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Verifizierte Konstruktion von SSA-Form

Static-Single-Assignment-Form (SSA-Form) ist eine Eigenschaft
von Zwischenrepräsentationen, die von vielen Compilern für die Op-
timierungsphase verwendet wird. Während der bekannteste Algo-
rithmus zur Konstruktion von SSA-Form (Cytron et al. [9]) auf der
Berechnung von iterierten Dominanzgrenzen basiert, stellen Braun
et al. [7] einen bedeutend einfacheren und trotzdem effizienten Konst-
ruktionsalgorithmus vor. Die vorliegende Arbeit präsentiert eine funk-
tionale Version dieses Algorithmus und einen Beweis ihrer Korrektheit
mittels des Theorembeweisers Isabelle und einer Big-Step-Semantik.

Die Implementierung des Algorithmus in Isabelle/HOL baut dabei
auf einer abstrakten Repräsentation des Quellprogramms als Con-
trol Flow Graph (CFG) auf, in der jeder Block auf seine def- und
use-Menge reduziert ist. Die Semantik arbeitet ebenfalls auf diesem
Graph und stellt sicher, dass die SSA-Konstruktion sowohl in sich
konsistent ist als auch def-use-Beziehungen des Originalprogramms
erhält. Schließlich wird die abstrakte CFG-Repräsentation durch eine
einfache While-Sprache instanziiert, um die Anwendbarkeit der Ergeb-
nisse sicherzustellen.



Abstract

In this thesis, I prove the correctness of a new, simple yet efficient
construction algorithm for static single assignment form described by
Braun et al. [7]. The proof is based on a general, abstract control
flow graph representation and big-step semantics and verified by the
theorem prover Isabelle. The control flow graph is later instantiated
by use of a simple While language to show the satisfiability of the
representation’s assumed properties.
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1 Introduction
Many modern compilers employ intermediate representations in static sin-
gle assignment form (SSA form) for their optimization phases, including
GCC [1], Java HotSpot [13], libFirm [15] and LLVM [14]. The simplicity
of SSA form makes def-use relations explicit and simplifies common opti-
mization algorithms such as common sub-expression elimination or branch
elimination [3].
Multiple algorithms for constructing SSA form have been proposed and im-
plemented in compilers. They differ in implementation complexity, runtime
efficiency and output size. As an integral part of optimizing compilers, there
is special interest in formally proving these algorithms to be correct, i.e. to
preserve the semantics of the original program. This thesis presents a proof
of the correctness of a new algorithm described in Simple and Efficient Con-
struction of Static Single Assignment Form by Braun et al. [7]. The proof is
formulated using the theorem prover Isabelle [19].
Section 2 of this thesis defines SSA form and describes various SSA construc-
tion algorithms including Braun et al.’s. In Section 3, I build an abstract
Isabelle/HOL representation of SSA form. Section 4 presents a declarative,
functional implementation of the basic version of Braun et al.’s algorithm in
Isabelle/HOL that is suitable for a formal proof of correctness. The proof
is presented in Section 5. Section 6 concludes the proof part by showing
that the abstract representations used are indeed instantiable. Finally, in
Section 7, I discuss the runtime efficiency of the implementation.
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2 Background

In this section, I present the definition of SSA form and various SSA con-
struction algorithms and discuss the selection of Braun et al.’s algorithm as
the thesis’ subject. Furthermore, I list the Isabelle tools and frameworks
used in the thesis.

2.1 SSA Form

SSA form was introduced and defined by Rosen et al. [20]. It is based on the
control flow graph (CFG) of the source program. A CFG is constructed by
partitioning the source code into basic blocks, contiguous sequences of state-
ments featuring no jump targets (except possibly for the first instruction) and
no jump instructions (except possibly for the last instruction). These blocks
are then connected according to the program’s jump operations, forming a
directed graph. See Figure 1(b) for an example.

x = f ( ) ;
while ( x > 1) {

i f ( x > 2) {
x = g (x ) ;

}
}
h(x ) ;

(a) program

x = f();1

x > 1?2

h(x);3 x > 2?4

x = g(x);5

6

no yes

no

yes

(b) CFG

x1 = f();1

x0 = φ(x1, x2)
x0 > 1?2

h(x0);3 x0 > 2?4

x3 = g(x0);5

x2 = φ(x0, x3)6

no yes

no

yes

(c) SSA CFG

Figure 1: Example code and its CFG and SSA CFG representations. The
code is partitioned into basic blocks to form the nodes of the CFG. Condi-
tional jumps are described using “yes”/“no” edge annotations. To achieve
SSA form, the variable x is then split into multiple distinct identifiers by use
of indices. Two φ functions have to be inserted for this.
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A CFG is in SSA form if every variable is statically assigned at most once.
In other words, SSA form does not track the mutable variables of the source
program but merely their values – every time a new value is assigned to a
variable in the original program, a unique identifier is inserted into the SSA
CFG to track this value. In this thesis, I will call these identifiers SSA values,
whereas variables will always refer to identifiers in the original CFG.
In the general case, SSA form cannot be achieved by renaming variables
alone. If two SSA values reach the same basic block, a φ function may be
inserted in order to decide which definition to use. A φ function’s parameter
list has the same length as the list of the basic block’s incoming control
flow edges. When control flow enters the basic block through an edge, the
φ function evaluates to the corresponding parameter. Figure 1(c) shows the
result of transforming the example program into SSA form. I will call SSA
values defined by φ functions φ definitions and all other definitions simple
definitions.

