta-language
to disambiguate the syntax. There is no return statement because
everything is an expression and returns a value.

The annotation{Ds} in field access and assignment is not part
of the input language but is something that a preprocessor, e.g. the
type checking phase of a compiler, must add.

To ease notation we introduce an abbreviation:

ref r ≡ Val(Ref r)

prog = cdecl list
cdecl = cname× class
class = base list× fdecl list× mdecl list
fdecl = vname× ty
mdecl = mname× method
method = ty list× ty× vname list× expr

datatypebase = Repeats cname| Shares cname

Figure 5. Abstract program syntax

4.3 Programs

The abstract syntax of programs is given by the type definitions in
Fig. 5, wherety is the HOL type of C+ types.

A program is a list of class declarations. Aclass declaration
consists of the name of the class and the class itself. Aclasscon-
sists of the list of its direct superclass names (marked shared or
repeated), a list of field declarations and a list of method declara-
tions. A field declaration is a pair of a field name and its type. A
method declarationconsists of the method name and the method
itself, which consists of the parameter types, the result type, the
parameter names, and the method body.

Note that C+ (like Java, but unlike C++) does not have global
variables. Method bodies can access only theirthis-pointer and
parameters, and return a value.

We refrain from showing the formal definitions (see [9]) of
the predicates likeP ` C ≺R D introduced in§3 as they are
straightforward. Instead we introduce one more access function:

• class P Cis the class (more precisely:class option) associated
with C in P.

5. Type system
C+ types are either primitive (Booleanand Integer), class types
Class C, NT (the type ofNull), or Void (the type ofUnit). The
corresponding HOL type is calledty. The subclass relation�∗

induces a subtype relation≤ on ty as follows:

P ` C�∗ D

P ` Class C≤ Class D
P ` NT≤ Class C P̀ T ≤ T

The pointwise extension of≤ to lists is written[≤].

5.1 Typing rules

The core of the type system is the judgmentP,E ` e :: T, whereE
is anenvironment, i.e. a map from variables to their types. We call
T thestatic type ofe.

We will discuss the typing rules (see Fig.4) construct by con-
struct, concentrating on object-orientation. The remaining rules can
be found elsewhere [9]. For critical constructs we will also con-
sider the question of type safety: does the type system guarantee
that evaluation cannot get stuck and that, if a value is produced, it
is of the right type.

Values are typed with their corresponding types, e.g.Bool as
Boolean, Intg asInteger. However, there is no rule to type arefer-
ence, soexplicit references cannot be typed. C+, like Java or ML,
does not allow explicit references for well known reasons.

5.1.1 Cast

Typing casts is non-trivial in C+ because the type system needs
to prevent ambiguities at run-time (although it cannot do so com-
pletely). When evaluatingCast C e, the object thate evaluates to
may have multiple subobjects of classC. If it is an upcast, i.e. if
P,E ` e :: Class DandD is a subclass ofC, we have to check if
there is a unique (∃ !) path fromD to C:

6

P,E ` e :: Class D is-class P C P̀ path D to C unique ∨ (∀Cs. P` path C to D via Cs −→ (C, Cs) ∈ SubobjsR P)

P,E ` Cast C e:: Class C
WT1

P,E ` e1 :: T1 P,E ` e2 :: T2 case bopof =⇒ T1 = T2 ∧ T = Boolean| +⇒ T1 = Integer∧ T2 = Integer∧ T = Integer

P,E ` e1 �bop� e2 :: T
WT3

E V = bTc P,E ` e :: T

P,E ` V := e :: T
WT2

P,E ` e :: Class C P̀ C has least F : T via Cs

P,E ` e.F{Cs} :: T
WT4

P,E ` e1 :: Class C P̀ C has least F : T via Cs P,E ` e2 :: T

P,E ` e1.F{Cs} := e2 :: T
WT5

P,E ` e :: Class C P̀ C has least M = (Ts, T, m) via Cs P,E ` es[::] Ts

P,E ` e.M(es) :: T
WT6

Figure 4. The typing rules

P` path D to C unique ≡
∃ !Cs. (D, Cs) ∈ Subobjs P∧ last Cs= C

Two examples will make this clearer: if we want to castBottom to
Top in the repeated diamond in Fig.1, we have two paths leading to
possible subobjects: [Bottom,Left,Top] and [Bottom,Right,Top].
So there is no unique path, the cast is ambiguous and the type sys-
tem rejects it. But the same cast in the shared diamond in Fig.2 is
possible, as there is only one possible path, namely [Top].

For down-casts we need to remember (§2.3) that we have chosen
to model a type safe variant ofstatic_cast, for which C++ has
fixed the rules: down-casts may only involve repeated inheritance.
To enforce this restriction we introduce the predicate

P` path C to D via Cs ≡ (C, Cs) ∈ Subobjs P∧ last Cs= D

Combining the checks for up- and down-cast in one rule we obtain
WT1 (see Fig.4). Remember that(C, Cs) ∈ SubobjsR P means
thatCs involves only repeated inheritance.

As an example of an ambiguous down-cast, take the repeated
diamond in Fig.1 and extend it with a shared superclassC of Top.
Casting aBottom object of static classC to Top is ambiguous
because there are twoTop subobjects.

