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Abstract

We applymathematical concept analysisto the problem of reengineering configurations. Concept analysis has
been developed by German mathematicians over the last years; it will reconstruct a taxonomy of concepts
from a relation between objects and attributes. We use concept analysis to infer configuration structures from
existing source code. Our tool NORA/RECS will accept source code, where configuration-specific code pieces
are controlled by the preprocessor. The algorithm will compute a so-called concept lattice, which – when
visually displayed – allows remarkable insight into the structure and properties of possible configurations. The
lattice not only displays fine-grained dependencies between configuration threads, but also visualizes the overall
quality of configuration structures according to software engineering principles.

In a second step, interferences between configuration threads can be analysed in order to restructure config-
urations. Interferences indicate high coupling and low cohesion between configuration concepts. They can
be resolved by automatically decomposing the source code into “modules”, where each module deals with a
cohesive subset of the configuration space.

The paper presents experimental results on various programs. In particular, we consider some well-known Unix
programs which suffer from configuration hacking.

Categories and Subject Descriptors: D.2.7 [Software Engineering] Distribution and Maintenance – restructuring,
version control, D.2.6 [Software Engineering] Interactive programming environments, D.2.9 [Software Engi-
neering] Software configuration management
General Terms: Design, Management, Theory
Additional Key Words and Phrases: concept analysis, concept lattices

1 Introduction

In his invited talk at the 16th International Conference on Software Engineering, David Parnas said “When a
large and important family of products gets out of control, a major effort to restructure it is appropriate. The
first step must be to reduce the size of the program family. One must examine the various versions to determine
why and how they differ” [Pa94]. Unfortunately, no method for understanding program families was as yet
available, let alone tool support for restructuring.

At the same conference, we presented a first step towards a theory and tools for configuration restructuring
[KS94]. Based onmathematical concept analysis[Wi82], we have shown how configuration structures can be
infered from existing source code, and how interferences between configuration threads can be detected.

A preliminary version of parts of this paper appeared in the proceedings of the 16th International Conference on Software Engineering [KS94]
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In this article, we continue our work and move on from inference of configuration structures to restructuring
of configurations. We describe in detail how to extract configuration structures from existing source code, and
how to interpret the obtained structures. We then present an algorithm for detecting interferences between
configuration threads. An interference means that two configurations have common code, where they should
not. A source file can be made interference free by dividing it into several modules, where each module covers
a cohesive subset of the configuration space.

Before we begin to explain our restructuring tool NORA/RECS in detail, we would like to give an overview;
this might also serve as an extended abstract for hurried readers.

1.1 Configuration management by preprocessing

In this paper, we assume that version selection and system building are done with the C preprocessor (CPP).
Although much more sophisticated configuration management systems have been developed recently, a lot of
code sticking to “configuration management by preprocessing” is around. Indeed, configuration management
by preprocessing has been called an industry standard. Nevertheless, the methods explained in this paper can
easily be adapted to more modern configuration management techniques.

Configuration management by preprocessing is very simple: configuration-dependent source code pieces are
enclosed in “#ifdef ... #endif” brackets, and by defining preprocessor symbols during compiler invocation
(e.g. “cc –Dultrix prog.c”), a configuration thread is determined and the appropriate code pieces are selected
and compiled. There are two basic methods how to use preprocessor symbols. The first method introduces a
CPP symbol for every target configuration (e.g. AIX, SUN4, ULTRIX); this symbol must be defined if compiling
for a specific target. Code common to several target configurations is enclosed in a disjunction of CPP symbols:

#if defined(SUN) || defined(ULTRIX) || defined(AIX)

...

#endif

The second method uses one CPP symbol for each feature of the target configuration (e.g.HAS_NFS, BSD,
HAS_BCOPY); code requiring certain features is enclosed in a conjunction of CPP symbols:

#if defined(HAS_BCOPY) && defined(HAS_NFS)

...

#endif

Unfortunately, many programs mix both styles of preprocessor use. As an example, consider some code pieces
from the X-Window tool “xload”; this tool displays various machine load factors (figure 1). The 724–line
program is quite platform dependent: 43 preprocessor symbols are used to control a variety of configuration
threads (e.g.SYSV, macII, ultrix, sun, CRAY, sony). Code pieces not only depend on simple preprocessor
symbols, but on arbitrary boolean combinations of such symbols. Furthermore, “#ifdef”s and “#define”s are
nested, resulting in a rather incomprehensible source text. Even experienced programmers will have difficulties
to obtain some insight into the configuration structure, and when a new configuration variant is to be covered,
the introduction of errors is very likely.

1.2 Concept lattices

Fortunately, there is a method, calledformal concept analysis, which allows to reconstruct semantic structures
from raw data as given in our case. This method has been developed at the universal algebra group in the
Department of Mathematics at the Technical University of Darmstadt, and has been applied to various problem
domains such as classification of finite lattices, analysis of Rembrandt’s paintings, or behaviour of drug addicts.
The method computes a so-calledconcept lattice, which is computed from a relation betweenobjectsand
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#if (!defined(SVR4) || !defined(__STDC__)) && !defined(sgi) && !defined(MOTOROLA)
extern void nlist();

#endif
#ifdef AIXV3

knlist( namelist, 1, sizeof(struct nlist));
#else

nlist( KERNEL_FILE, namelist);
#endif
#ifdef hcx

if (namelist[LOADAV].n_type == 0 &&
#else

if (namelist[LOADAV].n_type == 0 ||
#endif /* hcx */

namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}
loadavg_seek = namelist[LOADAV].n_value;

#if defined(umips) && defined(SYSTYPE_SYSV)
loadavg_seek &= 0x7fffffff;

#endif /* umips && SYSTYPE_SYSV */
#if (defined(CRAY) && defined(SYSINFO))

loadavg_seek += ((char *) (((struct sysinfo *)NULL)->avenrun)) - ((char *) NULL);
#endif /* CRAY && SYSINFO */

kmem = open(KMEM_FILE, O_RDONLY);
if (kmem < 0) xload_error("cannot open", KMEM_FILE);

#endif

Figure 1: X-Window tool “xload.c”

DOS OS2 X_win

I

II X

III X

IV X X

VI X

VI

...I...
#ifdef DOS
...II...
#endif
#ifdef OS2
...III...
#endif
#if defined(DOS) && defined(X_win)
...IV...
#endif
#ifdef X_win
...V...
#endif
...VI...

Figure 2: A small code fragment and its configuration table

attributes– in our case, from the relation between code pieces and governing preprocessor symbols (the so-
calledconfiguration table). Figure 2 presents a small code fragment and its configuration table.

A concept is a pair, consisting of a set of objects and a set of attributes such that all objects have all attributes
and all attributes fit to all objects. Such concepts represent semantic properties of the underlying problem
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domain. The lattice structure imposes a partial order on concepts (more specific vs. more general), and for two
concepts, supremum and infimum exist.

In our case, concepts correspond to (partial) configuration threads. In particular,
• for each configuration, itsextent(the code pieces which make up the configuration thread) andintent (the

attributes which govern the configuration thread) are computed;
• all dependenciesbetween configurations are computed, where a dependency is of the form “Any code piece

valid for the sun configuration is valid for the ultrix and sony configuration as well”;
• by computing a lattice of configuration concepts, ataxonomyof configurations is determined;
• interferencesbetween configurations are displayed, where an interference between configuration threads

means that they have common code where they should not;
• the overall qualityof the configuration structure can be judged according to software engineering principles.

The concept lattice for the code in figure 2 is presented in figure 4. A concept lattice which arises from a
more complex configuration table is presented in figure 3.2 It reveals simple facts e.g. that source lines 21–28,
29–40, 201–207, and 11–20 depend onCRAY, apollo, macII, andSYSV being defined. But it also displays
less obvious information, e.g. that lines 11–20 depend on all CPP symbols exceptsequent, alliant, i386, and
SYSV386; that apollo and ultrix configurations have lines 126–200, 201–207, 11–20 in common; and that
source lines depending onsony or ultrix depend onsun as well. Such knowledge is not easily extracted by
hand from a source file like “xload.c”!

