RC23709 (W0508-162) August 31, 2005
Computer Science

IBM Research Report

An Operational Semantics and Type Safety Proof for C++-like
Multiple Inheritance

Daniel Wasserrab', Tobias Nipkow?, Gregor Snelting', Frank Tip’
'Universitit Passau
Germany

’Technische Universitit
Miinchen, Germany

’IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

An Operational Semantics and Type Safety Proof
for C++-Like Multiple Inheritance

Daniel Wasserrab Tobias Nipkow Gregor Snelting Frank Tip
Universitat Passau Technische Universit Universitt Passau IBM T.J. Watson Research
wasserra@fmi.uni-passau.de Munchen snelting@fmi.uni-passau.de Center
nipkow@in.tum.de ftip@us.ibm.com
Abstract work by providing an executable semantics and a type-safety proof.

Roughly speaking, our semantics extends a formal model for a sub-
set of Java called Jinj®[. Jinja is a completely formal model of a
Java-like language defined in higher-order logic (HOL) in the theo-
rem prover Isabelle/HOL. C+, the language defined in this paper, is
derived from Jinja by moving from single to (shared and repeated)
multiple inheritance. In this paper we have refrained from present-
ing the formal definition of all of C+ but have concentrated on those
aspects that are affected by multiple inheritance. The rest is practi-
. cally identical to Jinja and can be found elsewhéie [
1. Introduction In the course of designing the semantics, we also discovered
Java has been a favorite target of language specifiers for close to eseveral subtle ambiguities regarding member access and method
decade. C++ has received much less attention, perhaps due to thealls in C++. Compilers resolve such ambiguities in an ad-hoc man-
much greater complexity of the language. One of the main sourcesner, or even produce code that leads to uncontrolled run-time errors.
of this complexity is the fact that C++ allows a complex form of C+ either disallows such ambiguities, or generates a controlled ex-
multiple inheritance, in which a combination of shared (“virtual”) ception instead of an uncontrolled run-time error. We believe that
and repeated (“nonvirtual”) inheritance is permitted. Because of this approach should have been adopted for C++ as well.
this complexity, the behavior of operations on C++ class hierarchies ~ Our interest in formalizing the semantics of multiple inheritance
has traditionally been defined informall2g], and in terms of is motivated by previous work by two of the present authors on: (i)
implementation-level constructs such as virtual function tables (v- restructuring class hierarchies in order to reduce object size at run-
tables) R4]. We are only aware of a few formal treatments—and time [30], (ii) composition of class hierarchies in the context of
of no operational semantics—for C++-like languages with shared an approach for aspect-orientatid], and (jii) refactoring class
and repeated multiple inheritance. In 1996, Rossie, Friedman, andhierarchies in order to improve their desig??[20], In each of
Wand [L§] stated that “In fact, a provably-safe static type system these projects, class hierarchies geaeratedmultiple inheritance
[...]is an open problem”, and to our knowledge this problem has may arise naturally, and additional program transformations are
remained open until today. then used to replace multiple inheritance by a combination of single
The main contribution of this paper is a formal and executable inheritance and delegation. We plan to use the formal semantics for
operational semantics for a language with C++-like multiple inher- C+ to demonstrate such program transformations for eliminating
itance, with a machine-checked type-safety proof. This semantics multiple inheritance to be semantics-preserving.
frees programmers and language implementors from the need to
discuss program behavior in terms of implementation-level con-
structs such as v-tables. Type safety is a language property which2, Multiple inheritance
can be summarized by the famous slogan “Well-typed programs
can't go wrong”. Cardelli’'s definition of type safety][demands
that no untrapped errors may occur (but controlled exceptions C+ features bothepeatedand sharedmultiple inheritance (cor-
are allowed). Our type safety proof is completely formalized and responding tanonvirtual and virtual inheritance in C++, respec-
machine-checked by the Isabelle/HOL theorem pro%&}. [tively). The difference between the two flavors of inheritance is
Our semantics builds on the multiple inheritance calculus de- subtle, and only arises in situations where a ckssadirectly in-
veloped by Rossie and Friedmati7], but goes well beyond that herits from the same class via more than one path in the hier-
archy. In such case¥; will contain oneor multiple X -subobjects,
depending on the kind of inheritance that is used. More precisely,
if only shared inheritance is useH, will contain a single, shared
X-subobject, and if only repeated inheritance is used, the number
of X-subobjects irt” is equal toN, whereN is the number of dis-
tinct paths fromX to Y in the hierarchy. If a combination of shared
and repeated inheritance is used, the numbéf-gubobjects in an
Y-object will be between and N (a more precise discussion fol-
lows). C+ hierarchies with only single inheritance (the distinction
between repeated and shared inheritance is irrelevant in this case)
are semantically equivalent to Jinja class hierarchies.

We present, for the first time, an operational semantics and a
type system for a C++-like object-oriented language with both
shared and repeated multiple inheritance, together with a machine-
checked proof of type safety. The formalization uncovered several
subtle ambiguities in C++, which C++ compilers resolve by ad-hoc
means or which even result in uncontrolled run-time errors. The
semantics is formalized in Isabelle/HOL.

2.1 Anintuitive introduction to subobjects

class Top { int x, y; ...

}

class Left : Top { ... }
class Right : Top { int y; .}
class Bottom : Left, Right { int x; ... }
‘ Top ‘ Xy Top| [Bottom, Bottom.Right.Top] ‘ [Bottom, Bottom.Left.Top] ‘ Xy ‘[Bottom, Bottom.Right. Top]‘ Xy
Right | [Bottom, Bottom.Right] i i
‘ Left ‘ ‘ Right ‘ y ‘ Top| [Bottom, Bottom.Left.Top] ‘ [Bottom, Bottom.Left] ‘ ‘ [Bottom, Bottom.Right] ‘ y
Left | [Bottom,Bottom.Left]) :
‘ Bottom‘ X Bottom | [Bottom, Bottom] [Bottom, Bottom] %
A—>=B: A -» B: subobject A directly contains subobject B
B is repeated subclass of A or a pointer to subobject B
(@ (®) ()
Figure 1. The repeated diamond
class Top { void £O { ... }; ... }
class Left : virtual Top { ... }
class Right : virtual Top { void £(O) { ... }; .3
class Bottom : Left, Right { ... }
‘ [Bottom, Top] £0)
R ~
Top j [Bottom, Top]
Right |7 [Bottom, Bottom.Right] [Bottom, Bottom.Left] | | [Bottom, Bottom.Right] | £()
Left [Bottom, Bottom.Left] g IR
Bottom [Bottom, Bottom] —
[Bottom, Bottom]

A—=B:
B is repeated subclass of A A
A-->B:

B is shared subclass of A

(a) (b)

‘> B: subobject A directly contains subobject B

or a pointer to subobject B

(©

Figure 2. The shared diamond

Fig. 1(a) shows a small C++ class hierarchy. In these and subse-form of virtual-base pointers[24, p.266], although indirections

quent figures, a solid arrow from clagsto classD denotes the fact
that D repeated-inherits fror®’, and a dashed arrow from claSs

to classD denotes the fact thd® shared-inherits fron®'. Here, and
in subsequent examples, all methods are assumed tadimal

(i.e., dynamically dispatched), and all classes and inheritance rela-

tions are assumed to peblic.

In Fig. 1(a), all inheritance is repeated. Since cl@sstom
repeated-inherits from classesft andRight, a Bottom-object
has one subobject of each of the tyjiest andRight. As Left
andRight each repeated-inherit froMop, (sub)objects of these
types contain distinct subobjects of typep. Hence, for the C++
hierarchy of Fig.1(a), an object of typeBottom containstwo
distinct subobject®f type Top. Fig. 1(b) shows the layout used
for aBottom object by a typical compiler, given the hierarchy of

Fig. 1(a). Each subobject has local copies of the subobjects that it

contains, hence it is possible to lay out the object in a contiguous
block of memory without indirections.

Fig. 2(a) shows a similar C++ class hierarchy in which the
inheritance betweebeft and Top and betweemRight and Top
is shared Again, aBottom-0bject contains one subobject of each
of the typed.eft andRight, due to the use of repeated inheritance.
However, sincd.eft andRight both shared-inherit frorfiop, the
Top-subobject contained in tHesft-subobject issharedwith the
one contained in th&ight-subobject. Hence, for this hierarchy,
a Bottom-object will containa single subobjectf type Top. In

can be avoided in certain special cas®$ p6, 27). Fig. 2(b) shows
a typical object layout for an object of tyfgottom given the

hierarchy of Fig.2(a). Observe, that theeft-subobject and the
Right-subobject each contain a pointer to the single shared
subobject.