Note that we could have chosen to modeldynamic_cast just as
well. We come back to this point in connection with the semantics
in §6.3.2.

5.1.2 Variable assignment

The assignment rule WT2 looks puzzling because it requirese to
have the same type asV, not a subtype, as in C++. That is, we
expect the programmer (or some preprocessor) to insert an up-cast
if necessary. This is just a simplification of the rule and does not
affect the language: these up-casts need to be performed at run-
time and the question is merely if they are inserted explicitly by the
programmer of implicitly by the compiler.

5.1.3 Binary operators

As explained above, we assume that all necessary casts are per-
formed explicitly and hence we expect that both arguments of an
equality test have the same type. So in the typing rule WT3 for
binary operations we need not perform any implicit casting.

5.1.4 Field access and assignment

The typing rule for field access WT4 is straightforward. It can either
be seen as a rule that takes an expression where field access is
already annotated (by{Cs}), and the rule merely checks that the
annotation is correct. Or it can be seen as a rule for computing the
annotation. The latter interpretation relies on the fact that predicate
P ` C has least F : T via Cscan computeT andCs from P, C and
F. So it remains to explainP` C has least F : T via Cs: it checks if

Csis the least (w.r.t.v) path leading fromC to a class that declares
anF. First we define the setFieldDecls P C Fof all (Cs, T) such
thatCs is a valid path leading to a class with anF of typeT:

FieldDecls P C F≡
{(Cs, T) |
(C, Cs) ∈ Subobjs P∧
(∃Bs fs ms. class P(last Cs) = b(Bs, fs, ms)c ∧ map-of fs F= bTc)}

Then we select a least element from that set:

P` C has least F : T via Cs≡
(Cs, T) ∈ FieldDecls P C F∧
(∀ (Cs′, T′)∈FieldDecls P C F. P,C ` Csv Cs′)

If there is no such least path, field access is ambiguous and hence
not well-typed. We give an example: once again we concentrate on
the repeated diamond in Fig.1 and assume that a fieldx is defined
in classBottom and classTop. When type checkinge.x, wheree is
of classBottom, the path components inFieldDecls P Bottom xare
[Bottom], [Bottom,Left,Top], [Bottom,Right,Top].
The least element of the path components in this set is [Bottom], so
thex in classBottom will be accessed. Note that if nox in Bottom
is declared, then there is no element with a least path inFieldDecls
and the field access is ambiguous and hence illegal.

Field assignment works analogously as shown in WT5. Again
we expect that the necessary casts are already present.

5.1.5 Method call

In the call typing rule WT6 the classC of e is used to collect all
declarations ofM and select the least one. The set of all definitions
of methodM from classC upwards is defined as

MethodDefs P C M≡
{(Cs, mthd) |
(C, Cs) ∈ Subobjs P∧
(∃Bs fs ms.

class P(last Cs) = b(Bs, fs, ms)c ∧ map-of ms M= bmthdc)}

This set pairs the method (of typemethod, see Fig.5) with the path
Csleading to the defining class. Among all definitions the least one
(w.r.t. the ordering on paths) is selected:

P` C has least M = mthdvia Cs≡
(Cs, mthd) ∈ MethodDefs P C M∧
(∀ (Cs′, mthd′)∈MethodDefs P C M. P,C ` Csv Cs′)

Unfortunately, the absence of static ambiguity of method lookup is
not sufficient to avoid ambiguities at run-time. Even if the call is
well-typed,e may evaluate to a class belowC from which there is
no least declaration ofM. We showed this problem in Example 4
and will discuss it in detail in§6.3.5.

7

state = heap× locals
locals = vname⇀ val
heap = addr ⇀ obj
obj = cname× subo set
subo = path× (vname⇀ val)

Figure 6. The type of C+ program states

The relation[::] is the pointwise extension of:: to lists. We
expect the actual and formal parameters to have exactly the same
type. This may require explicit casts, as for assignments.

5.2 Method overriding

In Example 5 we already motivated and stated theunique covari-
ancerule for return types in method overriding enforced by C+ and
C++. Let us now look ahead to the semantics for a moment. It will
be such that ife is of type Class Cand evaluates to a reference
(, Cs) then last Cs= C — except in the presence of covariance
where we only have the weakerlast Cs�∗ C. See Example 5: the
C+ analogue ofb->foo() has typeClass Bbecauseb is of type
Class Band hence type checking is based on the definition offoo
in classB, where its return type isClass B. At run-time, however,
b may refer to aC object, in which case the definition offoo in C
applies and it may return a reference(, [C]) to aC object.

5.3 Well-formed programs

A well-formed C+ program (wf-C-prog P) must obey all the usual
requirements (every method body is well-typed and of the declared
result type (as in assignments, upcasts must be explicit), the class
hierarchy is acyclic, etc — for details see [9]). The only C+-
specific condition is covariance in the result type combined with the
uniqueness of paths from the new result class toall result classes in
previous definitions of the same method.

6. Big Step Semantics
The big step semantics is a (deterministic) relation between an
initial expression-state pair〈e,s〉 and a final expression-state pair
〈e′,s′〉. The syntax of the relation isP ` 〈e,s〉 ⇒ 〈e′,s′〉 and we say
thate evaluatesto e′. The rules will be such thatfinal expressions
are always values (Val) or exceptions (throw), i.e. final expres-
sions are completely evaluated.

