
Understanding 
lass hierar
hies with KABAM. Stre
kenba
h, G. SneltingUniversit�at Passau
Abstra
tKABA is a prototype implementation of the Snelting/Tip analysis [2, 3℄ for JAVA. KABA
ombines data
ow analysis, type inferen
e and 
on
ept latti
es in order to perform a �ne-grained analysis of member-a

ess patterns in a 
lass hierar
hy together with a given set ofappli
ations. KABA 
omputes a transformed hierar
hy whi
h is guaranteed to be 1. oper-ationally equivalent, 2. maximally fa
torized, 3. minimal. The new hierar
hy in parti
ularmakes obvious whi
h 
lasses 
an be splitted and whi
h 
annot; whi
h inheritan
e relationsmust be retained and whi
h 
an be dis
arded. The paper presents several 
ase studies onmedium-sized JAVA programs.

1 OverviewWe present the �rst 
ase studies of a new method for analyzing the usage of a 
lass hierar
hy.This method { whi
h was introdu
ed in [2℄ and is des
ribed in more detail in [3℄ { provides a�ne-grained analysis of member a

ess patterns, and enables semanti
s-preserving reengineeringtransformations. Our method 
an analyze a 
lass hierar
hy along with any number of programsthat use it, and provide the user with a 
ombined view re
e
ting the usage of the hierar
hy bythe entire set of programs.The method provides amazing insight into the de-fa
to behaviour of a hierar
hy. It 
onsists ofthe following steps:1. Points-to analysis determines for every pointer a 
onservative (and sharp) approximation ofthe obje
t set it may point to at runtime; this is used to approximate dynami
 binding.2. type 
onstraints essential for program behaviour are extra
ted from the sour
e text.3. all member a

esses (that is, the 
onservative [and sharp℄ approximation of their runtimebehaviour) are extra
ted.4. the type 
onstraints are applied, and �nally a 
on
ept latti
e is 
omputed.The latti
e 
an be interpreted as a new 
lass hierar
hy whi
h is guaranteed to be operationallyequivalent to the old one, but minimal and maximally fa
torized. In this workshop paper we willnot explain the underlying theory; the interested reader is referred to [1℄ for a general overviewof 
on
ept latti
es in software te
hnology, and to [2, 3, 5, 6℄ for the theoreti
al ba
kground of ouranalysis and its extensions for JAVA and C++. We will however present several 
ase studies weperformed with KABA1, a prototype implementation of the analysis for JAVA. Our examples areJAVA programs of up to 15,000 LOC, and while some turned out to be reasonably stru
tured,KABA revealed high reengineering potential for others.1.1 A small exampleLet us begin with a small example in order to illustrate the method. Figure 1(a) shows a small
lass hierar
hy, in whi
h a 
lass Person is de�ned that 
ontains a person's name, address, and1KABA = KlassenAnalyse mit Begri�sAnalyse (
lass analysis via 
on
ept analysis). KABA is also a popular
ho
olate drink in Germany. 1




lass String f /* details omitted */ g;
lass Address f /* details omitted */ g;enum Fa
ulty f Mathemati
s, ComputerS
ien
e g;
lass Professor; /* forward de
laration */
lass Person fpubli
:String name;Address address;long so
ialSe
urityNumber;g;
lass Student : publi
 Person fpubli
:Student(String sn, Address sa, int si)fname = sn; address = sa; studentId = si;g;void setAdvisor(Professor *p)fadvisor = p;g;long studentId;Professor *advisor;g;
lass Professor : publi
 Person fpubli
:Professor(String n, Fa
ulty f, Address wa)fname = n; fa
ulty = f;workAddress = wa;assistant = 0; /* default: no assistant */g;void hireAssistant (Student *s)fassistant = s;g;Fa
ulty fa
ulty;Address workAddress;Student *assistant; /* either 0 or 1 assistants */g; (a)

