
PCDiff: Attacking the Fragile Pointcut Problem

Christian Koppen (koppen@fmi.uni-passau.de)
Maximilian Stoerzer (stoerzer@fmi.uni-passau.de)

University of Passau

August 22, 2004

Abstract

Aspect oriented programming has been proposed as a way
to improve modularity of software systems by allowing
encapsulation of cross-cutting concerns. To do so, aspects
specifywherenew functionality should apply usingpoint-
cuts.

Unfortunately todays mainstream aspect oriented lan-
guages suffer from pointcut languages where pointcut
declarations result in a high coupling between aspect and
base system. Additionally, these pointcuts arefragile, as
non-local changes easily may break pointcut semantics.
These properties are a major obstacle for program evolu-
tion of aspect oriented software. This paper introduces a
pointcut delta analysis to deal with this problem.

1 Motivation

Aspect oriented programming (AOP), first introduced in
[2], is a new paradigm in programming extending tradi-
tional programming techniques. Its basic idea is to encap-
sulate so calledcross-cutting concernsinfluencing many
modules of a given software system in a new kind of
module calledaspect. Aspects provides two constructs to
specify new behaviour and where it should apply:advice
andpointcuts. Advice is a method-like construct defining
new functionality which is bound to a pointcut identify-
ing a set of well-defined points during the execution of
a program calledjoinpoints. So these pointcuts specify
where advice should be executed. Theaspect weaverfi-
nally combines aspect functionality with the base system
producing an executable system.

For the remaining of this paper, we will use AspectJ [6]
as an example, although the observations made are also
valid for other currently available AspectJ-like languages.
The pointcut language of AspectJ offers a set ofprimitive
pointcut designators, like call specifying method call

sites orget/set specifying field access. These primi-
tive pointcut designators can be combined using logical
operations (||, &&, !) forming (named)pointcuts.
As a running example, we will define aspects for a simple
shopping cart system, the main classShoppingCart is
shown in program 1.

Program 1 A simple class modeling a shopping cart
public class ShoppingCart {

public final static int NEW=0,
PROCESSED=1, FINISHED=2;

private Set items;
private int status;
private double total;
private Customer receiver;

ShoppingCart(Customer receiver) {
this.receiver = receiver;
items = new HashSet(); total = 0.0;
status = NEW;

}

public void addItem(Integer itemNr) {
items.add(itemNr);
total += Database.loadPrice(itemNr);

}

public void removeItem(Integer itemNr) {
items.remove(itemNr);
total -= Database.loadPrice(itemNr);

}
...

}

The problem with current pointcut designators is that
most of them explicitly specify their target location(s)
by namingelements of their corresponding base program
(see program 2). These explicit references obviously in-

1

troduce ahigh couplingbetween the base system and the
aspect, making aspect reuse harder.

Program 2 A highly coupled pointcut
aspect ItemChanges {

pointcut itemChanges(Customer c):
this(c) &&
(call(* ShoppingCart.addItem(..)) ||

call(* ShoppingCart.removeItem(..)));

before(Customer c): itemChanges(c) {
// do something

}
}

AspectJ also offerswild-cards to reduce coupling.
However, this introduces a new problem. If pointcuts use
this mechanism they rely onnaming conventions. As such
conventions are not checked by a compiler, they arenever
guaranteed. As a result, programmers have to be very
careful with their pointcuts to avoid spurious or missed
matches. In program 3, the previous example has been
rewritten using a wild-card expression to pick out all calls
methods modifying the items in our shopping cart demo
application.

Program 3 A pointcut using wildcards
aspect ItemChanges {

pointcut itemChanges(Customer c):
this(c) &&

call(* ShoppingCart. * Item(..)));
...

}

Assume we have a naming convention that all methods
in classShoppingCart modifying the set of items in
the cart should end withitem . In classShoppingCart
the wild-card pointcut expression matches the two meth-
ods complying to this naming convention. Additionally,
an aspect programmer always has to make sure, that his
pointcuts do not match methods accidentally complying
to this name pattern.

For this trivial example a pointcut mismatch can easily
be seen. However, aspects have been proposed for large
or distributed system scenarios, where it is much harder
to find spurious or missed matches. In general, the as-
pect programmer needsglobal system knowledgeto as-
sure that his pointcut works as expected. Additionally,
humans tend not to look forunexpectedthings, and mis-
matches in general are unexpected.

