
Understanding lass hierarhies with KABAM. Strekenbah, G. SneltingUniversit�at Passau
AbstratKABA is a prototype implementation of the Snelting/Tip analysis [2, 3℄ for JAVA. KABAombines dataow analysis, type inferene and onept latties in order to perform a �ne-grained analysis of member-aess patterns in a lass hierarhy together with a given set ofappliations. KABA omputes a transformed hierarhy whih is guaranteed to be 1. oper-ationally equivalent, 2. maximally fatorized, 3. minimal. The new hierarhy in partiularmakes obvious whih lasses an be splitted and whih annot; whih inheritane relationsmust be retained and whih an be disarded. The paper presents several ase studies onmedium-sized JAVA programs.

1 OverviewWe present the �rst ase studies of a new method for analyzing the usage of a lass hierarhy.This method { whih was introdued in [2℄ and is desribed in more detail in [3℄ { provides a�ne-grained analysis of member aess patterns, and enables semantis-preserving reengineeringtransformations. Our method an analyze a lass hierarhy along with any number of programsthat use it, and provide the user with a ombined view reeting the usage of the hierarhy bythe entire set of programs.The method provides amazing insight into the de-fato behaviour of a hierarhy. It onsists ofthe following steps:1. Points-to analysis determines for every pointer a onservative (and sharp) approximation ofthe objet set it may point to at runtime; this is used to approximate dynami binding.2. type onstraints essential for program behaviour are extrated from the soure text.3. all member aesses (that is, the onservative [and sharp℄ approximation of their runtimebehaviour) are extrated.4. the type onstraints are applied, and �nally a onept lattie is omputed.The lattie an be interpreted as a new lass hierarhy whih is guaranteed to be operationallyequivalent to the old one, but minimal and maximally fatorized. In this workshop paper we willnot explain the underlying theory; the interested reader is referred to [1℄ for a general overviewof onept latties in software tehnology, and to [2, 3, 5, 6℄ for the theoretial bakground of ouranalysis and its extensions for JAVA and C++. We will however present several ase studies weperformed with KABA1, a prototype implementation of the analysis for JAVA. Our examples areJAVA programs of up to 15,000 LOC, and while some turned out to be reasonably strutured,KABA revealed high reengineering potential for others.1.1 A small exampleLet us begin with a small example in order to illustrate the method. Figure 1(a) shows a smalllass hierarhy, in whih a lass Person is de�ned that ontains a person's name, address, and1KABA = KlassenAnalyse mit Begri�sAnalyse (lass analysis via onept analysis). KABA is also a popularhoolate drink in Germany. 1



lass String f /* details omitted */ g;lass Address f /* details omitted */ g;enum Faulty f Mathematis, ComputerSiene g;lass Professor; /* forward delaration */lass Person fpubli:String name;Address address;long soialSeurityNumber;g;lass Student : publi Person fpubli:Student(String sn, Address sa, int si)fname = sn; address = sa; studentId = si;g;void setAdvisor(Professor *p)fadvisor = p;g;long studentId;Professor *advisor;g;lass Professor : publi Person fpubli:Professor(String n, Faulty f, Address wa)fname = n; faulty = f;workAddress = wa;assistant = 0; /* default: no assistant */g;void hireAssistant (Student *s)fassistant = s;g;Faulty faulty;Address workAddress;Student *assistant; /* either 0 or 1 assistants */g; (a)