The concept lattice also allows to judge the overall configuration structure. According to software engineering
principles, configuration-specific code should be collected in one module and hidden from the rest of the
program. For example, code dealing with operating system dependencies should be collected in one module,
and code dealing with window system details should be collected in another module. If several operating
systems and window systems have to be supported, this can be done by maintaining several variants of the
corresponding modules.

2 Figure 3 and figure 6 are isomorphic copies of an instructive example presented in [Wi90]

sunSYSVmacII

sony ultrix

AIXapollo

CRAY

21-28

29-40

11-20

sequent

1-10201-207

126-200

i386, SYSV386

101-106

107-115 116-125  41-100

alliant

Figure 3: A concept lattice
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Figure 4: An elementary interference displayed by NORA/RECS

Figure 5: Horizontal lattice decomposition and an interference

Unfortunately, existing software does not stick to this principle. We will see later that “xload.c” (figure 1) is an
extreme example of configuration hacking; in this introduction, we consider a very simple example, namely the
code fragments in figure 2. Here, code piece IV can be part of the DOS as well as X-window configuration,
preventing the code from modularization. And indeed, NORA/RECS displays this interference: lines 8–10 are
governed by bothDOS and X_win (figure 4).

Ideally, the lattice is composed of disjoint sublattices (figure 5), where the CPP symbols in each sublattice deal
with the same topic, e.g. operating system variants. This guarantees high cohesion and low coupling between
orthogonal configuration concepts.

1.3 Decomposing source files

For very chaotic configuration spaces, restructuring is appropriate. The first step is perhaps to reduce the size
of the program family (called “amputation” in [Pa94]); in a second step a restructuring of the source code in
order to obtain more cohesive modules is appropriate.

The concept lattice provides very good insight into the possibility and effect of an amputation. Furthermore,
it allows for a restructuring of source code which is based on lattice decomposition. Our restructuring method
– which should be considered a first step in configuration restructuring – does not produce modules in the
traditional sense of the word; it merely offers a clever way to cut up a source file such that high cohesion and
low coupling between configuration subspaces are achieved.
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If the concept lattice can be decomposed horizontally, the governing preprocessor symbols can be divided
into, say, independent classes. If we know that preprocessor symbols in two different classes can never be
defined at the same time (as is the case for e.g.DOS/OS2 and X_win), the code can be decomposed into
“modules”. Each module covers a specific configuration aspect, for example operating system variants or user
interface variants. It is the restructurer’s task to guarantee that symbols in disjoint classes cannot be defined
simultaneously, otherwise some possible configurations are lost. This requires knowledge about the semantics
of the CPP symbols; usually, the symbols’ names indicate their meaning.

The source code is then decomposed in accordance with a horizontal lattice decomposition. In case there is
an interference (indicated in the right part of figure 5), an additional module containing the “problematic”
configuration can be created. For the example in figure 2, restructuring produces three modules: an operating
system dependent module, a window system dependent module, and the problematic module; the latter
corresponds to a specific combination of operating system and window system variants.

/* OS variants */ /* WS variants */ /* problematic variant */

...I... ...I... #if defined(DOS) && defined(X_win)

#ifdef DOS #ifdef X_win ...I...

...II... ...V... ...II...

#endif #endif ...IV...

#ifdef OS2 ...VI... ...V...

...III... ...VI...

#endif #endif

...VI...

This example shows that a price must be paid for better cohesion, namely that redundant copies of code pieces
must be introduced. Code pieces I and VI occur in all modules, in order to guarantee identical configuration
threads after restructuring. A similar phenomenon occurs in the restructuring of source code: due to the Boehm-
Jacopini theorem, any code can be made GOTO-free, but at the price that some code pieces must be duplicated.
Future research must show whether a better modularization can be achieved.

2 Basic notions of concept analysis

2.1 The concept lattice

Formal concept analysis starts with a triple , called a (formal)context, where is a finite set
(the so-calledobjects), is a finite set (the so-calledattributes), and is a relation between and , hence

. If , we say object has attribute . In our case, the objects are source code pieces,
the attributes are governing preprocessor symbols, and the relation is called aconfiguration table. Figure 6
presents a (fictious) example of a configuration table, where source code pieces are given in form of line number
intervalls. A cross in the table for code pieceand preprocessor symbolmeans that will only be included
in a configuration thread if is defined; we say “ is governed by ” or “ depends on . Hence configuration
threads are characterized by their governing preprocessor symbols.

For a set of objects , we define the set ofcommon attributes .
Similarly, for a set of attributes thecommon objectsare defined by

. The mappings O A and A O form a Galois connectionand can be characterized by the
following conditions: for 1 2 1 2

1 2 2 1 1 2 2 1
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that is, both mappings areantimonotone;

as well as

that is, both mappings areextensive, in particular the common objects of the common attributes of an object
set are a superset of this object set, and their common attributes are equal; finally, for an index setand

i i

i2I

i

i2I

i

i2I

i

i2I

i

A (formal) conceptis a pair , where and . Hence, a concept
is characterized by a set of objects (called itsextent) and a set of attributes (called itsintent) such that all
objects have all attributes and all attributes fit to all objects. The set of all concepts is denoted by .
Intuitively, a concept is a maximal filled rectangle in a table like figure 6, where permutations of lines or
columns of course do not matter.

A concept 1 1 is a subconceptof another concept 2 2 if 1 2 (or, equivalently, 1 2). It
is easy to see that this definition imposes a partial order on , thus we write 1 1 2 2 .
Moreover, is a complete lattice.

Basic Theorem for Concept Lattices[Wi82]: Let be a context. Then is a complete
lattice, called theconcept latticeof , for which infimum and supremum are given by

i2I

i i

i2I

i

i2I

i

and

i2I

i i

i2I

i

i2I

i

This remarkable theorem says that in order to compute the infimum (greatest common subconcept) of two
concepts, their extents must be intersected and their intents must be joined; the latter set of attributes must then

SYSV SYSV386 macII i386 ultrix sun AIX CRAY apollo sony sequent alliant
1 - 10 X X X X X X X

11 - 20 X X X X X X X X
21 - 28 X X X X
29 - 40 X X X X X X
41 - 100 X X X

101 - 106 X X X X X X
107 - 115 X X X
116 - 125 X X X
126 - 200 X X X X X
201 - 207 X X X X X X

Figure 6: A configuration table
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be “blown up” in order to fit to the object set of the infimum. Analogeously, the supremum (smallest common
superconcept) of two concepts is computed by intersecting the attributes and joining the objects.

The lattice structure allows alabeling of the concepts: a concept is labeled with an object, if it is the smallest
concept in the lattice subsuming that object; a concept is labeled with an attribute, if it is the largest concept
subsuming that attribute. The concept labeled with objectresp. the concept labeled with attributeis

The attribute labels of a conceptare written , and the object labels of are written . Utilizing this
labeling, the extent of can be obtained by collecting all objects which appear as labels on conceptsbelow ,
and the intent of is obtained by collecting all attributes which appearabove :

c �c

0

c �c

0

For any two attribute sets and we say “ implies ” (written ) if (or equivalently, if
). This can be read as “any object having all attributes inalso has all attributes in ”. If and

are intents of concepts and , and , then obviously holds. For
the set of all implications, a minimal and complete basis can be constructed, which means that any implication
can be deduced from the basis, but that this property is lost if any basis implication is removed [Du87].

The concept lattice can be considered as a graph, that is, a relation. What happens if we again apply concept
analysis to this derived relation? It turns out that the concept lattice reproduces itself [Wi82]. Thus concepts
do not “breed” new concepts; there is no proliferation of virtual information.