If a programmer uses wild-cards or not, he still has
to face another problem: pointcuts in general arefragile.
Consider the following scenario. A programmer correctly
specifies a pointcut, as in program 3. The corresponding
aspect works as intended, all tests are successful. Now,
the code is refactored, and we rename some methods. If
we have references to these methods in our program, the
compiler will tell us if we missed to update a reference.

Now if we consider the pointcut, we see that the set
of joinpoints picked out by the – unchanged! – point-
cut definition may be altered by a rename. In general
there are several trivial non-local changes possibly mod-
ifying pointcut semantics in terms of actually matched
joinpoints.

Rename: Renaming classes, methods or fields influ-
ences matching semantics ofcall , execution
andget/set and other pointcuts. Wild-cards can
only provide limited protection against these effects.

Move method/class:Pointcuts can pick out
joinpoints by their lexical position, us-
ing within or withincode . Moving
classes to another packages or methods to an-
other class obviously changes matching semantics
for such pointcuts.

Add/Delete method/field/class:Pointcut semantics is
also affected by adding or removing program ele-
ments. New elements can (and sometimes should) be
matched by available pointcuts, but in general point-
cuts development cannot anticipate all possible fu-
ture additions. Removal of program elements natu-
rally results in ‘lost’ joinpoints.

Refactorings in general require to modify code refer-
encing updated code1. Automated refactoring, as can also
be seen in IBM’s Eclipse IDE for Java or the Smalltalk
Refactoring Browser might be a way to avoid break-
ing pointcuts in some cases, but for AspectJ refactorings
are currently not available and might be problematic for
dynamic joinpoints in general. More important, auto-
mated refactorings require that the user explicitly requests
a refactoring. But this not necessarily address system
evolution in general, just consider adding new methods,
classes or packages due to new functionality.

So currently system evolution as well as refactorings
are done manually. While this is also the case for several
other languages, there is an important difference between
“traditional” code and pointcuts. In general code affected

1Renaming a method for example requires modifying all calls to this
method to match the new name.

2

by a refactoring – but not updated – will result in anot
compilableprogram. So the compiler checks for a lot of
potential errors introduced by refactorings (although se-
mantic differences can occur in this context as well which
arenot revealed by the compiler).

For pointcuts, this problem is considerably more seri-
ous as changed pointcut semanticsin general are not vis-
ible for the programmer. There is no support at all to alert
programmers if refactorings change the set of joinpoints
matched by their pointcuts. In our opinion, this is a ma-
jor problem for program evolution of aspect oriented soft-
ware.

Additionally, aspects influencing a given base class
are not visible in the code as a consequence of the
obliviousness-property[3] of AOP. As a result, a program-
mer refactoring e.g. a class of the base system is not
aware of all the aspects possibly matching joinpoints in
this class. Tool support lightens this problem [1], but in
our opinion this does not resolve the problems for evolu-
tion of aspects, classes and their dependencies.

This also raises another interesting question for compa-
nies developing AO software: If failures due to changed
pointcut semantics occur, who is responsible? The aspect
developer or the base developer? Both answers are not
satisfactory. The aspect programmer developed the as-
pect for a given version of the system using the program
elements at hand, and cannot anticipate all potential refac-
torings of the system.

The base programmer in general should not be respon-
sible to modify an affected aspect as an aspect might af-
fect many other modules as well. So the base class pro-
grammer definitely is no expert to adapt an aspect poten-
tially influenced by his code changes. This is especially
true as aspects can even access non-public elements of a
class2. So in general both programmers have to talk to
each other but therefore they have to be aware of potential
evolution problems.

We think the issues demonstrated here are crucial for
current AspectJ-like pointcut languages. We refer to this
problems as thefragile pointcut problem.

2 Language-based Improvements

The improvement of the pointcut definition mechanism
is an important research topic today. Several approaches
have been proposed to attack the fragile pointcut problem
using improved pointcut languages.

2For exampleget/set pointcut designators allow to intercept any
access to (potentiallyprivate) fields.

