
On the Inference of Configuration Structures from Source Code
Research Paper

Maren Krone and Gregor Snelting
Arbeitsgruppe Softwaretechnologie

Technische Universität Braunschweig
Gaußstraße 17, D-38106 Braunschweig

Abstract

We applymathematical concept analysisto the problem of
infering configuration structures from existing source code.
Concept analysis has been developed by German mathemati-
cians over the last years; it can be seen as a discrete anal-
ogon to Fourier analysis. Based on this theory, our tool
will accept source code, where configuration-specific state-
ments are controlled by the preprocessor. The algorithm
will compute a so-called concept lattice, which – when vi-
sually displayed – allows remarkable insight into the struc-
ture and properties of possible configurations. The lattice
not only displays fine-grained dependencies between con-
figuration threads, but also visualizes the overall quality of
configuration structures according to software engineering
principles. The paper presents a short introduction to con-
cept analysis, as well as experimental results on various
programs.

1 Introduction

A simple and widely used technique for configuration man-
agement is the use of the C preprocessor. Configuration-
dependent source code pieces are enclosed in “#ifdef ... #en-
dif” brackets, and by defining preprocessor symbols during
compiler invocation (e.g. “cc –Dultrix prog.c”), a configura-
tion thread is determined and the appropriate code pieces are
selected and compiled. Although much more sophisticated
configuration management systems have been developed re-
cently (see e.g. [2]), a lot of code sticking to “configuration
management by preprocessing” is around, and a reverse en-
gineering tool which allows to extract the underlying struc-
ture from such sources is certainly useful.

As an example, consider some code pieces from the X-
Window tool “xload”; this tool displays various machine
load factors (figure 1). The 724–line program is quite
platform dependent: 43 preprocessor symbols are used to
control a variety of configuration threads (e.g.SYSV,
macII, ultrix, sun, CRAY, sony). A code piece may de-
pend not only on simple preprocessor symbols, but on arbi-
trary boolean combinations of such symbols. Furthermore,

#if (!defined(SVR4) || !defined(__STDC__)) && !defined(sgi) &&
!defined(MOTOROLA)

extern void nlist();
#endif
#ifdef AIXV3

knlist(namelist, 1, sizeof(struct nlist));
#else

nlist(KERNEL_FILE, namelist);
#endif
#ifdef hcx

if (namelist[LOADAV].n_type == 0 &&
#else

if (namelist[LOADAV].n_type == 0 ||
#endif /* hcx */

namelist[LOADAV].n_value == 0) {
xload_error("cannot get name list from", KERNEL_FILE);
exit(-1);
}
loadavg_seek = namelist[LOADAV].n_value;

#if defined(umips) && defined(SYSTYPE_SYSV)
loadavg_seek &= 0x7fffffff;

#endif /* umips && SYSTYPE_SYSV */
#if (defined(CRAY) && defined(SYSINFO))

loadavg_seek += ((char *) (((struct sysinfo *)NULL)->avenrun))
- ((char *) NULL);
#endif /* CRAY && SYSINFO */

kmem = open(KMEM_FILE, O_RDONLY);
if (kmem < 0) xload_error("cannot open", KMEM_FILE);

#endif

Figure 1: X-Window tool “x_load.c”

“#ifdef”s and “#define”s may be nested, resulting in rather
incomprehensible source texts. Even experienced program-
mers will have difficulties to obtain some insight into the
configuration structure, and when a new configuration vari-
ant is to be covered, the introduction of errors is very likely.

Fortunately, there is a method, calledformal concept
analysis[13,15], which allows to reconstruct semantic struc-
tures from raw data as given in our case. This method has
been developed at the universal algebra group in the Depart-
ment of Mathematics at the Technical University of Darm-
stadt, and has been applied to various problem domains such
as classification of finite lattices, analysis of Rembrandt’s
paintings, or behaviour of drug addicts. The method com-
putes a so-calledconcept lattice, where a concept is a pair,
consisting – in our case – of a set of code pieces (so-called
objects) and a set of preprocessor symbols (so-calledat-
tributes). Such concepts represent semantic properties of

the underlying problem domain. The lattice structure im-
poses a partial order on concepts (more specific vs. more
general), and for two concepts, there exist supremum (gen-
eralization) and infimum (unification).