There is much more to say about the theory of concept lattices, but for the purposes of this paper, the basic
theorem suffices. The interested reader should consult [DP90], which contains a chapter on concept analysis.

2.2 Interpretation of concept lattices

Figure 3 shows the concept lattice which has been derived from the table in figure 6. In the lattice, a configuration
concept is a subconcept of another concept, if it has a smaller extent (i.e. the configuration thread has less code
pieces), or equivalently, a larger intent (i.e. more governing symbols). Hence, going down in the lattice, we
obtain more precise information about smaller object sets.

As an example, consider the concept labeledCRAY, which is in fact the concept(CRAY) = ({11-20, 21-28,
29-40, 201-207}, {CRAY, apollo, macII, SYSV}). And indeed, figure 6 reveals that this concept is a rectangle
in the configuration table. It reveals a simple fact about the configuration space, namely that lines 11-20, 21-28,
29-40, 201-207 are exactly those which are governed byCRAY, apollo, macII, SYSV – and vice versa. The
concept labeledapollo stands for (apollo) = ({11-20, 21-28, 29-40, 126-200, 201-207}, {apollo, macII,
SYSV}), which again is a rectangle in the configuration table, higher but leaner than the first one:(CRAY)

(apollo). Thus, the CRAY configuration comprises lines 11-20, 21-28, 29-40, 201-207 (and no other), but
these lines appear in the apollo configuration as well.

This example already demonstrates one possibility to interpret a concept lattice: it can be seen as ahierarchical
conceptional clusteringof objects. Objects are grouped into sets and the lattice structure imposes a taxonomy
on these object sets. The original table can always be reconstructed from the lattice, e.g. the column fori386
has entries for all objects below concept(i386), namely1–10,101–106 whereas the row labeled41–100
has entries for all attributes above, namelysun, SYSV, andultrix. Hence, a context table (i.e. relation) and
its concept lattice are analogeous to a function and its Fourier transform (which also can be reconstructed from
each other): concept analysis is similar in spirit to spectral analysis of continuous signals.
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The infimum of two concepts and says which preprocessor symbols govern the intersection of
the extents: . Since , this symbol set can be larger than
just the “intuitive” . In figure 3, (sony) (ultrix) = ({1–10, 11–20, 29–40, 116–125, 101–106},
{sun, sony}) ({1–10, 11–20, 41–100, 101–106, 126–200, 201–207}, {sun, ultrix}) = ({1–10, 11–20,
101–106}, {sun, sony, ultrix, AIX}) = (AIX).

The supremum says which code pieces are governed by the intersection of the intents:
; this can be more code than just .

If we want to know what an apollo and an ultrix configuration have in common, we look at the infimum in the
lattice, which is labeled126–200; going down we see that lines 126–200, 201–207 and 11–20 appear in both
configurations. On the other hand, if we want to see which preprocessor symbols govern both lines 126–200
and 101–106, we look at the supremum of the corresponding concepts, which isultrix; going up, we see that
the sun and theultrix configurations (and no other) will include both code pieces.

Upward arcs in the lattice diagram can be interpreted asimplications: “ If a code piece appears in the sony or
ultrix configuration, it will appear in the sun configuration as well”. Such knowledge is not easily extracted by
hand from a source file like “xload.c”! This example demonstrates the second main possibility to interpret a
concept lattice: it represents all implications (that is,dependencies) between sets of attributes.

How can we use the lattice to determine which code pieces will actually be included in a configuration, if
a certain set of preprocessor symbols is defined? A code pieceis included if all governing symbols are
defined. The governing symbols ofare c�
(o) ; these are just all attribute labels
above . Hence the code pieces included are given by theconfiguration function A O, where

. For an arbitrary set , a direct geometric interpretation of this formula is
difficult, which reflects the fact that a random choice of defined CPP symbols leads to strange configurations.
At least all code pieces in must be above s2S , as any code piece further down in the lattice must
depend on preprocessor symbols not in. For a singleton , this means that or

: the code pieces selected if justis defined are either just the code piece labels of the concept
labeled , if there are no attribute labels above; otherwise, defining alone selects nothing. In general,
“reasonable” choices of select sublattices in the concept lattice.

2.3 Construction of the concept lattice

In order to give the reader an idea how a concept lattice is constructed from a formal context, we describe
a simple construction algorithm. The concept lattice can be constructed either top-down or bottom-up; we
describe the bottom-up version. The algorithm utilizes the fact that for a concept ,

o2X o2X
The smallest element is . Hence one can start by first computing all the , which constitute
the atoms of the lattice. For any given , this can be done by a simple loop overwith time complexity

. The other elements are then obtained as suprema of already computed ones. Due to the basic theorem
this can be done by intersecting the attribute sets of any two elements already constructed, which can again
be done in time . The extent of a lattice element is obtained by applying, which needs two nested
loops and has time complexity .

A hash table is used to store the lattice elements and check whether a newly constructed element is already
in the lattice. Furthermore, one has to keep track of all pairs of elements to be considered for supremum
computation. This is done with a FIFO-queue: initially, the queue contains all pairs of atomic elements; the
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Figure 7: Time complexity and lattice size for random contexts

next supremum to be determined is given by the first element of the queue, and pairs of concepts1 2 , where
at least one is newly generated and not1 2 or 2 1, are appended to the end of the queue.

The overall complexity depends on the number of lattice elements. The largest lattices for contexts of size
have n elements; these lattices are isomorphic to finite boolean algebras freely generated byelements.

Thus the worst case running time of the construction algorithm is exponential in. In practice, however, the
concept lattice has typically 2 or even elements rather than n , resulting in a typical running
time of 3 ; this makes the method feasible for reasonable large contexts.

Ganter has found a more efficient algorithm which avoids tracking the elements and suprema, but is more
difficult to understand [Ga87]. This algorithm is used in the Darmstadt implementation of concept analysis. It
has recently been reimplemented for NORA. Lindig [Li94] presents some empirical data on this implementation
(figure 7), which have been obtained from random contexts. The first picture shows the time for lattice
construction as a function of the number of objects; for 1000 objects (code pieces) the analysis needs 100
sec on a SUN ELC. The second picture shows the number of concepts as a function of object and attribute
cardinality; it shows that this number can indeed grow exponentially. Fortunately, for UNIX source files, we
found the number of configuration concepts to be much lower.

3 Inference of Configuration Structures from Source Code

The tool NORA/RECS for restructuring of configurations accepts source code as input and produces a graphical
display of the concept lattice as intermediate representation. Reengineering is then done by analysing inter-
ferences and sublattices. Restructuring corresponds to a specific lattice decomposition; upon the restructurer’s
request, the source file is transformed accordingly. The source language is arbitrary, but the input file must
stick to the conventions of the C preprocessor. NORA/RECS consists of the following phases:
1. front end: the front end separates code pieces and preprocessor statements, syntactically analyses the latter,

and constructs a configuration table according to the rules described below.
2. kernel: the kernel is is a software package developed by P. Burmeister in Darmstadt; it reads a configuration

table and computes the corresponding concept lattice.
3. visualization: this accepts a description of the concept lattice and produces a graphical display.
4. interaction: the lattice can be inspected, interferences can be selected, and modularizations can be triggered.
5. back end: by partial evaluation of preprocessor files, the source code is decomposed.

As usual, NORA/RECS is invoked as a UNIX command with the source file name as a parameter; additional
options which control some display parameters may be added. This chapter describes the first three phases.
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3.1 Construction of the configuration table

A configuration table describes how code pieces depend on preprocessor symbols. Configuration tables are
used as input to formal concept analysis. We will now describe how to construct configuration tables from
source files like “xload.c”; as there may be complex preprocessor expressions and nested “#ifdef”s, this process
is not trivial. In the following semiformal construction rules, A, B, C denote preprocessor symbols, and p-p,
n-n, q-q denote code pieces.

