
NORA/HAMMR: Making Deduction-Based Software Component Retrieval
Practical�

Johann Schumann
Automated Reasoning, Institut für Informatik, TU München, D-80290 München

schumann@informatik.tu-muenchen.de

Bernd Fischer
Abt. Softwaretechnologie, TU Braunschweig, D-38092 Braunschweig

fisch@ips.cs.tu-bs.de

Abstract

Deduction-based software component retrieval uses pre-
and postconditions as indexes and search keys and an auto-
mated theorem prover (ATP) to check whether a component
matches. This idea is very simple but the vast number of
arising proof tasks makes a practical implementation very
hard. We thus pass the components through a chain of filters
of increasing deductive power. In this chain, rejection fil-
ters based on signature matching and model checking tech-
niques are used to rule out non-matches as early as possible
and to prevent the subsequentATPfrom “drowning.” Hence,
intermediate results of reasonable precision are available at
(almost) any time of the retrieval process. The finalATPstep
then works as a confirmation filter to lift the precision of the
answer set. We implemented a chain which runs fully auto-
matically and usesMACE for model checking and the auto-
mated proverSETHEOas confirmation filter. We evaluated
the system over a medium-sized collection of components.
The results encourage our approach.

1. Introduction

Reuse of approved software components has been iden-
tified as one of the key factors for successful software en-
gineering projects. Although the reuse process also cov-
ers many non-technical aspects [33], retrieving appropriate
software components from a reuse library is a central task.
This is best captured by theFirst Golden Rule for Software�This work is supported by the DFG within the Schwerpunkt “Deduk-
tion” (grant Sn11/2-3), the habilitation grant Schu908-1/5, and the Son-
derforschungsbereich SFB 342, Subproject A5 (PARIS: Parallelization of
Inference Systems). Part of the work was done while visitingthe ICSI
Berkeley.

Reuse: “You must find it before you can reuse it!”1

Most earlier software component retrieval (SCR) meth-
ods (e.g., [19]) grew out of classical information retrieval
for unstructured texts. However, since software compo-
nents are highly structured, more specialized approaches
may lead to better results. In this paper we will concentrate
on a deduction-based approach where we use pre- and post-
conditions as the components’ indexes and as search keys.
A component matches a search key if the involved pre- and
postconditions satisfy a well-defined logical relation, e.g.,
if the component has a weaker precondition and a stronger
postcondition than the search key. From this matching rela-
tion a proof task is constructed and anATP is used to estab-
lish (or disprove) the match.

This approach has been proposed before (e.g., [28, 20])
but without convincing success because essential user re-
quirements have been neglected. In this paper we fol-
low a more user-oriented approach and describe steps for
making deduction-basedSCRpractical. We concentrate on
deduction-basedSCRbecause it is the key technique which
underlies more ambitious logic-based software engineer-
ing approaches, e.g., program synthesis [17] or component
adaptation [25]. For a discussion of benefits and the inte-
gration into software engineering processes we refer to [9].

In the next two sections we outline the user requirements
for a practical reuse tool and present our system architec-
ture, featuring the filter pipeline and a graphical user inter-
face. Then, we discuss the construction of proof tasks out
of the givenVDM-SL specifications. This is an important
step as the different approaches model quite different reuse
aspects. Sections 5 and 6 focus on the two major compo-
nents of the filter pipeline, namely rejection of non-matches
with model-checking techniques and the final confirmation
filter with SETHEO. We have evaluated our approach over

1This rule has been attributed to Will Tracz.



a database of 55 list specifications. We present and assess
the results of these first experiments in Section 7. Finally,
we compare our approach to the related work and conclude
with current and future work onNORA/HAMMR2.

2. The User’s Point of View

Most earlier work focussed on the technical aspects of
deduction-basedSCR. The users had to write complete spec-
ifications in theATP input language and even had to sup-
ply useful lemmata. The provers were run in batch mode,
checking the whole library before any results were pre-
sented.ATP runtimes and problems of scaling-up were ig-
nored.