To reduce coupling, AspectJ inventedabstract aspects.
These aspects can contain abstract pointcuts which are de-
fined by inheriting aspects. Thus all the advice code is en-
capsulated in the abstract aspect and can be reused. The
aspect can be applied to concrete problem by inheriting
from the abstract aspect and defining the pointcuts for the
concrete base system. Unfortunately, although coupling is
reduced, pointcuts in the concrete aspect still are fragile.

[4] proposes a completely different pointcut language.
In this language, a program is represented as a set of facts
and pointcuts are defined in a Prolog like language as a
query over these facts. However, this language is Turing-
complete, thus pointcuts are more dynamic as in AspectJ-
like languages and often cannot be evaluated at compile
time.

An approach in-between these two extremes proposes
declarative pointcuts, a set ofdescriptive pointcut desig-
natorswhich allows to specify joinpoints by their (seman-
tic) properties [5]. This approach reduces the necessity
to reference names or source locations and thus consid-
erably lightens the problem with fragile pointcuts. Un-
fortunately, these pointcut designators are currently not
available.

While we consider the improvement of pointcut lan-
guages important research, these languages will only
lighten the problem in the future when the emerging con-
structs will become part of main stream languages. How-
ever, by then we assume that there is a considerable
amount of code written in e.g. AspectJ where evolution
suffers from the problems outlined above - even if the at-
tempted refactoring is the renewal of the pointcut defini-
tions with new, more declarative constructs. For this code
we think our approach can be most valuable.

3 Pointcut delta analysis

Software written today using available pointcut languages
with all the deficiencies outlined above potentially will be
maintained for years. So a way to deal with this problem
for current languagesis needed.

In general, semantical differences introduced into a sys-
tem are (hopefully) revealed by rerunning a regression test
suite (failing test). Testing however only shows the pres-
ence of bugs, but can never prove their absence. For a
failing test, the results have to be further analyzed to ac-
tually track down bugs.

Our solution to deal with the fragile pointcut problem
is to provide a tool to detect differences in pointcut se-
mantics. This tool should be used as follows: We have a
working version of our system. Some time later, the sys-

3

tem evolves. Several edits (of base and aspects) produce
an new version of this system. Unfortunately now some
regression tests fail. We assume that a pointcut mismatch
might be the reason and thus want to knowhow the set of
matched joinpoints has changed.

If an aspect (or more specific its pointcuts) has not been
modified, base code edits could be a reason for now expe-
rienced test failures. If the pointcut has been modified, we
might expect differences in its matching behaviour. Any-
way, a delta of the matched pieces of advice can consid-
erably help to validate the expectations.

We propose the following pragmatic and straight for-
ward analysis: We calculate the set of matched joinpoints
for both versions of the program and compare the result-
ing sets, producing delta information for pointcut match-
ing. This approach is possible for any AspectJ-like lan-
guage where the set of matched pointcuts is (at least
partly) statically computable.

Definition 3.1 (Pointcut Delta) Let P be the program be-
fore, P′ the program after the edits. Let joinpoints(P) be a
function calculating all joinpoints for the given program P,
advice(j,P) a function listing all pieces of advice at a given join-
point j in program P (for j/∈ joinpoints(P) define advice(j,P) =
/0). Let

JP= joinpoints(P′)∪ joinpoints(P)

be the set of joinpoints in both program versions. Let

add(P,P′) =
⋃
j∈JP

(advice(j,P′)−advice(j,P))

be the set ofadditional advice matchesand

del(P,P′) =
⋃
j∈JP

(advice(j,P)−advice(j,P′))

the set oflost advice matches. We are then interested in the set

deltaPC(P,P′) = {(add(P,P′)∪ (del(P,P′))}

which represents exactly all pieces of advice now either applying
additionallyor applyingno longer(associated with the respec-
tive joinpoint j).

The benefit of calculating the delta sets is that these
sets tend to besmall compared to the overall number of
all pieces of advice in the system. IfdeltaPC(P,P′) = /0, a
base programmer can assume that any applying aspect is
not affected by changes he made. IfdeltaPC(P,P′) con-
tains differences, these differences can easily be traced
back to the affected aspects, so the aspect programmer can
be notified of this change. A potential problem is detected
before deliveryand can thus be easily corrected.

This delta analysis has been implemented in an Eclipse
plugin extending the AspectJ Development Tools (ajdt)

to access relevant joinpoint match information. The cur-
rent implementation only uses information which is avail-
able from the ajdt-plugin [1] and the AspectJ compiler
(thestructure model) and does not calculate any matching
information itself.