2.2 SSA Construction Algorithms
Cytron et al. [9] first described an SSA construction algorithm that is both
efficient and leads to only moderate increase in program size. Specifically,
the algorithm is based on the observation that φ functions are only needed
at the iterated dominance frontiers of nodes containing a variable definition.
Cytron et al. call a valid set of φ function placements that adheres to this con-
dition minimal (see Figure 2(c) for an example of minimizing an SSA CFG).
They present an algorithm to compute the dominance frontiers and φ place-
ments and, using a set of sample programs, argue that the transformation is
effectively linear for practical inputs.
The total number of placed φ functions, however, is not necessarily minimal
yet. The SSA CFG may further be pruned to eliminate φ functions that
(transitively) only have other φ definitions as users (Figure 2(d)). Choi
et al. [8] extend Cytron et al.’s algorithm with liveness analysis to produce
both pruned and minimal SSA form.
Sreedhar and Gao [21] use DJ-graphs, an extension of dominator trees, to
“obtain, on average, more than five-fold speedup over [Cytron et al.’s] algo-
rithm”. While the measurements appear to be erroneous, the algorithm still
outperforms Cytron et al.’s algorithm [6] and is used in e.g. LLVM for this
reason [2].
In contrast to the complex dominance frontiers computation, Aycock and
Horspool [4] propose a simple construction algorithm that starts with a max-
imal SSA form by inserting φ functions for every variable into every basic
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x = 1;
y = 2;

f(x);

y++;

g(x);

(a) original CFG

x0 = 1;
y0 = 2;

x1 = φ(x0, x1)

f(x1);

y1 = y0 + 1;

x2 = φ(x1, x0)
y2 = φ(y0, y1)

g(x2);

(b) unpruned, unminimized SSA

x0 = 1;
y0 = 2;

f(x0);

y1 = y0 + 1;

y2 = φ(y0, y1)
g(x0);

(c) minimized SSA

x0 = 1;
y0 = 2;

f(x0);

y1 = y0 + 1;

g(x0);

(d) pruned and minimized
SSA

Figure 2: Example of pruned and minimized SSA form. (b) shows a trivial
SSA transformation of the input CFG (a). However, x1 is redundant since its
φ function depends on only one SSA value apart from x1 itself. After remov-
ing the definition of x1 and replacing all uses of x1 with x0, x2 = φ(x0, x0)
is redundant, too, and removing it yields minimal SSA form (c). Because y2
has no users, it too can be removed, achieving pruned SSA form (d).
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block. Redundant φ functions are then iteratively eliminated using the fol-
lowing rules:

1. A φ definition of form x = φ(x, . . . , x) can trivially be removed.

2. A φ definition of form x = φ(v1, . . . , vn) where there is another variable
y so that v1, . . . , vn ∈ {x, y} can be removed if all occurences of x are
subsequently replaced by y.

Aycock and Horspool prove that exhaustively applying these rules yields
minimal SSA form for reducible CFGs. They conclude that the algorithm
constructs SSA form on par with Cytron et al.’s algorithm for most con-
structs in programming languages and that the overhead of constructing the
maximal SSA form is measurable but negligible when compared to the total
compilation time.
Like Aycock and Horspool, Braun et al. [7] describe an SSA construction
algorithm they call “simple” because, unlike Cytron et al.’s algorithm, it does
not depend on additional analyses. However, they also aim for efficiency and
demonstrate a slight increase in performance when replacing LLVM’s highly-
optimized implementation of Sreedhar and Gao’s algorithm with their own
algorithm. An important property that leads to this result is that there
is no need to construct a non-SSA CFG prior to executing the algorithm.
Instead, the construction is based directly on the abstract syntax tree and
can additionally employ simple optimizations on the fly.
Whereas the dominance frontier-based algorithms work from the variables’
definition sites by computing their iterated dominance frontiers, Braun et al.’s
algorithm starts at their use sites, implicitly ensuring prunedness of the out-
put. In its most basic version, Braun et al.’s algorithm searches backwards
for reaching definitions of the variable used. If the search encounters a join
point (a node with more than one predecessor), it places a φ function in the
node and recursively continues the search in all predecessor nodes to look
up the new φ function’s parameters. The search stops on nodes containing
a simple definition of the variable or a φ definition placed earlier. There-
fore, the search never visits the same join point twice, ensuring termination.
Figure 3 shows an example lookup. Braun et al. then extend the algorithm
to remove redundant φ functions described by Aycock and Horspool’s rules
above, yielding minimal SSA form for reducible CFGs. Finally, by comput-
ing strongly connected components (SCCs) of redundant φ functions, Braun
et al. achieve minimal SSA form for all inputs.
It is the combination of simplicity and efficiency that made me choose Braun
et al.’s algorithm as the subject of this thesis. The former property makes
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x = f();1

x > 1?2

h(x);3 x > 2?4

x = g(x);5

6

no yes

no

yes

x1 = f();1

x0 = φ(x1, x2)
x0 > 1?2

h(x0);3 x0 > 2?4

x3 = g(x0);5

x2 = φ(x0, x3)6

no yes

no

yes

(1)