Basic rule

As already mentioned, an entry in the configuration table for a code pieceand a preprocessor symbolmeans
that depends on (or is governed by); this means that will only be included in a configuration thread if
is defined. Hence the basic rule for code pieces governed by single preprocessor symbols is:

... A ...

p-p ... ... ...

n-n ... X ...

q-q ... ... ...

...p-p...

#ifdef A

...n-n...

#endif

...q-q...

Conjunctions of preprocessor symbols

If a code piece is governed by a conjunction of preprocessor symbols, it depends on all of the symbols:

...p-p...

#if defined(A) &&

defined(B) &&

... && defined(C)

...n-n...

#endif

...q-q...

... A B ... C ...

p-p ... ... ... ... ...
n-n ... X X ... X ...
q-q ... ... ... ... ...

Negated preprocessor symbols

If a symbol occurs in negated form, this negated symbol needs a column of its own, since a basic formal
context can express only positive statements. The rule thus is:

#if defined(A)

...p-p...

#endif

...

#if !defined(A)

...n-n...

#endif

... A ... !A ...

p-p ... X ... ...

... ... ... ... ... ...

n-n ... ... X ...

A similar rule applies to
#ifdef ... #elif ... #endif

In the theory of concept lattices, the resulting table is called the “dichotomised context”. Prolog programmers
have known the same trick (explicit rules for negated predicates) for a long time.

Disjunctions of preprocessor symbols

Disjunctions of symbols are a little bit more complicated. The basic idea is as follows: In order to handle
#if defined(A) || defined(B) , we introduce a separate column for . As both and imply
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, we must therefore place a cross in the column whenever we place a cross in the column for
or . The basic rule for disjunctions hence is:

#if defined(A)

...p-p...

#endif

#if defined(A) || defined(B)

...n-n...

#endif

#if defined(B)

...q-q...

#endif

... A B ... A||B ...

p-p ... X ... ... X ...

n-n ... ... ... X ...

q-q ... ... X ... X ...

In order to see that this rule is correct, imagine we introduce a new CPP symbolAorB which is always defined
wheneverA or B is defined. A || B is replaced byAorB , and any code piece dependent onA or B is in
addition made dependent onAorB . This transformation of the source file keeps all configuration threads intact.
The transformed source code would – according to the conjunction rule – produce exactly the configuration
table which is given in the disjunction rule.

Complex governing expressions

In case there are complex conditions arbitrarily built up from conjunctions, disjunctions and negations, these are
first transformed into conjunctive normal form by applying the distributive and de Morgan laws. Afterwards, all
expressions are of the form 1 2 i 1 2 j 1 2 k , where all � � �

are either simple symbols or negated symbols. Expressions in conjunctive normal form can then be treated by
the above rules: for each negated symbol, as well as for each simple disjunction of the form1 2 i, an
additional column is introduced. Additional crosses are then placed according to the disjunction rule (whenever
a row contains an entry for � , it must contain an entry for 1 2 i).

Arithmetic expressions

In rare cases, one can find CPP expressions like “#if version>50 ” – that is, arithmetic CPP expressions
which are used for configuration management. Our approach however assumes a binary “defined / undefined”
semantics for CPP expressions. Therefore, arithmetic and relational expressions are treated as follows: for
every arithmetic or relational expression, a new column in the configuration table is introduced. This column is
labeled with the complete arithmetic expression, and an entry in the configuration table is made. Thus arithmetic
expresions will show up as concept labels. NORA/RECS does not provide a fine-grained analysis of arithmetic
and relational expressions, and therefore does not add dependencies as is done in the disjunction rule.

Nested “#ifdef”s, “#define”s and “#undefine”s

The treatment of nested “#ifdef”s is obvious: for any line preceding an “#ifdef”, the governing symbols have
already been determined. These are extended by an entry for the symbol(s) in the new “#ifdef”. Example:

#ifdef A

...p-p...

#ifdef B

...n-n...

#endif

#endif

...q-q...

... A B ...

p-p ... X ...
n-n ... X X ...
q-q ... ...
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Nested #defines and #undefines can also be treated (for details, see [Kr93]). However experience has taught
us that a “#define” is usually not used for configuration management, but for definition of constants or inline
functions. Hence the current implementation of NORA/RECS ignores “#define”s and “#undefine”s.

3.2 Elementary patterns in concept lattices

We will now explain some characteristic patterns in concept lattices, and provide some basic examples.

Chains and antichains

An antichain in a lattice is a set of uncomparable elements. In our case, an antichain in the concept lattice
comes from code pieces which are governed by different, independent preprocessor symbols. A lattice which
consists of only one antichain plus top and bottom element is called flat. Flat lattices are the optimal structures
for configuration management, as there is no dependence whatsoever between different CPP symbols (left hand
side of picture).

A chain in a lattice is a set of elements1 2 3 which are mutually comparable. In our case,
chains result from nested “#ifdef”s. Note that in concept lattices, a chain can be interpreted as a sequence of
implications: If code piece depends on symbol, it also depends on; if depends on , it also depends
on etc. (right hand side of picture).

#ifdef A

...I...

#endif

#ifdef B

...II...

#endif

#ifdef C

...III...

#endif

I II III
A B C

#ifdef A

...I...

#ifdef B

...II...

#ifdef C

...III...

#endif

...IV...

#endif

#endif

A
I

B
II, IV

C
III

Suprema

A supremum which is not the top element indicates that two code pieces are governed by the same ”superordi-
nate” CPP symbol. Simple disjunctions also show up as suprema in the concept lattice. Note that any supremum
consists of two chains and an antichain, and the above explanations for chains and antichains still hold.

#ifdef A

...I...

#ifdef B

...II...

#endif

#ifdef C

...III...

#endif

...IV...

#endif

A
I, IV

B
II

C
III

#if defined(A)

...I...

#endif

#if defined(A) || defined(B)

...II...

#endif

#if defined(B)

...III...

#endif

A||B

A
I

B
III

II
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Infima

An infimum which is not the bottom element indicates that a code piece is governed by two different CPP
symbols. Infima may indicate interference (see below). An infimum may also result from disjunctions, as in
the right part of the picture.

#ifdef A

...I...

#endif

#if defined(A) && defined(B)

...II...

#endif

#ifdef B

...III...

#endif

II

A
I

B
III

#ifdef A

...I...

#endif

#if defined(A) || defined(B)

...II...

#endif

#if defined(A) || defined(C)

...III...

#endif

II
A
I

A||B A||C
III

Cascades

Nested “#ifdef# ... #elif” structures produce so-called cascades in the concept lattice. A cascade resembles the
flow diagram of a nested if-then-else statement.

#ifdef A

...I...

#elif defined(B)

...II...

#elif defined(C)

...III...

#endif

A B C !A !B !C
I X
II X X
III X X X

!A

!B, C
III

A
I

!C

B
II

3.3 Interferences

For our purpose, the most important property of a concept lattice is its ability to determine the code which
depends on two or more preprocessor symbols; as already explained, such code is determined by the infimum
operation.

Definition. Let and be two preprocessor symbols. We sayand interfere, if .
Otherwise, and are calledmutually exclusive.

This definition means that the two CPP symbols have an infimum which is not the bottom element (only the
bottom element can have empty extent, as two concepts with equal extent and different intent are not possible;
in rare cases, the bottom element may have a non-empty extent and hence induce an interference).

Let us consider two examples, where the second example is slightly more complicated:

 UNIX

X_Win
III II

     DOS
I, V IV

UNIX || DOS

UNIX

III

II I, IV

V

DOS || X_win

UNIX || X_win

DOS

#ifdef DOS #ifdef UNIX

...I... ...I...

#endif #endif

#ifdef UNIX #ifdef DOS

#ifdef X_win ...II...

...II... #endif

#endif #if defined(DOS)||
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#ifdef DOS defined(X_win)

...III... ...III...

#endif #endif

...IV... #ifdef UNIX

#endif ...IV...

#ifdef DOS #endif

...V... #if defined(UNIX)||

#endif (defined(DOS)&&defined(X_win))

...V...