6.1 State

The set of states is defined in Fig.6. A state is a pair of aheapand
a store (locals). A store is a map from variable names to values.
A heap is a map from addresses to objects. Anobject is a pair of
a class name and its subobjects. Asubobject (subo) is a pair of a
path (leading to that subobject) and a field table mapping variable
names to values.

The naming convention is thath is a heap,l is a store (thelocal
variables), ands a state.

Note that C+, in contrast to C++, does not allow stack-allocated
objects: variable values can only be references, but not objects.
Objects are only on the heap (as in Java). We do not expect stack
based objects to interfere with multiple inheritance.

Remember further that a reference contains not just an address
but also a path. This path selects the current subobject of an object
and is modified by casts (see below).

6.2 Exceptions

C+ supports exceptions. They are essential to prove type soundness
as certain problems can occur at run-time (e.g. ambiguous method
calls) which we cannot prevent statically. In these cases we throw

an exception so the semantics does not get stuck. Four exceptions
are possible in C+:OutOfMemory, if there is no more space on the
heap,ClassCastfor a failed cast,NullPointerfor null pointer access
andMemberAmbiguous, if a method or field access is ambiguous.
We will explain in the text exactly when an exception is thrown but
will omit showing the corresponding rules.

6.3 Evaluation

Remember thatP ` 〈e,s〉 ⇒ 〈e′,s′〉 is the evaluation judgment.
For a better understanding of the evaluation rules it is helpful to
realize that they preserve the following heap invariant: for any
object(C, S) on the heap we have

• Scontains exactly the paths starting fromC:
{Ds | ∃ fs. (Ds, fs) ∈ S} = {Ds | (C, Ds) ∈ Subobjs P},

• S is a (finite) function:
∀ (Cs,fs), (Cs′,fs′) ∈ S. Cs= Cs′−→ fs= fs′

Furthermore, if an expressione evaluates toref (a, Cs) then the
heap mapsa to b(C, S)c such that

• Cs is the path of a subobject inS: (Cs, fs) ∈ S for somefs.
• last Csis equal to or a subclass of the class ofe inferred by the

type system.

We will now discuss the evaluation rules construct by construct,
concentrating on object-orientation, as shown in Fig.7. The re-
maining rules can be found elsewhere [9].

6.3.1 Object creation

Rule BS1 shows the big step rule for object creation. The result
of evaluatingnew C is a referenceRef (a, [C]) wherea is some
unallocated address returned by the auxiliary functionnew-Addr
(which returnsNone if the heap is exhausted, in which case we
throw anOutOfMemoryexception). As a side effect,a is made
to point to the object(C, S), whereS = init-obj P C is the set
of all subobjects(Cs, fs) such that(C, Cs) ∈ Subobjs Pand
fs :: vname⇀ val is the field table that contains every field declared
in classlast Cs initialized with its default value (according to its
type). We omit the details. Note that C++ does not initialize fields.
Our desire for type safety requires us to deviate from C++ in this
minor aspect.

6.3.2 Cast

Casting is a non-trivial operation in C+, in contrast to Java. Remem-
ber that any object reference contains a path component identifying
the current subobject which is referenced. A cast changes this path,
thus selects a different subobject. Hence casting must adjust the
path component of the reference, either by lengthening it (in case
of an upcast), or shortening it (in case of a down-cast).

This mechanism corresponds to Stroustrup’s adjustment of
pointers by “delta” values. We consider it a prime example of the
fact that our semantics does not rely on run-time data structures but
on abstract concepts.

Let us first look at the upcast rule BS2: After evaluatinge to a
reference with pathCs, that path is extended (upwards) by a unique
pathCs′ from the end ofCs up to C, which we get by predicate
path-via. So if we want to castBottom to Left in the repeated
diamond in Fig.1, the appropriate path is [Bottom,Left], casting
Right to Top in the shared diamond in Fig.2 uses path [Top].

Rule BS3 models thestatic_cast of C++ (§2.3) which for-
bids down-casts involving shared inheritance. This means that class
C must occur in the path component of the reference, or the cast is
“wrong”. The rule is deterministic because any class can occur at
most once in a path.

If neither BS2 nor BS3 can be applied, we throw aClassCast
exception.

8

new-Addr h= bac h′= h(a 7→ (C, init-obj P C))

P` 〈new C,(h, l)〉 ⇒ 〈ref (a, [C]),(h′, l)〉
BS1

P` 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉 P` path last Csto C via Cs′ P` path last Csto C unique Ds= Cs@p Cs′

P` 〈Cast C e,s0〉 ⇒ 〈ref (a, Ds),s1〉
BS2

P` 〈e,s0〉 ⇒ 〈ref (a, Cs@ [C] @ Cs′),s1〉
P` 〈Cast C e,s0〉 ⇒ 〈ref (a, Cs@ [C]),s1〉

BS3
P` 〈e,s0〉 ⇒ 〈Val v,(h, l)〉 l ′= l(V 7→ v)

P` 〈V := e,s0〉 ⇒ 〈Val v,(h, l ′)〉
BS4

P` 〈e1,s0〉 ⇒ 〈Val v1,s1〉 P` 〈e2,s1〉 ⇒ 〈Val v2,s2〉 binop(bop, v1, v2) = bvc
P` 〈e1 �bop� e2,s0〉 ⇒ 〈Val v,s2〉

