
Cutting Out the Middleman:
OS-Level Support for X10 Activities

Manuel Mohr Sebastian Buchwald
Andreas Zwinkau

Karlsruhe Institute of Technology, Germany
{manuel.mohr,sebastian.buchwald,zwinkau}@kit.edu

Christoph Erhardt Benjamin Oechslein
Jens Schedel Daniel Lohmann

FAU Erlangen-Nuremberg, Germany
{erhardt,oechslein,schedel,lohmann}@cs.fau.de

Abstract
In the X10 language, computations are modeled as lightweight
threads called activities. Since most operating systems only of-
fer relatively heavyweight kernel-level threads, the X10 runtime
system implements a user-space scheduler to map activities to
operating-system threads in a many-to-one fashion. This approach
can lead to suboptimal scheduling decisions or synchronization
overhead. In this paper, we present an alternative X10 runtime sys-
tem that targets OctoPOS, an operating system designed from the
ground up for highly parallel workloads on PGAS architectures.
OctoPOS offers an unconventional execution model based on i-lets,
lightweight self-contained units of computation with (mostly) run-
to-completion semantics that can be dispatched very efficiently. We
are able to do a 1-to-1 mapping of X10 activities to i-lets, which
results in a slim runtime system, avoiding the need for user-level
scheduling and its costs. We perform microbenchmarks on a pro-
totype many-core hardware architecture and show that our system
needs fewer than 2000 clock cycles to spawn local and remote ac-
tivities.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming; D.3.3 [Software]:
Programming Languages—Language Constructs and Features;
D.4.1 [Software]: Operating Systems—Process Management; D.4.4
[Software]: Operating Systems—Communications Management

Keywords X10, Runtime System, Operating System, Scheduling,
Many-Core Architecture, Invasive Computing

1. Introduction
The X10 philosophy wants the programmer to express the program
with a large amount of parallelism. It provides the concept of an
activity, which is colloquially described as a lightweight thread.
Lightweight means that the programmer does not need to be wary
of creating too many activities. This implies that the runtime is
required to schedule activities to the corresponding kernel-level
threads in a many-to-one fashion. Creating lots of activities gives a
lot of freedom to the scheduler. Intuitively, the number of threads

[Copyright notice will appear here once ’preprint’ option is removed.]

should be the same as the parallelism the hardware provides. To
minimize synchronization between threads, each thread manages
its own pool of activities. Work stealing is employed when load
balancing becomes necessary.

This approach has the well-known downside that a blocking call
into the operating system (e.g., for I/O) blocks the thread with all
the activities it manages. This means that a core might idle al-
though there are activities that could be executed there. The X10
runtime works around this problem by starting additional threads
before blocking operations. This implicates some overhead for cre-
ating and terminating threads to keep the number approximate to
the hardware parallelism. Another problem is that starting an addi-
tional thread is easily forgotten when bindings for blocking oper-
ations are implemented. If it happens outside the runtime library,
an application programmer might not even know that this would be
necessary.

To avoid overhead and reduce susceptibility to bugs, we explore
the alternative to integrate activity management directly into the
OctoPOS [16] operating system (OS), which has been designed for
highly parallel workloads on PGAS architectures. Since activities
are more lightweight than kernel-level threads, the system becomes
simpler and more efficient. In short, this paper presents

• how we implemented activity management by mapping it di-
rectly to OS mechanisms in OctoPOS,
• how this simplifies runtime system and OS,
• and an evaluation of the efficiency by measuring running times

of various operations on a prototype many-core hardware archi-
tecture.

In Section 2, we describe the hardware architecture that Octo-
POS is designed for. Then, Section 3 shows the provided OS prim-
itives. In Section 4, we detail our runtime-system implementation.
Afterwards, Section 5 evaluates the efficiency and Section 6 gives
an overview of related work.