2.2 The Rossie-Friedman Subobject Model

Rossie and Friedmarl]] proposed a subobject model for C++-
style inheritance, and used that model to formalize the behavior of
method calls and field accesses. Informally, one can think of the
Rossie-Friedman model as an abstract representation of object lay-
out. Intuitively, asubobject identifies a component of typ® that

is embedded within a complete object of tygeHowever, simply
defining a subobject type as a p&, D) would be insufficient,
because, as we have seen in Riga C-object may contain multi-

ple D-components in the presence of repeated multiple inheritance.
Therefore, a subobject is identified by a pdit C's], whereC de-
notes the type of the “complete object”, and where pla¢gh C's
consists of a sequence of class narigs - -- - C, that encodes
the transitive inheritance relation betwe€h and C,,. There are
two cases here: Foepeatedsubobjects we have that, = C, and

1 In this paper, we follow the terminology o] and use the term “sub-
object” to refer both to the label that uniquely identifies a component of an

general, a shared subobject may be shared by arbitrarily rnanyobject type, as well as to components within concrete objects that are iden-

subobjects, and requires an object layout with indirections (in the

tified by such labels. In retrospect, the term “subobject label” would have
been better terminology for the former concept.

for sharedsubobjects, we have thét; is the least derived (most some subclas§€” of D, the up-cast will always succeed and result

general) shared base class@tthat containg”’,. This scheme is in the selection of the unique subobject containefl imhose static
sufficient because shared subobjects are unique within an objectclass isC. A cast(C)e is adown-castf D is a supertype o€

(i.e., there can be at most osharedsubobject of typeS within At run-time, where may point to a subobjed = [C’, - - - D], for

any object). More formally, for a given clags, the set of its sub- some subclas€’ of D, this down-cast will succeed if there is a
objects, along with a containment ordering on these subobjects, isunique subobjec$’ that containsS, and whose static class@
inductively defined as follows: C++ has three cast operators for traversing class hierarchies,

each of which has significant limitatichsMost commonly used

1. [C, CJis the subobject that represents the “full“object. (and used in the examples presented later in this section) are so-

2.if S1 = [C,Cs.X] is a subobiject for class whereC's is any called C-style casts. C-style casts may be used to cast between ar-
sequence of class names, akidshared-inherits fronY’, then bitrary unrelated types, although some static checking is performed
S2 = [C, Y] is a subobject for class thatis directly contained o yp-casts (e.g., a C-style up-cast is statically rejected if the re-
within subobjectS: . ceiver’s type does not contain a unique subobject whose static class

3.if S1 = [C, Cs.X] is a subobject for class' whereC's is any is the type being casted to). C-style casts cannot be used to down-
sequence of class names, aXidepeated-inherits froriy, then cast along a shared inheritance relation. When used incorrectly, C-
Sy = [C,Cs.X.Y] is a subobject for clas§' that is directly style casts may cause run-time errors. Bhetic_cast operator
contained within subobjed; . only performs compile-time checks (e.g., to ensure that a unique

subobject of the target type exists) and disallows casting between

Fig. 1(c) and Fig.2(c) showsubobject graphsor the class hi- unrelated typesstatic_cast cannot be used to down-cast along a

erarchies of Figl and Fig.2, respectively. Here, an arrow from . : ; . ;
subobjects to subobjects’ indicates thats” is directly contained ~ Shared inheritance relation. When used incorrestigtic_cast

in S or thatS has a pointer leading t6". For a given subobject ~ MY cause run-time errors. Thignamic_cast operator has the

S = [C, Cs.D], we callC thedynamic classf subobjects and D desirable property that failing casts result in controlled exceptions

the static clasof subobjectS. Associated with each subobject are (wﬂen t?\e operanddi:"? of areference t%.rl)(e) (;]r the special ValLE
the members that occur in its static class. Hence, if an object con- (When the operand is a pointer). Unlike the previous two opera-

tains multiple subobjects with the same static class, it will contain tor;, down-casting along sharzdt |nhert|tgntce relat|ons| Its éaltlowed,
multiple copies of members declared in that class. For example, the@Nddynamic_cast may be used to cast between unrelated types.

subobject graph of Figl(c) shows two subobjects with static class 1OWeVer, a subtle limitation exists: Aynamic_cast is statically
Top, each of which has distinct fieldsandy incorrect when applied to an expression whose declared type does

Intuitively, a subobject's dynamic class represents the type of NOt declare virtual methods. Clearly, none of these three C++ cast
the “full object” and is used to resolve dynamically dispatched CPerators always provides the desired, type-safe behavior.
method calls. A subobject's static class represents the declared type, N €+ we have defined a type-safe variationsaratic_cast
of a variable that points to an (subobject of the full) object and is thf"lt throws con_trolled exceptions In casgs_where d.own-castmg
used to resolve field accesses. In this paper, we use the Rossief@ilS- An alternative would be to define a variationdymamic_cast
Friedman subobject model to define the behavior of operations that does not suffer from the problems discussed above.
such as method calls and casts as functions from subobjects to
subobjects. As we shall see shortly, it will be necessary in our 2.4 Examples
semantics to maintain full subobject information even for “static” e will now discuss several examples to illustrate the subtleties
operations such as casts and field accesses. that arise in the C++ inheritance model.

Multiple inheritance can easily lead to situations where multiple Example 1Dynamic dispatch behavior can be counterintuitive
members with the same name are visible. In C++, many memberin the presence of multiple inheritance. One might expect for a
accesses that are seemingly ambiguous are resolved using the NGnethod call always to dispatch to a method definition in a super-
tion of dominancg25]. A memberm in subobjectS” dominatesa class or subclass of the type of the receiver expression. Consider,
memberm in subobjectS' if S is contained inS’ (i.e., S" occurs however, the “shared diamond” example of Figwhere a method
below S in the subobject graph). Member accesses are resolved by () js defined in classe&ight andTop. Now assume that the fol-
selecting the unique dominant membeiif it exists; otherwise an lowing C++ code is executed (note the implicit up-casLédt in
access is ambiguotigtor example, in Fig2, aBottom-object sees the assignment):
two declarations of (), one in clas®ight and one in clasSop.

Thus a call(new Bottom())->f() seems ambiguous. But it is Left* b = new Bottom(); b->f();

not because in the subobject graphBettom shown in Fig.2(c),
the definition off() in [Bottom, Bottom.Right| dominates the
one in [Bottom, Top]. On the other hand, the subobject graph in
Fig. 1(c) contains 3 definitions of in [Bottom, Bottom.Right],
[Bottom, Bottom.Right.Top], and [Bottom, Bottom.Left.Top].

As there is no unique dominant definition phere, a field access
(new Bottom())->y is ambiguous.

One might expect the method call to dispatciTép :: £(). Butin
factit dispatches té() in classRight, which is neither a superclass
nor a subclass afeft. The reason is that up-casts do not switch off
dynamic dispatch, which is based on the receiver object’s dynamic
class. The dynamic class sfremainsBotton after the cast, and
sinceRight :: £() dominatesTop :: £(), the former is called.

This makes sense from an application viewpoint: Imagine the
2.3 CastsinC+ top class to be a “Window”, the left class to be a “Window with
menu”, the right class to be a “Window with border”, the bottom
class to be a “Window with border and menu”, af(d to compute
the available window space. Then, a “Window with border and
menu” object which is casted to “Window with menu” pretends
not to have a border anymore (border methods cannot be called).

In the discussion that follows, we will assum# be an expression
declared to be of typ®. A cast(C)e is anup-castf D is a direct or
indirect subclass af’, and such an up-cast is statically type-correct
if [D, D] contains exactly one subobject whose static clags it
run-time, whene may point to a subobject = [C’,--- D], for

2 In some cases, C++ uses the static class of the receiver for further® The remaining two cast operators in C++onst_cast and
disambiguation. This will be discussed shortly. reinterpret_cast are irrelevant for the issues studied in this paper.

class A {...}
class B { void £(); }
class C {...}
class D : A, B { void £ {...}; }
class E : B, C { void £O {...}; }
B* b;
if (...)
b = new D();
else
b = new EQ);
b->f();
If: this—pointer:

before Call f{)

after Call f\()\ T delta—values:
A e ans A &D viable
B vptr — = &D:f —delta(B)| B vtable
D
before Call f{)
. RN
Blse: 7 7 B vptr *9 B & E vtable
after Call () C vptr — 1= &E:f C vtable
E

(b)

Figure 3. C++ fragment demonstrating dynamically varying sub-
object context

compile time it is not known which cast will happen at run-time,
and the compiler must keep track of some additional information
to determine the cast that must be performed.