int main()fString s1name, p1name;Address s1addr, p1addr;Student* s1 = /* Student1 */new Student(s1name,s1addr,12345678);Professor *p1 = /* Professor1 */new Professor(p1name,Mathemati
s,p1addr);s1->setAdvisor(p1);return 0;g (b)int main()fString s2name, p2name;Address s2addr, p2addr;Student* s2 = /* Student2 */new Student(s2name,s2addr,87654321);Professor *p2 = /* Professor2 */new Professor(p2name, ComputerS
ien
e, p2addr);p2->hireAssistant(s2);return 0;g (
)
Figure 1: Example: relationships between students and professors. (a) Class hierar
hy for express-ing asso
iations between students and professors. (b) Example program using the 
lass hierar
hyof Figure 1(a). (
) Another example program using the 
lass hierar
hy of Figure 1(a).
so
ialSe
urityNumber. Classes Student and Professor are derived from Person. Studentshave an identi�
ation number (studentId), and a thesis advisor if they are graduate students.A 
onstru
tor is provided for initializing Students, and a method setAdvisor for designating aProfessor as an advisor. Professors have a fa
ulty and a workAddress, and a professor mayhire a student as a tea
hing assistant. A 
onstru
tor is provided for initialization, and a methodhireAssistant for hiring a Student as an assistant. Details for 
lasses Address and String arenot provided; in the subsequent analysis these 
lasses will be treated as \atomi
" types.Figure 1(b) and (
) show two programs that use the 
lass hierar
hy of Figure 1(a). In the�rst program, a student and a professor are 
reated, and the professor is made the student'sadvisor. The se
ond program 
reates another student and professor, and here the student is madethe professor's assistant. The example is 
ertainly not perfe
t C++ 
ode, but looks reasonableenough at �rst glan
e.Figure 2 shows the latti
e 
omputed by our method for the 
lass hierar
hy and the two exampleprograms of Figure 1. Ignoring a number of details, the latti
e may be interpreted as follows:� The latti
e elements (
on
epts) may be viewed as 
lasses of a restru
tured 
lass hierar
hythat pre
isely re
e
ts the usage of the original 
lass hierar
hy by the 
lient programs.� The ordering between latti
e elements may be viewed as inheritan
e relationships in therestru
tured 
lass hierar
hy.� A variable v has type C in the restru
tured 
lass hierar
hy if v o

urs immediately below
on
ept C in the latti
e.

2



Student::advisor Person::name

Professor::assistant Student::advisor p s p1 s2

Student2

Student::Student()
Student::studentId
Person::address

Professor::Professor()
Professor::workAddress

Professor::faculty
s1

Professor1

Professor::assistant

Person::socialSecurityNumber

p2

Professor::hireAssistant()

Student1 Professor2

Student::setAdvisor()

Figure 2: Latti
e for Student/Professor example.
� A member m o

urs in 
lass C if m appears dire
tly above 
on
ept C in the latti
e.Examining the latti
e of Figure 2 a

ording to this interpretation reveals the following inter-esting fa
ts2:� Data member Person::so
ialSe
urityNumber is never a

essed (i.e. dead), be
ause novariable appears below it. This illustrates situations where sub
lassing is used to inherit thefun
tionality of a 
lass, but where some of that fun
tionality is not used.� Data member Person::address is only used by students, and not by professors (for pro-fessors, the data member Professor::workAddress is used instead, perhaps be
ause theirhome address is 
on�dential information). This illustrates a situation where the member ofa base 
lass is used in some, but not all derived 
lasses.� No members are a

essed from parameters s and p, and from data members advisor andassistant. This is due to the fa
t that no operations are performed on a student's advisor, oron a professor's assistant. Su
h situations are typi
al of redundant, in
omplete, or erroneous
ode and should be examined 
losely.� The analyzed programs 
reate professors who hire assistants (Professor2), and professorswho do not hire assistants (Professor1). This 
an be seen from the fa
t that methodProfessor::hireAssistant() appears above the 
on
ept labeled Professor2, but notabove the 
on
ept labeled Professor1.� There are students with advisors (Student1) and students without advisors (Student2).This 
an be seen from the fa
t that data member Student::setAdvisor appears above the
on
ept labeled Student1, but not above the 
on
ept labeled Student2.� Class Student's 
onstru
tor does not initialize the advisor data member. This 
an be seenfrom the fa
t that attribute Student::advisor does not appear above attribute Student::Student()in the latti
e3.One 
an easily imagine how the above information might be used as the basis for restru
turingthe 
lass hierar
hy. First of all, the latti
e provides detailed insight into the de-fa
to behaviour ofthe hierar
hy: due to the prin
iple of 
onservative approximation, it is guaranteed that a variablewill not a