(2)

(3)
(4)

(5)

Figure 3: Input CFG and output of Braun et al.’s algorithm. The steps to
resolve the use of x in node 5 are pictured and numbered on top of the right
graph. The algorithm starts in node 5 and searches for a definition through
nodes 4 and 2 (1). Since node 2 is a join point, a new φ definition x0 is
inserted, then the search continues recursively in each predecessor node to
find the corresponding parameter. For the first parameter, a definition is
found in node 1 (2). The lookup for the second parameter enters node 6,
a join point, places a new φ definition x2 (3) and again recurses into its
two predecessors. The first call is eventually stopped by the φ definition
previously inserted in node 2 (4), preventing the algorithm to loop forever,
the second by the simple definition in node 5 (5).

it amenable to formal proving without depending on further theories on ad-
ditional data structures and analyses, whereas the latter one ensures the
algorithm is actually relevant in practice, as evidenced by its experimental
implementation in LLVM. The thesis will focus on the basic version of the
algorithm, which still guarantees prunedness.

2.3 Isabelle and Isabelle/HOL

The proofs of this thesis are written in and verified by the interactive theorem
prover Isabelle2013. Indeed, this very document is produced by Isabelle using
its facility to embed LATEX code between proofs. This approach ensures the
theorems printed here are exactly the ones I proved.
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Isabelle/HOL is Isabelle’s default object logic and the one used in this the-
sis. It reuses common syntax for most mathematical operations and basic
functional notations.
Isabelle/HOL’s basic types include nat and bool. Algebraic data types may
be defined using the keyword datatype, e.g.
datatype ′a option = Some ′a | None
Here ′a is a type variable. The function the :: ′a option ⇒ ′a unwraps
an option object; the result of the None is underspecified. The function
Option.map :: ( ′a ⇒ ′b) ⇒ ′a option ⇒ ′b option applies a function to Some
values and leaves None values unchanged.
Type ′a ⇀ ′b denotes a partial function and is an alias for ′a ⇒ ′b option.
Further HOL types are pairs ( ′a × ′b), sets ( ′a set) and lists ( ′a list). Lists
are either the empty list [] or the result of prepending an element x to another
list xs, denoted by x # xs. xs ! i is the ith element of xs (0-indexed), the
list concatenation operator is called @. The value of the list comprehension
[f x . x ← xs] is the result of applying f to every item of xs. f ‘ A is the
image of set A under the function f.

2.4 Graph Framework and Isabelle Locales
Instead of operating on the CFG representation of a specific language, the al-
gorithm is defined on an abstract graph framework by Simon Kohlmeyer [12].
It contains a hierarchy of locales, an Isabelle abstraction mechanism compa-
rable to type classes [5]. A locale fixes some set of operations (also called its
parameters), then describes assumptions these operations should fulfill. Lem-
mas declared in the context of the locale may use any of these assumptions.
Existing locales can be imported into new ones by use of the + operator.
Figure 4 shows the graph locales used in this theory. The operations declared
here are αe and αn, the projection of a graph onto its edges and its nodes,
respectively, invar, a predicate used by the implementation to disregard in-
consistent instances of type ′g, and inEdges. The latter function returns a
list of edges instead of a set, so there is some non-specified but fixed linear
order on incoming edges. We will later use this order to make a connection
between incoming edges and positional arguments of a φ function.

Before lemmas from a locale can be used, the locale has to be interpreted,
that is, its parameters have to be instantiated with actual functions that
fulfill its assumptions. For node types ′node that have some linear order,
the framework comes with an interpretation based on red-black trees. While
the locales mentioned do not contain any lemmas, the interpretation con-
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locale graph =
fixes
αe :: ′g ⇒ ( ′node × ′edgeD × ′node) set and
invar :: ′g ⇒ bool

locale graph-nodes = graph +
fixes αn :: ′g ⇒ ′node list
assumes αn-correct:
invar g =⇒ set (αn g) = fst ‘ αe g ∪ snd ‘ snd ‘ αe g

locale graph-inEdges = graph +
fixes inEdges :: ′g ⇒ ′node ⇒ ( ′node × ′edgeD × ′node) list
assumes inEdges-correct:
invar g =⇒ set (inEdges g n) = {(-, -, t). t = n} ∩ αe g

Figure 4: Locales of the graph framework used in this thesis

tains code equations that allow us to not only reason about Isabelle/HOL
code using standard Isabelle proofs, but to execute it or export it to other
functional languages. This thesis uses code equations to produce a working
Haskell version of the same code the correctness proof works on.
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3 SSA Representation
In this section, I incrementally build a locale appropriate for character-
izing CFGs in SSA form. The first locale is graph-path, which extends
graph-inEdges to define a predicate characterizing paths through a graph.
Specifically, g ` n−ns→m holds iff there is a path (a list of nodes) ns from
n to m in g. Both n and m are included in ns, i.e. they are the list’s first and
last element, respectively. The predicate is defined inductively as follows:

definition predecessors :: ′g ⇒ ′node ⇒ ′node list where
predecessors g n ≡ map fst (inEdges g n)

inductive path :: ′g ⇒ ′node ⇒ ′node list ⇒ ′node ⇒ bool (- ` -−-→-) where

n ∈ set (αn g) invar g
g ` n−[n]→n

g ` n−ns→m n ′ ∈ set (predecessors g n)
g ` n ′−n ′ # ns→m

The helper function predecessors will replace inEdges in the remaining doc-
ument since the algorithm does not use ′edgeD, the edge data annotations.