In a typical C++ implementation, a cast actually implies chang-
ing the pointer value in the presence of multiple inheritance, as is
illustrated in Fig.3(b). The up-cast frond to B (then-case, up-
per part of Fig.3(b)) is implemented by adding the offset of the
[D, D.B]-subobject within thed object to the pointer to the ob-
ject. Afterwards, the pointer points to tfie D.B]-subobject. As we
discussed, the subsequent ¢alb£ () requires that the pointer be
down-casted t® again. This cast is implemented by adding the
negative offset-delta(B) of the [D, D.B]-subobject to the pointer.
The else-case (lower part of Fig(b)) is analogous, but involves a
different offset, which happens to be 0. In other words, the offsets
in the then- and else-cases are different, and we do not know until
run-time which offset has to be used. To this end, C++ compilers
typically extend the virtual function table (vtabl&d] with “delta”
values, that, for each vtable entry, record the offset that has to be
added to thethis-pointer in order to ensure that it points to the
correct subobject after the cast (F3fb), left part).

Our semantics correctly captures the information needed for
performing casts, without referring to compiler data structures such
as vtable entries and offsets.

Example 4The following example shows how C++ sometimes
resolves ambiguities in an ad-hoc manner. In the “repeated dia-
mond” of Fig. 1, let us assume that we have declared a method
£() in classTop, and execute the following code:

Left* b = new Bottom(); b->f();

Note that the assignment performs an implicit up-cast to byffe,
and that the method call is statically correct because a single defi-
nition of £() is visible.

However, at run-time the dynamic class of the subobject
[Bottom, Bottom.Left] associated withb is used to resolve the
dynamic dispatch. The dynamic classtofs Bottom, andb has
two Top subobjects containing (andx). As neither definition of

But for the area computation, the hidden border must be taken into £() dominates the other, the callte>£ () is ambiguous.

account, thug () from “Window with border” must be called.

Example 2 Consider the “repeated diamond” of Fit}, and
assume that a methdd) is defined inRight. Now, consider the
following sequence of (implicit and explicit) casts, followed by a
method call:

Top* t; Left* 1; Right* r; Bottom* b;
b = new Bottom();
l=b; t=1; r =
r->f();

(Right*) t;

The down-cast tqRight«) is statically allowed in C++, but

the method call leads to a run-time error (in our semantics, an
exception is thrown). The same example for the “shared diamond”

is statically incorrect in C++ if a C-style cast etatic_cast is

used, because down-casts from shared superclasses are disallowe

However, C++ would allow the use d@fnamic_cast in that case.
Example 3The next example illustrates the need to track some
subobiject information at run-time, and how this complicates the
semantics. Consider the program fragment in Bi@), whereb
points to aB-subobject. This subobject occurs in two different
“contexts”, namely either as[a, D.B] subobject (if the then-case of
theif statement is executed), or as[ArE.B] subobject (if the else-
case is executed). Note that executing the assignrbeataew D()
andb = new E() involve an implicit up-cast to typB. Depending
on the context, the cali->£ () will dispatch toD :: £() orE :: £().
Now, executing the body of thi&) involves an implicit assignment
of b to its this pointer. Since the static type &fis B, and the
static type ofthis is the class containing its method, an implicit
down-cast (ta or to E, depending on the context) is needed. At

Note that the code fof exists only once, but this code will
be called with an ambiguoushis-pointer at run-time: is it the
one pointing to the[Bottom,Bottom.Left.Top] subobject, or
the one pointing to thgBottom, Bottom.Right.Top] subobject?
Each of these subobject has its own figldand thesex’s may
have different values at run-time when referencedtby, lead-
ing to ambiguous program behavior. C++ uses the static type of
b to resolve the ambiguity and generate a unique vtable entry for
£(). As b’s static type isLeft, the “delta” part of the vtable en-
try will cause the dynamic object of tyfottom (and thus the
this-pointer) to be cast tBottom, Bottom.Left.Top], andnot
to [Bottom, Bottom.Right.Top].

While this may seem to be a “natural” way to resolve the ambi-

uity, it makes the result of dynamic dispatch—which, intuitively,

' basedsolely on an object'sdynamictype—additionally depen-
dent on the object’s static type. We can model this solution, but it
makes the semantics of the method call more complex. Therefore,
we decided not to follow C++ in our C+ semantics, but to make
the ambiguity visible by throwing an exception instead. We believe
this is what C++ should also do, instead of hiding the ambiguity
and “polluting” the mechanism of dynamic dispatch.

Example 5C++ allows method overriding withovariant(i.e.,
more specific) return types, and so doe< Q3nrestricted covari-
ance can lead to ambiguities. In the context of the repeated diamond
of Fig. 1 with a fieldx declared in clasSop, consider:

4 We also allowcontravariant (i.e. more general) parameter types in
method overriding. In C++ parameter types must be invariant (otherwise
it is overloading, which we do not support).

class A { Top £(); }
class B : A { Bottom £(); }

A*x a = new B();
(a->f())->x = 42;

Statically, everything seems fine: because the typeisf, the
type of a->f () is Top, which has a (unique) field. However, if
we allowed the redefinition of (), at run-timea->f () evaluates
to aBottom Object and the field access will be ambiguous. Hence,
C++ and C+ requir@nique covarianceif the old return type is”'
and the new return type B, then there must exist a unique path
from D back toC.

3. Formalization

Our meta-language HOL conforms largely to everyday mathemat-
ical notation. This section introduces further non-standard notation
and in particular a few basic data types with their primitive opera-
tions.

3.1 Basic notation — The meta language

3.2 Names, paths, and base classes

Typecnamas the (HOL) type of class names. The (HOL) variables
C andD will denote class name€sandDsare paths. We introduce
the type abbreviation

path= cname list

Programs are denoted By For the moment we do not need to
know what programs look like. Instead we assume the following
predicates describing the class structure of a program:

e P+ C <r D meand is a repeated base classtf
e P+ C <5 D meand is a shared base class©f

e <*means<r U <g)".

e is-class P Omeans clas€ is defined inP.

3.3 Subobjects

We slightly change the appearance of subobjects in comparison
with Rossie-Friedman style: we use a tuple with a class and a path
component where a path is represented as a list of classes. So e.g. a
Rossie-Friedman subobjefottom,Bottom.Left] is translated

TypesThe basic types of truth values, natural numbers and integers into (Bottom, [Bottom,Left]).

are calledool, nat, andint. The space of total functions is denoted
by =-. Type variables are writtefa, ‘b, etc. The notation::T means
that HOL termt¢ has HOL typer.

Pairs come with the two projection functiorist:: ‘a x b= ‘a
andsnd:: ‘a x ‘b = 'b. We identify tuples with pairs nested to the
right: (a, b, c) is identical to(a, (b, ¢)) and’a x 'b x cis identical
toax (b x c).

Sets(type ‘a se) follow the usual mathematical convention.
Lists(type ‘a list) come with the empty lig, the infix construc-
tor -, the infix@ that appends two lists, and the conversion function
setfrom lists to sets. Variable names ending in “s” usually stand for
lists and|xg is the length ofks The standard functiomap which

maps a function to every elementin a list, is also available.

Function updates defined as follows:
f(a:=b) = Ax. ifx=athenb elsefx
wheref :: 'a=> b, x:: ‘aandy:: 'b.

datatype ‘a option= None| Some’a

adjoins a new elemeritoneto a type‘a. All existing elements
in type ‘a are also in‘a option but are prefixed bySome For
succinctness we writéa| instead ofSome aHencebool option
has the value§True|, | False] andNone

Partial functionsare modeled as functions of tyge = b op-
tion, whereNonerepresents undefinedness &me= | y| meanscis
mapped tg. Instead ofa = ‘b optionwe write ‘a — ‘b, call such
functionsmaps, and abbreviaté(x:=|y|) to f(x — y). The lat-
ter notation extends to list§([x1,. . .,Xm] [—] [Y1,- - -,¥n]) Means
f(X1—Y1). . .(Xi—Y;), wherei is the minimum ofmandn. The no-
tation works for arbitrary list expressions on both sideg-ef, not
just enumerations. Multiple updates lik&x—y)(xg+—]ys) can be
written asf (X — y, Xs[—] ys). The map\x. Noneis writtenempty
andempty. . .), where. .. are updates, abbreviates|to.]. For ex-
ample,emptyx—y, xg—]ys) becomegx — y, xs[—] yg.

The domain of a map is defined dsm m= {a | m a# Nong.
Functionmap-ofturns an list of pairs into a map:

map-of [| = empty
map-of (p-ps) = map-of pgfst p— snd p

The subobject definitions are parameterized by a progpam
First we defineSubobjs P, the subobjects whose path consists
only of repeated inheritance relations:

is-class P C
(C, [C]) € Subobjs; P
P-C<grD (D, Cs) € Subobjs; P
(C, C-Cs) € Subobjs; P

Now we defineSubobjs Pthe set of all subobjects:

(C, Cs) € Subobjs; P
(C, C9) € Subobjs P

PHC’'<gD (D, Cs) € Subobjs; P
(C, Cs) € Subobjs P

PHC=<*C’

We have shown that both this definition and the one by Rossie and
Friedman yield pairgC, [C1, ..., C,]) such thatC; <g --- <r
C, and eitheiC = C1 or C <* C’ <5 C; for someC".