This view led to severe acceptance problems as the users
are software engineers and noATP experts.3 Their main re-
quirements are that the tool is easy to use, fully automatized,
fast and customizable, and hides all evidence of automated
theorem proving. Hiding theATP has some consequences.
The input language must be a fully-flavored specification
language and not pure first order logic (FOL). But then the
automatic construction of the actual proof tasks becomes it-
self a major task.

Short response times are also essential as theFourth
Reuse Truismdemands that “you must find it faster than
you can rebuild it!” [15]. However, due to the computa-
tional complexity ofATP, truly interactive (“sub-second”)
behavior is still far out of reach. Instead,anytime behav-
ior is acceptable: intermediate results of sufficient precision
must be available to the user at (almost) any time during the
retrieval process. Retrieval may then be guided further with
feedback from the user who may for example strengthen the
search key incrementally.

Ideally, the tool doesn’t constrain user feedback to the
queries but allows a customization of the complete retrieval
process. This includes the selection of an appropriate match
relation from a given list of choices as well as some tun-
ing of the deductive mechanism (e.g., time limits or model
sizes). But it is important to ensure that the tool still runs
fully automatically and produces useful results even without
customization.

In exchange for these constraints, deduction-basedSCR
offers the unique feature that completeness and even sound-
ness are not absolutely vital. Incomplete and unsound de-
duction methods only reducerecall (“do we get all match-
ing components?”) andprecision(“do we get the right com-
ponents?”).

2NORA is no real acronym, HAMMR is a highly adaptive multi-
method retrieval tool.

3In a real-life setting, a reuse administrator is required who knows the
applied deduction methods and who can “tune” libraries (e.g., by giving
ATP settings and domain specific lemmata).

Figure 1. Graphical user interface

3. System Architecture

In order to meet the user requirements we implemented
NORA/HAMMR as afilter pipelinethrough which the can-
didates are fed. This pipeline typically starts withsigna-
ture matching filters. They check whether candidate and
query have “compatible” calling conventions (i.e., types or
signatures). The notion of compatibility is specified by an
equational theoryE; the filter then appliesE-matching orE-unification of the signature terms. Typical theories in-
clude axioms to handle associativity and commutativity of
parameter lists and records, currying (for functional lan-
guages), pointer types and VAR-parameters (for imperative
languages), and coercion rules (see [8] for a detailed discus-
sion).

Then, rejection filterstry to eliminate non-matches as
fast as possible. This is a crucial step to prevent theATP
from “drowning” as there are many more non-matching
than matching candidates. We currently apply model gener-
ation techniques to check the validity of the tasks in suitable
finite models. However, both precision and recall may de-
crease because this approach is neither sound nor complete.

Finally, confirmation filterscheck the validity of the re-
maining proof tasks and thus lift the precision of the re-
sult to 100%. Here, we applySETHEO, a high-performance
prover based on the Model Elimination calculus. Both filter
classes will be described below in more detail.

The graphical user interface (cf. Figure 1) reflects the
idea of successive filtering. The pipeline may easily be cus-
tomized through an icon pad; each filter icon also hides a
specialized filter control window which allows some fine-
tuning of the filters. Additional inspectors display interme-
diate results and grant easy access to the components. They



also allow to save intermediate results in a file such that
they may easily be used as libraries for subsequent retrieval
runs. The objective of the GUI is precisely to hide all ev-
idence ofATP usage. Hence, the knowledge necessary to
useNORA/HAMMR as atool is restricted toVDM-SL [7]
which we use as our input language and to the target lan-
guage which is required for signature matching.

4. Proof Tasks and Reuse

The overall structure of the generated proof tasks de-
pends on the definition of thematch relationwhich is used
in a deduction-basedSCR tool. Thus it ultimately depends
on the kind of reuse which the tool aims at.