Continuing to a full definition of a CFG, locale graph-Entry extends locale
graph-path by assuming every graph g contains a special node Entry g that
has no predecessors and that there is a path from this entry node to every
other node. Finally, locale CFG is defined as an extension of graph-Entry
(Figure 5).

Remember that every node in the CFG represents a basic block in the original
program. Instead of a list of statements of a specific language per node, we
annotate each node with just the def and use set of the corresponding basic
block – these are all the properties needed by a generic SSA construction
algorithm. Since this abstraction loses the order of execution inside the
node, the two sets are required to be disjoint in every node. Also, because
the algorithm will later iterate over the use set of each node, it must be
finite, which of course should be the case for all practical examples of CFGs.
Finally, for convenience, we assume the graph invariant is fulfilled for every
graph, so it can be excluded from the proof text and is only of concern when
interpreting the locale. Figure 6 shows these simplifications applied to the
sample program.
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locale graph-Entry = graph-path +
fixes Entry :: ′g ⇒ ′node
assumes Entry-in-graph: Entry g ∈ set (αn g)
assumes Entry-unreachable: invar g =⇒ inEdges g (Entry g) = []
assumes Entry-reaches:

[[n ∈ set (αn g); invar g]] =⇒ ∃ns. g ` Entry g−ns→n

locale CFG = graph-Entry +
fixes defs :: ′g ⇒ ′node ⇒ ′var set
fixes uses :: ′g ⇒ ′node ⇒ ′var set
assumes defs-uses-disjoint: n ∈ set (αn g) =⇒ defs g n ∩ uses g n = {}
assumes uses-finite: finite (uses g n)
assumes invar : invar g

Figure 5: Definition of locales graph-Entry and CFG

Entry

x = f();1

x > 1?2

h(x);3 x > 2?4

x = g(x);5

6

no yes

no

yes

Entry

{x} := {}1

{} := {x}2

{} := {x}3 {} := {x}4

{y} := {x}5

{x} := {y}5’

{} := {}6

Figure 6: Original CFG and simplified CFG. The simplification removes all
edge annotations and replaces block contents with the respective def and
use sets, separated by “:=”. Block 5 has to be split and a temporary variable
y has to be introduced to preserve the order of execution.
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By extending this locale with φ functions we can finally define an abstract
locale for well-formed SSA CFGs (Figure 7). Because the left-hand sides of φ
definitions in a node are mutually distinct, the set of all φ definitions in the
graph can be characterized as a mapping from ′node × ′var, a pair of con-
taining node and the left-hand side, to the right-hand side, i.e. an argument
list ′var list. Function phiDefs extracts all identifiers of a block defined by φ
functions. Assumption phis-wf ensures the length of an argument list corre-
sponds to the number of predecessors of the containing block. Assumptions
simpleDefs-phiDefs-disjoint and all-defs-disjoint describe the core property
of SSA form: Every SSA value is defined at most once.

type-synonym ( ′node, ′var) phis = ′node × ′var ⇀ ′var list

definition phiDefs :: ( ′node, ′var) phis ⇒ ′node ⇒ ′var set where
phiDefs phis n ≡ {v. (n, v) ∈ dom phis}

locale CFG-SSA = CFG +
fixes phis :: ′g ⇒ ( ′node, ′var) phis
assumes phis-wf :

[[phis g (n,v) = Some args]] =⇒ length (predecessors g n) = length args
assumes simpleDefs-phiDefs-disjoint:
n ∈ set (αn g) =⇒ defs g n ∩ phiDefs (phis g) n = {}

assumes all-defs-disjoint:
[[n ∈ set (αn g); m ∈ set (αn g); n 6= m]] =⇒
(defs g n ∪ phiDefs (phis g) n) ∩ (defs g m ∪ phiDefs (phis g) m) = {}

Figure 7: Definition of locale CFG-SSA
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4 Construction
In this section, I develop a functional version of Braun et al.’s SSA construc-
tion algorithm. All code is contained in the CFG locale, so functions defs
and uses may be used. The goal is to construct a corresponding SSA CFG,
i.e. to define functions that describe a valid CFG-SSA interpretation inside
this locale. In other words, given a valid CFG interpretation, the code should
yield a valid CFG-SSA interpretation.
For the basic version of the algorithm, which generally does not yield minimal
SSA form, we can build a very declarative implementation by splitting it
into two different tasks: looking up the places to insert φ functions into, and
looking up the parameters of a single φ function. The following algorithm
collects a set of the insertion points for a variable v starting from a node n.
fun phiDefNodes-aux :: ′g ⇒ ′var ⇒ ′node list ⇒ ′node ⇒ ′node set where
phiDefNodes-aux g v unvisited n =(

if n /∈ set unvisited ∨ v ∈ defs g n then {}
else fold (op ∪)