3.4 Path functions

Functionlast on lists returns the topmost class in a path (w.r.t. the
class hierarchyhutlastchops off the last element.

Function@, appends two paths. Itis similar @but has to take
into account that the second path may begin with a shared class, in
which case the first path just disappears:

Cs@, Cs’' = iflast Cs= hd Cs then Cs@Qtl Cs’ else Cs’

The following property holds under the assumption that progPam
is well-formed.

If (C, Cs) € Subobjs Pand (last Cs Ds) € Subobjs P
then (C, Cs@,, Ds) € Subobjs P

A well formed program requires certain natural constraints of the
program such as the class hierarchy relation to be irreflexive.
Ordering on paths:

(C, Cs) € Subobjs P (C, Ds) € Subobjs P Cs= butlast Ds
P,C+ CsC! Ds
(C, Cs) € Subobjs P P- last Cs<s D

P,CF CsC! [D]

The reflexive and transitive closure of is writtenC.

4. Abstract syntax of C+ prog = cdecl list
We do not define a concrete syntax for C+, just an abstract syntax. ggi_csl ” ggz;nﬁ:tfl%sescl list x mdecl list
The translation of the C++-subset corresponding to C+ into abstract fdecl _ vnamex t
syntax is straightforward and will not be discussed here. mdecl _ mnamex ?/nethod
In the sequel we use the following (HOL) variable conventions: method — tylist x ty x vname listx expr

V is a (C+) variable namé; a field nameM a method nameg an
expressiony a value, and’ a type. datatype base
In addition tocname(class names) there are also the (HOL)
types vname (variable and field names), ansiname (method
names). We do not assume that these types are disjoint.

Repeats cnamgeShares cname

Figure 5. Abstract program syntax

4.1 References 4.3 Programs

A referencerefers to a subobject within an object. Hence itis a The apstract syntax of programs is given by the type definitions in
pair of anaddressthat identifies the object on the heap ($§6el Fig. 5, wherety is the HOL type of C+ types.
below) and a path identifying the subobject. Formally: A program is a list of class declarations.chass declaration

reference= addr x path consists of the name of the class and the class itsetfadscon-

)) sists of the list of its direct superclass names (marked shared or

The path represents the dynamic context of a subobject as a resultepeated), a list of field declarations and a list of method declara-
of previous casts (as explained §2.4), and corresponds to the tjons. Afield declaration is a pair of a field name and its type. A
result of adding “delta” values to an object pointer in the standard method declaration consists of the method name and the method
vtable” implementation. Note that our semantics does not emulate jtself, which consists of the parameter types, the result type, the

the standard implementation, but is more abstract. parameter names, and the method bodly.

As an example, consider Fig. Let us assume that thelse Note that C+ (like Java, but unlike C++) does not have global
statement is executed, thewill have the reference valu@, [E, B]) variables. Method bodies can access only thieis-pointer and
wherea is the memory address of the n&wbject, andE, B] rep- parameters, and return a value.
resents the fact that this object has been upcaBtandb in fact We refrain from showing the formal definitions (se®)[of
points to theB subobject. the predicates like® - C <z D introduced in§3 as they are

. straightforward. Instead we introduce one more access function:
4.2 Values and Expressions

A C+ value (abbreviatedral) can be e class P Cis the class (more preciselgtass optiof associated

with Cin P.
¢ a boolearBool b whereb :: bool, or
e an integelntg i, wherei :: int, or 5. Type system
* areferenc&efr, wherer :: referenceor C+ types are either primitiveBpoleanand Integed, class types
e the null referenc&ull, or Class G NT (the type ofNull), or Void (the type ofUnit). The
e the dummy valudJnit. corresponding HOL type is callety. The subclass relatiox™

) .)) induces a subtype relatiof onty as follows:
C+ is an imperative but an expression-based language where state-

ments are expressions that evaluateltit. The followingexpres- PFCX'D PLNT<ClassC P-T<T
sions(of HOL typeexpr) are supported by C+: P Class C< Class D - -
e creation of new objectiew C The pointwise extension of to lists is written[<].

e casting:Cast C e

e literal value:val v

¢ binary operatione; <bops> e, (wherebopis one of+ or =)
variable accesgar V and variable assignme¥t:=e

5.1 Typing rules

The core of the type system is the judgmBri - e:: T, whereE
is anenvironment, i.e. a map from variables to their types. We call
T thestatic type ofe.

» field acces®.F{Ds} and field assignmer®;.F{Ds} := &; We will discuss the typing rules (see Fig). construct by con-
(whereDsis the path to the subobject whefés declared) struct, concentrating on object-orientation. The remaining rules can
¢ method calleM(e9 be found elsewhered]. For critical constructs we will also con-
* block with locally declared variablgV:T; e} sider the question of type safety: does the type system guarantee
e sequential compositior; ; & Fhat evall,_latlon cannot get stuck and that, if a value is produced, it
is of the right type.

conditional:if (e) e else & Values are ty i i i

) - ped with their corresponding types, 8gol as
(dq not confuse with H/OLSfb then x else y) Boolean Intg asInteger However, there is no rule to typerefer-
¢ while loop:while (e) e ence soexplicit references cannot be type@+, like Java or ML,

The constructorgal and Var are needed in our meta-language does not allow explicit references for well known reasons.
to disambiguate the syntax. There is no return statement becaus%-_l_l Cast
everything is an expression and returns a value.)) o

The annotatiof{ Ds} in field access and assignment is not part 1YPing casts is non-trivial in C+ because the type system needs
of the input language but is something that a preprocessor, e.g. thel0 prevent ambiguities at run-time (although it cannot do so com-
type checking phase of a compiler, must add. pletely). When evaluatingast C € the object that evaluates to

To ease notation we introduce an abbreviation: may have multiple subobjects of cla€s|f it is an upcast, i.e. if

P.E - e :: Class DandD is a subclass of, we have to check if
refr = Val(Refr) there is a unique!) path fromD to C:

P,EFe:: Class D is-class P C P- path D to C unique V (Y Cs P path C toD viaCs — (C, Cs) € Subobjg; P)
P,EI Cast Ce:: ClassC
PEkFe =Ty PEFe :: To casebopof==T; =To AT = Boolean| + = T; = IntegerA T2 = IntegerA T = Integer

WT1

WT3
P,E+- e <bop> ey :: T
EV=|T] PEFe:T P,EFe: ClassC P C has least F : T via Cs
WT2 WT4
PEFV:=e:T PEFeF{Cs}:T
P,EF e :: Class C P~ C has least F : T viaCs PEF e ::TW_I_5
PEFe .F{Cs} :=ex : T
PEFe: ClassC P C has leastM = (Ts T, m) via Cs PEF es|:] TSWT6
PEFeM(ey:: T

Figure 4. The typing rules
P path D to C unique = Csis the least (w.r.t=) path leading fron€C to a class that declares
31Cs (D, Cs) € Subobjs PA last Cs=C anF. First we define the sélieldDecls P C Fof all (Cs, T) such

Two examples will make this clearer: if we want to cBsttom to thatCsis a valid path leading to a class with Brof typeT:

Top in the repeated diamond in Figy. we have two paths leadingto FieldDecls P C F=

possible subobjectsBottom,Left,Top] and Bottom,Right,Top]. {(CsT)|
So there is no unique path, the cast is ambiguous and the type sys-(C, Cs) € Subobjs PA
tem rejects it. But the same cast in the shared diamond ir2Fgg. (3Bs fs msclass P(last C9 = | (Bs fs, ms)| A map-offs F= [T])}

possible, as there is only one possible path, nantely][
For down-casts we need to rememt&.) that we have chosen
to model a type safe variant etatic_cast, for which C++ has PE C has least F : T via Cs=
fixed the rules: down-casts may only involve repeated inheritance. (cs T) € FieldDecls P C FA
To enforce this restriction we introduce the predicate (V (Cs/, T")eFieldDecls P C EP,C - CsC Cs/)

P path CtoD via Cs = (C, Cs) € Subobjs P last Cs=D If there is no such least path, field access is ambiguous and hence
Combining the checks for up- and down-cast in one rule we obtain not well-typed. We give an example: once again we concentrate on
WT1 (see Fig4). Remember thatC, Cs) € Subobjs P means the repeated diamond in Fifj.and assume that a fieldis defined