Most often, deduction-basedSCR is configured to en-
sureplug-in compatibilityof the retrieved components:c
matches if it has a weaker precondition and a stronger post-
condition than the search keyq. This is usually (cf. e.g.,
[34]) formalized as(preq ) prec) ^ (postc ) postq)4.
However, this is not adequate for partial functions. Ifq is a
partial function (e.g.tail) andc its total completion (e.g.,c(nil) returnsnil) then we wantc to matchq even if its
“completed” result does not fit the original specification.
It is thus necessary to restrict the implication between the
postconditions on the domain given bypreq . We thus work
with proof tasks of the form(preq ) prec) ^ (preq ^ postc ) postq) (1)

which are similar to [34]’s “guarded plug-in match” except
for our use of the stronger (via the first implication) pre-
condition from the query. Plug-in compatibility supports
safe reuse. The retrieved components may be considered
as black boxes and may be reused “as is”, without further
proviso or modification of the component.

Sometimes plug-in compatibility is not applicable be-
cause the users don’t want to specify any precondition but
are willing to accept whatever comes, as long as their post-
conditions are met. In that case,(1) simplifies to

prec ^ postc ) postq (2)

or conditional compatibility. However, reuse now becomes
potentially unsafe because any client still has to satisfy the
open obligationpreq .

Sometimes (2) might be too strong, and retrieves
no components, although the library contains “almost”
matches, e.g., partial functions. To additionally retrieve
such components,partial compatibilitymay be used:

prec ^ preq ^ postc ) postq (3)

4Actually, the proof tasks are universally closed wrt. the formal input
and output parameters of the component and the query and alsocontain
equations relating the parameters. Likewise, the pre- and postconditions
are of course logical functions of the respective parameters. However, to
improve readability, we use these traditionally abbreviated formulations.

Thus, a component is retrieved if it computes the correct
results on the common domain. If, however, the domains ofc andq are disjoint,prec andpreq are never true at the same
time and thus(3) will become vacuously true. But usuallyq
andc then also work on different types andc should already
be rejected by signature matching. Ifc has an empty domain
or is not implementable (i.e.,postc never becomes true),(3)
will again become vacuously true andc will be retrieved
for any query. However, this should not happen in a well-
designed library.

Obviously, reuse based on partial compatibility is un-
safe because the retrieved components are not guaranteed
to work on the entire required domain. But they might be
good starting points for desired more general implementa-
tions. Hence, the components must be considered as “white
boxes”—their code needs a closer inspection.

As an example, let us consider the followingVDM-SL
specifications:5

rotate(l : List) l0 : List shuffle(x : X) x0 : X
pre true pre true
post (l = [] ) l0 = [])^ post 8i : Item�(l 6= [] ) (9x1; x2 : X � x = x1^[i]^x2 ,l0 = (tl l)^[hd l]) 9x1; x2 : X � x0 = x1^[i]^x2)

Let us further assume that we use plug-in compatibility
as match relation,rotateas candidatec andshuffleas queryq. Then several steps are necessary to construct a sorted
FOL proof task. First, the formal parameters must be iden-
tified, in this casel = x andl0 = x0.6 Then, VDM’s under-
lying three-valued logic LPF must be translated intoFOL.
This essentially requires the explicit insertion of additional
preconditions into the proof task to prevent reasoning from
undefined terms as well as a translation of the connectives
which takes care of the missing law of the excluded middle
[12, 22]. In our example, this results in the proof task8l; l0; x; x0 : List � (l = x ^ l0 = x0 ^ true ) true)^ (l = x ^ l0 = x0 ^ (l = [] ) l0 = [])^ (l 6= [] ) (l 6= [] ) l0 = (tl l)^[hd l]))) (8i : Item� (9x1; x2 : X � x = x1^[i]^x2, 9x1; x2 : X � x0 = x1^[i]^x2)))
Finally, a simplification removes obviouslytrue or false
parts of the formula.

5. Rejecting Non-Matches

Detecting and rejecting non-matching components as
fast and early as possible is probably the single most impor-
tant step in making deduction-basedSCR practical—there

5Here,^ means concatenation of lists,[] the empty list,[i] a singleton
list with item i, andhd andtl the functions head and tail, respectively.