#endif

Both lattices contain an interference. In the first example, code piece III is governed by bothDOS andUNIX. In
the second example, the lattice shows that code pieces I and IV are governed byUNIX, code piece II is governed
by DOS, UNIX || X_win impliesUNIX || DOS (which means that any code piece valid for X-windows is also
valid for UNIX or DOS) etc. This example uses concept labels which have been introduced by normalizing
disjunctions, hence the interference does not really state that code piece II depends onDOS || X_win as well
asUNIX || DOS; it merely states that operating system as well as user interface issues show up in both main
configuration threads, and that —worse— there is a cross dependency between them.

Definition. Two CPP symbols and are calleddisjoint, if they cannot be defined at the same time. They
are calledorthogonal, if they deal with different and independent aspects of the configuration space, e.g. user
interface variants vs. operating system variants.

These definitions are not completely formal. For two preprocessor symbols, only a human can decide whether
they are disjoint or orthogonal, as this depends on their semantics. Usually, the symbols’ names indicate their
meaning, but nevertheless the restructurer must contribute some knowledge.

Interfering disjoint CPP symbols indicate dead code, which can be eliminated. This phenomenon can be found
in the first example: there is code which depends on both DOS and UNIX, but DOS and UNIX are to the
restructurer’s best knowledge incompatible and hence disjoint.

Interfering orthogonal CPP symbols are also very suspicious: from a software engineering viewpoint, an
interference indicates coupling between independent configuration aspects. Two important software engineering
principles areseparation of concernsandanticipation of change. For example, operating system issues should
be separated from user interface issues, and it should be easy to incorporate another window system into a future
version. This principle is violated in the second example, as there is a cross dependency between operating
system and window system. Cross dependencies prevent the lattice from being decomposed into independent
sublattices, and this shows there is low cohesion and strong coupling between configuration threads.

In general,low couplingof configuration threads is achieved when orthogonal or disjoint preprocessor symbols
appear in disjoint sublattices, as indicated in figure 5. Paths which are glued together in their top or bottom
sections are acceptable, but cross arcs between sublattices always indicate interference between orthogonal
configuration threads.High cohesionis achieved, if, for a subset of preprocessor symbols neither orthogonal

nor disjoint, the corresponding sublattice is a grid: . Missing arcs indicate that certain combinations

of CPP symbols have not been taken into consideration, which is at least suspicious. Hence, concept analysis
not only provides a detailed account of all dependencies, but can serve as a quality assurance tool in order to
check for good design of the configuration structure, or to limit entropy increase as a software system evolves.
Indeed, we will see later that analysis of interferences in the RCS system reveals a subtle UNIX bug.
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3.4 Data Reduction

Often one would like to obtain a quick overview of the configuration structure and explore the full details later.
For such purposes, two data reduction techniques have been implemented.

Sublattices: ignoring deeply nested “#ifdef”s

First, the restructurer may specify a maximal nesting depth for nested “ifdef”s. All “#ifdef”s and “#define”s
which are more deeply nested are ignored. This results in a reduced concept lattice which displays only the
overall structure of possible configurations, ignoring fine-grained details. The reduced lattice is asublattice
of the full concept lattice: ignoring deeply nested “#ifdef”s means that some concepts, dependencies and
interferences will disappear; on the top level however, the dependencies are the same as in the full lattice.

In fact, ignoring deeply nested “#ifdef”s just means that some rows in the configuration table disappear, whereas
others obtain new object labels (as code pieces merge and grow larger). It is a well-known theorem of concept
analysis that deleting some rows or columns in a context table will result in a sublattice of the original lattice
[WG93]. Therefore, an embedding of the reduced lattice into the full lattice can always be found.

Lattice congruences: merging similar rows

The second technique is based on the observation that certain code pieces are often governed by almost identical
preprocessor settings. The corresponding rows in the configuration table can be merged into one row if they
“do not differ too much”. The restructurer may specify a threshold value, and if a set of rows can be identified
where all rows do pairwise differ in less thanpositions, these rows are replaced by a new row which has
crosses in a column ifall original rows had. Such a “multirow” thus describes a set of code pieces such
that all code pieces have at least all attributes which are marked (but some may have more). This gives us a
conservative approximation (we loose some dependencies, but we never introduce false ones).

In the concept lattice, the technique has the effect that several concepts are merged into one concept: row
merging induces a latticecongruenceand hence is compatible with supremum and infimum. In fact, if the
rows for code pieces 1 2 k are merged, all concepts, where 1�i�k i 1�i�k i are
merged (in particular all the i are merged).

3.5 Graphical Display

It is a non-trivial task to display the concept lattice in such a way that interesting properties show up immediately.
In fact, a number of sophisticated algorithms has been devised for that purpose [Wi89a, Wi89b, Sk92]. Some
of the techniques used are to embed lattices into–dimensional grids, or to present the lattice as a (sub)direct
product of smaller lattices. Such techniques allow to detect e.g. the automorphisms of the lattice, or to check
whether the lattice is distributive.

Some of these algorithms have been implemented, but were not available to us. Thus, we implemented a simpler
approach, based on the Sugiyama algorithm [STT81]. This well-known layout algorithm for arbitrary directed
graphs uses the topological ordering of nodes in order to determine their vertical position. The nodes are grouped
in layers, where each layer contains nodes with identical distance (i.e. number of edges) to the top element.
The algorithm then tries to minimize crossings by choosing appropriate horizontal positions for the nodes.

If there is enough screen space, NORA/RECS will display the concept labels inside the concept’s box; otherwise
it can be looked up by clicking at the concept box. The concepts and their labels are also written to a file.

As the layout results are not always satisfactory, the user may finally change the graph layout manually (but
the system will maintain integrity of the concept lattice). We plan to integrate the more sophisticated display
algorithms in a future version.
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4 Experimental results

We applied NORA/RECS to several UNIX programs. The lattice layouts in figures 8, 9, and 11 are manually
improved.

4.1 Example 1: the TC shell

Our first example is a popular shell, the “tcsh” developed at Berkeley. We have analysed one of its modules,
namely “sh.exec.c”. This program is 959 lines long and uses 24 different preprocessor symbols for configuration
management. In the concept lattice (figure 8)3, singleton attribute or object labels are displayed in the diagram,
the others can be looked up in a separate window by clicking on a concept (e.g. C19). It turns out that the
configuration structure is perfect according to the criteria described above, as the lattice is almost flat. It seems
that there is an interference between concepts C17, C20 – C21, and C18. But a look at the source code reveals
that bothVFORK andFASTHASH, as well as the attribute labels of C18, have to do with the hash function
used, hence there are no dependencies between orthogonal configuration concepts.

4.2 Example 2: the RCS stream editor

Our second example is the stream editor from the RCS system “rcsedit.c”. This 1656–line program uses 21
preprocessor symbols for configuration management. The concept lattice has 33 concepts and is is shown
in figure 5. In the left part of the lattice, there are a lot of simple variants, which correspond to specific
features like “has_set_uid” or “has_readlink”. The concepts below C24/C10/C21 (concerning networking) form
a grid-like cluster.

But there is an interference manifest in C27, which is the infimum of C3 and C26. C3 is labeledhas_rename
(as can be seen in the info box), C26 is labeledhas_NFS, and C27 is labeled 1425 – 1427. Thus, lines 1425
– 1427 are governed by bothhas_NFS andhas_rename. It seems that C13 is a similar interference, but as
C12 is labeled ”bad_a_rename”, both C12 and C3 have to do with the file system.

Thus, although the overall structure is quite good, we suspect that networking issues and file access variants
are not clearly separated in “rcsedit.c”. And indeed: a comment in the source code explains that due to an
3 The corresponding figure in [KS94] was produced with the old version of NORA/RECS which didnot ignore “#define”s (and also had some
bugs). As explained in section 3.1., the new version ignores “#define”s and “#undefine”s. Hence the old lattice in [KS94] had one more concept, namely
BITS_PER_BYTE, which is in fact a constant and not a configuration attribute. The same remark applies to figure 9, which had some additional
“virtual” concepts and interferences in [KS94]. The central interference is however still present, and the new lattice is a sublattice of the old one.