A concept lattice which arises from a source text similar
to “x_load.c” is presented in figure 21. It reveals simple
facts e.g. that the CRAY configuration comprises source
lines 21–28, 29–40, 201–207, and 11–20. But it also
displays less obvious information, e.g. that there are three
main configuration schemes (macII, SYSV, sun); that lines
11–20 appear in all configurations except sequent, alliant,
and 386 platforms; that apollo and ultrix configurations have
lines 126–200, 201–207, 11–20 in common; and that source
lines valid for sony or ultrix are valid for sun as well.
Furthermore, violations of software engineering principles
like high cohesion or low coupling show up immediately.

1 Figure 2 and figure 3 are isomorphic copies of an instructive example
presented in [15]

sunSYSVmacII

sony ultrix

AIXapollo

CRAY

21-28

29-40

11-20

sequent

1-10201-207

126-200

i386, SYSV386

101-106

107-115 116-125 41-100

alliant

Figure 2: A concept lattice

All that is a consequence of the concept lattice structure, as
explained in the paper.

2 Basic Notions of Concept Analysis

2.1 The concept lattice

Formal concept analysis has been introduced by R. Wille
about ten years ago. For beginners, it is not that easy
to understand, hence we restrict ourselves to the absolute
minimum of the theory. Formal concept analysis starts
with a triple C = (O;A; P), called a (formal)context,
whereO is a finite set (the so-calledobjects), A is a finite
set (the so-calledattributes), andP is a relation between
O and A, henceP � O � A. If (o; a) 2 P , we say
object o has attributea. Figure 3 gives an example of a
formal context, namely a characterization of source lines
by governing preprocessor symbols, as extracted from a
program’s source text.

For a set of objectsX � O, we define the set ofcommon
attributes �(X) := fa 2 A j 8o 2 X : (o; a) 2 Pg.
Similarly, for a set of attributesY � A thecommon objects
are defined by� (Y) := fo 2 O j 8a 2 Y : (o; a) 2 Pg.
The mappings� : 2O ! 2A and � : 2A ! 2O form a
Galois connectionand can be characterized by the following
conditions: forX;X1; X2 � O; Y; Y1; Y2 � A

X1 � X2 =) �(X2) � �(X1)

and
Y1 � Y2 =) � (Y2) � � (Y1)

that is, both mappings areantimonotone;

X � � (�(X)) and �(X) = �(� (�(X)))

as well as

Y � �(� (Y)) and � (Y) = � (�(� (Y)))

SYSV SYSV386 macII i386 ultrix sun AIX CRAY apollo sony sequent alliant

1 - 10 X X X X X X X

11 - 20 X X X X X X X X

21 - 28 X X X X

29 - 40 X X X X X X

41 - 100 X X X

101 - 106 X X X X X X

107 - 115 X X X

116 - 125 X X X

126 - 200 X X X X X

201 - 207 X X X X X X

Figure 3: Sample classification of source lines according to governing preprocessor symbols

that is, both mappings areextensive, in particular the com-
mon objects of the common attributes of an object set are a
superset of this object set, and their common attributes are
equal; finally, for an index setI andXi � O; Yi � A

�
�[
i2I

Xi

�
=
\
i2I

�(Xi) and �
�[
i2I

Yi

�
=
\
i2I

� (Yi)

A (formal) conceptis a pair(X; Y), whereX � O; Y �
A and Y = �(X); X = � (Y). Hence, a concept is
characterized by a set of objects (called itsextent) and a
set of attributes (called itsintent) such that all objects have
all attributes and all attributes fit to all objects. The set of all
concepts is denoted byB(O;A; P). Intuitively, a concept
is a maximal filled rectangle in a table like figure 3, where
permutations of lines or columns of course do not matter.

A concept(X1; Y1) is a subconceptof another concept
(X2; Y2) if X1 � X2 (or, equivalently,Y1 � Y2). It is
easy to see that this definition imposes a partial order on
B(O;A; P), thus we write(X1; Y1) � (X2; Y2). Moreover,
B(O;A; P) = (B(O;A; P);�) is a complete lattice, due
to the
Basic Theorem for Concept Lattices [13]: Let C =
(O;A; P) be a context. ThenB(O;A; P) is a complete
lattice, called theconcept latticeof C, for which infimum
and supremum are given by^

i2I

(Xi; Yi) =
�\
i2I

Xi; �
�
�
�[
i2I

Yi

���
and _

i2I

(Xi; Yi) =
�
�
�
�
�[
i2I

Xi

��
;
\
i2I

Yi;
�

This remarkable theorem says that in order to compute the
infimum (greatest common subconcept) of two concepts,
their extents must be intersected and their intents must be
joined; the latter set of attributes must then be “blown up”
in order to fit to the object set of the infimum. Analo-
geously, the supremum (smallest common superconcept) of
two concepts is computed by intersecting the attributes and
joining the objects.