6This identification is, however, not always a simple renaming substi-
tution as VDM-SL allows pattern matching and complex data types.



are simply many more non-matching than matching com-
ponents. Unfortunately, mostATPs are not suited for this
task. They exhaustively search for a proof (or refutation)
of a conjecture but are practically unable to conclude that it
is not valid (or contradictory). Therefore, other techniques
have to be used to implement rejection filters.

Generally, we may reject a componentc if we find a
“counterexample” for its associated proof taskTc because
it then cannot be valid. Model generators forFOL like
Finder [31] orMACE [21] try to find such counterexam-
ples (which are simply interpretations under whichTc eval-
uates tofalse) by systematically checking all possible inter-
pretations. This obviously terminates only if all involved
domains are finite, as for example in finite group theory
or hardware verification problems. On the other hand, the
highly efficient implementation of most model generators
(usually using BDD-based Davis-Putnam decision proce-
dures) would make them ideal candidates for fast rejection
filters.

However, most domains in our application are not finite
but unbounded, e.g., numbers or lists. If we want to use
model generation techniques for our purpose, we must map
these infinite domains onto finite representations, either by
abstractionor byapproximation.

5.1. Mapping by Abstraction

One approach to establish this mapping uses techniques
from abstract interpretation [6] where the infinite domain
is partioned into a small finite number of sets which are
called abstract domains. For each functionf an abstract
counterpart�f is constructed such thatf and �f commute
with the abstraction function� between original and ab-
stract domains, i.e.,�(f(x)) = �f(�(x)). E.g., we may
partition the domain of integers into three abstract domainsf0g, fx j x > 0g andfx j x < 0g, calledzero, posandneg.
Then, all operations for integers must be abstracted accord-
ingly. For example, for the multiplication�, we get the
abstract multiplication�� which actually mirrors the “sign
rule”: neg��pos= pos��neg= neg.

Abstract model checking [10] then represents the ab-
stract domains by single model elements and tries to find an
abstract countermodel, using an axiomatization of the ab-
stract functions and predicates with a standardFOL model
generator. There is, however, a problem. While abstract
interpretation may escape to a larger “abstract” domain of
truth values in order to make the predicates commute with
the abstraction function, standardFOL model generators re-
quire the exact concrete domain oftrueandfalseand thus a
consistent abstraction may become impossible. E.g., when
we try to abstract the ordering on the numbers,less(zero,
pos) is valid but we cannot assign a single truth value to
less(pos, pos)because two arbitrary positive numbers may

be ordered either way.
So, while there are some predicates which allow exact

abstractions, we have to approximate others. Since we want
to use abstract model checking as a rejection filter, we have
to make our choices such that the filter produces as few
false counterexamples as possible: spurious matches are
handled by the subsequent confirmation filter but improp-
erly rejected components are lost forever.

5.2. Mapping by Approximation

The second approach to map an infinite domain onto a
finite one is done by approximation. From the infinite do-
main, we select a number of values which seem to be “cru-
cial” for the module’s behavior. E.g., for lists, one usually
picks the empty list[] and small lists with one or two el-
ements (e.g.,[a]; [a; b]). Then, we search for a model or
counterexample. This approach mimicks the manual check-
ing for matches: if one has to find a matching compo-
nent, one first make checks with the empty list and one
or two small lists. If this does not succeed, the compo-
nent cannot be selected. Otherwise, additional checks have
to be applied. This approach, however, is neither sound
nor complete. There exist invalid formulas for which a
model can be found in a finitely approximated domain (e.g.,8X : List � 9i : Item � X = [i]^X), and vice versa (e.g.,9X;Y; Z : List �X 6= Y ^ Y 6= Z ^ Z 6= X which has a
model only in domains with at least three distinct elements).

While the second case is not too harmful for our
application—the performance of the filter just decreases
(i.e., more proof tasks can pass), the first one is dangerous:
proof tasks describing valid matches might be lost. The ex-
periments which we describe in Section 7.3 are based on
this approach. For our prototype implementation we use
the model generatorMACE [21].