[phiDefNodes-aux g v (removeAll n unvisited) m . m ← predecessors g n]
(if length (predecessors g n) 6= 1 then {n} else {})

)

Parameter unvisited, a list of unvisited nodes, is passed along to ensure termi-
nation (unlike sets, Isabelle/HOL lists are implicitly finite). Finding a simple
definition of v terminates the search, too. Otherwise, the function recurses
into all predecessors of n and collects the respective result sets using a fold
over the union operator. n is included if it is a join point.
If the recursion visits the entry node, it places an empty φ function in the
node. This can be interpreted as “garbage in, garbage out”: To create this
situation, there must be a path in the input CFG from the entry node to a
use site without a corresponding definition on it. Section 5 will introduce a
definite assignment assumption to exclude such ill-defined programs.
We may now describe the locations of all φ functions using another fold over
all use sites of v:
definition phiDefNodes :: ′g ⇒ ′var ⇒ ′node set where
phiDefNodes g v ≡ fold (op ∪)

[phiDefNodes-aux g v (αn g) n . n ← αn g, v ∈ uses g n]
{}

Having identified the locations of all φ functions, the remaining task is to
look up their parameters. First, we need a scheme for encoding SSA values.
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A common scheme is to add a sequential index to all occurences of a variable.
However, in the simplified case of this thesis, for every original variable and
node in the SSA CFG there may be at most one φ definition and at most
one simple definition of an SSA value for that variable. Therefore, an SSA
value can be uniquely identified by the following triple:
datatype Def = SimpleDef | PhiDef
type-synonym ( ′node, ′var) ssaVal = ′var × ′node × Def

Looking up a φ function’s parameters is a simple non-branching search:
function lookupDef :: ′g ⇒ ′node ⇒ ′var ⇒ ( ′node, ′var) ssaVal where
lookupDef g n v =(

if n /∈ set (αn g) then undefined
else if v ∈ defs g n then (v,n,SimpleDef )
else case predecessors g n of

[m] ⇒ lookupDef g m v
| - ⇒ (v,n,PhiDef )

)

Definitions in the input CFG are lifted to SimpleDef s. Any join point reached
must contain a PhiDef because of phiDefNodes’s implementation.
Figure 8 shows the actual output generated by the final algorithm and ex-
emplifies the use of ssaVal.
With this, the three function parameters defs, uses and phis of the CFG-SSA
locale can be instantiated with new functions using ssaVal instead of ′var.
definition defs ′ :: ′g ⇒ ′node ⇒ ( ′node, ′var) ssaVal set where
defs ′ g n ≡ (λv. (v,n,SimpleDef )) ‘ defs g n

definition uses ′ :: ′g ⇒ ′node ⇒ ( ′node, ′var) ssaVal set where
uses ′ g n ≡ lookupDef g n ‘ uses g n

definition phis ′ :: ′g ⇒ ( ′node, ( ′node, ′var) ssaVal) phis where
phis ′ g ≡ λ(n,(v,m,def )).
if m = n ∧ n ∈ phiDefNodes g v ∧ def = PhiDef then
Some [lookupDef g m v . m ← predecessors g n]

else None

Function defs ′ simply lifts definitions in the input CFG to SimpleDef s. uses ′

maps the original use sets via lookupDef. phis ′ first verifies the SSA value
(v, m, def ) is a PhiDef in the node n, then looks up v’s definition in each
predecessor node.
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Entry

{x} := {}1

{} := {x}2

{} := {x}3 {} := {x}4

{y} := {x}5

{x} := {y}5’

{} := {}6

Entry

{x1} := {}1

xφ2 = φ(x1, x
φ
6)

{} := {xφ2}
2

{} := {xφ2}3 {} := {xφ2}4

{y5} := {xφ2}5

{x5′} := {y5}5’

xφ6 = φ(xφ2 , x5′)
{} := {}6

Figure 8: Simplified CFG and the SSA CFG generated by the algorithm. SSA
values are printed by appending the number of the node the variable is defined
in as an index to the variable name (in contrast to Figure 3 in which indices
are sequential). PhiDef s are additionally marked with a superscripted φ.

These three functions constitute a valid CFG-SSA interpretation:
theorem constructs-ssa: CFG-SSA αe αn invar inEdges Entry defs ′ uses ′ phis ′

To prove this theorem, the assumptions of both CFG and CFG-SSA have to
be shown based on defs ′, uses ′ and phis ′. The proofs follow directly from the
definitions and do not require any induction.