BS5

P` 〈e,s0〉 ⇒ 〈ref (a, Cs′),(h, l)〉 h a= b(D, S)c
P` path last Cs′ to hd Csunique P` path last Cs′ to hd Csvia Cs′′ Ds= Cs′@p Cs′′@p Cs (Ds, fs) ∈ S fs F= bvc

P` 〈e.F{Cs},s0〉 ⇒ 〈Val v,(h, l)〉
BS6

P` 〈e1,s0〉 ⇒ 〈ref (a, Cs′),s1〉 P` 〈e2,s1〉 ⇒ 〈Val v,(h2, l2)〉 h2 a = b(D, S)c
P` path last Cs′ to hd Csunique P` path last Cs′ to hd Csvia Cs′′ Ds= Cs′@p Cs′′@p Cs

(Ds, fs) ∈ S fs′= fs(F 7→ v) S′= S− {(Ds, fs)} ∪ {(Ds, fs′)} h2
′= h2(a 7→ (D, S′))

P` 〈e1.F{Cs} := e2,s0〉 ⇒ 〈Val v,(h2
′, l2)〉

BS7

P` 〈e,s0〉 ⇒ 〈ref (a, Cs),s1〉 P` 〈ps,s1〉 [⇒] 〈mapVal vs,(h2, l2)〉
h2 a = b(C, S)c P` C has least M = (Ts, T, pns, body) via Cs′

|vs| = |pns| l2
′= [this 7→ Ref (a, Cs′), pns[7→] vs] P` 〈body,(h2, l2

′)〉 ⇒ 〈e′,(h3, l3)〉
P` 〈e.M(ps),s0〉 ⇒ 〈e′,(h3, l2)〉

BS8

Figure 7. The Big Step rules

Although down-casts along shared inheritance can lead to am-
biguities (§5.1.1), this is not necessarily so. For example, a down-
cast in the shared diamond in Fig.2 from a Bottom object of
static classTopto classBottomis unambiguous, butstatic_cast,
i.e. rule BS3, will not work: the reference to the object is of the
form (, [Top]) but Bottomdoes not appear in path[Top]. Never-
theless this cast would be unique, as there exists only one path
with static classBottom, namely [Bottom]. In C++, the operator
dynamic_cast can be used in such cases. We could easily model
it as follows: if e evaluates toref (a,) andh a = b(B,)c then
Cast C e evaluates toref (a, Cs) if Cs is the unique path from
B to C. This performs all possible type safe casts and captures
dynamic_cast (modulo the weird restriction that at least one vir-
tual method is declared, see§2.3).

6.3.3 Variable assignment and binary operators

The assignment rule BS4 is straightforward because of our assump-
tion that upcasts from the type ofe to that ofV are performed ex-
plicitly. Thus both sides have the same type.

The evaluation rule for binary operators BS5 is based on a
functionbinoptaking the operator and its two argument values and
returning an optional result. Optional in order to deal with type
mismatches. The definition ofbinopfor our two binary operators=
and+ is straightforward:

binop(=, v1, v2) = bBool (v1 = v2)c
binop(+, Intg i1, Intg i2) = bIntg (i1 + i2)c
binop(, ,) = None

Equality on the lhs is the C+ equality operator, equality in the
middle is definitional equality, and equality on the rhs is the test
for equality.

Addition only yields a value if both arguments are integers. We
could also insist on similar compatibility checks for the equality
test, but that leads to excessive case distinctions that we want to
avoid for reasons of presentation. Just as for assignment,= does
not perform any implicit casts.

6.3.4 Field access and assignment

Let us first look at field access in rule BS6. There are three paths
involved. Cs is (if the expression is well-typed,§5.1.4) the path
from the class ofe to the class whereF is declared.Cs′ is the
path component of the reference thate evaluates to. As we have
discussed in§5.2, last Cs′ is in general a subclass of the static class
of e. Hence we need to fill the gap betweenCs′ andCs. To obtain
the complete path leading to the subobject in whichF lives, we have
to find the missing linkCs′′ from last Cs′ to hd Cs. And it must be
unique. If it is,Ds= Cs′@p Cs′′@p Csis the path to the subobject
we are looking for. If it is not, we throw aMemberAmbiguous
exception.

Field assignment (rule BS7) is similar, except that we now have
to update the heap ata with a new set of subobjects. Note that the
functional nature of this set is preserved. Again, no implicit casts
are applied tov.

6.3.5 Method call

Rule BS8, describing method calls, is lengthy, but easy: evaluatee
to a reference(a, Cs) and the parameter listps to a list of values
vs5, look up the classC of the object in the heap ata, look up
the parameter namespns and bodybody of the least methodM
visible from C, and evaluate the body in a store that containsthis
and the parameters (having made sure thatvsandpnshave the same
length). The final store is the one obtained from the evaluation of
the parameters; the one obtained from the evaluation ofbody is
discarded – remember that C+ does not have global variables.

Method selection follows [17]. We use the same predicate as in
§5.1.5, but here we need the least method definition to determine
the method body uniquely, whereas in the typing rule only the
parameter and return types were of importance. The least pathCs′

is used to cast thethis reference to the subobject expected by the
selected method.