Then we select a least element from that set:

thatCsinvolves only repeated inheritance. in classBottom and clas§op. When type checking.x, wheree is
As an example of an ambiguous down-cast, take the repeatedof classBottom, the path components FieldDecls P Bottom are
diamond in Fig.1 and extend it with a shared superclassf Top. [Bottom], [Bottom,Left,Top], [BottomRight,Top].
Casting aBottom object of static clas€ to Top is ambiguous The least element of the path components in this s@bistjom], SO
because there are tWop subobjects. thex in classBottom will be accessed. Note that if naon Bottom
Note that we could have chosen to modighamic_cast just as is declared, then there is no element with a least pafieiiDecls
well. We come back to this point in connection with the semantics and the field access is ambiguous and hence illegal.
in §6.3.2 Field assignment works analogously as shown in WT5. Again

we expect that the necessary casts are already present.
5.1.2 \Variable assignment

The assignment rule WT2 looks puzzling because it requirtes 5.1.5 Method call

have the same type a4 not a subtype, as in C++. That is, we | the call typing rule WT6 the class of eiis used to collect all

expect the programmer (or Some preprocessor) to insert an up-casfjeclarations oM and select the least one. The set of all definitions
if necessary. This is just a simplification of the rule and does not ¢ methodM from classC upwards is defined as

affect the language: these up-casts need to be performed at run-
time and the question is merely if they are inserted explicitly by the MethodDefs P C M=

rogrammer of implicitly by the compiler. {(Cs mthd) |
prog PCEY BY P (C, Cs) € Subobjs PA
5.1.3 Binary operators (3Bsfsms

. class P(last Cg = | (Bs fs, ms)| A map-of ms M= | mthd
As explained above, we assume that all necessary casts are per- (9=1Bs)] P : 2

formed explicitly and hence we expect that both arguments of an This set pairs the method (of typeethod see Fig5) with the path
equality test have the same type. So in the typing rule WT3 for Csleading to the defining class. Among all definitions the least one
binary operations we need not perform any implicit casting. (w.r.t. the ordering on paths) is selected:

5.1.4 Field access and assignment Pt C has least M = mthdvia Cs=

. Cs mthd) € MethodDefs P C M\
The typing rule for field access WT4 is straightforward. It can either EV?CS', 2thd’)eMethodDefs P C MP,C} CsC Cs))

be seen as a rule that takes an expression where field access is

already annotated (b{Cs}), and the rule merely checks that the Unfortunately, the absence of static ambiguity of method lookup is
annotation is correct. Or it can be seen as a rule for computing the not sufficient to avoid ambiguities at run-time. Even if the call is
annotation. The latter interpretation relies on the fact that predicate well-typed,e may evaluate to a class beld@from which there is

P C has least F : T via Cscan computd andCsfrom P, C and no least declaration dfl. We showed this problem in Example 4
F. So it remains to explaiR - C has least F : T via Cs it checks if and will discuss it in detail i186.3.5

state = heapx locals an exception so the semantics does not get stuck. Four exceptions
locals = vname— val are possible in C+OutOfMemoryif there is no more space on the
heap = addr— obj heapClassCasfor a failed castNullPointerfor null pointer access

obj = cnamex subo set andMemberAmbiguoysf a method or field access is ambiguous.
subo = pathx (vname— val) We will explain in the text exactly when an exception is thrown but

will omit showing the corresponding rules.

Figure 6. The type of C+ program states 6.3 Evaluation

Remember thaP + (e;s) = (e',s’) is the evaluation judgment.

The relation[::] is the pointwise extension aof to lists. We For a better understanding of the evaluation rules it is helpful to
expect the actual and formal parameters to have exactly the sameealize that they preserve the following heap invariant: for any
type. This may require explicit casts, as for assignments. object(C, S) on the heap we have
5.2 Method overriding e Scontains exactly the paths starting fr&@n

) . . {Ds| 3fs. (Ds, fs) € S} = {Ds| (C, Ds) € Subobjs B,
In Example 5 we already motivated and stateduh&ue covari-

. . ¢ Sis a (finite) function:
ancerule for return types in method overriding enforced by C+ and V (Csfs), (CS'fs) € S Cs=Cs — fs—fs’
C++. Let us now look ahead to the semantics for a moment. It will ’ ’
be such that ife is of type Class Cand evaluates to a reference Furthermore, if an expressianevaluates taef (a, Cs) then the
(_, Cs) thenlast Cs= C — except in the presence of covariance heap mapsato |(C, S)] such that
where we only have the weakiaist Cs<* C. See Example 5: the
C+ analogue ob->foo() has typeClass Bbecause is of type . .
Class Bar?d hence type()checkir)’(g is based on the definitioiytf)of e last Csis equal to or a subclass of the classedfferred by the
in classB, where its return type i€lass B At run-time, however, type system.
b may refer to & object, in which case the definition 6bo in C We will now discuss the evaluation rules construct by construct,
applies and it may return a reference[C]) to aC object. concentrating on object-orientation, as shown in FigThe re-

maining rules can be found elsewhe® [

¢ Csis the path of a subobject & (Cs fs) € Sfor somefs.

5.3 Well-formed programs

A well-formed C+ programwf-C-prog B must obey all the usual 6.3.1 Object creation

requirements (every method body is well-typed and of the declared Rule BS1 shows the big step rule for object creation. The result
result type (as in assignments, upcasts must be explicit), the clasf evaluatingnew C is a referenceRef (a, [C]) wherea is some
hierarchy is acyclic, etc — for details se@])l The only C+- unallocated address returned by the auxiliary functiew-Addr
specific condition is covariance in the result type combined with the (which returnsNoneif the heap is exhausted, in which case we
uniqueness of paths from the new result clasallteesult classes in throw an OutOfMemoryexception). As a side effecg is made

previous definitions of the same method. to point to the objec(C, S), whereS = init-obj P C is the set
of all subobjects(Cs fs) such that(C, Cs) € Subobjs Pand
6. Big Step Semantics fs:: vname— valis the field table that contains every field declared

. o . . in classlast Csinitialized with its default value (according to its
The big step semantics is a (deterministic) relation between an yyne) We omit the details. Note that C++ does not initialize fields.

initial expression-state pa(|e7s_,) and a final expression-state pair gy desire for type safety requires us to deviate from C++ in this
(e',s'). The syntax of the relation BI- (e,s) = (¢’;s’) andwe say minor aspect.

thate evaluatesto e’. The rules will be such thdinal expressions
are always valuesv@l) or exceptions throw), i.e. final expres- 6.3.2 Cast

sions are completely evaluated. Casting is a non-trivial operation in C+, in contrast to Java. Remem-

6.1 State ber that any object reference contains a path component identifying
)]))) the current subobject which is referenced. A cast changes this path,

The set of states is defined in Fijy.A stateis a pair of eheapand thus selects a different subobject. Hence casting must adjust the

astore (locals). A store is a map from variable names to values. path component of the reference, either by lengthening it (in case

A heap is a map from addresses to objects.object is a pair of of an upcast), or shortening it (in case of a down-cast).

a class name and its subobjectssébobject(subq is a pair of a This mechanism corresponds to Stroustrup’s adjustment of

path (leading to that subobject) and a field table mapping variable pointers by “delta” values. We consider it a prime example of the

names to values. fact that our semantics does not rely on run-time data structures but

The naming convention is thatis a heapl is a store (théocal on abstract concepts.
variables), and a state. Let us first look at the upcast rule BS2: After evaluatetyp a

Note that C+, in contrast to C++, does not allow stack-allocated reference with paties that path is extended (upwards) by a unique
objects: variable values can only be references, but not objects.path Cs' from the end ofCs up to C, which we get by predicate
Objects are only on the heap (as in Java). We do not expect stackpath-via So if we want to casBottom to Left in the repeated
based objects to interfere with multiple inheritance. diamond in Fig.1, the appropriate path iB§ttom,Left], casting

Remember further that a reference contains not just an addressy;i ght to Top in the shared diamond in Fig.uses pathTop].
but also a path. This path selects the current subobject of an object Rule BS3 models thetatic_cast of C++ (§2.3) which for-
and is modified by casts (see below). bids down-casts involving shared inheritance. This means that class
C must occur in the path component of the reference, or the cast is
“wrong”. The rule is deterministic because any class can occur at
C+ supports exceptions. They are essential to prove type soundnessost once in a path.
as certain problems can occur at run-time (e.g. ambiguous method If neither BS2 nor BS3 can be applied, we throuCkssCast
calls) which we cannot prevent statically. In these cases we throw exception.