To show that the SSA CFG is pruned, we first define what a live SSA value
is. If an SSA value is used outside of a φ function, it is marked as live.
Incrementally, if an SSA value marked as live is defined by a φ function, we
mark its parameters as live. This iterative definition, which reflects Isabelle’s
implementation of inductive definitions as least fixed points, prevents an SSA
value from being considered live simply because it is its own user.
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inductive liveVal :: ( ′node, ′var) ssaVal ⇒ bool where

val ∈ uses ′ g n
liveVal val

liveVal val val ′ ∈ set (the (phis ′ g (n, val)))
liveVal val ′

It follows that all φ definitions are live:
theorem phis ′-pruned: val ∈ phiDefs (phis ′ g) n =⇒ liveVal val
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5 Proof of Correctness
While the previous section ends with a proof that the algorithm indeed con-
structs pruned SSA form, it does not state any connection between the input
CFG and the SSA CFG. This section provides a proof of the two CFGs being
semantically equivalent under a custom big-step semantics.
The CFG locale is missing any sort of definite assignment assumption, i.e.
an assurance that on every path from the Entry node to some node n where
a variable v is used, the path contains a node defining v. This was not
needed for the definition of the algorithm. However, we will need it in this
section to define a well-defined semantics. Figure 9 shows the definition of
locale CFG-wf, which formalizes this assumption and is the context for the
remaining part of the section.

Big-step semantics define the state of the program after executing a series of
instructions. State is usually characterized as a mapping of live variables to
their respective current values. Since the simplified CFG locale has no notion
of “value”, they can be equivalently replaced by the node each variable was
last defined in.
type-synonym ( ′node, ′var) state = ′var ⇀ ′node

In the SSA CFG, the state is defined to be the mapping of a variable to
both its last actual definition (an ssaVal) and its last original definition, the

context CFG
begin
definition defAss :: ′g ⇒ ′node ⇒ ′var ⇒ bool where
defAss g m v ≡ ∀ns. g ` Entry g−ns→m −→ (∃n ∈ set ns. v ∈ defs g n)

end

locale CFG-wf = CFG +
assumes def-ass-uses: ∀m ∈ set (αn g). ∀ v ∈ uses g m. defAss g m v
assumes Entry-no-defs: defs g (Entry g) = {}

Figure 9: Definition of locale CFG-wf used for the correctness proof.
def-ass-uses formalizes the definite assignment assumption. Entry-no-defs
is an additional constraint that simplifies the semantics definitions and may
easily be fulfilled by any interpretation by adding a new empty Entry node
to the graph.
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Entry

{x} := {}1

{} := {x}2

{} := {x}3 {} := {x}4

{y} := {x}5

{x} := {y}5’

{} := {}6

Entry

{x1} := {}1

xφ2 = φ(x1, x
φ
6)

{} := {xφ2}
2

{} := {xφ2}3 {} := {xφ2}4

{y5} := {xφ2}5

{x5′} := {y5}5’

xφ6 = φ(xφ2 , x5′)
{} := {}6

Figure 10: When executing the path through nodes 1, 2, 4, 5, the left
CFG results in the state {x → 1, y → 5} and the SSA CFG results in
{x → ((x, 2, PhiDef), 1), y → ((y, 5, SimpleDef), 5)}. Note that the
“original definitions” part of the SSA state matches the state in the original
CFG.

definition left after resolving all φ functions on the path through the CFG
(sufficiently described by its containing node).

type-synonym ( ′node, ′var) ssaState = ′var ⇀ ( ′node, ′var) ssaVal × ′node

Figure 10 provides an example of both states.
The “original definitions” part of ssaState is used for the equivalence proof. A
state and an ssaState may be called equivalent if restricting the ssaState to its
second part yields two identical maps. The “actual definitions” part, on the
other hand, is needed to define a well-defined semantics. When encountering
a φ function, execution is only well-defined if the φ function’s parameter in
question matches the actual definition in the state map.

Both semantics relate a graph and a path (list of nodes) through it to the
state in the last node.
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definition updateState ::
′g ⇒ ′node ⇒ ( ′node, ′var) state ⇒ ( ′node, ′var) state

where
updateState g m s v ≡ if v ∈ defs g m then Some m else s v

inductive validState :: ′g ⇒ ′node list ⇒ ( ′node, ′var) state ⇒ bool
where

validState g [Entry g] Map.empty

validState g ns s last ns ∈ set (predecessors g m)
validState g (ns @ [m]) (updateState g m s)

The semantics operating on the original CFG, validState, starts with an
empty state in the entry node and uses the helper function updateState to
update the map whenever it walks over a definition.

definition ssaUpdateState ::
′g ⇒ ′node ⇒ nat ⇒ ( ′node, ′var) ssaState ⇒ ( ′node, ′var) ssaState

where
ssaUpdateState g m i s v ≡
if v ∈ defs g m then Some ((v,m,SimpleDef ),m)
else case phis ′ g (m,(v,m,PhiDef )) of
Some phiParams ⇒
let (actualDef ,origDef ) = the (s v) in
if actualDef = phiParams ! i then Some ((v,m,PhiDef ),origDef )
else undefined
| None ⇒ s v

inductive ssaValidState :: ′g ⇒ ′node list ⇒ ( ′node, ′var) ssaState ⇒ bool
where

ssaValidState g [Entry g] Map.empty

ssaValidState g ns s
last ns = predecessors g m ! i i < length (predecessors g m)

ssaValidState g (ns @ [m]) (ssaUpdateState g m i s)

The semantics operating on the SSA CFG, ssaValidState, does so, too, and
additionally marks such definitions as SimpleDef s via the helper function
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ssaUpdateState. If there is no simple definition of v in m, ssaUpdateState
continues by looking for a φ function for v in m. If there is one, it verifies
the function’s ith parameter (where i is the index of the predecessor through
which the node was entered) matches the entry in the current state, then
updates the state with a PhiDef. The “original definition” part of the state
is not updated in this case.