The AspectJ structure model works well for static
pointcuts, but for pointcuts including dynamic joinpoints
(if , cflow , ...), the model is problematic as it (conser-
vatively) approximates possible matches (i.e.if(..) is
approximated astrue). So the model reports spurious
matches. A comparison of supersets obviously might fail
to report differences, both additional or lost matches.

Although we are currently not aware of any numbers il-
lustrating how often dynamic joinpoints are used in prac-
tice, in our opinion this is a relevant problem of the delta
approach presented here.

A simple way to deal with this problem is to trace back
advice matches to the pointcut definition responsible for
the match. If the pointcut definition contains dynamic
pointcut designators, the system should mark up these
matches to show that here the delta might include spuri-
ous information. The user then can interpret the informa-
tion as either a reliable information (for matches statically
computable) or as a heuristic hint requiring additional ex-
amination.

It is also possible to reduce the amount of spurious
matches by further analysing dynamic joinpoints, but an
exact calculation of matching information in general is not
computable. As this is also a relevant problem for perfor-
mance of AOP software, this is a current research topic[8].

Although this is a weakness of our approach, we think
that even the simple plugin available now can consider-
able help programmers to track down bugs in evolving
aspect-oriented software. However, this is outside the
scope of this paper and considered future work.

Our tool allows users to take snapshots of arbitrary ver-
sions of the program and compare these snapshots with
each other. Results of this comparison are presented in the
task view and as text markers in the editor for the current
version and in a tree-based comparison view showing dif-
ferences on a per-file basis, comparing the program model
of P andP′. The model ofP′ is adorned with the set of
lost matches, additional matches appear in the model of
P.

To represent changes of pointcut semantics in the
source code, the plugin also uses theEclipse marker
mechanismto show additional or lost matches. Some-
times lost matches can no longer be displayed (if the tar-
get joinpoint respective its underlying resource has been
deleted). In this case, the lost match is shown at the top of

4

the file. Additionally, thetask viewcontains an entry for
each affected file.

4 Example: A simple
shopping cart application

We will demonstrate our plugin with our running exam-
ple. It deals with a simple web-based shopping cart sys-
tem as used in many places to keep track of articles and
orders of customers. As time and technology advance the
system evolves, so unfortunately introducing new flaws.
We will demo how our tool can help to identify reasons
for unexpected or faulty behaviour.

4.1 Initial system

The central class for our analysis is the class
ShoppingCart (program 1). Customers may add or
remove items to the cart, order the items in the cart and so
on (not shown here).

The initial system contains the classShoppingCart
and a class modelling customers. Additionally, the as-
pect Authentication checks access to the shop-
ping cart usingbefore -advice; if a customer is not
authorized to change the shopping cart content, an
AccessException is thrown. Therefore, the pointcut
itemChanges is used defining all joinpoint where item
data is actually changed within a shopping cart.

Within our tool, we can takesnapshotsof every state
of the system that might be of interest for later compar-
isons. As the initial state is always a good starting point
for comparisons, we take a snapshot now (Figure 1).

Figure 1: Taking a Snapshot

4.2 Modification 1: Persistence

With the system evolving, the shopping cart shall be made
persistent, i.e. its data shall be saved permanently, so that
a customer can log off and log on again without losing the
content of his shopping cart (seeAmazon).

Program 4 Customer andAuthentication .
public class Customer {

Integer custNr;
String name, address;
ShoppingCart cart;

public Customer(String name, String address){
this.name = name; this.address = address;
this.cart = new ShoppingCart(this);
custNr = Database.newUniqueNr();

}

public void orderItem(Integer itemNr) {
System.out.println("Adding item " + itemNr);
cart.addItem(itemNr);

}

public void cancelItem(Integer itemNr) {
System.out.println("Removing item "+itemNr);
cart.removeItem(itemNr);

}

ShoppingCart getCart() { return cart; }

...
}

public abstract aspect ItemChanges {
pointcut itemChanges(Customer c) :

this(c) && call(* ShoppingCart. * Item(..));
}

public aspect Authentication
extends ItemChanges {

before (Customer c) : itemChanges(c) {
// check if customer may change
if (!mayAccess(c)) {

throw new AccessException(
"Illegal Access - denied.");

}
}

private boolean mayAccess(Customer c) {
return c.getName().length() % 2 == 0;

}
}

To do so, aPersistence aspect is added. It con-
tains anafter -advice saving the shopping cart con-
tent after any modification. AsPersistence and
Authentication affect the samejoinpoints, the point-
cut itemChanges can be reused (persistence must be
enforced if and only if an item within the cart has
changed). The code is shown in program 5. An exam-
ple output can be seen in figure 6.