Figure 8: Configuration structure of tcshell module “sh.exec.c”
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Figure 9: Configuration structure of the RCS stream editor

NFS bug, “rename()” can in rare cases destroy the RCS file! This problem has been re-discovered by concept
analysis, just by analysing the configuration structure. The example demonstrates that NORA/RECS can track
down bugs, even bugs which the programmers would like to keep covered: the last sentence of the comment
reads “Since this problem afflicts scads of Unix programs, but is so rare that nobody seems to be worried
about it, we won’t worry either”4.

4.3 Example 3: “xload.c”

Let us now come back to our introductory example, “xload.c” (see figure 1). This program is 724 lines long and
uses 43 preprocessor symbols for configuration management. The resulting concept lattice has 141 concepts
and is shown in figure 10. It looks pretty chaotic – the program obviously suffers from configuration hacking5.
We therefore used data reduction to display only the top 4 “#ifdef” nesting levels (figure 11).

Even on the top level, there are interferences, namely C28 and C32, and the central role of C30 does not
inspire confidence (C28 is the infimum of C22 and C24, whereas C32 is the infimum of C2 and C30. C22 is
SYSV, and C24 is!apollo. C2 is SVR4 || UTEK || alliant || hex || sequent || sgi || sun. C30 is is a set
of 9 code pieces governed by the sundriesSYSV386, !LOADSTUB and !KVM_ROUTINES). Overall, the
lattice consists of several “standalone” configurations (C3, C4, C42, C26, C5, C6, C17, C18, C19), a “SVR4 ||
UTEK || alliant || hex || sequent || sgi || sun“ sublattice (conceptsC2), and a “not macII, not apollo” sublattice
(concepts C24/C37). The top element C1 shows that several code pieces are configuration independent (not
governed by any CPP symbol), while the bottom element C43 shows that several CPP symbols are defined, but
not used in “#ifdef”s – namely those which are used for definition of constants or inline functions.

4 The problem is in fact a little bit more complicated; the interested reader should look at the source code himself
5 if #defines irrelevant for configuration managment are ignored, the lattice shrinks to 103 concepts – but still looks chaotic
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Figure 10: Configuration structure of “xload.c”

5 Lattice analysis and interference detection

Once the lattice has been constructed and layouted, the restructurer may inspect it in an interactive manner.
NORA/RECS offers the following functions:
• for every concept , its labels and can be displayed by a simple mouse click;
• the source code pieces given in can be displayed;
• lattices can be horizontally decomposed (if possible);
• interferences of minimal connectivity can be computed and displayed (see below);
• sublattices can be selected by clicking on their top or bottom elements;
• the intersection of sublattices can be displayed, which contains interferences (see below);
• lattice decompositions and corresponding source file restructuring can be triggered (see below);

After analysis, the restructurer can execute the restructuring algorithms described below. He may also
manually restructure the source code, and repeat the analysis. Hence, NORA/RECS supports an interactive
and incremental way of analysing configuration structures.

It is planned to include further analysis algorithms in a future version, in particular the minimal implication
basis [Du87], subdirect decomposition [Wi83] and tensor decomposition [Wi85].

5.1 Automatic interference detection

As explained above, interferences indicate coupling between configuration threads. A restructuring of the
configuration space should of course try to minimize coupling. Restructuring corresponds to decomposition of
the lattice (see below). Therefore, coupling is minimal, if the lattice is decomposed in such a way that the
number of connecting edges between sublattices is minimal. The number of edges between sublattices is a
measure of the “badness” of the interference and is called theconnectivityof the interference.
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C1: 0 - 35
37 - 39
45 - 47
49 - 51
57 - 59
61 - 63
70 - 72
74 - 76
85 - 87
89 - 91
93 - 95
97 - 99
101 - 103
109 - 111
115 - 117
119 - 125
723 - 724

C2: SVR4 OR UTEK OR alliant
OR hcx OR sequent OR sgi OR sun

C3: apollo
125 - 184

C4: X_NOT_POSIX
117 - 119

C5: (OSMAJORVERSION = 4)
sony
103 - 104
108 - 109

C6: ! mips
106 - 108

C7: sgi
99 - 101

C8: SVR4 OR UTEK OR alliant
C9: SVR4

111 - 112
114 - 115

C10: ! FSCALE
112 - 114

C11: MOTOROLA OR UTEK OR alliant
C12: 91 - 93
C13: hcx

87 - 89
C14: macII

76 - 85

C15: sequent
72 - 74
95 - 97

C16: AIXV3 OR CRAY
63 - 70

C17: mips OR umips
C18: mips

104 - 106
C19: ultrix OR umips

59 - 61
C20: sun

51 - 53
56 - 57

C21: i386
53 - 56

C22: SYSV
C23: MOTOROLA

47 - 49
C24: ! apollo

184 - 185
714 - 723

C25: ! SYSV
! SYSV386
271 - 272
713 - 714

C26: ! KVM_ROUTINES
316 - 317
712 - 713

C27: KVM_ROUTINES
272 - 316

C28: SYSV386
185 - 271

C29: ! LOADSTUB
C30: 332 - 334

336 - 338
398 - 401
449 - 455
466 - 468
483 - 490
547 - 558
562 - 564
709 - 712

C31: ! SVR4
! UTEK
! alliant
! hcx
! sequent
! sgi
! sun
570 - 709

C32: 564 - 570
C33: ! KERNEL_LOAD_VARIABLE

401 - 449
455 - 466

C34: ! KERNEL_FILE
338 - 398

C35: ! KMEM_FILE
334 - 336

C36: X_AVENRUN
fxtod
468 - 477
490 - 511
558 - 560

C37: ! macII
39 - 40
44 - 45

C38: 40 - 41
43 - 44

C39: 41 - 43
C40: 477 - 483

511 - 547
560 - 562

C41: LOADSTUB
317 - 332

C42: att
35 - 37

C43: word
! word
! n_type
n_type
FSCALE
KERNEL_FILE
KMEM_FILE
VAR_NAME
PROC_NAME
BUF_NAME
DECAY

Figure 11: Top level configuration structure of “xload.c”
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The interference analysis algorithm incorporated in NORA/RECS tries to horizontally decompose the lattice
in such a way that connectivity is minimal. This will guarantee that the restructured source file has highest
cohesion and minimal coupling. Lattice decomposition is done in a top-down fashion: top–level interferences
between big sublattices are detected first, whereas minor interferences will be detected very late. This helps
for restructuring, as interferences between big sublattices are more likely to indicate errors or bad configuration
structure. The sublattices can later be analysed recursively.

The algorithm for detecting interferences of minimal connectivity works as follows.
1. Try a horizontal decomposition of the lattice. This is done by removing the top and bottom elements and

their outgoing edges, and then determine the connected components of the (undirected) concept graph by a
standard algorithm. If successful, there are no top level interferences (connectivity). Reattach top and
bottom element to each sublattice, and apply the remaining steps recursively to the sublattices.

2. If a sublattice cannot be decomposed horizontally, it may contain interferences. First, simple interferences
of connectivity are investigated. These are detected by removing the top and bottom elements, and
then computing thebiconnected componentsof the remaining graph. A bridge between two biconnected
components which leads to an–reducible concept node (that is, of the form ) points to an
interference. The node is highlighted.

3. Often, there is more than one interference between sublattices. For example, in figure 9, the two edges
C6/C13 and C15/C27 connect two sublattices. Thus we compute the–connected components of the lattice
graph (without top and bottom), whereis minimal. A simple method to determine–connected sublattices
is to consider all sets of –reducible concept nodes and test whether their removal will break the graph
into unconnected subgraphs.