6.2 Exceptions

new-Addr h= |a|

h’ = h(a+— (C, init-obj P C))

BS1

PF (new C,(h, 1)) = (ref (a, [C]),(N, 1))

P (es0) = (ref (a, C9),s1) P~ path last Csto C via Cs' P I- path last Csto C unique Ds= Cs@, Cs’ BS2
P+ (Cast C es9) = (ref (a, Ds),s1)
Pl (e,50) = (ref (a, Cs@ [C] @ CS'),s) P (es0) = (Valv,(h, 1)) I'=1(V V) BS4
P (Cast C gsy) = (ref (a, Cs@ [C]),s1) P (V:=es) = (Valv,(h, 1)
PE (e1,%) = (Valvy,si) PE (e2,51) = (Val v2,%) binop (bop, vi, v2) = |v| BS5
P (e1 <bops> e2,5%) = (Valv,s;)
P+ (es0) = (ref (a, Cs'),(h, 1)) ha=[(D, 9]
P |- path last C¢ to hd Csunique P |- path last C¢ to hd Csvia Cs’’/ Ds=Cs'@, Cs"" @, Cs (Ds,fs) €S fs F= |v| BS6
PF (eF{Cs},5) = (valv,(h,I))
Pt (e1,5) = (ref (a, Cs'),s1) P (e2,51) = (Valv,(hg, I2)) hea=[(D,9)]

P I path last C< to hd Csunique
(Ds,fs) €S fd = fs(F +— V)

P I pathlast CS tohd Csvia Cs’’
S'=S- {(Ds,fs)} U {(Ds, fs)}

Ds=Cs'@, Cs” @, Cs

hy'=ha(a— (D,S) .

Pt (e1.F{Cs} :=e2,5) = (Valv,(h2’, 12))

P+ (es0) = (ref (a, C9),s1)
hy a=[(C, 9)]

lvs = |png l2" = [this— Ref (a, Cs'), pns[—] vg

PH (pss1) [=] (mapval vs(hg, |2))
Pt C has least M = (Ts T, pns body) via Cs’

P (body(hz, I2")) = (€’,(hs, 13))

BS8

P (eM(ps),s0) = (€/,(hs, I2))

Figure 7. The Big Step rules

Although down-casts along shared inheritance can lead to am-

biguities §5.1.1), this is not necessarily so. For example, a down-
cast in the shared diamond in Fig.from a Bottom object of
static clasSopto classBottomis unambiguous, buttatic_cast,
i.e. rule BS3, will not work: the reference to the object is of the
form (., [Top) but Bottomdoes not appear in paffiop. Never-

theless this cast would be unique, as there exists only one path

with static classBottom namely [Bottonj. In C++, the operator
dynamic_cast can be used in such cases. We could easily model
it as follows: if e evaluates taef (a,) andh a= [(B, -)] then
Cast C e evaluates taef (a, Cs) if Csis the unique path from

B to C. This performs all possible type safe casts and captures

dynamic_cast (modulo the weird restriction that at least one vir-
tual method is declared, sé.3).

6.3.3 \Variable assignment and binary operators

6.3.4 Field access and assignment

Let us first look at field access in rule BS6. There are three paths
involved. Csiis (if the expression is well-typed5.1.4 the path
from the class ofe to the class wher& is declaredCs' is the
path component of the reference tleag¢valuates to. As we have
discussed i§5.2 last C< is in general a subclass of the static class
of e. Hence we need to fill the gap betwe@r' andCs To obtain
the complete path leading to the subobject in wiidives, we have

to find the missing linkCs'’ from last C< to hd Cs And it must be
unique. Ifitis,Ds= Cs' @, Cs"’ @, Csis the path to the subobject
we are looking for. If it is not, we throw #emberAmbiguous
exception.

Field assignment (rule BS7) is similar, except that we now have
to update the heap atwith a new set of subobjects. Note that the
functional nature of this set is preserved. Again, no implicit casts
are applied tov.

The assignment rule BS4 is straightforward because of our assump-6.3.5 Method calll

tion that upcasts from the type efto that ofV are performed ex-
plicitly. Thus both sides have the same type.

The evaluation rule for binary operators BS5 is based on a
functionbinoptaking the operator and its two argument values and
returning an optional result. Optional in order to deal with type
mismatches. The definition dinopfor our two binary operators
and+ is straightforward:

binop (=, v1, V2)
binop (+, Intg i1, Intg i2)
binop (-, -, -)

_BOO' (Vl = VQ)J

[Intg (i1 +i2)]
None

Equality on the lhs is the C+ equality operator, equality in the
middle is definitional equality, and equality on the rhs is the test
for equality.

Addition only yields a value if both arguments are integers. We
could also insist on similar compatibility checks for the equality

Rule BS8, describing method calls, is lengthy, but easy: evatiate
to a referencéa, Cs) and the parameter ligtsto a list of values
ve, look up the clas<C of the object in the heap a, look up
the parameter namgms and bodybody of the least method
visible from C, and evaluate the body in a store that contaliis
and the parameters (having made surewbahdpnshave the same
length). The final store is the one obtained from the evaluation of
the parameters; the one obtained from the evaluatiobodfy is
discarded — remember that C+ does not have global variables.
Method selection follows][7]. We use the same predicate as in
§5.1.5 but here we need the least method definition to determine
the method body uniquely, whereas in the typing rule only the
parameter and return types were of importance. The leas(Gzath
is used to cast ththis reference to the subobject expected by the
selected method.

5[=] is the obvious left-to-right evaluation of expression lists. Saying that

test, but that leads to excessive case distinctions that we want t0the result is of the forrmapval vsis a declarative way of ensuring that it

avoid for reasons of presentation. Just as for assignmeetibes
not perform any implicit casts.

is a list of values and of obtaining the actual valueVis{as opposed to an
expression list).

P+ typeof, v=|T] RT1 P,E,hi-e: Class C Cs#] Pt Chas F:TviaCs' @, Cs Cs#]

RT2
PEhFvalv:T PEh-eF{Cs}:T
P,E,he:NT RT3 P,E,hte: Class C P- C has M= (Ts T, m) via Cs PE,ht es[:] Ts PFTS [<]Ts RT4
P.EhFeF{Cs}: T P.EhFeM(es: T

Figure 8. Run-time type system

The type system ensures that cl@provides or inherits some checking at run-time: this type system is merely the formalization
definition of M. But there might be no least definition, i.e. the call of an invariant which is not checked but whose preservation we
is ambiguous. Such a situation can unfortunately not be ruled out prove. The key rules are shown in F&y.
completely statically, as discussedb 1.5 In such cases we throw Rule RT1 takes care of the fact that small step reduction may
aMemberAmbiguousxception. introduce references into an expression (although the static type

There are some interesting tradeoffs between our formalization system forbids them, se§5.1). The premiseP F typeof, v =
and the approach taken in C++. The approach taken in this paper|T| expresses that the value is of the right typey = Ref (a,
has the property that thesolution of a dynamically dispatched Cs), its type is Class (last Cg providedh a = [(C, _)] and
method call only depends on the dynamic class of the receiver ex-(C, Cs) € Subobjs P
pression This is not the case in C++, where the dynamic class is The main reason why static typing is not preserved by reduc-
used if there exists a unique least path on which the method defini- tion is that the type of subexpressions may decrease with reduction.
tion occurs, but where the static class of the receiver expression isRule RT2 takes care of this for field access. It no longer insists that
used to resolve the call otherwise. Our approach is more uniform in Csleads to the least declaration®{as in WT4) but to some decla-
the sense that it always consistently uses just the dynamic class, andation of F. In the worst case this can lead td/eemberAmbiguous
formalizing the C++ approach would complicate the semantics. exception. Additionally the rule allows a prefds’ to compensate

for the potentially lower clas€ of e. The same phenomenon oc-

6.4 Small Step Semantics curred in rule BS6. Rule RT3 takes careed?{Cs} where the type

Big step rules are easy to understand but cannot distinguish non-of € has reduced t&T, the null type. Since this is going to throw
termination from being stuck. Hence we also hawerall stepse- an exception, and exceptions can have any type, this expression can
mantics where expression-state pairs are gradually reduced. Thehave any type, too.)
reduction relation is writte® - (e,s) — (€’,s") and its transitive Rule RT4 again compensates for the fact that the types involved
reflexive closure i® - (e,s) —* (e',s'). may decreasehas least (in rule WT4) is replaced byas just as

We do not show the rules (for lack of space) but emphasize that for field access. Itis also allowed that the actual argument types are
we have proven the equivalence of the big and small step semanticgmore specific than the declared argument types. There is also a rule