2. Tiled Many-Core Architectures
Future many-core architectures are expected to integrate hundreds
or even thousands of cores on a single chip. With such high core
counts, maintaining cache coherence across all cores of the sys-
tem while keeping performance up becomes a major obstacle, as
existing cache-coherence protocols do not scale well or consider-
ably increase latencies. One possible solution are tiled many-core
architectures [10]. They provide cache coherence only for groups
of cores and offer a simple scalable interconnection for message-
based communication between core groups.

Figure 1 shows an example of a tiled many-core architecture.
The building block of such an architecture is a tile. In the example,

1 2015/5/18



Global
Memory

20

Core Core Core Core

Local Memory
21

Core Core Core Core

Local Memory
22

Core Core Core Core

Local Memory
10

Core Core Core Core

Local Memory
11

Core Core Core Core

Local Memory
12

Core Core Core Core

Local Memory
00

Core Core Core Core

Local Memory
01

Global
Memory

02

Figure 1. An example of a tiled many-core architecture. The ex-
ample shown has nine tiles, arranged in a 3×3 mesh and connected
by a network-on-chip. Seven of the tiles contain processor cores
and two tiles contain external memory.

a tile is a group of four processor cores that share some resources,
such as an L2 cache or a small tile-local memory. Most importantly,
cache coherence is guaranteed between the cores of a tile. Hence,
from a programmer’s point of view, a single tile behaves exactly
like a common shared-memory multiprocessor system. In general,
the number of cores in a tile must be low enough that traditional
coherence protocols, such as bus snooping, are still applicable.

Multiple such tiles can be combined to create a tiled many-core
architecture, where the tiles are connected via a network-on-chip.
Tiles can be heterogeneous in nature and, for example, contain
memory instead of processor cores. In such an architecture, no
cache coherence is provided between the cores of different tiles.
Hence, applications spanning multiple tiles cannot be programmed
like on a shared-memory system anymore. Partitioning the global
memory and thus applying a PGAS programming model becomes
the most viable method to program the system. Therefore, X10 is
a perfect fit and maps naturally to these architectures: Each tile is
presented as a separate place to the programmer. As X10 semantics
demand that data must be copied when switching places via at,
the missing cache coherence across tile boundaries does not cause
problems.

3. The Execution Model of OctoPOS
OctoPOS is an operating system designed specifically for PGAS ar-
chitectures as described in the previous section. Its primary design
goal is to exploit fine-grained parallelism in applications directly
on the operating-system level. Therefore, OctoPOS offers an exe-
cution model that is more lightweight than the “traditional” UNIX
process/thread model. The principal idea is that parallelizable con-
trol flows are represented in the operating system not as coarse-
grained, long-running threads with preemption, but as short snip-
pets of code we call i-lets. An i-let consists of two components:

• a pointer to a function to be executed, and
• a piece of data passed as argument.

A typical parallel application running on top of OctoPOS splits
its work into many packages, creates an i-let for each work package,
and hands these i-lets to the operating system for execution. The

OS scheduler distributes the i-lets to the CPU cores available,
where they will be processed sequentially. Like user-level fibers,
i-lets use cooperative scheduling. For i-lets that run to completion,
creation and dispatching are very efficient because the respective
execution contexts (i.e., stacks) can simply be reused. Only if an
i-let performs a blocking operation does the OS have to perform a
costlier context switch.

OctoPOS enforces spatial separation of concurrently running
applications – that is, each application has its own, dedicated set
of CPUs. This is based on the assumption that the many-core sys-
tem is sufficiently large to accommodate the needs of all applica-
tions involved. An OS-level resource manager [12] governs the dis-
tribution of execution resources and decides on the concrete CPU
mapping at runtime. As a consequence, no preemption is necessary.
Applications are granted full control over their core set anyway.

On a system with a tiled architecture, each tile runs a separate
instance of the operating system. For distributed applications, code
must be shared globally or loaded at the same base address on
all tiles. Such applications can communicate using two OS-level
primitives.