6. SETHEO as Confirmation Filter

For the final stage of our filter chain the high-
performance theorem proverSETHEOis used.SETHEOis
a complete and sound prover for unsorted first-order logic
based on the Model Elimination calculus. It accepts formu-
las in clausal normal form and tries to refute the formula by
constructing a closed tableau (a tree of clauses). Complete-
ness is accomplished by limiting the depth of the search
space (e.g., with a bound on the size or depth of the tableau)
and performing iterative deepening over this bound. In the
context of this paper,SETHEOcan be seen as a black box
which returns “proof found” or “failed to find proof” af-
ter the given time-limit. Hence, no further details about
SETHEOare given in this paper. For a description of the
system and its features see e.g. [16, 24].



With SETHEO’s soundness, we obtain a confirmation fil-
ter which guarantees that proof tasks which pass it success-
fully actually select matching components. Due to our hard
time constraints, however, means must be taken not to de-
crease the recall in an unacceptable way. In the following,
we describe howSETHEOhas to be adapted in order to be
integrated intoNORA/HAMMR. We discuss important issues
like handling of inductive problems, sorts and equality, and
the selection of axioms and parameter settings.

6.1. Inductive Problems

Whenever recursive specifications are given or recur-
sively defined data structures are used (e.g., lists) many of
the proof tasks can be solved byinductiononly. SETHEOit-
self cannot handle induction and our severe time-constraints
don’t allow us to use an inductive theorem prover. There-
fore, we approximate induction by splitting up the problem
into several cases. For example, for a query and candidate
with the signaturel : List, and the corresponding proof
task of the form8l : List � F(l) we obtain the following
cases:l = [] ) F(l), 8i : Item � l = [i] ) F(l), and8i : Item; l0 : List � F(l0) ^ l = [i]^l0 ) F(l).7 After
rewriting the formula accordingly, we get three indepen-
dent first order proof tasks which then must be processed
by SETHEO. This approach can be implemented efficiently.
However, we cannot solve every inductive problem.

6.2. Equality

All proof tasks heavily rely upon equations. This is due
to theVDM-SL specification style and the construction of
the proof tasks. While some equations just equate the for-
mal parameters of the query and the library module, others
carry information about the modules’ behavior. Therefore,
efficient means for handling equalities must be provided.
We currently provide two variants: the naı̈ve approach by
adding the corresponding axioms of equality (reflexivity,
symmetry, transitivity, and substitution axioms), and the
compilation approach used withinE-SETHEO[24]. Here,
symmetry, transitivity and substitution rules are compiled
into the terms of the formula such that these axioms need
not be added. This transformation, an optimised variant of
Brand’s STE modification [3], usually increases the size of
the formula, but in many cases the length of the proof and
the size of the search space becomes substantially smaller.

7Although it would be sufficient to have cases 1 and 3 only, we also
generate case 2, since many specifications are valid for non-empty lists
only. For those specifications, case 1 would be a trivial proof task which
does not contribute to filtering.

6.3. Sorts

All proof tasks are sorted. The sorts are imposed from
the VDM-SL specifications of the modules and are struc-
tured in a hierarchical way. All sorts are static and there
is only limited overloading of function symbols. Therefore,
the approach tocompilethe sort information into the terms
of the formula can be used. Then, the determination of the
sort of a term and checking, if the sorts of two terms are
compatible is handled by the usual unification. Thus there
is no need to modifySETHEOand the overall loss of ef-
ficiency is minimal. Our current prototype uses the tool
ProSpec (developed within Protein [1]).

6.4. Selection of Axioms

Each proof task has to contain—besides the theorem and
the hypotheses—the features of each data type (e.g.,List,
Nat) as a set ofaxioms. Automated theorem provers, how-
ever, are extremely sensitive w.r.t. the number and structure
of the axioms added to the formula. Adding a single (un-
necessary) axiom can increase the run-time of the prover by
magnitudes, thus decreasing recall in an unacceptable way.
In general, selecting the optimal subset of axioms is a very
hard problem and has not been solved in a satisfactory way
yet. Our strong time-constraints furthermore won’t allow us
to use time-consuming selection techniques. In our proto-
type, we therefore use a simple strategy:

1. select only those theories for those data types (e.g.,
List, Nat, Boolean) occurring in the proof task,

2. within such theories, only select clauses which have
function symbols in common with the proof task, and

3. leave out particular clauses and axioms which are
known to increase the search space substantially (e.g.,
long clauses, Non-Horn clauses).