The first observation about both semantics is that every path yields a valid
state:
lemma validState-exists:
assumes g ` Entry g−ns→n
obtains s where validState g ns s

lemma ssaValidState-exists:
assumes g ` Entry g−ns→n
obtains s where ssaValidState g ns s

The equivalence theorem is defined as following:
theorem in-lockstep:
assumes validState g ns s and ssaValidState g ns s ′

shows s = Option.map snd ◦ s ′

This definition, however, is not yet sufficient. It would be trivially fulfilled
by leaving phis ′ empty. Only the existence of use sites necessitates inserting
φ functions, which leads to the following additional theorems: Uses in the
SSA CFG correspond to those in the input CFG and are well-defined (if
computation reaches a use site, the used identifier must be the current “actual
definition” in the state).
theorem uses-uses ′:
assumes n ∈ set (αn g)
shows uses g n = fst ‘ uses ′ g n

theorem uses ′-welldefined:
assumes ssaValidState g ns s ′ and (v,n,def ) ∈ uses ′ g (last ns)
obtains val where s ′ v = Some ((v,n,def ), val)

The latter theorem may also be interpreted as saying that every use site of
an SSA value is dominated by its def site, i.e. every execution path to the
use site goes through the definition first.
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6 Interpretation
The proof of correctness is moot if it relies on improper locale assumptions.
Specifically, if any assumption or the set as a whole was unsatisfiable, any
proposition could be trivially concluded. Therefore, I present an interpre-
tation of the CFG-wf locale for CFGs of a simple While language. The
construction algorithm is described by Kohlmeyer [12] and implemented by
the following function:
build :: cmd ⇒ (w-node, state edge-kind) graph
The type cmd describes abstract syntax trees of the While language. The
type ( ′node, ′edge) graph together with its functions mg-αe, mg-αn, etc. con-
stitutes a full interpretation of the graph locales. Whereas edge-kind, the
type of the edge annotations, is not relevant to us, w-node is defined as being
either the entry node (-Entry-), the exit node (-Exit-) or some sequentially
labelled node (- n -).

We reuse the existing graph interpretation to build one for the CFGs of
programs of type cmd:
abbreviation wg-αe c ≡ mg-αe (build c)
abbreviation wg-αn c ≡ mg-αn (build c)
abbreviation wg-invar c ≡ mg-invar (build c)
abbreviation wg-inEdges c ≡ mg-inEdges (build c)
abbreviation wg-Entry c ≡ (-Entry-)

interpretation wg: graph-path wg-αe wg-αn wg-invar wg-inEdges

The lemmas accompanying build allow us to prove most of CFG-wf ’s as-
sumptions. For example,
stdEdges ≡ {((-Entry-), (λx. True)√, (- 0 -)), ((-Entry-), (λx. False)√, (-Exit-))}
build-edgesE1 : e ∈ stdEdges =⇒ e ∈ mg-αe (build cmd)
imply that build c includes edges outgoing from the entry node, thus we
can prove our interpretation of the graph-Entry assumption that (-Entry-) is
always a member of αn g:
lemma wg-Entry-in-αn: (-Entry-) ∈ set (wg-αn c)

One assumption the build function does not guarantee is the def and use sets
being disjoint in every basic block. However, build already creates minimal
basic blocks that each contain exactly one statement. Therefore, it is suf-
ficient to split assignment statements of form V :=e, where V is contained
in e, in the original program by use of a new temporary variable (as seen in
Figure 6). This is done by function transform :: cmd ⇒ cmd; its full defini-
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tion and a proof of it being semantics preserving is included in the Isabelle
theory files.

Chaining build and transform together yields a valid CFG interpretation.
Functions Defs and Uses are from cmd’s theory module.
abbreviation wg-tf-αe c ≡ mg-αe (build (transform c))
abbreviation wg-tf-αn c ≡ mg-αn (build (transform c))
abbreviation wg-tf-invar c ≡ mg-invar (build (transform c))
abbreviation wg-tf-inEdges c ≡ mg-inEdges (build (transform c))
abbreviation wg-tf-Entry c ≡ (-Entry-)
abbreviation wg-tf-defs c ≡ Defs (transform c)
abbreviation wg-tf-uses c ≡ Uses (transform c)

interpretation wg-tf : SSA-CFG.CFG wg-tf-αe wg-tf-αn wg-tf-invar wg-tf-inEdges
wg-tf-Entry wg-tf-defs wg-tf-uses

Having successfully interpreted locale CFG, we can finally export the algo-
rithm to other functional languages such as Haskell:
export-code wg-tf .defs ′ wg-tf .uses ′ wg-tf .phis ′ in Haskell