ess a member if it does not appear below the member in the latti
e. Furthermore, thelatti
e is maximally fa
torized (in parti
ular, 
ommon attributes are fa
tored out in super
lasses)and minimal (it is the smallest latti
e whi
h is operationally equivalent and maximally fa
torized).2The labels Student1, Professor1, Student2, and Professor2 that appear in the latti
e represent the types ofthe heap obje
ts 
reated by the example programs at various program points (indi
ated in Figures 1(b) and (
)using 
omments).3Student::Student() also represents the this-pointer of the method.3



One possibility would thus be a tool to automati
ally generate restru
tured sour
e 
ode from theinformation provided by the latti
e, similar to the approa
h taken in [5, 6℄.However, from a redesign perspe
tive, we believe that an intera
tive approa
h would be moreappropriate in order to improve software-te
hnologi
al 
riteria su
h as high 
ohesion, low 
oupling,and long-term stability. For example, the programmer doing the restru
turing job may de
ide thatthe data member so
ialSe
urityNumber should be retained in the 
lass hierar
hy be
ause it maybe needed later. In the intera
tive tool we envision, one 
ould indi
ate this by moving up in thelatti
e the attribute under 
onsideration, so
ialSe
urityNumber. The programmer may alsode
ide that 
ertain �ne distin
tions in the latti
e are unne
essary. For example, one may de
idethat it is not ne
essary to distinguish between professors that hire assistants, and professors thatdon't. In an intera
tive tool, this distin
tion 
ould be removed by merging the 
on
epts forProfessor1 and Professor2.
2 Case studies2.1 jEditOur �rst example is \jEdit", a text editor with useful features like syntax 
oloring and regularexpression sear
h (about 12000 LOC in
luding JavaDo
 do
umentation)4. Figure 3 shows the orig-inal hierar
hy of all 
lasses shipped with \jEdit". Five separate subsystems are visible, 
on
ernedwith { from top to bottom { input modes, editor 
ommands, editor modes, regular expressions,and syntax highlighting. Several singleton 
lasses without any inheritan
e relationship providebasi
 and auxiliary fun
tionality. All original subhierar
hies are very 
at.The latti
e 
al
ulated by KABA (�gure 4) 
onsists of several independent substru
tures, whi
h
orrespond to the subsystems from the original hierar
hy. Most of the original singleton 
lasses,as well as the \input mode" subsystem, exa
tly reprodu
e in the right hand part of the latti
e,showing no reengineering potential. Note also that three subsystems (\editor 
ommands", \editormodes", \syntax highlighting") are based on dynami
 typing: the 
lasses of their obje
ts are
omputed at runtime. These subsystems therefore do not reappear in �gure 4.5One single 
lass however has be
ome a diamond (�gure 5). Hen
e KABA demonstrates thatthis 
lass 
an be split up into several 
lasses, be
ause only the obje
ts below the diamond's bottomnode need a

ess to all members of the original 
lass.Most interesting however is the leftmost part of the latti
e: the \regular expressions" subsystemhas be
ome a 
omplex stru
ture, exposing lots of details about the use of the original 
lasses (�gure6). Some sub
lasses of the original base 
lass \REToken" are just reprodu
ed by KABA (e.g.\RETokenBa
kRef", \RETokenEnd" at \RETokenRange" on the right side of �gure 6). But theoriginal sub
lass \RE" has been distributed to many di�erent nodes (left hand side of �gure 6);most of them representing non-abstra
t 
lasses. Thus the latti
e presents an optimal splitting and4version 1.2�nal, available from http://www.gjt.org/~sp/jedit.html5None of the available analysis methods for stati
ally typed languages 
an handle dynami
 typing. Some rely onadditional user information, while other reengineeering tools { in
luding KABA { just leave su
h 
ode un
hanged.