5 [⇒] is the obvious left-to-right evaluation of expression lists. Saying that
the result is of the formmapVal vs is a declarative way of ensuring that it
is a list of values and of obtaining the actual value listvs(as opposed to an
expression list).

9

P` typeofh v = bTc
P,E,h` Val v : T

RT1
P,E,h` e : Class C Cs6= [] P` C has F : T via Cs′@p Cs Cs′ 6= []

P,E,h` e.F{Cs} : T
RT2

P,E,h` e : NT

P,E,h` e.F{Cs} : T
RT3

P,E,h` e : Class C P̀ C has M= (Ts, T, m) via Cs P,E,h` es[:] Ts′ P` Ts′ [≤] Ts

P,E,h` e.M(es) : T
RT4

Figure 8. Run-time type system

The type system ensures that classC provides or inherits some
definition ofM. But there might be no least definition, i.e. the call
is ambiguous. Such a situation can unfortunately not be ruled out
completely statically, as discussed in§5.1.5. In such cases we throw
aMemberAmbiguousexception.

There are some interesting tradeoffs between our formalization
and the approach taken in C++. The approach taken in this paper
has the property that theresolution of a dynamically dispatched
method call only depends on the dynamic class of the receiver ex-
pression. This is not the case in C++, where the dynamic class is
used if there exists a unique least path on which the method defini-
tion occurs, but where the static class of the receiver expression is
used to resolve the call otherwise. Our approach is more uniform in
the sense that it always consistently uses just the dynamic class, and
formalizing the C++ approach would complicate the semantics.

6.4 Small Step Semantics

Big step rules are easy to understand but cannot distinguish non-
termination from being stuck. Hence we also have asmall stepse-
mantics where expression-state pairs are gradually reduced. The
reduction relation is writtenP ` 〈e,s〉 → 〈e′,s′〉 and its transitive
reflexive closure isP ` 〈e,s〉 →∗ 〈e′,s′〉.

We do not show the rules (for lack of space) but emphasize that
we have proven the equivalence of the big and small step semantics
(for well-formed programs):

P ` 〈e,s〉 ⇒ 〈e′,s′〉 = (P ` 〈e,s〉 →∗ 〈e′,s′〉 ∧ final e′).

7. Type Safety Proof
Type safety, one of the hallmarks of a good language design, means
that the semantics is sound w.r.t. the type system:well-typed ex-
pressions cannot go wrong. Going wrong does not mean throw-
ing an exception but arriving at a genuinely unanticipated situation.
The by now standard formalization of this property [33] requires
proving two properties:progress(well-typed expressions can be re-
duced w.r.t. the small step semantics if they are not final yet — the
small step semantics does not get stuck) andpreservationor sub-
ject reduction: reducing a well-typed expression results in another
well-typed expression whose type is≤ the original type.

In the remainder we concentrate on the specific technicalities
of the C+ type safety proof. We do not even sketch the actual
proof, which is routine enough, but all the necessary invariants and
notions without which the proof is very difficult to reconstruct. For
a detailed exposition of the Jinja type safety proof, our starting
point, see [9]. For a tutorial introduction to type safety see, for
example, [16].

7.1 Run-time type system

The main complication in many type safety proofs is the fact that
well-typedness w.r.t. the static type system isnot preserved by the
small step semantics. The fault does not lie with the semantics but
the type system: for pragmatic reasons it requires properties that are
not preserved by reduction and are irrelevant for type safety. Thus
a second type system is needed which is more liberal but closed
under reduction. This is known as therun-time type system[6] and
the judgment isP,E,h ` e : T. Please note that there is no type

checking at run-time: this type system is merely the formalization
of an invariant which is not checked but whose preservation we
prove. The key rules are shown in Fig.8.

Rule RT1 takes care of the fact that small step reduction may
introduce references into an expression (although the static type
system forbids them, see§5.1). The premiseP ` typeofh v =
bTc expresses that the value is of the right type; ifv = Ref (a,
Cs), its type is Class (last Cs) provided h a = b(C,)c and
(C, Cs) ∈ Subobjs P.

The main reason why static typing is not preserved by reduc-
tion is that the type of subexpressions may decrease with reduction.
Rule RT2 takes care of this for field access. It no longer insists that
Csleads to the least declaration ofF (as in WT4) but to some decla-
ration ofF. In the worst case this can lead to aMemberAmbiguous
exception. Additionally the rule allows a prefixCs′ to compensate
for the potentially lower classC of e. The same phenomenon oc-
curred in rule BS6. Rule RT3 takes care ofe.F{Cs} where the type
of e has reduced toNT, the null type. Since this is going to throw
an exception, and exceptions can have any type, this expression can
have any type, too.

Rule RT4 again compensates for the fact that the types involved
may decrease:has least (in rule WT4) is replaced byhas just as
for field access. It is also allowed that the actual argument types are
more specific than the declared argument types. There is also a rule
for the casee::NT in which casee.M(es) can have any type.

For well-formed programsP we have proved thatP,E ` e :: T
implies P,E,h ` e : T. Heaph is unconstrained as the premise
implies thatedoes not contain any references.