Remote i-let spawning. Code execution on a remote tile is trig-
gered by sending a fixed-size packet over the network-on-chip. The
packet consists of a pointer to an i-let function plus up to two data
words for passing arguments, which can hold by-value arguments
or pointers in case of larger input data (transmitted separately). On
the receiving side, the i-let is inserted into the regular scheduling
queue and executed asynchronously to the sender’s control flow.

Push-DMA transfer. To allow transferring larger chunks of data
between tiles, OctoPOS offers a push mechanism that allows copy-
ing an arbitrarily large contiguous memory region to a buffer in an-
other tile’s local memory. The receiving tile is guaranteed to have a
cache-coherent view of the destination buffer after the transfer has
completed. Using appropriate hardware support by the on-chip net-
work, the operation is performed asynchronously as a DMA trans-
fer, allowing the sending process to continue work without block-
ing. The caller of a push-DMA operation can optionally pass a pair
of i-lets along with the data:

• The first i-let will be executed on the sending tile once the
operation has completed, which can be used for releasing the
source buffer or for implementing custom blocking if desired.
• The second i-let will be spawned on the receiving tile, where it

can begin processing the transferred data.

For the synchronization of i-lets, OctoPOS offers a lightweight
barrier-like concept called signal which is optimized for a fork-
join scenario. The standard pattern in this scenario is one i-let that
spawns multiple other i-lets for parallel work, and then waits for
their termination. An OctoPOS signal is initialized with a counter
value equal to the number of jobs. After creating the jobs, the
spawning i-let invokes the wait() primitive, which blocks until the
counter reaches zero. Each job does its work and afterwards calls
signal(), which decrements the counter by one. If the number of
jobs is not known in advance, add signalers() can be called for
new i-lets created dynamically to increment the counter.

OctoPOS signals are similar to blocking semaphores, but more
lightweight: Only a single i-let per signal is allowed to wait, so
there is no need for a waiting queue. Activities that were spawned
on another tile can signal back to their original tile by sending an
i-let that performs the signaling.

In summary, OctoPOS is an operating system for PGAS archi-
tectures that implements a lightweight i-let-based execution model
and offers asynchronous operations for cross-tile data transfers and
activity spawning.

2 2015/5/18



i-let A DMA B

DMADMA

DMADMA

blocks
until local
termination

execute
at body

local
termination

global termination

Figure 2. Sequence diagram for an at expression. It shows one
DMA transfer from A to B for the values of referenced outer vari-
ables and another one from B to A for the returned value. DMA
transfers require a forth-and-back communication to set up a buffer.
Dark blocks indicate blocked state.

4. X10 Runtime-System Adaptation
In this section, we describe the mapping of the X10 runtime system
to the primitives provided by OctoPOS. First of all, we map X10
activities directly to i-lets. Hence, each async block in an X10
program corresponds to the creation of an i-let, which is then
handed to OctoPOS for execution. For the finish statement, we
use the signal primitives provided by OctoPOS.

The mapping for an at expression is more complex, since it
requires inter-place communication. Let us look at the expression
at (B) E which is executed on place A. X10 semantics dictate
that the values of all variables referred to by E must be copied
from A to B before E is executed on B [18, §13.3.1ff]. The X10
compiler conservatively approximates at compile-time the set of
variables used. At run-time, the values of this set are serialized into
a buffer. Hence, essentially, a sequential block of memory must be
transferred from A to B before E can be executed.

This means that in general, the two data words of an i-let are not
enough to hold this data and DMA transfers have to be used instead.
In the following, we will therefore discuss how an at expression
can be implemented using the OS interfaces presented. Figure 2
shows the full control flow for an at expression.

Before we can set up a DMA transfer, we must allocate the
destination buffer on place B. The buffer size is only known at
run-time as it depends on which values are reachable through the
variables that E refers to. Hence, we spawn a remote i-let on B,
allocate the buffer and pass the address back to A via another remote
i-let spawning.1

Now, on A, we can initiate the push-DMA transfer from the
source buffer on A to the destination buffer on B. We specify two
i-lets to execute once the data transfer has finished: one on A to

1 Hardware support for pull-style DMA transfers would simplify the process
at this point.

free the source buffer, and one on B to perform setup and execution
of E. After E has terminated locally [18, §14], the result of the at
expression must be transferred back to A. This is done using a DMA
transfer analogously to the initial transfer.