Only the restructurer can decide whether the interference must be resolved, or whether it should be ignored.
This decision must be based on the semantics of the involved CPP symbols. If the semantics is not documented,
the lattice structure provides insight into the meaning of a certain preprocessor symbol.

5.2 Determining sublattice intersections

The above algorithm proposes a lattice decomposition (and hence a code restructuring, see below) which has
minimal coupling. This sounds reasonable from a software engineering viewpoint, but as the analysis does not
take the semantics of CPP symbols into account, the proposed decomposition may be against the restructurer’s
intuition. NORA/RECS therefore offers a complementary approach, where sublattices are not determined
automatically, but selected by the restructurer.

The restructurer may click at a number of concept nodes1 n , and thereby select the downward suborder

1 n i (the dual operation of selecting upward suborders is also supported)6. The
downward suborder is then highlighted (or coloured) on the screen. It provides interesting information, as
the code piece labels in 1 n are those which depend on the intent of one of thei. For example,
selecting the downward suborder SYSV, SVR4 displays all code pieces in the “System V” or “System
V Release 4” versions.

Several downward sublattices may be selected this way, and each highlighted in a different colour7. The
intersection of such sublattices also contains interferences; in fact, the maximal elements in the intersection of
two sublattices are interferences. These are, however, not necessarily of minimal connectivity. But they are
choosen by the restructurer, which may be more appropriate.

6 if n = 1, # fc1; :::; cng is a sublattice, but otherwise not all subsets of elements have a supremum.
7 unfortunately, the current NORA version only supports black and white
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Figure 12: Automatic interference detection in a sublattice

5.3 Example: analysing “rcsedit.c”

The configuration lattice of the RCS stream editor was given in figure 9. After initial horizontal decomposition
of the lattice, NORA/RECS immediately detects two interferences with connectivity 1, namely C27 and C13
(figure 12). We already argued that C13 is not an interference, so it seems obvious to decompose the source
code “along the C27 interference”. But the restructurer is wise to take a look at the other concepts before, in
order to achieve high cohesion. For example, C4 is labeled “!bad_a_rename” and hence belongs to the whole
complex of networking. The other concepts in the left part of the lattice all deal with specific UNIX features;
all concept labels are orthogonal (but not disjoint).

It seems that restructuring does not make much sense here, because the original program already had a reasonable
configuration structure. As the NFS bug which leads to the interference obviously cannot be fixed, there is
little hope that the interference can be removed.

6 Code decomposition

In this section, we describe how a source file can be decomposed into several source files or “modules”, where
each module covers a cohesive subset of the configuration space. The decomposition process is driven by
the structure of the concept lattice and implemented via partial evaluation of preprocessor files. Note that the
resulting “modules” are not traditional modules in the software engineering sense. They are merely subsets of the
original set of code pieces, where the lattice-based decomposition guarantees high cohesion and low coupling.

We assume that the code pieces itself need not be changed. We do not consider the case where code pieces itself
are minced and remerged, as this involves program understanding and program transformation. If individual
code pieces must be broken for restructuring, the method described in this paper cannot be used.

Modules (henceforth written without apostrophes) will in general contain redundant copies of source code
pieces, and it is well known that code duplication is problematic from a maintenance viewpoint. Unfortunately,
code duplication can in general only be avoided if all code pieces for each of the modules are textual neighbours
in the original source file. Therefore, the technique described in this section should be considered as a first step
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to configuration restructuring. Future research must show whether it is possible to automatically restructure
configurations such that code duplication can be avoided and more “traditional” modules be created.

6.1 Partial evaluation of CPP files using NORA/ICE

Restructuring of configurations relies on partial evaluation of CPP files; a technique which will be sketched
in this section. It is implemented in NORA/ICE, a tool for incremental configuration management based on
feature logic [ZS94]. NORA/ICE – among other features – offers partial evaluation of preprocessor files. It
allows to simplify preprocessor files with respect to the information that certain (combinations of) governing
symbols will (or will not) be defined. NORA/ICE will simplify governing expressions and delete code pieces
or preprocessor statements with respect to a given “context” expression, which is assumed to be true. The
ordinary preprocessor behaviour is included as the “limit case”, namely thatall preprocessor symbols have a
known value. NORA/ICE allows arbitrary complex context expressions, including those which introduce new
symbols. Simplification is not just constant folding, but is based onfeature unification.

Partial evaluation will considerably reduce the size of the source file, if several preprocessor symbols are known
to be always defined or undefined. Figure 12 gives a simple example of partial evaluation, where preprocessor
symbol is assumed to be always undefined.

6.2 Preliminary simplification of the configuration space

According to Parnas, the first step in restructuring must be to reduce the size of the program family. If the
restructurer has some knowledge about the old configuration structure and the meaning of the old preprocessor
symbols, he might conclude that certain configurations (i.e. certain preprocessor settings) must no longer be
supported. Hence the corresponding code is irrelevant and should be discarded (this is called “amputation” in
[Pa94]). In particular, if certain preprocessor symbols are no longer needed, code depending on them will never
be included in any restructured configuration and can be deleted. Such a simplification of the source code is
appropriate before more complicated restructuring takes place.

6.3 Source code decomposition

Generation of modules from sublattices

Once a sublattice has been determined – either by horizontal decomposition or by explicit selection –, a module
corresponding to this sublattice can be created. This works with every sublattice, but of course the restructurer

#ifdef A
...I...
#endif
#ifdef B #ifdef B
...II... ...II...
#endif #endif
#if defined(B)||defined(C) #if defined(B)||defined(C)
...III... ...III...
#endif #endif
#ifdef A #if defined(B)&&defined(C)
...IV... ...V...
#endif #endif
#if defined(A)||(defined(B)&&defined(C))
...V...
#endif

Figure 13: Partial evaluation of a preprocessor file under context expression
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should try to achieve high cohesion and low coupling. Also, preprocessor symbols in the sublattice should be
orthogonal or disjoint from the rest of the lattice.

Module generation is done by partial evaluation of CPP files. Let 1 2 k be the conceptsnot
in the sublattice and 1 n

k
i=1 i all their attribute labels. Then the source text is fed to

NORA/ICE, together with the context expression 1 n . This removes all code
pieces not in the configuration subspace, and simplifies the governing expressions for the remaining code
pieces.8 The resulting source code contains only preprocessor symbols which appear in the sublattice.

Generation of problematic variants from interferences

Once an interference has been determined, a special ”problematic” variant can be generated. Let1 k

be the concept nodes which constitute an interference of connectivity. need not necessarily be an antichain;
can be a suborder or even a sublattice. Let k

i=1
i be all attribute symbols of , and let be

the attribute symbols in . Then the source text is fed to NORA/ICE, together with the context expression
. This creates a source text which subsumes exactly the configurations

containing the problematic code pieces.

6.4 Example: decomposing “xload.c”

Let us now try to restructure “xload.c”. We begin with the “amputation” step. Figure 11 shows that there are
several “standalone” configurations for rather uncommon machines. We decide to discard the following config-
urations: apollo, X_NON_POSIX, sony, CRAY, mips, umips, att, LOADSTUB, alliant, sequent, UTEK,
hcx, sgi.9 Feeding the source code with context expression “[!defined(apollo) && !defined(X_NOT_POSIX)
&&...&& !defined(sgi)]” to NORA/ICE, a reduced source file with 547 source lines results. The correspond-
ing concept lattice has 68 concepts, which is still a lot. A look at the lattice reveals that there are a lot of
interferences concerned with a CPP symbolKVM_ROUTINES. We therefore decide that we consider only
configurations where these routines are available (whatever they may do). This results in a further reduction
of the source file; it is now 501 lines long and the corresponding lattice has 48 concepts. The symmetric case
that we assume “!defined(KVM_ROUTINES)” leads to a small source file with 14 configuration concepts, and
is not further investigated.