int main()fString s1name, p1name;Address s1addr, p1addr;Student* s1 = /* Student1 */new Student(s1name,s1addr,12345678);Professor *p1 = /* Professor1 */new Professor(p1name,Mathematis,p1addr);s1->setAdvisor(p1);return 0;g (b)int main()fString s2name, p2name;Address s2addr, p2addr;Student* s2 = /* Student2 */new Student(s2name,s2addr,87654321);Professor *p2 = /* Professor2 */new Professor(p2name, ComputerSiene, p2addr);p2->hireAssistant(s2);return 0;g ()
Figure 1: Example: relationships between students and professors. (a) Class hierarhy for express-ing assoiations between students and professors. (b) Example program using the lass hierarhyof Figure 1(a). () Another example program using the lass hierarhy of Figure 1(a).
soialSeurityNumber. Classes Student and Professor are derived from Person. Studentshave an identi�ation number (studentId), and a thesis advisor if they are graduate students.A onstrutor is provided for initializing Students, and a method setAdvisor for designating aProfessor as an advisor. Professors have a faulty and a workAddress, and a professor mayhire a student as a teahing assistant. A onstrutor is provided for initialization, and a methodhireAssistant for hiring a Student as an assistant. Details for lasses Address and String arenot provided; in the subsequent analysis these lasses will be treated as \atomi" types.Figure 1(b) and () show two programs that use the lass hierarhy of Figure 1(a). In the�rst program, a student and a professor are reated, and the professor is made the student'sadvisor. The seond program reates another student and professor, and here the student is madethe professor's assistant. The example is ertainly not perfet C++ ode, but looks reasonableenough at �rst glane.Figure 2 shows the lattie omputed by our method for the lass hierarhy and the two exampleprograms of Figure 1. Ignoring a number of details, the lattie may be interpreted as follows:� The lattie elements (onepts) may be viewed as lasses of a restrutured lass hierarhythat preisely reets the usage of the original lass hierarhy by the lient programs.� The ordering between lattie elements may be viewed as inheritane relationships in therestrutured lass hierarhy.� A variable v has type C in the restrutured lass hierarhy if v ours immediately belowonept C in the lattie.

2



Student::advisor Person::name

Professor::assistant Student::advisor p s p1 s2

Student2

Student::Student()
Student::studentId
Person::address

Professor::Professor()
Professor::workAddress

Professor::faculty
s1

Professor1

Professor::assistant

Person::socialSecurityNumber

p2

Professor::hireAssistant()

Student1 Professor2

Student::setAdvisor()

Figure 2: Lattie for Student/Professor example.
� A member m ours in lass C if m appears diretly above onept C in the lattie.Examining the lattie of Figure 2 aording to this interpretation reveals the following inter-esting fats2:� Data member Person::soialSeurityNumber is never aessed (i.e. dead), beause novariable appears below it. This illustrates situations where sublassing is used to inherit thefuntionality of a lass, but where some of that funtionality is not used.� Data member Person::address is only used by students, and not by professors (for pro-fessors, the data member Professor::workAddress is used instead, perhaps beause theirhome address is on�dential information). This illustrates a situation where the member ofa base lass is used in some, but not all derived lasses.� No members are aessed from parameters s and p, and from data members advisor andassistant. This is due to the fat that no operations are performed on a student's advisor, oron a professor's assistant. Suh situations are typial of redundant, inomplete, or erroneousode and should be examined losely.� The analyzed programs reate professors who hire assistants (Professor2), and professorswho do not hire assistants (Professor1). This an be seen from the fat that methodProfessor::hireAssistant() appears above the onept labeled Professor2, but notabove the onept labeled Professor1.� There are students with advisors (Student1) and students without advisors (Student2).This an be seen from the fat that data member Student::setAdvisor appears above theonept labeled Student1, but not above the onept labeled Student2.� Class Student's onstrutor does not initialize the advisor data member. This an be seenfrom the fat that attribute Student::advisor does not appear above attribute Student::Student()in the lattie3.One an easily imagine how the above information might be used as the basis for restruturingthe lass hierarhy. First of all, the lattie provides detailed insight into the de-fato behaviour ofthe hierarhy: due to the priniple of onservative approximation, it is guaranteed that a variablewill not aess a member if it does not appear below the member in the lattie. Furthermore, thelattie is maximally fatorized (in partiular, ommon attributes are fatored out in superlasses)and minimal (it is the smallest lattie whih is operationally equivalent and maximally fatorized).2The labels Student1, Professor1, Student2, and Professor2 that appear in the lattie represent the types ofthe heap objets reated by the example programs at various program points (indiated in Figures 1(b) and ()using omments).3Student::Student() also represents the this-pointer of the method.3