Hence, we first switch to A to allocate a buffer and then pass
the address back to B to initiate the DMA transfer on B. Again, we
specify two i-lets: One on B (the sending side in this case) to wait
for global termination [18, §14] of E and then signal it to A. We
also specify an i-let to execute on A (the receiving side) to notify
the original i-let, which executed the at expression, of the local
termination of E and pass it the value of E, which is the result of the
at expression.

Note that only the i-let that initially executes the at expression
and the i-let that waits for global termination block. All other
i-lets run to completion. This is achieved by storing the necessary
information for a specific at invocation in context structures on
A and B, and passing pointers to these contexts back and forth
between places via the available data words of an i-let.

Special cases. For at statements, the second DMA transfer for
the result can be omitted. Local and global termination are handled
in the same way as for the presented expression case.

For at (B) async S statements, the runtime system can as-
sume that the activity on B immediately terminates locally. Hence,
in this case, once the DMA transfer is triggered, but has not neces-
sarily finished yet, we can already notify the original i-let of local
termination. Once S has terminated globally, global termination is
signaled back to A.

Moreover, if S does not refer to any outer variables and thus no
additional data must be transferred to B, the runtime implementa-
tion is even more efficient. In this case, no DMA transfer is needed
and at (B) async S is mapped directly to the spawning of a sin-
gle remote i-let. Again, as we know that the remote activity imme-
diately terminates locally and the spawning of a remote i-let is a
non-blocking operation, the runtime procedure can directly return,
and execution of the X10 program can continue.

5. Evaluation
In this section, we analyze both the raw performance of our X10
runtime system as well as its overhead compared to the direct us-
age of the operating-system C interface. To this end, we measure
the running times of multiple X10 programs and compare these
times to the running times of semantically equivalent C programs.
We measure the running time of executing a local activity (async
statement), a remote asynchronous activity (at async statement),
a remote synchronous activity2 (at statement) and a remote syn-
chronous activity returning a value (at expression).

Limitations. Before we describe our evaluation setup and discuss
the measurements, we explain the limitations of our evaluation. It
would be desirable to compare our system to the existing unmod-
ified X10 implementation. However, we changed three parameters
in our system: the runtime implementation, the operating system,
and the underlying hardware. Hence, only having a common hard-
ware platform would enable a fair comparison, as it does not make
sense to compare programs using the original X10 runtime imple-
mentation running on Linux on standard hardware with programs
that use our modified runtime implementation and run on OctoPOS
on our custom many-core architecture.

Unfortunately, this comparison is not possible yet. As Linux has
not been ported to our custom many-core platform, running Octo-
POS on standard hardware is left as the only possibility. However,
as of now, OctoPOS cannot be run directly on standard hardware.

2 Strictly speaking [18, §13.3.3], an at statement does not start a new
activity. Rather, it transports the current activity to another place.

3 2015/5/18



While a version of OctoPOS exists that runs on top of Linux for
development and testing purposes, it is clearly unsuited for this
comparison. OctoPOS is currently being ported to AMD64 NUMA
systems, which will enable a more comprehensive evaluation.

Hence, in the context of this paper, we restrict ourselves to com-
paring X10 programs with semantically equivalent C programs,
where all programs use OctoPOS and run on our many-core ar-
chitecture. Therefore, our goal is to show that operations regarding
activities are cheap in terms of absolute numbers, as well as that the
overhead of our X10 runtime system is low compared to directly
using the C interface.