To prevent unwanted side-effects, the system is
checked after this modification with our tool. Figure 2
shows the changes between the original and the modified
system.

For every changed file, a marker appeared in the task
view. When viewing one of the affected files in the editor,
every change is shown as code markers in the editor; a
green plus or red minus icon shows the kind of change,
the change is further described in the marker description.

5

Program 5 ThePersistence aspect
public aspect Persistence

extends ItemChanges {
after (Customer c): itemChanges(c) {

// save new state
Database.saveShoppingCart(c);
System.out.println(

"Saving Shopping Cart to DB");
}

}

As expected, the persistence advice will be executed after
every shopping cart modification.

Note that the programmer has a very focused view on
the differences in matched joinpoints. He no longer has
to filter anything which has not changed – only actual
changes are displayed so greatly reducing the amount of
data to check. Unwanted changes can be seen easily.
However, the delta analysis also helps to reveal missed
matches, as a smaller amount of matches has to be exam-
ined.

4.3 Modification 2: Allow reading
the cart content

As we are fans of the “wish list” feature of Amazon,
we also want to implement this (in a “light” version)
for our shopping cart system. Therefore, the system is
changed one more time to allow customers to inspect
other customer’s shopping carts, so that friends of a cer-
tain customer can see what present he would be inter-
ested in. This change is implemented by adding a method
showItem() to the classShoppingCart .

Unfortunately, this new functionality does not work as
expected: users are not able to inspect a different cus-
tomer’s shopping cart; instead, an authorisation error oc-
curs (see figure 6). We use our tool to analyze the system
and find the error. We take a snapshot of the current state,
and compare it to the last working state of the system (af-
ter adding persistence) with our tool.

As shown in figure 3 markers for some unex-
pected advice calls from withinAuthentication and
Persistence referring to the pointcutitemChanges
appeared.

Looking further at this pointcut, we see that it is also
– erroneously – bound to the newly introduced method
showItem() . Once knowing this, it is easy to modify
the pointcut so that it matches only the methods which in
fact change the shopping cart (and do not just read it).

To be sure that this modification is correct, the new sys-
tem state is compared to the previous one. To achieve
a better overview than markers could offer, we do not
use the task / editor views for this, but thePointcutDiff-
TreeView. Within this view, the user can choose any two
snapshots he took from the system, and all changes be-
tween the two snapshots are shown by presenting two
trees: the left tree shows all items that are no longer
matched in the system, the right one displays the ele-
ments which are additionally matched in the new ver-
sion. As shown in figure 4, the spurious matches for
showItem() disappeared.

The system is now back in a consistent state. We can
verify this by comparing the state after adding persistence
with the final state – as expected, no differences in the set
of matches joinpoints occur.

Finally, we show the output of our system for two ver-
sions of our system. The first version demonstrates the
base functionality of our system. The second version
shows the final functionality, after adding (but before fix-
ing) the ‘wish list’-feature.

Customer Maximilian (Foo Road 123/1) -- starting.
Adding item 1
Adding item 2
Removing item 1
Customer Maximilian (Foo Road 123/1) -- finished.
Customer Christian (Bar Street 321/2) -- starting.
Adding item 1
Illegal Access - denied.
Customer Christian (Bar Street 321/2) -- finished.

Figure 5: Version one: base system output.

Customer Maximilian (Foo Road 123/1) -- starting.
Adding item 1
Saving Shopping Cart to DB ...
Adding item 2
Saving Shopping Cart to DB ...
Removing item 1
Saving Shopping Cart to DB ...
Customer Maximilian (Foo Road 123/1) -- finished.
Customer Grandma (Foobar Av./2) -- starting.
Inspecting item 1
shoppingCart.AccessException: Illegal Access - denied.

at shoppingCart.aspects.Authentication.ajc
$before$shoppingCart_aspects_Authentication$c2(
Authentication.java:12)

at shoppingCart.Customer.inspectItem(Customer.java:28)
at shoppingCart.testDrivers.ListOfWishesDemo.main(

ListOfWishesDemo.java:24)
Exception in thread "main"

Figure 6: Version two: flawed wish list.