One possibility would thus be a tool to automatially generate restrutured soure ode from theinformation provided by the lattie, similar to the approah taken in [5, 6℄.However, from a redesign perspetive, we believe that an interative approah would be moreappropriate in order to improve software-tehnologial riteria suh as high ohesion, low oupling,and long-term stability. For example, the programmer doing the restruturing job may deide thatthe data member soialSeurityNumber should be retained in the lass hierarhy beause it maybe needed later. In the interative tool we envision, one ould indiate this by moving up in thelattie the attribute under onsideration, soialSeurityNumber. The programmer may alsodeide that ertain �ne distintions in the lattie are unneessary. For example, one may deidethat it is not neessary to distinguish between professors that hire assistants, and professors thatdon't. In an interative tool, this distintion ould be removed by merging the onepts forProfessor1 and Professor2.
2 Case studies2.1 jEditOur �rst example is \jEdit", a text editor with useful features like syntax oloring and regularexpression searh (about 12000 LOC inluding JavaDo doumentation)4. Figure 3 shows the orig-inal hierarhy of all lasses shipped with \jEdit". Five separate subsystems are visible, onernedwith { from top to bottom { input modes, editor ommands, editor modes, regular expressions,and syntax highlighting. Several singleton lasses without any inheritane relationship providebasi and auxiliary funtionality. All original subhierarhies are very at.The lattie alulated by KABA (�gure 4) onsists of several independent substrutures, whihorrespond to the subsystems from the original hierarhy. Most of the original singleton lasses,as well as the \input mode" subsystem, exatly reprodue in the right hand part of the lattie,showing no reengineering potential. Note also that three subsystems (\editor ommands", \editormodes", \syntax highlighting") are based on dynami typing: the lasses of their objets areomputed at runtime. These subsystems therefore do not reappear in �gure 4.5One single lass however has beome a diamond (�gure 5). Hene KABA demonstrates thatthis lass an be split up into several lasses, beause only the objets below the diamond's bottomnode need aess to all members of the original lass.Most interesting however is the leftmost part of the lattie: the \regular expressions" subsystemhas beome a omplex struture, exposing lots of details about the use of the original lasses (�gure6). Some sublasses of the original base lass \REToken" are just reprodued by KABA (e.g.\RETokenBakRef", \RETokenEnd" at \RETokenRange" on the right side of �gure 6). But theoriginal sublass \RE" has been distributed to many di�erent nodes (left hand side of �gure 6);most of them representing non-abstrat lasses. Thus the lattie presents an optimal splitting and4version 1.2�nal, available from http://www.gjt.org/~sp/jedit.html5None of the available analysis methods for statially typed languages an handle dynami typing. Some rely onadditional user information, while other reengineeering tools { inluding KABA { just leave suh ode unhanged.

Figure 3: Original lass hierarhy for \jEdit" program
4



Figure 4: Lattie for \jEdit"

Figure 5: Details for \jEdit": nodes for original \RESyntax" lass
fatoring for the original sublass \RE", whih is guaranteed to be operationally equivalent. Notethat the reengineer might merge some of the lass proposals again, due to ohesion and ouplingonsiderations. KABA will prohibit merges whih might orrupt operational equivalene.2.2 JASThe seond example is \JAS", a java byteode assembler, inluding a Sheme-like sripting lan-guage (about 5400 LOC)6. Its original lass hierarhy is shown in �gure 7. Among various singlelasses and three small inheritane trees it shows a huge struture with more than 50 lasses atthe top. These lasses are part of the sripting language implementation. The top lass is \Obj"and all but 4 lasses derived from \Obj" additionally implement an interfae \Proedure". Eahof these lasses represents a funtion like \Add" or \Sub" in the sripting language.In the KABA lattie (�gure 8) this huge struture is reprodued basially unmodi�ed (the �guredoes not show the whole lattie), demonstrating the original design was good. More interesting inthis example is one of the small trees, namely the one with base lass \Insn". The leftmost partin the lattie ontains \Insn" and its original sublasses (�gure 9). All but one sublass of \Insn"ontained only a di�erent onstrutor, and these sublasses are reprodued identially.The rightmost node however ontains all members of the original sublass \Label". This newlass is di�erent from the others, beause it does not use the methods \Insn.size" and \Insn.write"like all other sublasses. A loser look reveals that these lasses are all dealing with the repre-sentation of ertain byteode instrutions, but \Label" is about byteode addressing. The imple-mentations of \size" and \write" in \Label" do not ontain any ode, so they an be onsideredamputated. An even loser look reveals that the \resolv" funtion does not exeute any useful6version 0.4, available from http://www.sbkteh.org/jas.html

5



Figure 6: Details for \jEdit": substruture for \REToken" (not all labels shown)
ode when alled from a \Label" objet. This demonstrates that the original subhierarhy shouldbe restrutured: \Label" does not share any ode with the other sublasses, thus it does not needa ommon base lass with them.The new lasses for sublasses of the \InsnOperand" lass show a similar phenomenon (�gure10). Two lasses (\UnsignedByteWideOperand" and \IinOperand" on the left hand side) areseparated from the rest, just like \Label" was. They have own implementations of the method\writePre�x", while all other sublasses share the same implementation. A look at the soure odereveals that this time the other lasses use a dummy implementation of \writePre�x" whih has nofuntionality; only the separated lasses atually have ode for \writePre�x". This demonstrates\writePre�x" an be removed from \InsnOperand" and put into a new lass, from whih theseparated lasses an be derived.