Although this approach is not complete, we use it, since
our aim is to solve as many obvious and simple proof tasks
(i.e., those which don’t use many axioms or have a complex
proof) within short limits of run-time.

6.5. Control

Once started, the theorem prover has only a few sec-
onds of run time to search for a proof. This requires that
the parameters which control and influence the search (e.g.,
way of iterative deepening, subgoal reordering) are set in
an optimal way for the given proof task. However, such
a global setting does not exist for our application domain.
In order to obtain optimal efficiency combined with short
answer times,parallel competitionover parameters is used.



The basic ideas has been developed for SiCoTHEO [30] and
could be adapted easily: on all available processors (e.g.,a
network of workstations), a copy ofSETHEO is started to
process the entire given proof task. On each processor, a
different setting of parameters is used. The process which
first finds a proof “wins” and aborts the other processes.

7. Experimental Results

7.1. The Experimental Data Base

All experiments were carried out over a database of 55
list specifications which were modified to have the typelist! list in order to please our still very simple signature
matching filter. Approximately 40 of these specifications
describe actual list processing functions (e.g.,tail or rotate)
while the rest simulates queries. We thus included underde-
termined specifications (e.g., the result is an arbitrary front
segment of the argument list) as well as specifications which
don’t refer to the arguments (e.g., the result is not empty).
For simplicity, we formulated the specifications such that
the postconditions only usedVDM-SL’s built-in sequences.

In order to simulate a realistic number of queries we then
cross-matched each specification against the entire library,
using partial compatibility as match relation. This yielded a
total of 3025 proof tasks where 375 or 12.4% were valid.

7.2. Evaluation of Filters

Information retrieval methods [29] are evaluated by the
two criteria precision and recall. Both are calculated from
the setRELof relevantcomponents which satisfy the given
match relation wrt. to the query andRET, the set ofre-
trievedcomponents which actually pass the filter. Thepre-
cision p is defined as the relative number of hits in the
response while therecall r measures the system’s relative
ability to retrieve relevant components:p = jREL\RETjjRETj r = jREL\RETjjRELj
Ideally, both numbers would be 1 (i.e. the system retrieves
all and only matching components) but in practice they are
antagonistic: a higher precision is usually paid for with a
lower recall. We also need some metrics to evaluate the
filtering effect. To this end we define thefalloutf = j RETnREL jj LnREL j
(where L is the entire library) as the fraction of non-
matching components which pass the filter as well as the
reductionwhich is just the relative number of refuted com-
ponents. Finally, we define therelative defect ratiobydr = j RELnRET jj LnREL j � j L jj REL j

Model A B CjListj+ jItemj 2+1 3+1 3+2
recallr 74.7% 76.5% 81.3%�r 0.25 0.26 0.25
precisionp 18.5% 19.6% 16.5%�p 0.21 0.19 0.16
precision increase 1.5 1.6 1.3
fallout 42.8% 41.0% 55.5%
reduction 50.1% 51.7% 39.0%
defect ratiodr 0.51 0.45 0.48

Table 1. Results of model checking

as the relative number of rejected matching components in
relation to the precision of the filter’s input. Thus, a relative
defect ratio greater than 1 indicates that the filter’s ability
to reject only irrelevant components is even worse than a
purely random choice.

7.3. Rejecting Tasks with Model Generation

For the rejection filter withMACE, we currently use three
different models with at most three elements for each data
type (in our caseList, Item). Due to the large number of
variables in the proof tasks we are generally confined to
such small models.

Our experiments withMACE, however, revealed that the
restrictions are not too serious. As shown in Table 1, the
model checking filter (with a run time limit of 20 seconds)
is able to recover at least 75% of the relevant components,
regardless of the particular model. The large standard devi-
ation, however, indicates that the filter’s behavior is far from
uniform and that it may perform poor for some queries.