For example, this is the translated type signature of phiDefNodes:
phiDefNodes :: Cmd -> String -> Set W_node

To show the applicability of the proof of correctness, we still have to interpret
locale CFG-wf. However, cmd gives no guarantee of definite assignment and
therefore neither does the output of build. The typedef keyword allows us to
restrict cmd to instances that are wellformed.
typedef wf-cmd = {c . wg-tf .defAssUses c}

typedef s are only accepted if the resulting type is not empty. This is true
for wf-cmd since the program Skip trivially exhibits the definite assignment
property.
The existing functions operating on cmd can be lifted [10] to ones on wf-cmd.
For example:
setup-lifting type-definition-wf-cmd

lift-definition wf-αe :: wf-cmd ⇒ (w-node × state edge-kind × w-node) set is
wg-tf-αe ..
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Using the type invariant of wf-cmd, the interpretation of CFG-wf follows
directly.

interpretation wg-wf : SSA-Semantics.CFG-wf wf-αe wf-αn wf-invar wf-inEdges
wf-Entry wf-defs wf-uses
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7 Evaluation
While runtime efficiency has never been a focus of the thesis, it should be
noted that the algorithm can exhibit exponential runtime behavior because
of the simplistic use of the unvisited list in the recursion. For example, in the
following program with n if structures, phiDefNodes x walks every of the 2n
paths from x’s use to its definition.
x = f ( ) ;
i f ( x > 1) {} else {}
. . .
i f ( x > 1) {} else {}
y = x ;

To achieve at least polynomial runtime, the Isabelle theory files of this thesis
include a more efficient implementation that is proved to be equivalent. It
is based on an Isabelle/HOL implementation of depth-first search (DFS) by
Nishihara and Minamide [18], ensuring that each node is visited only once.
However, as Figure 11 shows, its runtime is still superlinear. A major factor
that leads to this result is the use of the interpretation presented in Sec-
tion 6: Instead of building the CFG of the program once, every single use of
the CFG functions such as αn or defs wastefully invokes build on the whole
graph again. When adding an interpretation for a real-world language where
performance matters, one may decide to create a more elaborate interpreta-
tion in order to circumvent this problem.

Runtime (s)
n Original DFS-based
7 0.223 0.021
8 0.497 0.031
9 1.179 0.047
10 2.799 0.061
11 6.483 0.098
20 - 0.637
30 - 3.138
40 - 10.375

Figure 11: Runtime of the presented and the improved implementation on
the described input, in seconds. The code was executed in Isabelle/ML on a
Core i5-3320M CPU with 2.6 GHz.
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8 Related Work
While this thesis contains the first formal correctness proof of Braun et al.’s
algorithm known to the author, other SSA construction algorithms have been
verified by use of theorem provers.
Mansky and Gunter [16] describe and verify a simple SSA construction algo-
rithm as an example of their generic Isabelle framework for verifying compiler
optimizations. The algorithm is defined in TRANS, a language proposed by
Kalvala et al. [11] for describing optimizations as CFG transformations, and
operates on programs in a simplified programming language. Since the pa-
per focuses on the use of the TRANS language and the proof framework,
a concise algorithm that yields neither pruned nor minimal SSA form was
chosen; it places φ functions wherever two different definitions of a variable
are reachable (which is not necessarily at a dominance frontier). Mansky
and Gunter prove that the algorithm is partially correct, that is, the return
values of the original and the transformed program are the same, but do not
consider termination. My correctness proof shows neither explicitly because
both return statements and branch conditions have been abstracted away,
but the result of state equivalence at every point in the program implies
both return value and termination equivalence.
Zhao et al. [23] also present a framework for formally verifying optimizations
and proof the correctness of an implementation of Aycock and Horspool’s al-
gorithm to provide an example. The implementation is based on Vellvm [22],
a formal semantics of LLVM’s intermediate representation for the theorem
prover Coq [17]. They also prove that return values are unchanged and ad-
ditionally show that a transformed program terminates and does not enter a
stuck state if the original program does the same.
All papers introducing SSA construction algorithms that are mentioned in
Subsection 2.2 include handwritten proofs of minimality and/or prunedness
in their works, but no actual proof of correctness by way of some operational
semantics, which may anyway not be very meaningful when informally rea-
soning about the given pseudocodes. It is a unique feature of theorem provers
to be able to make solid claims about the very code that can later be executed
or embedded into a larger program.
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9 Conclusion and Future Work
In this thesis, I presented a simplified, functional implementation of Braun
et al.’s [7] SSA construction algorithm together with a proof that its output
is in pruned SSA form and is semantically equivalent to the input CFG.
The algorithm is also executable and can be exported to other functional
languages.
In the future, this work could be extended into a correctness proof of the full
algorithm. Even for reducible CFGs, this means the acts of locating φ in-
sertion points (phiDefNodes) and looking up their parameters (lookupDef )
would need to be intertwined, i.e. implemented as mutually recursive func-
tions or a single big recursive function. The work would be concluded with
an additional proof of minimality and a proof showing that Braun et al.’s
and Cytron et al.’s minimality definitions are equivalent.
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