Setup. We conducted all running time measurements on an FPGA
prototype implementation of our many-core architecture. The pro-
totype consists of 4 tiles with 4 cores each. All cores are unmodified
Gaisler SPARC V8 LEON 3 [1, 20] processors. The processors run
at 25MHz and are configured with a 16KiB instruction cache and
an 8KiB per-core L1 data cache. Additionally, the 4 cores of each
tile share a 64KiB 4-way L2 cache. The tiles are connected by a
network-on-chip [9]. The hardware design was synthesized [4] to
a CHIPit Platinum system [22], a multi-FPGA platform based on
Xilinx Virtex 5 LX 330 FPGAs.

To compile the X10 programs, we use a modified X10 com-
piler [5] and the custom X10 runtime implementation presented.
We use GCC 4.4.2 from the official SPARC toolchain from
Gaisler [2] to compile the C programs.

Measurements. We measured all operations with cycle accuracy
using a per-tile cycle counter built into our hardware platform.
These counters are consistent across tile (or place) boundaries
because all counters start running at initialization time of the FPGA
boards. Additionally, there is currently no frequency scaling, so all
cores on all tiles run with the same frequency of 25MHz. Hence,
not only the running times of local operations but also those of
remote operations (such as using at in X10) can be measured in
cycles.

We repeated each test 20 times and report the minimum running
time. Except for the first run with cold caches, all other running
times were very similar, so we omit giving standard deviations.

// Start local activity
val before = Util.getTimestamp ();
async {

val after = Util.getTimestamp ();
Console.OUT.println("After: " + after);

}
Console.OUT.println("Before: " + before );

// Start remote activity
val other = Place (1);
val before = Util.getTimestamp ();
at (other) async {

val after = Util.getTimestamp ();
Console.OUT.println("After: " + after);

}
Console.OUT.println("Before: " + before );

Figure 3. Excerpt from the X10 benchmark program.

First, we look at the running time of two very basic operations:
executing a local activity and executing an (asynchronous) remote
activity. In X10, this corresponds to the operations async and at
async as shown in the program from Figure 3. Note that neither of
the activities accesses any outer variables.

Table 1 gives the running times (in cycles) for both operations.
We observe that the absolute number of cycles required for spawn-

Runtime

Operation C X10

async 539 1469
at async 1133 1981

Table 1. Delay (in clock cycles) for locally and remotely starting
an activity or i-let, respectively.

ing a local activity using async is low, taking into account that
spawning an activity is a relatively high-level operation that re-
quires system interaction. Additionally, we see that spawning a re-
mote activity using at async is not much more expensive than
spawning a local activity. Note that the numbers include the time
for dispatching the respective i-lets. Hence, the running times give
the number of cycles it takes until the new X10 activity is actually
executing code. If we only take into account the cycles spent un-
til the original activity continues execution, we get 588 cycles (for
async) and 994 cycles (for at async).

Compared to the direct usage of the C interfaces, the X10
program exhibits slowdowns of roughly factor 3 and factor 2 for
spawning a local activity and a remote activity, respectively. This
is due to still remaining overhead in the X10 runtime system.
For example, each async block is converted to a closure object
by the compiler. This object must be allocated on the heap via
the garbage collector, which is a costly operation in this context.
Additional runtime bookkeeping, e.g. for registering the activity at
the surrounding finish block, as well as procedure-call overhead3

attribute for the remaining running-time difference.

// At statement
val data = new Rail[Byte](size);
val before = Util.getTimestamp ();
at (other) {

val capture = data;
val after = Util.getTimestamp ();
Console.OUT.println(after);

}
Console.OUT.println(before );

// At expression
val data = new Rail[Byte](size);
val before = Util.getTimestamp ();
val dataCopy = at (other) data;
val after = Util.getTimestamp ();
Console.OUT.println(after - before );

Figure 4. Excerpt from the X10 benchmark program.