Unfortunately, the filter is still too coarse. While each
model increases the precision of its answer (compared to the
the original 12.4% “precision” of the library) significantly,
it still lets too many non-matches pass. The values for fall-
out indicate that the results in average contain up to 55% of
the original non-matching components. Similarly, the over-
all reduction of approx. 40-50% is at the lower end of our
expectations. However, the relative defect ratios show that
model checking with any model is at least twice as good as
blind guessing.

7.4. SETHEO as the Confirmation Filter

For all experiments withSETHEOwe used parallel com-
petition with 4 processes exploring different ways of han-
dling equality. Due to technical reasons, we had to restrict
the number of modules from our library to49. This resulted
in a total of 2401 proof tasks with 204 or 8.5% matches.



In our first set of experiments we tried to retrieve iden-
tical modules from the library (i.e.,c � q). The result-
ing 49 proof tasks are relatively simple and no induction or
axioms are needed to prove them. As expected,SETHEO
could show all of them within a time-limit of 20 seconds
CPU-time (on a sun Ultra-SPARC). Whereas the mean run-
time was less than 1s, several proof tasks needed up to 13
seconds.

Then we tried to retrieve matching, but non-identical
components. Our experimental basis contains 155 such
cases. First, these proof tasks were tried without induc-
tion. Here,SETHEOwas able to solve 46 proof tasks with
a standard set of axioms. The rate of recall could be in-
creased drastically, when our approximation of induction
was used. With the same set of axioms, a total of 70 proof
tasks could be solved. Due to the increased size of the for-
mulas (esp. in the step case), more overflow errors occurred.
Nevertheless, with case splitting we have been able to re-
trieve 18 matches more than without case splitting. Due to
the different structure of the search space, 6 tasks could be
shown only without case splitting, making the simple mode
interesting for parallel competition. In order to obtain the
overall recall of theSETHEOconfirmation filter, we have to
combine the data of both sets of experiments. From a to-
tal of 204 = 49 + 155 possible matches,SETHEOcould
retrieve125 (49 identical modules, 70 non-identical with
case splitting and 6 without case splitting) modules. This
yields an overall recall of61:2%. However, the standard
deviation is relatively high as in the model checking experi-
ments, revealing quite different retrieval results for thevari-
ous queries. SinceSETHEO’s proof procedure is sound, all
solved proof tasks correspond to matches, hence the preci-
sion is100%.

8. Related Work

Most early publications on deduction-basedSCR (e.g.,
[20, 28, 14]) were mainly concerned with general concep-
tual issues and ignored the usability and scaling problems.
We will thus discuss only more recent related work.

Zaremski and Wing [34] have investigated specification
matching in a slightly more general framework but their
main application area is also software reuse. They use the
Larch/ML specification language for component descrip-
tion and the associated interactive Larch prover for retrieval.
But this promises some severe scaling problems as in our
experience only a small fraction of the tasks is provable
without interaction. Unfortunately, the paper does not con-
tain any larger experimental evaluation.

Mili et. al. [23] describe a system in which specifications
are given as binary relations of legal (input, output)-pairs.
They then define a subsumption relation on such pairs and
use this for retrieval, relying onOtter to calculate the sub-

sumption. However, their system is still in a prototypical
stage, so no relevant statistical evaluation is presented.The
examples heavily use auxiliary predicates which are not ax-
iomatized further and thus rely on the arbitrary choice of
predicate names to represent domain knowledge. The work
of Jeng and Cheng [11] also uses a subsumption test and
unfortunately also shares the same problematic confidence
in the choice of predicate names. Again, no statistical eval-
uation is presented.

Scaling problems have been addressed differently. The
Inscape/Inquire-system [27] limits the specification lan-
guage to make retrieval more efficient. Similarly,AM-
PHION [17] uses a GUI to foster a more uniform spec-
ification style which in turn allows an appropriate fine-
tuning of the prover. Additional speed-up is achieved by
automatically “compiling” axioms into decision theories
[18]. These techniques have successfully been applied to
to assemble over 100 FORTRAN programs from a scien-
tific component library for solar system kinematics. Penix,
Baraona and Alexander [26] use “semantic features” (i.e.,
user-defined abstract predicates which follow from the com-
ponents’ specifications) to classify the components and per-
form case-based reasoning along this classification to iden-
tify the most promising candidates. This classification
process uses forward reasoning with anATP. However, the
authors give no evidence of how successful their approach
is.