Figure 3: Original 
lass hierar
hy for \jEdit" program
4



Figure 4: Latti
e for \jEdit"

Figure 5: Details for \jEdit": nodes for original \RESyntax" 
lass
fa
toring for the original sub
lass \RE", whi
h is guaranteed to be operationally equivalent. Notethat the reengineer might merge some of the 
lass proposals again, due to 
ohesion and 
oupling
onsiderations. KABA will prohibit merges whi
h might 
orrupt operational equivalen
e.2.2 JASThe se
ond example is \JAS", a java byte
ode assembler, in
luding a S
heme-like s
ripting lan-guage (about 5400 LOC)6. Its original 
lass hierar
hy is shown in �gure 7. Among various single
lasses and three small inheritan
e trees it shows a huge stru
ture with more than 50 
lasses atthe top. These 
lasses are part of the s
ripting language implementation. The top 
lass is \Obj"and all but 4 
lasses derived from \Obj" additionally implement an interfa
e \Pro
edure". Ea
hof these 
lasses represents a fun
tion like \Add" or \Sub" in the s
ripting language.In the KABA latti
e (�gure 8) this huge stru
ture is reprodu
ed basi
ally unmodi�ed (the �guredoes not show the whole latti
e), demonstrating the original design was good. More interesting inthis example is one of the small trees, namely the one with base 
lass \Insn". The leftmost partin the latti
e 
ontains \Insn" and its original sub
lasses (�gure 9). All but one sub
lass of \Insn"
ontained only a di�erent 
onstru
tor, and these sub
lasses are reprodu
ed identi
ally.The rightmost node however 
ontains all members of the original sub
lass \Label". This new
lass is di�erent from the others, be
ause it does not use the methods \Insn.size" and \Insn.write"like all other sub
lasses. A 
loser look reveals that these 
lasses are all dealing with the repre-sentation of 
ertain byte
ode instru
tions, but \Label" is about byte
ode addressing. The imple-mentations of \size" and \write" in \Label" do not 
ontain any 
ode, so they 
an be 
onsideredamputated. An even 
loser look reveals that the \resolv" fun
tion does not exe
ute any useful6version 0.4, available from http://www.sbkte
h.org/jas.html

5



Figure 6: Details for \jEdit": substru
ture for \REToken" (not all labels shown)

ode when 
alled from a \Label" obje
t. This demonstrates that the original subhierar
hy shouldbe restru
tured: \Label" does not share any 
ode with the other sub
lasses, thus it does not needa 
ommon base 
lass with them.The new 
lasses for sub
lasses of the \InsnOperand" 
lass show a similar phenomenon (�gure10). Two 
lasses (\UnsignedByteWideOperand" and \Iin
Operand" on the left hand side) areseparated from the rest, just like \Label" was. They have own implementations of the method\writePre�x", while all other sub
lasses share the same implementation. A look at the sour
e 
odereveals that this time the other 
lasses use a dummy implementation of \writePre�x" whi
h has nofun
tionality; only the separated 
lasses a
tually have 
ode for \writePre�x". This demonstrates\writePre�x" 
an be removed from \InsnOperand" and put into a new 
lass, from whi
h theseparated 
lasses 
an be derived.