7.2 Conformance and Definite Assignment

Progress and preservation require that all semantic objectsconform
to the type constraints imposed by the syntax. We say that a valuev
conforms to a typeT (written P,h ` v :≤ T) if the type ofv (in the
sense of rule RT1) is a subtype ofT. A heap conforms to a program
if for every object(C, S) on the heap

• if (Cs, f) ∈ S then(C, Cs) ∈ Subobjs Pand if F is a field of
typeT declared in classlast Csthenf F = bvc and the type ofv
(in the sense of rule RT1) must be a subtype ofT.

• if (C, Cs) ∈ Subobjs Pthen(Cs, f) ∈ S for somef.

In this case we writeP ` h
√

. A store l conforms to a type
environmentE iff l V = bvc implies E V = bTc such thatv
conforms toT. In symbols:P,h ` l (:≤)w E. If P ` h

√
and

P,h ` l (:≤)w E then we writeP,E ` (l, h)
√

.
From Jinja we have inherited the notion ofdefinite assignment,

a static analysis that checks if in an expression every variable is
initialized before it is read. This is encoded as a predicateD such
thatD e A (whereA is a set of variables) asserts the following
property: if initially all variables inA are initialized, then execution
of edoes not access an uninitialized variable. For technical reasons
A is in fact of typevname set option. That is, if we want to execute
e in the context of a storel we need to ensureD ebdom lc. SinceD
is completely orthogonal to multiple inheritance we have omitted
all details and refer to [9] instead.

10

7.3 Progress

Progress means that any (run-time) well-typed expression which
is not yet not fully evaluated (i.e. final) can be reduced by a rule
of the small step semantics. To prove this we need to assume that
the program is well-formed, the heap conforms, and the expression
passes the definite assignment test:

If wf-C-prog P and P,E,h` e : T and P` h
√

and D ebdom lc and
¬ final e then ∃ e′ s′. P` 〈e,(h, l)〉 → 〈e′,s′〉.

This theorem is proved by rule induction on the (run-time) typing
rules.

7.4 Preservation

We have shown that the semantics preserves the assumptions in
the Progress theorem above: conformance, definite assignment and
well-typedness. Preservation of well-typedness means that the type
of the reduced expression is≤ that of the original expression:

If wf-C-prog P and P` 〈e,s〉 → 〈e′,s′〉 and P,E ` s
√

and
P,E,hp s` e : T then ∃T′. P,E,hp s′` e′ : T′∧ P` T′≤ T.

wherehp sis the heap component ofs. All preservation lemmas are
shown by induction on the small step rules.

Extending the preservation lemmas from→ to →∗ (by induc-
tion) and combining type preservation with progress yields the
main theorem:

If wf-C-prog P and P,E ` s
√

and P,E ` e :: T and
D ebdom(lcl s)c and P` 〈e,s〉 →∗ 〈e′,s′〉 and
¬ (∃ e′′ s′′. P` 〈e′,s′〉 → 〈e′′,s′′〉) then
(∃ v. e′= Val v∧ P,hp s′` v :≤ T) ∨
(∃ r. e′= Throw r ∧ the-addr(Ref r) ∈ dom(hp s′)).

If the program is well formed, states conforms to it,e has typeT
and passes the definite assignment test w.r.t.dom(lcl s) (wherelcl s
is the store component ofs) and its→-normal form ise′, then the
following property holds: eithere′ is a value of a type≤ T or an
exceptionThrow r such that the address part ofr is a valid address
in the heap.

8. Related work
There is a wealth of material on formal semantics of object-oriented
languages, but to our knowledge, a formal semantics for a language
with C++-style multiple inheritance has not yet been presented. We
distinguish several categories of related work.

8.1 Semantics of Multiple Inheritance

Cardelli [4] presents a formal semantics for a form of multiple in-
heritance based on structural subtyping of record types, which also
extends to function types. Another early paper that claims to give
a semantics to multiple inheritance for a language (PCF++) with
record types is [3]. It is difficult to relate the language constructs
used in each of these works to the multiple inheritance model of
C++.

8.2 C++ Multiple Inheritance

Wallace [32] presents an informal discussion of the semantics of
many C++ constructs, but avoids all the crucial issues. The natural
semantics for C++ presented by Seligman [19] does not include
multiple inheritance or covariant return types. Most closely related
to our work is [7], where some basic C++ data types (including
structs but excluding pointers) are specified in PVS; an object
model is “in preparation”.

The complexities introduced by C++-style multiple inheritance
are manifold, and have to our knowledge never been formalized
adequately or completely. In the C++ standard [25], the semantics

of operations such as method calls and casts that involve class
hierarchies are defined informally, while several other works (see,
e.g., [23]) discuss the implementation of these operations in terms
of compiler data structures such as virtual function pointer tables
(“vtables”).

Rossie and Friedman [17] were the first to formalize the seman-
tics of operations on C++ class hierarchies in the form of a cal-
culus of subobjects, which forms the basis of our previous work
on semantics-preserving class hierarchy transformations that was
already mentioned in§1 [30, 20, 21, 22].

It has long been known that inheritance can be modeled using a
combination of additional fields and methods (a mechanism com-
monly called “delegation”) [10]. Several authors have suggested
independently that multiple inheritance can be simulated using a
combination of interfaces and delegation [29, 28, 31]. Nonetheless,
all of these works stop well short of dealing with the more intri-
cate aspects of modeling multiple inheritance such as object initial-
ization, implicit and explicit type casts, instanceof-operations, and
handling shared and repeated multiple inheritance.