Next, we analyze the running times of at statements and ex-
pressions that access outer variables. We access a one-dimensional
array and vary the size of the array from 24 to 214, doubling the size
every time. Figure 4 shows an excerpt from the used X10 bench-
mark program. Accessing data inside the at statement entails a
serialization of the array, copying it to the destination place via a
DMA transfer, and the deserialization of the array on the destina-
tion place. For the at expression, a DMA transfer is also necessary

3 A peculiarity of the SPARC architecture used is that its registers are ar-
ranged in register windows. Each call frame occupies one register window.
If the maximum number of register windows is reached, the next procedure
call triggers a window-overflow trap, and all register windows are written
to memory. Similarly, returning from a procedure may trigger a window-
underflow trap. Hence, deep call stacks, which are more common in X10
than in C, are more likely to trigger this behavior.

4 2015/5/18



for returning the result. This corresponds directly to the descrip-
tions in the previous section.

Array size at statement at expression

24 13413 27058
25 13609 27442
26 13863 28127
27 14656 29429
28 16032 32189
29 19017 38309
210 24806 51235
211 42932 87847
212 66630 136349
213 112564 228551
214 203220 411306

Table 2. Running times (in clock cycles) for the execution of at
statements and expressions that access arrays of varying sizes (in
Bytes) from the source place.

Table 2 shows the resulting running times (in cycles) for differ-
ent array sizes. As expected, the running time for small arrays is
dominated by the runtime overhead for setting up the inter-place
communication. As the array size increases, the running time is
dominated by the time needed for serialization and actual data
transfer. Hence, X10 applications that frequently transfer small
messages would mainly benefit from improvements to the runtime
implementation as described in Section 4, such as switching to
pull-style DMA transfers, whereas applications that mostly transfer
large chunks of data are limited by the interconnect bandwidth.

6. Related Work
Clearly, our work is related to previous work on the work-stealing
user-level scheduler of the X10 runtime system [13, 19, 23]. How-
ever, we eliminate the user-level scheduler entirely and perform a
1-to-1 mapping of X10 activities to i-lets. This becomes possible by
making i-lets very lightweight and by using cooperative schedul-
ing. This can be viewed as pulling a user-level-like scheduler and
its properties down into the kernel.

Chapman et al. [7] report on their experiences using X10 on
the Intel Single-Chip Cloud Computer (SCC), which has a tiled
architecture similar to our hardware platform. However, they do
not use a custom operating system, but instead run a Linux kernel,
which implements a traditional process model with preemption.

There are several approaches similar to X10 for parallel pro-
gramming with fine-grained activities. Cilk and its successors [8,
14] extend the C/C++ programming language with the spawn
and sync keywords, which have similar semantics to async and
finish. The Cilk Plus runtime system dispatches lightweight user-
level fibers on top of regular POSIX kernel-level threads which em-
ploy work stealing. In contrast, Intel’s Threading Building Blocks
(TBB) [17] are implemented as a C++ template library, also per-
forming its own user-level scheduling. Unlike X10, both Cilk and
TBB assume a shared memory space, and hence do not support
distributed programming on PGAS architectures.

Qthreads [24] is an API for lightweight user-level threads.
While its primary focus is on hardware architectures that offer ded-
icated support for massive multithreading, such as the Cray XMT
supercomputer, there is also a Pthread-based implementation of the
qthreads API for commodity systems. MassiveThreads [15] is an-
other library that implements user-level threads on top of a regular
UNIX system. It intercepts blocking I/O operations, performing
a context switch to another user-level thread and issuing a non-
blocking system call instead. An extension, MassiveThreads/DM,

adds functionality for distributed-memory machines with PGAS
features.

Project Runnemede [6, 21, 25] introduces codelets, which are
similar to i-lets and are supported directly by the operating sys-
tem [11]. Codelets are small self-contained units of computation
with run-to-completion semantics assumed by default. Similar to
i-lets, codelets can still be blocked if need be. In contrast to i-lets,
codelets are expected (but not required) to work functionally, i.e., to
only work locally without leaving state behind and with their output
only depending on the input values. Additionally, the communica-
tion patterns between codelets are restricted. Codelets are arranged
in a codelet graph according to their data dependencies, and act
as producers and/or consumers, making them similar to dataflow
actors in a dataflow graph. Hence, Runnemede makes parallelism
more explicit and gives the runtime system additional optimiza-
tion opportunities. However, programs must either be written in a
codelet style in the first place, or a sophisticated compiler is re-
quired that decomposes programs written in traditional program-
ming languages into codelets.