Related work on the use of model checking techniques
for infinite domains is much rarer. Jackson [10] is based
on [5] and also investigates abstract model checking of
software specifications. His goal, however, is to prove
the conjectures and not to disprove them. This requires
sound approximations which forced him to restrict his logic
severely—no negations and exact abstractions only. As
soon as approximate abstractions are allowed, this approach
also becomes unsound. Wing and Vaziri-Farahani [32] also
use abstractions but don’t discuss any correctness aspects
which are related with them.

9. Conclusions and Further Work

In this paper, we have presentedNORA/HAMMR, a
deduction-based software component retrieval tool. Our
goal was to show that such a tool is not only theoretically
possible but practical with state-of-the-art theorem provers.
We thus designed it as a user-configurable pipeline of dif-
ferent filters. Rejection filters are in charge of reducing the
number of non-matching query-component pairs as soon
and good as possible. In this paper, we have studied an
approach which uses model generation techniques for this
purpose. Our experiments withMACE showed that this ap-
proach, although neither sound nor complete, returns rea-
sonable results. The final stage of the filter pipeline is al-



ways a confirmation filter which ensures that the selected
components really match. Here, we have used the automa-
ted theorem proverSETHEO. Even with a short time-limit
of 20 seconds, an overall recall of more than60% was ob-
tained.

We have evaluated our approach with a reasonable large
number of experiments. The results obtained so far are very
encouraging. We are currently preparing experiments with
a library of commercial date and time handling functions as
used for example in stock trading software. This work is
done in cooperation with the German DG Bank.

Nevertheless, many improvements still have to be made
beforeNORA/HAMMR can really be used in industry. Due
to the hard time-constraints (“results while-u-wait”), the re-
duction of proof-tasks, both in complexity and number is
of central importance. Here, powerful rejection filters must
ensure that only a few proof tasks remain to be processed
by the automated theorem prover. However, our current
model-checking filter rejects too much valid matches due to
the necessary approximate abstractions. We are thus trying
to model exact predicate abstractions with Belnap’s four-
valued logic [2] which extends the three-valued LPF con-
sistently. A translation intoFOL which reflects the explicit
falsehood conditions of Belnap’s logic then yields a sound
rejection filter.

Future work will include experiments with specialized
decision procedures for the different theories and dis-
proving techniques. Additionally, knowledge-based filters
similar to [25] and heuristics will help to reduce the num-
ber of tasks to be handled by the confirmation filter. All
these filters will be configurable and allow inspection of the
behavior of the filter pipeline during each stage of the re-
trieval.

Current high-performance automated theorem provers
are certainly usable as confirmation filters. Much work,
however, is still necessary to adapt theATPs for such kinds
of proof tasks. In particular, the requirement of full autom-
atization and the strong time-limits must be obeyed care-
fully. The experiments showed that parallel competition
with several variants (case splitting, set of axioms, handling
of equality) is essential to obtain short answer times. Fur-
ther important issues are the handling of inductive proofs,
and the selection of appropriate axioms. Here, powerful
heuristics as well as additional information, placed in the
data base together with the components (e.g., tactics, lem-
mas, induction schemes) will be helpful. A further re-
duction of the search space could be achieved by axiom
compilation techniques similar to those of Meta-AMPHION
[18]. However, the integration of decision procedures in
SETHEO is still an open research topic.

This application of automated theorem proving carries
the unique feature that soundness and completeness are not
absolutely vital—unsound and incomplete methods only re-

duce the precision and recall of the retrieval tool. This al-
lows interesting and promising deduction techniques (e.g.,
approximating proofs by filter chains or iteration) to be ex-
plored and will help to automate software engineering a lit-
tle further.
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