Multiple inheritance also poses significant challenges for C++
compiler writers because the layout of an object can no longer
reflect a simple linearization of the class hierarchy. As a result,
a considerable amount of research effort has been devoted to the
design of efficient object layout schemes for C++ [27, 26, 34].

8.3 Other Languages with Multiple Inheritance

Various models of multiple inheritance are supported in other
object-oriented languages, and we are aware of a number of pa-
pers that explore the semantic foundations of these models.

The work by Attali et al. [1] is similar to ours in spirit but
treats Eiffel rather than C++, whose multiple inheritance model
differs considerably. Eiffel uses shared inheritance by default; re-
peated inheritance is not possible, instead repeated members must
be uniquely renamed when inherited.

In several recent languages such as Jx [13] and Concord [8],
multiple inheritance arises as a result of allowing classes to over-
ride other classes, in the spirit of BETA’s virtual classes [11]. In Jx
[13], an outer classA1 can declare a nested classA1.B, which can
be overridden by a nested classA2.B in a subclassA2 of A1. In
this case,A2.B is a subclass ofA1.B. Shared multiple inheritance
arises whenA2.B also has an explicitly defined superclass. Mem-
ber lookup is defined quite differently than in C++ (implicit over-
riding inheritance takes precedence over explicit inheritance when
selecting a member), but appears to behave similarly in practice.
Nystrom et al. present a type system, operational semantics and
soundness proof for Jx, although the latter is not machine-checked.

Concord [8] introduces a notion ofgroupsof classes, where a
groupg may be extended by a subgroupg′. An implicit form of
inheritance exists between a classg.X declared in groupg that is
further bound by a classg′.X in subgroupg′, giving rise to a simi-
lar form of shared multiple inheritance as in Jx. Two important dif-
ferences, however, are the fact that further binding does not imply
subtyping:g′.X is not a subtype ofg.X, and explicit inheritance
takes precedence over implicit overriding when resolving method
calls. Jolly et al. present a type system and soundness proof (though
not machine-checked) for Concord. Because repeated multiple in-
heritance is not supported in either Jx or Concord, the semantics
for these languages can represent the run-time type of an object
as a simple type, and there is no need for the subobject and path
information required for modeling C++.

Scala [14] provides a mechanism for symmetrical mixin inher-
itance [2] in which a class can inherit members from multiple su-
perclasses. If members are inherited from two mixin classes, the
inheriting class has to resolve the conflict by providing an explicit
overriding definition. Scala side-steps the issue of shared vs. re-

11

peated multiple inheritance by simply disallowing a class to (indi-
rectly) inherit from a class that encapsulates state more than once
(multiply inheriting from abstract classes that do not encapsulate
state—called traits—is allowed, however). The semantic founda-
tions of Scala, including a type system and soundness proof can be
found in [15].

9. Conclusion
The full C+ semantics is 10403 LOC of Isabelle code consist-
ing of 133 definitions and 407 theorems and their accompanying
proofs. These proofs are handcrafted texts combining high-level
proof structures (e.g. inductions and case distinctions) with appeals
to automation of low-level inferences (e.g. simplification or pred-
icate calculus proof search). Processing the complete semantics,
which entails checking all proofs, takes slightly less than 5 minutes
and 400MB of RAM space on an Athlon 3200+ with 2GB of RAM.

Trying to put C++ on a formal basis has been interesting but
quite challenging at times. It was great fun figuring out what C++
means at an abstract level, and this exercise has convinced us
that its mixture of shared and repeated multiple inheritance is a
very problematic design. We identified a number of ambiguities
that C++ resolves in ad-hoc ways, and suggested minor semantic
variations that enabled us to prove C+ type-safe. Our semantics,
for the first time, allows to explain C++ behavior in terms of
a well-defined model (as opposed to in terms of run-time data
structures such as vtables), provides a type safety proof which
has been an open problem for many years, and opens the door
to machine-checked correctness proofs of transformations such
as the automated elimination of multiple inheritance from C++
programs. Hence, our semantics is not just a theoretical exercise
but of practical relevance.

References
[1] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. A natural

semantics for eiffel dynamic binding.ACM TOPLAS, 18(6):711–729,
1996.

[2] Gilad Bracha and William Cook. Mixin-based inheritance. InProc.
of OOPSLA/ECOOP’90, pages 303–311, 1990.

[3] V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Computing with
coercions. InProc. ACM Conf. LISP and functional programming,
pages 44–60. ACM Press, 1990.

[4] Luca Cardelli. A semantics of multiple inheritance.Information and
Computation, 76:138–164, 1988.

[5] Luca Cardelli. Type systems. InThe Computer Science and
Engineering Handbook. 2 edition, 2004.

[6] Sophia Drossopoulou and Susan Eisenbach. Java is type safe —
probably. InProc. of ECOOP’97, volume 1241 ofLect. Notes in
Comp. Sci., pages 389–418, 1997.

[7] Michale Hohmuth and Hendrik Tews. The semantics of C++ data
types: Towards verifying low-level system components. In D. Basin
and B. Wolff, editors,Theorem Proving in Higher Order Logics,
Emerging Trends Proc., pages 127–144. Universität Freiburg, 2003.
Tech. Rep. 187.