The Barrelfish [3] operating system aims into a similar direction
as OctoPOS in that it runs as a multikernel – multiple OS instances
communicating via message passing, even on systems with a cache-
coherent shared-memory architecture. Unlike OctoPOS, however,
the Barrelfish kernel implements a traditional, heavyweight thread-
ing model.

7. Conclusion & Future Work
We presented a way to implement X10 activity management with-
out relying on a user-space scheduler as part of the X10 run-
time. This was achieved by mapping activities directly onto the re-
spective OS mechanisms provided by OctoPOS, an operating sys-
tem mainly targeted towards highly parallel PGAS-style many-core
systems. This not only simplifies the implementation of both the
X10 runtime as well as the operating system, but our evaluation
of the efficiency by measuring running times of various operations
provides promising results.

OctoPOS is currently being ported to AMD64 NUMA systems.
This enables us to evaluate our approach on mainstream hardware
and compare against common Linux-MPI implementations.

Acknowledgments
This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center
“Invasive Computing” (SFB/TR 89). Thanks to Jan Heißwolf and
Aurang Zaib for designing and implementing the network-on-chip,
to Sebastian Kobbe for implementing the global resource manager,
and to Stephanie Friederich and David May for synthesizing the
many-core architecture to the FPGA platform. We also thank the
reviewers for their valuable comments.

References
[1] Aeroflex Gaisler. LEON 3. http://www.gaisler.com/leonmain.

html, retrieved on 2015-05-13.
[2] Aeroflex Gaisler. LEON bare-C cross compilation sys-

tem. http://www.gaisler.com/index.php/products/
operating-systems/bcc, retrieved on 2015-05-13.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: A new
OS architecture for scalable multicore systems. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, pages 29–44, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-752-3.

[4] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and D. May. Hard-
ware prototyping of novel invasive multicore architectures. In Pro-

5 2015/5/18

http://www.gaisler.com/leonmain.html
http://www.gaisler.com/leonmain.html
http://www.gaisler.com/index.php/products/operating-systems/bcc
http://www.gaisler.com/index.php/products/operating-systems/bcc


ceedings of the 17th Asia and South Pacific Design Automation Con-
ference, ASP-DAC ’12, pages 201–206, Jan 2012.

[5] M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau. An X10 compiler
for invasive architectures. Technical Report 9, Karlsruhe Institute of
Technology, 2012. URL http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000028112.

[6] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dun-
ning, J. Fryman, I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin,
B. Meister, A. K. Mishra, W. R. Pinfold, J. Teller, J. Torrellas, N. Vasi-
lache, G. Venkatesh, and J. Xu. Runnemede: An architecture for ubiq-
uitous high-performance computing. In Proceedings of the 2013 IEEE
19th International Symposium on High Performance Computer Ar-
chitecture, HPCA ’13, pages 198–209, Washington, DC, USA, 2013.
IEEE Computer Society.

[7] K. Chapman, A. Hussein, and A. L. Hosking. X10 on the Single-chip
Cloud Computer: Porting and preliminary performance. In Proceed-
ings of the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pages 7:1–
7:8, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0770-3.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, PLDI ’98, pages 212–223, New York, NY, USA,
1998. ACM. ISBN 0-89791-987-4.

[9] J. Heisswolf. A Scalable and Adaptive Network on Chip for Many-
Core Architectures. PhD thesis, Karlsruhe Institute of Technology
(KIT), Nov. 2014.

[10] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hübner, R. Pujari,
A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe.
Invasive manycore architectures. In Proceedings of the 17th Asia and
South Pacific Design Automation Conference, ASP-DAC ’12, pages
193–200, Jan 2012.