Figure 7: Original lass hierarhy for the \JAS" example
6



Figure 8: Lattie for \JAS"

Figure 9: Details for \JAS": substruture for \Insn" (not all labels shown)
2.3 HanoiOur last example is a program alled \Hanoi". This program is an interative applet version ofthe well-known \Towers of hanoi" problem, shipped with Jax [4℄. The original lass hierarhy isshown in �gure 11. The lattie derived with KABA is shown in �gure 12.The resulting lattie is omparable in size to the original hierarhy. In fat, the struture ofboth hierarhies is quite similar, indiating that reengineering potential is quite low. For example,the GUI lass with three di�erent sublasses for di�erent platforms in the left part of �gure 11repliates exatly in the middle of �gure 12. In some ases however KABA proposes to splitlasses: �gure 12 also presents a detail, where a lass from the original program has been split intotwo subhierarhies; the seond of these has again a sublass. A look at the soure ode revealsthat this proposals makes perfet sense from a software engineering viewpoint.In the right part of the lattie, the little subhierarhy with three sublasses from �gure 11beomes a omplex sublattie, namely the rightmost substruture in �gure 12. The originallasses use two di�erent onstrutors, whih generates two sub-substrutures in the lattie. Butin order to maintain high ohesion, the original lasses should not be splitted. Note that muh ofthe subhierarhy with four sublasses (lower middle in �gure 11) is unused and therefore does notreappear in �gure 12.

7



Figure 10: Details for \JAS": substruture for \InsnOperand" (not all labels shown)

Figure 11: Original lass hierarhy for \Hanoi" program
3 ConlusionOur analysis is perhaps the most expensive analysis of objet-oriented programs available at themoment. But is is also one of the most powerful methods, due to its unique ombination of points-to analysis, type onstraints, and onept latties. The method inludes lassi analyses suh asdead members or useless variables as speial ases. The struture theory of onept latties (notdisussed in this paper) provides lattie simpli�ations whih preserve operational equivalene,but inrease quality fators suh as low oupling and high ohesion.Our preliminary ase studies have indiated the usefulness of the analysis as a basis for reengi-neering, but the method an also be used for quality assesment during initial development. Itturned out that the JAVA examples we analysed were all reasonably well strutured, and of ourse

Figure 12: \Hanoi" lattie with details
8



the real \market" for the method are big old C++ programs. However the omplexity of both thelanguage and the method itself seem to prohibit an appliation to C++ right now. We hope thatthis situation will hange within the next two years.Aknowledgements. Frank Tip, beeing a o-inventor of the method, provided valuablesuggestions for the ase studies. Andreas B�ogeman supported the implementation of KABA. Thiswork is funded by the Deutshe Forshungsgemeinshaft, grant Sn11/7-1.
Referenes[1℄ G. Snelting. Conept analysis { a new framework for program understanding. In Pro. ACMSIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering(PASTE), pages 1{10, Montreal, Canada, June 1998. ACM SIGPLAN Noties 33(7).[2℄ G. Snelting and F. Tip. Reengineering lass hierarhies using onept analysis. In Pro. ACMSIGSOFT Symposium on the Foundations of Software Engineering, pages 99{110, Orlando,FL, November 1998.[3℄ G. Snelting and F. Tip. Reengineering of lass hierarhies using onept analysis. Submittedfor publiation, 1999.[4℄ F. Tip, C. La�ra, P. F. Sweeney, and D. Streeter. Size matters: reduing the size of java lass�le arhives. In Pro. OOPSLA '99, 1999. to appear.[5℄ F. Tip and P. Sweeney. Class hierarhy speialization. In Proeedings of the Twelfth AnnualConferene on Objet-Oriented Programming Systems, Languages, and Appliations (OOP-SLA'97), pages 271{285, Atlanta, GA, 1997. ACM SIGPLAN Noties 32(10).[6℄ F. Tip and P. F. Sweeney. Class hierarhy speialization. Tehnial Report RC21111, IBMT.J. Watson Researh Center, February 1998. Submitted for publiation.

9