The 48–concept lattice is then subject to interference analysis and code decomposition. There are three top-level
interferences of connectivity , namely C19, C22 and C38 (figure 14). Removal of each of these would
isolate C18, C21 resp. C37 (macII, AIXV3, ! macII) and is not further investigated. Furthermore, there is one
interference of connectivity , namely C28/C46. Removal of these concept nodes would isolate C14, but
leave the rest of the lattice unchanged and is therefore not further investigated. There are als two interferences
of connectivity , namely C33/C26/C46 and C33/C26/C28, but these do not produce a “clean” lattice
decomposition either.

We therefore decide to base modularization on sublattice selection. Obviously, most concepts are
below C3, the “not System V” concept. We therefore produce a module which handles all con-
figurations except “System V”; this is based on the sublattice . According to sec-
tion 6.3, NORA/RECS collects the concept labels of the maximal elements outside ;
these are C18, C21, C37, C25, C29 with labelsmacII, AIXV3, !macII, SYSV, MOTOROLA.
NORA/RECS then feeds the simplified source file to NORA/ICE, together with context expression

.

8 Actually, it would be enough to undefine only the maximal elements ofC.
9 This is not to be understood as a recommendation to the authors of “xload.c”!

24



C1: 0 - 36
38 - 40
42 - 44
50 - 53
60 - 63
72 - 75
77 - 82
86 - 93
180 - 181
202 - 203
205 - 206
208 - 209
213 - 214
224 - 225
228 - 229
231 - 232
252 - 253
255 - 256
258 - 259
263 - 264
418 - 419
493 - 494
497 - 506

C2: SVR4 OR sun
C3: ! SYSV OR ! SYSV386

181 - 191
193 - 195
197 - 202
214 - 220
223 - 224
232 - 240
244 - 248
250 - 252
264 - 273
282 - 285
300 - 307
353 - 364
368 - 370
417 - 418
494 - 497

C4: ! USG
276 - 277
281 - 282

C5: 370 - 376
C6: ! STDC__ OR ! SVR4
C7: USG

273 - 276
C8: ! SVR4

222 - 223
C9: 279 - 281
C10: ! sun

376 - 377
416 - 417

C11: ! SYSV
229 - 231

C12: hpux
191 - 193
240 - 241
243 - 244

C13: hp9000s800
241 - 243

C14: SYSV386
C15: SVR4

82 - 86
C16: 220 - 222
C17: 277 - 279
C18: macII

63 - 72
C19: 195 - 197

285 - 294
307 - 328
364 - 366

C20: 377 - 382
C21: AIXV3

53 - 60
C22: 248 - 250
C23: sun

44 - 46
49 - 50

C24: i386
46 - 49

C25: SYSV
C26: ! SYSV386
C27: 225 - 228
C28: 93 - 180
C29: MOTOROLA
C30: 209 - 210

212 - 213
259 - 260
262 - 263

C31: 75 - 77
C32: 210 - 212

260 - 262
C33: 40 - 42
C34:
C35: m88k

206 - 208
256 - 258

C36: m68k
203 - 205
253 - 255

C37: ! macII
36 - 38

C38: 294 - 300
328 - 329
331 - 333
337 - 353
366 - 368

C39: ! AIXV3
335 - 337

C40:
C41: ! MOTOROLA

329 - 331
C42: 382 - 383

415 - 416
C43: 414 - 415
C44: 333 - 335
C45: 383 - 414
C46: 490 - 493
C47: 419 - 490
C48:

Figure 14: Simplified xload.c with three interference of connectivity 1
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The resulting source file consists of 197 lines and can be installed on all non-System V platforms (but not
CRAY etc., as these configurations have been amputated before).

Figure 14 also shows that even in the simplified source file, lines 490–493 (extent of C46) occur in a lot of
configurations. These lines are governed by the easy-to-understand expression

!(defined(SVR4) || defined(sun)) && !defined(macII) &&

!defined(AIXV3) && !(defined(SYSV) && defined(MOTOROLA)) &&

!(defined(SYSV) && defined(SYSV386)) && !(defined(SYSV) &&

!defined(macII) && !defined(AIXV3) && defined(MOTOROLA) &&

!(defined(SYSV) && defined(SYSV386)))

In fact, C46 is an interference of at least connectivity 7. We therefore decide to create a “problematic” variant,
which subsumes all configurations including lines 490–493. According to section 6.3, this is done by collecting
all attribute labels not in and feeding their “undefinedness” to NORA/ICE. This results in a source
text of 289 lines; its concept lattice has still 19 concepts.

But the (human) restructurer can do more: from the lattice, he can conclude that lines 490–493 occur in all
configurations exceptUSG, !USG, hpux, SYSV, MOTOROLA (and their subconfigurations). Therefore, he
can replace the governing expression by another one, which might be simpler. This manual operation produces
a different (and simpler) lattice, which still covers the same configuration space. NORA/RECS cannot deduce
lattice-specific equivalences between governing expressions, and hence cannot transform governing expressions
automatically.

It should be noted that the above example has sort of anad libitum character. A salesman would perhaps
make different choices in the initial simplification step, and a Unix guru would perhaps find a more clever
modularization. But the example clearly demonstrates the principle: source code is simplified and decomposed
according to an analysis of dependencies between configurations. Furthermore, a human restructurer can obtain
insight from the lattice which helps to manually restructure a source file.

7 Conclusion

NORA/RECS is a valuable tool foranalysisof configuration spaces, but as a tool forrestructuring, the approach
is still in its infancy. Although source code decompositions which guarantee high cohesion and low coupling
are nice, maybe it is not what restructurers really want. We therefore plan to use more of the theory of concept
lattices, in order to obtain more powerful restructuring algorithms. In particular, we want to investigate the
following topics:

• The minimal implication basis, mentioned in chapter 2, could serve as a help for restructuring, as it already
generates the whole lattice.

• Concept lattices are isomorphic to the lattice generated by their join- and meet-irreducible elements. This
can be used to simplify governing expressions according to lattice-specific equivalences.

• The congruences and subdirectly irreducible sublattices of a concept lattice might offer a better basis for
restructuring than horizontal lattice decomposition.

For all of these options, efficient algorithms exist [WG93]. Work is already under way to utilize implications,
irreducible elements and subdirect decomposition for restructuring.

In this paper, no correctness proofs have been given. But every restructuring algorithm must face some
correctness criterion, in order to be sure that configuration threads are kept intact. We have developed a formal
notion of correct restructuring of configurations and have proven our restructuring algorithm correct. For reasons
of readability, the proofs are not included in the present article.
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The methods presented in this paper can easily be adapted to more modern configuration management systems,
although this would be a mere technical task. From a scientific viewpoint, it is more interesting to explore
other applications of concept analysis in software engineering. Besides configuration restructuring, we consider
the following applications of concept analysis:

• Analysis of software architectures.A software architecture is defined by relations between components, and
hence can be subject to concept analysis. This might also help for automatic modularization of old code.

• Software component retrieval.Imagine a library where components are indexed by keywords. The relation
between components and keywords can be subject to concept analysis. The resulting lattice allows for
incremental narrowing of the set of still possible components, and gives users feedback about the still
applicable keywords.

NORA/RECS is part of the inference-based software development environment NORA10. NORA aims at
utilizing inference technology in software tools and – besides NORA/RECS – covers the following topics:

• NORA/ICE (incremental configuration engine) offers configuration management based on feature logic
[ZS94];

• NORA/HAMMR (highly adaptive multi-method retrieval) offers software component retrieval based on
deductive and lattice-theoretic techniques [FKS94, Li94];

• NORA/HOML (higher-order module language) is a calculus for designing reference architectures, which is
based on –calculus with dependent types [Gr94].

More general descriptions of NORA can be found in [SGS91, GS93, SFGKZ94].

NORA/RECS can be obtained via anonymous ftp:ftp.ips.cs.tu-bs.de (134.169.32.1).
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