Figure 7: Original 
lass hierar
hy for the \JAS" example
6



Figure 8: Latti
e for \JAS"

Figure 9: Details for \JAS": substru
ture for \Insn" (not all labels shown)
2.3 HanoiOur last example is a program 
alled \Hanoi". This program is an intera
tive applet version ofthe well-known \Towers of hanoi" problem, shipped with Jax [4℄. The original 
lass hierar
hy isshown in �gure 11. The latti
e derived with KABA is shown in �gure 12.The resulting latti
e is 
omparable in size to the original hierar
hy. In fa
t, the stru
ture ofboth hierar
hies is quite similar, indi
ating that reengineering potential is quite low. For example,the GUI 
lass with three di�erent sub
lasses for di�erent platforms in the left part of �gure 11repli
ates exa
tly in the middle of �gure 12. In some 
ases however KABA proposes to split
lasses: �gure 12 also presents a detail, where a 
lass from the original program has been split intotwo subhierar
hies; the se
ond of these has again a sub
lass. A look at the sour
e 
ode revealsthat this proposals makes perfe
t sense from a software engineering viewpoint.In the right part of the latti
e, the little subhierar
hy with three sub
lasses from �gure 11be
omes a 
omplex sublatti
e, namely the rightmost substru
ture in �gure 12. The original
lasses use two di�erent 
onstru
tors, whi
h generates two sub-substru
tures in the latti
e. Butin order to maintain high 
ohesion, the original 
lasses should not be splitted. Note that mu
h ofthe subhierar
hy with four sub
lasses (lower middle in �gure 11) is unused and therefore does notreappear in �gure 12.

7



Figure 10: Details for \JAS": substru
ture for \InsnOperand" (not all labels shown)

Figure 11: Original 
lass hierar
hy for \Hanoi" program
3 Con
lusionOur analysis is perhaps the most expensive analysis of obje
t-oriented programs available at themoment. But is is also one of the most powerful methods, due to its unique 
ombination of points-to analysis, type 
onstraints, and 
on
ept latti
es. The method in
ludes 
lassi
 analyses su
h asdead members or useless variables as spe
ial 
ases. The stru
ture theory of 
on
ept latti
es (notdis
ussed in this paper) provides latti
e simpli�
ations whi
h preserve operational equivalen
e,but in
rease quality fa
tors su
h as low 
oupling and high 
ohesion.Our preliminary 
ase studies have indi
ated the usefulness of the analysis as a basis for reengi-neering, but the method 
an also be used for quality assesment during initial development. Itturned out that the JAVA examples we analysed were all reasonably well stru
tured, and of 
ourse

Figure 12: \Hanoi" latti
e with details
8



the real \market" for the method are big old C++ programs. However the 
omplexity of both thelanguage and the method itself seem to prohibit an appli
ation to C++ right now. We hope thatthis situation will 
hange within the next two years.A
knowledgements. Frank Tip, beeing a 
o-inventor of the method, provided valuablesuggestions for the 
ase studies. Andreas B�ogeman supported the implementation of KABA. Thiswork is funded by the Deuts
he Fors
hungsgemeins
haft, grant Sn11/7-1.
Referen
es[1℄ G. Snelting. Con
ept analysis { a new framework for program understanding. In Pro
. ACMSIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering(PASTE), pages 1{10, Montreal, Canada, June 1998. ACM SIGPLAN Noti
es 33(7).[2℄ G. Snelting and F. Tip. Reengineering 
lass hierar
hies using 
on
ept analysis. In Pro
. ACMSIGSOFT Symposium on the Foundations of Software Engineering, pages 99{110, Orlando,FL, November 1998.[3℄ G. Snelting and F. Tip. Reengineering of 
lass hierar
hies using 
on
ept analysis. Submittedfor publi
ation, 1999.[4℄ F. Tip, C. La�ra, P. F. Sweeney, and D. Streeter. Size matters: redu
ing the size of java 
lass�le ar
hives. In Pro
. OOPSLA '99, 1999. to appear.[5℄ F. Tip and P. Sweeney. Class hierar
hy spe
ialization. In Pro
eedings of the Twelfth AnnualConferen
e on Obje
t-Oriented Programming Systems, Languages, and Appli
ations (OOP-SLA'97), pages 271{285, Atlanta, GA, 1997. ACM SIGPLAN Noti
es 32(10).[6℄ F. Tip and P. F. Sweeney. Class hierar
hy spe
ialization. Te
hni
al Report RC21111, IBMT.J. Watson Resear
h Center, February 1998. Submitted for publi
ation.

9