[11] R. Knauerhase, R. Cledat, and J. Teller. For extreme par-
allelism, your OS is sooooo last-millennium. In Pre-
sented as part of the 4th USENIX Workshop on Hot Top-
ics in Parallelism, Berkeley, CA, 2012. USENIX. URL
https://www.usenix.org/conference/hotpar12/
extreme-parallelism-your-os-sooooo-last-millennium.

[12] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and
J. Henkel. Distrm: Distributed resource management for on-chip
many-core systems. In Proceedings of the Seventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS ’11, pages 119–128, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0715-4.

[13] V. Kumar, D. Frampton, S. M. Blackburn, D. Grove, and O. Tardieu.
Work-stealing without the baggage. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’12, pages 297–314, New
York, NY, USA, 2012. ACM.

[14] C. E. Leiserson. The Cilk++ concurrency platform. In Proceedings
of the 46th Annual Design Automation Conference, DAC ’09, pages

522–527, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-497-
3.

[15] J. Nakashima and K. Taura. MassiveThreads: A thread library for
high productivity languages. In G. Agha, A. Igarashi, N. Kobayashi,
H. Masuhara, S. Matsuoka, E. Shibayama, and K. Taura, editors,
Concurrent Objects and Beyond, volume 8665 of Lecture Notes in
Computer Science, pages 222–238. Springer Berlin Heidelberg, 2014.
ISBN 978-3-662-44470-2.

[16] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel,
D. Lohmann, and W. Schröder-Preikschat. OctoPOS: A parallel oper-
ating system for invasive computing. In R. McIlroy, J. Sventek, T. Har-
ris, and T. Roscoe, editors, Proceedings of the International Workshop
on Systems for Future Multi-Core Architectures, volume USB Pro-
ceedings of SFMA ’11, pages 9–14, 2011. URL https://www4.cs.
fau.de/~benjamin/documents/octopos_sfma2011.pdf.

[17] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, first edition, 2007. ISBN 978-0-59651-
480-8.

[18] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove.
X10 language specification. Technical report, IBM, March
2015. URL http://x10.sourceforge.net/documentation/
languagespec/x10-latest.pdf.

[19] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krish-
namoorthy. Lifeline-based global load balancing. In Proceedings of
the 16th ACM Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’11, pages 201–212, New York, NY, USA, 2011.
ACM.

[20] SPARC International Inc. The SPARC architecture manual, version 8.

[21] J. Suettlerlein, S. Zuckerman, and G. R. Gao. An implementation
of the codelet model. In Proceedings of the 19th International Con-
ference on Parallel Processing, Euro-Par’13, pages 633–644, Berlin,
Heidelberg, 2013. Springer-Verlag.

[22] Synopsis Inc. CHIPit Platinum Edition and HAPS-600 series ASIC
emulation and rapid prototyping system – hardware reference manual.

[23] O. Tardieu, H. Wang, and H. Lin. A work-stealing scheduler for
X10’s task parallelism with suspension. In Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pages 267–276, New York, NY, USA,
2012. ACM.

[24] K. Wheeler, R. Murphy, and D. Thain. Qthreads: An API for pro-
gramming with millions of lightweight threads. In Proceedings of the
IEEE International Symposium on Parallel and Distributed Process-
ing, IPDPS ’08, pages 1–8, April 2008.

[25] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using
a ”codelet” program execution model for exascale machines: Position
paper. In Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11,
pages 64–69, New York, NY, USA, 2011. ACM.

6 2015/5/18

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028112
https://www.usenix.org/conference/hotpar12/extreme-parallelism-your-os-sooooo-last-millennium
https://www.usenix.org/conference/hotpar12/extreme-parallelism-your-os-sooooo-last-millennium
https://www4.cs.fau.de/~benjamin/documents/octopos_sfma2011.pdf
https://www4.cs.fau.de/~benjamin/documents/octopos_sfma2011.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

	Introduction
	Tiled Many-Core Architectures
	The Execution Model of OctoPOS
	X10 Runtime-System Adaptation
	Evaluation
	Related Work
	Conclusion & Future Work