Although this example is considerable simple, we think
it can give a good idea how our tool can help to find pro-
gram flaws introduced due to accidentally matched join-
points. Note that the tool captures differences due to

6

Figure 2: Changes between the original and the modified version

Figure 3: Unexpected advice calls

modified pointcut definitions as well as differences due
to changes in the base code.

5 Conclusion

In this paper we claimed that current mainstream point-
cut languages are not satisfactory, as they suffer from
the fragile joinpoint problem. Although improvement
of pointcut languages is a research topic and might well
solve this problem one day, we proposed an analysis to
deal with this problem for current languages, based on a

comparison of the sets of matched joinpoints for two pro-
gram versions.

We implemented this analysis in a tool which is avail-
able as an Eclipse plugin extending ajdt3. Results from
our example are promising. We hope that the pointcut
delta analysis is a useful tool to help programmers find
bugs introduced into their software by breaking pointcuts,
either directly or by modifying the base system.

Future work clearly has to address dynamic joinpoints.

3The tool is available under the terms of the CPL via our Eclipse
Update Site: www.infosun.fmi.uni-passau.de/st/staff/stoerzer/PCDiff.
Feedback is welcome!

7

Figure 4: Advice no longer affectsshowItem()

We only addressed this topic in a footnote, but highly dy-
namic pointcuts can greatly reduce the value of deltas,
as currently the comparison used a very conservative ap-
proximation for dynamic pointcuts:cflow andif prim-
itive pointcuts are always approximated withtrue . This
can definitely be improved.

We see our work related to many other efforts to im-
prove program understanding. We addressed the frag-
ile pointcut problem in an earlier paper [9]. The ajdt-
development tools [1] also clearly address these topics,
although the current version does not contain any support
for pointcut deltas. But while ajdt statically analyzes a
single program version to provide valuable feedback for
the user, we are using two (or more) versions to analyze
their differencesto support system evolution and by that
are rather related to other Change Impact Analysis ap-
proaches.

An approach to better approximate thecflow point-
cut is presented in [8]. Partial evaluation [7] may also be
useful to better approximate dynamic joinpoints.

References

[1] Adrian Colyer Andy Clement and Mik Kersten.
Aspect-oriented programming with ajdt. InProceed-
ings of AAOS 2003: Analysis of Aspect-Oriented Soft-
ware, held in conjunction with ECOOP 2003, July
2003.

[2] Gregor Kiczales et. al. Aspect-oriented programming.
In Mehmet Akşit and Satoshi Matsuoka, editors,Pro-

ceedings European Conference on Object-Oriented
Programming (ECOOP), volume 1241, pages 220–
242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[3] R. Filman and D. Friedman. Aspect-Oriented Pro-
gramming is Quantification and Obliviousness, 2000.

[4] Kris Gybels. Using a logic language to express cross-
cutting through dynamic joinpoints.

[5] Gregor Kiczales. The fun has just begun. Keynote
AOSD 2003, Boston, March 2003.

[6] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ.Lecture Notes in Computer Sci-
ence, 2072:327–355, 2001.

[7] Hidehiko Masuhara, Gregor Kiczales, and Chris
Dutchyn. Compilation Semantics of Aspect-Oriented
Programs. InProc of workshop Foundations Of
Aspect-Oriented Languages (FOAL) held in conjunc-
tion with AOSD 2002. 2002.

[8] Damien Sereni and Oege de Moor. Static analysis
of aspects. InProceedings of the 2nd international
conference on Aspect-oriented software development,
pages 30–39. ACM Press, 2003.

[9] M. Störzer. Analytical problems and AspectJ. In
Proc. 3rd German Workshop on Aspect-Oriented
Software Development, Essen, Germany, March
2003.

8

	Motivation
	Language-based Improvements
	Pointcut delta analysis
	Example: A simple shopping cart application
	Initial system
	Modification 1: Persistence
	Modification 2: Allow reading the cart content

	Conclusion