[8] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: Concord. InProc. of FTfJP’05,
2005.

[9] Gerwin Klein and Tobias Nipkow. A machine-checked model for a
Java-like language, virtual machine and compiler.ACM TOPLAS. To
appear.

[10] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. InProc. of OOPSLA’86, pages
214–223, 1986.

[11] Ole Lehrmann Madsen and Birger Moeller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented programming. InProc. of
OOPSLA’89, pages 397–406, 1989.

[12] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel.Isa-
belle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 ofLect. Notes in Comp. Sci.2002.http://www.in.tum.de/
∼nipkow/LNCS2283/.

[13] Nathaniel Nystrom, Stephen Chong, and Andrew. C. Myers. Scalable
extensibility via nested inheritance. InProc. of OOPSLA’04, pages
99–115, 2004.

[14] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. An overview of the
scala programming language. Technical Report IC/2004/64,École
Polytechnique F́ed́erale de Lausanne, Lausanne, Switzerland, 2004.
Available fromscala.epfl.ch.

[15] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias
Zenger. A nominal theory of objects with dependent types. InProc.
of ECOOP’03.

[16] Benjamin C. Pierce.Types and Programming Languages. The MIT
Press, 2002.

[17] Jonathan G. Rossie, Jr. and Daniel P. Friedman. An algebraic
semantics of subobjects. InProc. of OOPSLA’95, pages 187–199.
ACM Press, 1995.

[18] Jonathan G. Rossie, Jr., Daniel P. Friedman, and Mitchell Wand.
Modeling subobject-based inheritance. InProc. of ECOOP’96,
volume 1098 ofLect. Notes in Comp. Sci., pages 248–274, 1996.

[19] Adam Seligman.FACTS: A formal analysis for C++. Williams
College, 1995. Undergraduate thesis.

[20] Gregor Snelting and Frank Tip. Understanding class hierarchies using
concept analysis.ACM TOPLAS, pages 540–582, 2000.

[21] Gregor Snelting and Frank Tip. Semantics-based composition of
class hierarchies. InProc. of ECOOP’02, volume 2374 ofLect. Notes
in Comp. Sci., pages 562–584, 2002.

[22] Mirko Streckenbach and Gregor Snelting. Refactoring class
hierarchies with kaba. InProc. of OOPSLA’04, pages 315–330,
2004.

[23] Bjarne Stroustrup. Multiple inheritance for C++.Computing Systems,
2(4), 1989.

[24] Bjarne Stroustrup.The Design and Evolution of C++. Addison
Wesley, 1994.

[25] Bjarne Stroustrup.The C++ Standard: Incorporating Technical
Corrigendum No. 1. John Wiley, 2 edition, 2003.

[26] Peter F. Sweeney and Michael G. Burke. Quantifying and evaluating
the space overhead for alternative C++ memory layouts.Software:
Practice and Experience, 33(7):595–636, 2003.

[27] Peter F. Sweeney and Joseph Gil. Space and time-efficient memory
layout for multiple inheritance. InProc. of OOPSLA’99, pages 256–
275, 1999.

[28] Ewan Tempero and Robert Biddle. Simulating multiple inheritance
in Java.Journal of Systems and Software, 55:87–100, 2000.

[29] Krishnaprasad Thirunarayan, Günter Kniesel, and Haripriyan
Hampapuram. Simulating multiple inheritance and generics in Java.
Computer Languages, 25:189–210, 1999.

[30] Frank Tip and Peter Sweeney. Class hierarchy specialization.Acta
Informatica, 36:927–982, 2000.

[31] John Viega, Bill Tutt, and Reimer Behrends. Automated delegation is
a viable alternative to multiple inheritance in class based languages.
Technical Report CS-98-3, University of Virginia, 1998.

[32] Charles Wallace. The semantics of the C++ programming language.
In E. Börger, editor,Specification and Validation Methods, pages
131–164. Oxford University Press, 1995.

[33] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness.Information and Computation, (115):38–94, 1994.

[34] Yoav Zibin and Joseph Gil. Two-dimensional bi-directional object
layout. InProc. of ECOOP’03, volume 3013 ofLect. Notes in Comp.
Sci., pages 329–350, 2003.

12

http://www.in.tum.de/~nipkow/LNCS2283/
http://www.in.tum.de/~nipkow/LNCS2283/

	Introduction
	Multiple inheritance
	An intuitive introduction to subobjects
	The Rossie-Friedman Subobject Model
	Casts in C+
	Examples

	Formalization
	Basic notation --- The meta language
	Names, paths, and base classes
	Subobjects
	Path functions

	Abstract syntax of C+
	References
	Values and Expressions
	Programs

	Type system
	Typing rules
	Cast
	Variable assignment
	Binary operators
	Field access and assignment
	Method call

	Method overriding
	Well-formed programs

	Big Step Semantics
	State
	Exceptions
	Evaluation
	Object creation
	Cast
	Variable assignment and binary operators
	Field access and assignment
	Method call

	Small Step Semantics

	Type Safety Proof
	Run-time type system
	Conformance and Definite Assignment
	Progress
	Preservation

	Related work
	Semantics of Multiple Inheritance
	C++ Multiple Inheritance
	Other Languages with Multiple Inheritance

	Conclusion