(for well-formed programs): for the case::NT in which casee.M(es) can have any type.
o .) , For well-formed program® we have proved tha® EFe:: T
P (es) = (e's) = (P (es) —" (¢'s)) Afinal €). implies P,E,h - e : T. Heaph is unconstrained as the premise

implies thate does not contain any references.
7. Type Safety Proof

Type safety, one of the hallmarks of a good language design, mean
that the semantics is sound w.r.t. the type systemil-typed ex-
pressions cannot go wrongsoing wrong does not mean throw- Progress and preservation require that all semantic olgjenfsrm
ing an exception but arriving at a genuinely unanticipated situation. to the type constraints imposed by the syntax. We say that a value
The by now standard formalization of this proper88] requires conforms to a typd (written P,h - v :< T) if the type ofv (in the
proving two propertiegporogresgwell-typed expressions can be re- sense of rule RT1) is a subtypefA heap conforms to a program
duced w.r.t. the small step semantics if they are not final yet — the if for every object(C, S) on the heap
small step semantics does not get stuck) preervationor sub-
ject reduction reducing a well-typed expression results in another e if (Cs f) € Sthen(C, Cs) € Subobjs Pand if F is a field of
well-typed expression whose type<sthe original type. typeT declared in claskst Csthenf F = |v| and the type o¥

In the remainder we concentrate on the specific technicalities (in the sense of rule RT1) must be a subtypd of
of the C+ type safety proof. We do not even sketch the actual e jf (C, Cs) € Subobjs Rhen(Cs f) € Sfor somef.
proof, which is routine enough, but all the necessary invariants and
notions without which the proof is very difficult to reconstruct. For |n this case we write® - h /. A storel conforms to a type
a detailed exposition of the Jinja type safety proof, our starting environmentE iff | V = |v| implies E V = |T] such thatv
point, see 9]. For a tutorial introduction to type safety see, for conforms toT. In symbols:P,h - | (:<),, E. If P+ h / and
example, 16]. Ph1 (:<)., E then we writeP,E - (I, h) /.
. From Jinja we have inherited the notionagfinite assignment
7.1 Run-time type system a static analysis that checks if in an expression every variable is
The main complication in many type safety proofs is the fact that initialized before it is read. This is encoded as a predi¢atuch
well-typedness w.r.t. the static type systenmit preserved by the that D e A (whereA is a set of variables) asserts the following
small step semantics. The fault does not lie with the semantics butproperty: if initially all variables imA are initialized, then execution
the type system: for pragmatic reasons it requires properties that areof e does not access an uninitialized variable. For technical reasons
not preserved by reduction and are irrelevant for type safety. Thus Ais in fact of typevname set optiarThat is, if we want to execute
a second type system is needed which is more liberal but closedein the context of a storkewe need to ensurP e |dom ||. SinceD
under reduction. This is known as then-time type systeii] and is completely orthogonal to multiple inheritance we have omitted
the judgment isP,E,h - e : T. Please note that there is no type all details and refer tod] instead.

7.2 Conformance and Definite Assignment

10

7.3 Progress of operations such as method calls and casts that involve class
h hierarchies are defined informally, while several other works (see,
e.g., R3J)) discuss the implementation of these operations in terms
pf compiler data structures such as virtual function pointer tables
(“vtables”).

Rossie and Friedmani 7] were the first to formalize the seman-
tics of operations on C++ class hierarchies in the form of a cal-

Progress means that any (run-time) well-typed expression whic
is not yet not fully evaluated (i.e. final) can be reduced by a rule
of the small step semantics. To prove this we need to assume tha
the program is well-formed, the heap conforms, and the expression
passes the definite assignment test:

If wi-C-progP and P.Eht-e: T andP+h,/ and De|dom] and culus of subobjects, which forms the basis of our previous work
~finale then3e’s’. Pt (e(h, 1)) — (e’s’). on semantics-preserving class hierarchy transformations that was
This theorem is proved by rule induction on the (run-time) typing already mentioned i1 [30, 20, 21, 22. _
rules. It has long been known that inheritance can be modeled using a
combination of additional fields and methods (a mechanism com-
7.4 Preservation monly called “delegation”) 10]. Several authors have suggested

ri|ndependently that multiple inheritance can be simulated using a
&ombination of interfaces and delegati@9,[28, 31]. Nonetheless,

well-typedness. Preservation of well-typedness means that the typeaII tOf theset W(}rrI;s St(i.‘;] Wri” ﬁh?rt.r?;] dﬁ[alr']ng W'thhthe ngpret I'rrﬂ'l_l
of the reduced expressiondsthat of the original expression: cate aspects o modeling muftiple inheritance such as object initial-

ization, implicit and explicit type casts, instanceof-operations, and

We have shown that the semantics preserves the assumptions i

If wi-C-prog PandP - (e;s) — (¢/,s') andPEFs,/ and handling shared and repeated multiple inheritance.
PEhpst-e:Tthen3T.PEhps e : T'"APFT <T. Multiple inheritance also poses significant challenges for C++
wherehp sis the heap component sfAll preservation lemmas are ~ compiler writers because the layout of an object can no longer
shown by induction on the small step rules. reflect a simple linearization of the class hierarchy. As a result,
Extending the preservation lemmas fremto —* (by induc- a considerable amount of research effort has been devoted to the

tion) and combining type preservation with progress yields the design of efficient object layout schemes for C2¥,[26, 34].
main theorem:

If wi-C-prog PandP,E s,/ andP.EF e:: T and 8.3 Other Languages with Multiple Inheritance

D e|dom(lcl s)] and P+ (es) —* (e/,s") and Various models of multiple inheritance are supported in other
- (3e’s". P (e/,s) — (e",s")) then object-oriented languages, and we are aware of a number of pa-
(3v.e'=valvAPhpsv:<T)V pers that explore the semantic foundations of these models.

(3r. €' = Throwr A the-addr(Ref) € dom(hps)). The work by Attaliet al. [1] is similar to ours in spirit but

If the program is well formed, stateconforms to it,e has typeT tr_eats EIffe' rather tha_n C++, whose multlple inheritance model
and passes the definite assignment test worn(Icl s) (wherelcl s differs considerably. Eiffel uses shared inheritance by default; re-
is the store component &f and its—-normal form ise’, then the peated inheritance is not possible, instead repeated members must
following property holds: eithee’ is a value of a type< T or an be uniquely renamed when inherited.

exceptionThrow r such that the address partrois a valid address In several recent languages such as 1B pnd Concord],

in the heap. multiple inheritance arises as a result of allowing classes to over-

ride other classes, in the spirit of BETA's virtual class&f[In Jx
[13], an outer classt; can declare a nested clads. B, which can
8. Related work be overridden by a nested clads.B in a subclassids of A4;. In

There is a wealth of material on formal semantics of object-oriented this caseA; .5 is a subclass afl; .. Shared multiple inheritance
Ject- arises whem,. B also has an explicitly defined superclass. Mem-

languages, but to our knowledge, a formal semantics for a Ianguageber lookup is defined quite differently than in C++ (implicit over-

‘é".'th C+J.“'Iﬁtyle mulltlple |nhgr|tanfce Ihas ant yEt been presented. We riding inheritance takes precedence over explicit inheritance when
Istinguish several categories of related work. selecting a member), but appears to behave similarly in practice.
Nystrom et al. present a type system, operational semantics and
)] S soundness proof for Jx, although the latter is not machine-checked.
Cardelli [4] presents a formal semantics for a form of mUItlple n- Concord B] introduces a notion Ogroupsof C|asses' where a
heritance based on structural subtyping of record types, which a|50groupg may be extended by a subgrogp An implicit form of
extends to function types. Another early paper that claims to give jnheritance exists between a clas declared in group that is
a semantics to multiple inheritance for a language (PCF++) with fyrther bound by a clasg.X in subgroupy’, giving rise to a simi-
record types is3]. It is difficult to relate the language constructs |ar form of shared multiple inheritance as in Jx. Two important dif-
used in each of these works to the multiple inheritance model of ferences, however, are the fact that further binding does not imply
C++. subtyping:¢’. X is not a subtype of. X, and explicit inheritance
8.2 C++Muliple Inheritance takes precedence over implicit overriding when resolving method

: calls. Jolly et al. present a type system and soundness proof (though
Wallace B2] presents an informal discussion of the semantics of not machine-checked) for Concord. Because repeated multiple in-
many C++ constructs, but avoids all the crucial issues. The natural heritance is not supported in either Jx or Concord, the semantics
semantics for C++ presented by Seligmds][does not include for these languages can represent the run-time type of an object
multiple inheritance or covariant return types. Most closely related as a simple type, and there is no need for the subobject and path
to our work is [7], where some basic C++ data types (including information required for modeling C++.
structs but excluding pointers) are specified in PVS; an object Scala [L4] provides a mechanism for symmetrical mixin inher-
model is “in preparation”. itance P] in which a class can inherit members from multiple su-

The complexities introduced by C++-style multiple inheritance perclasses. If members are inherited from two mixin classes, the

are manifold, and have to our knowledge never been formalized inheriting class has to resolve the conflict by providing an explicit
adequately or completely. In the C++ stand&2f][the semantics overriding definition. Scala side-steps the issue of shared vs. re-

8.1 Semantics of Multiple Inheritance

11

peated multiple inheritance by simply disallowing a class to (indi-

rectly) inherit from a class that encapsulates state more than once
(multiply inheriting from abstract classes that do not encapsulate
state—called traits—is allowed, however). The semantic founda-
tions of Scala, including a type system and soundness proof can be[13]

found in [15].

9. Conclusion

The full C+ semantics is 10403 LOC of Isabelle code consist-

ing of 133 definitions and 407 theorems and their accompanying
proofs. These proofs are handcrafted texts combining high-level
proof structures (e.g. inductions and case distinctions) with appeals

to automation of low-level inferences (e.g. simplification or pred-

icate calculus proof search). Processing the complete semantics,

[12] Tobias Nipkow, Lawrence Paulson, and Markus Wenz#da-
belle/HOL — A Proof Assistant for Higher-Order Logiolume

2283 ofLect. Notes in Comp. Sc2002.http://www.in.tum.de/
~nipkow/LNCS2283/.

Nathaniel Nystrom, Stephen Chong, and Andrew. C. Myers. Scalable
extensibility via nested inheritance. Rroc. of OOPSLA'04pages
99-115, 2004.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Sebastian Maneth, &hane Micheloud, Nikolay Mihaylov, Michel
Schinz, Erik Stenman, and Matthias Zenger. An overview of the
scala programming language. Technical Report IC/200464|e
Polytechnique Ecerale de Lausanne, Lausanne, Switzerland, 2004.
Available fromscala.epfl.ch.

Martin Odersky, Vincent Cremet, Christined&kl, and Matthias
Zenger. A nominal theory of objects with dependent typesPriyt.

of ECOOP’03

(14]

(18]

which entails checking all proofs, takes slightly less than 5 minutes [16] Benjamin C. PierceTypes and Programming Languagéhe MIT

and 400MB of RAM space on an Athlon 3200+ with 2GB of RAM.

Trying to put C++ on a formal basis has been interesting but [17] Jonathan G. Rossie, Jr. and Daniel P. Friedman.

quite challenging at times. It was great fun figuring out what C++

means at an abstract level, and this exercise has convinced us

Press, 2002.

An algebraic
semantics of subobjects. Proc. of OOPSLA'95pages 187-199.
ACM Press, 1995.

that its mixture of shared and repeated multiple inheritance is a [18] Jonathan G. Rossie, Jr., Daniel P. Friedman, and Mitchell Wand.

very problematic design. We identified a number of ambiguities

that C++ resolves in ad-hoc ways, and suggested minor semantic

Modeling subobject-based inheritance. Rmoc. of ECOOP’96
volume 1098 ol ect. Notes in Comp. Scpages 248-274, 1996.

variations that enabled us to prove C+ type-safe. Our semantics, [19] Adam Seligman. FACTS: A formal analysis for C++ Williams

for the first time, allows to explain C++ behavior in terms of

College, 1995. Undergraduate thesis.

a well-defined model (as opposed to in terms of run-time data [20] Gregor Snelting and Frank Tip. Understanding class hierarchies using

structures such as vtables), provides a type safety proof which

concept analysisACM TOPLASpages 540-582, 2000.

has been an open problem for many years, and opens the door[21] Gregor Snelting and Frank Tip. Semantics-based composition of

to machine-checked correctness proofs of transformations such

as the automated elimination of multiple inheritance from C++

programs. Hence, our semantics is not just a theoretical exercise[22] Mirko Streckenbach and Gregor Snelting.

but of practical relevance.

References

[1] Isabelle Attali, Denis Caromel, and Sidi Ould Ehmety. A natural
semantics for eiffel dynamic bindind\CM TOPLAS$S18(6):711-729,
1996.

[2] Gilad Bracha and William Cook. Mixin-based inheritance.Piroc.
of OOPSLA/ECOOP’9(ages 303-311, 1990.

[3] V. Breazu-Tannen, C. A. Gunter, and A. Scedrov. Computing with
coercions. IrProc. ACM Conf. LISP and functional programmijng
pages 44-60. ACM Press, 1990.

[4] Luca Cardelli. A semantics of multiple inheritandaformation and
Computation76:138-164, 1988.

[5] Luca Cardelli. Type systems. Ifhe Computer Science and
Engineering Handbook edition, 2004.

[6] Sophia Drossopoulou and Susan Eisenbach. Java is type safe —
probably. InProc. of ECOOP’97 volume 1241 ofLect. Notes in
Comp. Scj.pages 389-418, 1997.

[7] Michale Hohmuth and Hendrik Tews. The semantics of C++ data
types: Towards verifying low-level system components. In D. Basin
and B. Wolff, editors,Theorem Proving in Higher Order Logics,
Emerging Trends Procpages 127-144. UniverattFreiburg, 2003.
Tech. Rep. 187.

[8] Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus
Ostermann. Simple dependent types: ConcordPrbt. of FTfIP'05
2005.

[9] Gerwin Klein and Tobias Nipkow. A machine-checked model for a
Java-like language, virtual machine and compilé&M TOPLAS To
appear.

[10] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. Rroc. of OOPSLA'86pages
214-223, 1986.

[11] Ole Lehrmann Madsen and Birger Moeller-Pedersen. Virtual classes:

A powerful mechanism in object-oriented programming Phoc. of
OOPSLA'89 pages 397—406, 1989.

12

class hierarchies. IRroc. of ECOOP’02volume 2374 of_ect. Notes
in Comp. Scj.pages 562-584, 2002.

Refactoring class
hierarchies with kaba. I®roc. of OOPSLA'04pages 315-330,
2004.

[23] Bjarne Stroustrup. Multiple inheritance for C+&omputing Systems
2(4), 1989.

[24] Bjarne Stroustrup.The Design and Evolution of C++ Addison
Wesley, 1994.

[25] Bjarne Stroustrup.The C++ Standard: Incorporating Technical
Corrigendum No. 1John Wiley, 2 edition, 2003.

[26] Peter F. Sweeney and Michael G. Burke. Quantifying and evaluating
the space overhead for alternative C++ memory layo8tsftware:
Practice and Experien¢&3(7):595-636, 2003.

[27] Peter F. Sweeney and Joseph Gil. Space and time-efficient memory
layout for multiple inheritance. IRProc. of OOPSLA'99pages 256—
275, 1999.

[28] Ewan Tempero and Robert Biddle. Simulating multiple inheritance
in Java.Journal of Systems and SoftwaB®:87-100, 2000.

[29] Krishnaprasad Thirunarayan,u6ter Kniesel, and Haripriyan
Hampapuram. Simulating multiple inheritance and generics in Java.
Computer Language25:189-210, 1999.

[30] Frank Tip and Peter Sweeney. Class hierarchy specializafiota
Informaticag 36:927-982, 2000.

[31] John Viega, Bill Tutt, and Reimer Behrends. Automated delegation is
a viable alternative to multiple inheritance in class based languages.
Technical Report CS-98-3, University of Virginia, 1998.

[32] Charles Wallace. The semantics of the C++ programming language.
In E. Borger, editor,Specification and Validation Methgdsages
131-164. Oxford University Press, 1995.

[33] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundnesdnformation and Computatiqr{115):38—-94, 1994.

[34] Yoav Zibin and Joseph Gil. Two-dimensional bi-directional object
layout. InProc. of ECOOP’03volume 3013 ot.ect. Notes in Comp.
Sci, pages 329-350, 2003.

http://www.in.tum.de/~nipkow/LNCS2283/
http://www.in.tum.de/~nipkow/LNCS2283/

	Introduction
	Multiple inheritance
	An intuitive introduction to subobjects
	The Rossie-Friedman Subobject Model
	Casts in C+
	Examples

	Formalization
	Basic notation --- The meta language
	Names, paths, and base classes
	Subobjects
	Path functions

	Abstract syntax of C+
	References
	Values and Expressions
	Programs

	Type system
	Typing rules
	Cast
	Variable assignment
	Binary operators
	Field access and assignment
	Method call

	Method overriding
	Well-formed programs

	Big Step Semantics
	State
	Exceptions
	Evaluation
	Object creation
	Cast
	Variable assignment and binary operators
	Field access and assignment
	Method call

	Small Step Semantics

	Type Safety Proof
	Run-time type system
	Conformance and Definite Assignment
	Progress
	Preservation

	Related work
	Semantics of Multiple Inheritance
	C++ Multiple Inheritance
	Other Languages with Multiple Inheritance

	Conclusion