The lattice structure allows alabelling of the concepts:
a concept is labelled with an object, if it is the smallest
concept in the lattice subsuming that object; a concept
is labelled with an attribute, if it is the largest concept
subsuming that attribute. In fact, a conceptc labelled
with an objecto is of the formc =

�
� (�(fog)); �(fog)�,

and if c is labelled with attributea, it is of the form
c =

�
� (fag); �(� (fag))�. Utilizing this labelling, the

extent ofc can be obtained by collecting all objects which
appear as labels on conceptsbelowc, and the intent ofc is
obtained by collecting all attributes which appearabovec.

For two attribute setsA andB we say “A implies B”
(written A) B) if � (A) � � (B) (or equivalently, if

B � �(� (A))). This can be read as “any object having
all attributes inA also has all attributes inB”. Now if
A and B constitute two conceptsC =

�
� (A); A

�
and

D =
�
� (B); B

�
, andC � D, thenA) B obviously holds.

The concept lattice can be considered as a graph, that is,
a relation. What happens if we again apply concept analysis
to this derived relation? It turns out that the concept lattice
reproduces itself [1]! Thus concepts do not “breed” new
concepts; there is no proliferation of virtual information.

There is much more to say about concept lattices, but
for the purposes of this paper, the basic theorem suffices.
The interested reader should consult [1], which contains
a chapter on concept analysis. We conclude this section
with the remark that there are several algorithms which
actually compute a concept lattice (see [3]); the typical time
complexity isO(n3), wheren = max(j O j; j A j).

2.2 Interpretation of context lattices

Let us apply the basic theorem to the context table of figure
3 and its concept lattice, given in figure 2. In order to get
a feeling what kind of insight can be obtained from such
a lattice, we first remember that a subconcept of a concept
has a smaller object set, but (note the symmetry) a larger
attribute set. That is, if we go down in the lattice, we get
more precise information about smaller object sets.

The above-mentioned labelling allows a concise charac-
terisation of concepts. For example, the concept labelled
CRAY is in fact the concept ({11-20, 21-28, 29-40, 201-
207},{ CRAY, apollo, macII, SYSV}). And indeed, figure
3 reveals that this concept is a rectangle in the context ta-
ble. Hence, we have inferred that the lines 11-20, 21-28,
29-40, and 201-207 characterize the CRAY, apollo, macII,
and SYSV configurations (and vice versa). The concept la-
belledapollo stands for ({11-20, 21-28, 29-40, 126-200,
201-207},{ apollo, macII, SYSV}), which again is a rec-
tangle in the context table, higher but leaner than the first
one: CRAY� apollo. Thus, the CRAY configuration com-
prises lines 11-20, 21-28, 29-40, 201-207 (and no other),
but these lines appear in the apollo configuration as well.

This example already demonstrates one possibility to
interpret a concept lattice: it can be seen as ahierarchical
conceptional clusteringof objects. Objects are grouped into
sets and the lattice structure imposes a taxonomy on these
object sets.

If we want to know what an apollo and an ultrix con-
figuration have in common, we look at the infimum in the
lattice, which is labelled126–200; going down we see
that lines 126–200, 201–207 and 11–20 appear in both con-
figurations. On the other hand, if we want to see which
attributes govern both lines 126–200 and 101–106, we look
at the supremum of the corresponding concepts, which is
ultrix; going up, we see that thesun and theultrix config-
urations (and no other) will include both code pieces.

Upward arcs in the lattice diagram can be interpreted
as implications: “ If a code piece appears in the sony or
ultrix configuration, it will appear in the sun configuration as
well”. Such knowledge is not easily extracted by hand from
a source file like “x_load.c”! This example demonstrates
the second main possibility to interpret a concept lattice: it
represents all implications (that is,dependencies) between
sets of attributes.

The original context can always be reconstructed from
the lattice, e.g. the column fori386 has entries for all ob-
jects below concepti386, namely1–10,101–106 whereas
the row labelled41–100 has entries for all attributes
above, namelysun, SYSV, and ultrix. Hence, a context
(i.e. relation) and its concept lattice are analogeous to a
function and its Fourier transform (which also can be re-
constructed from each other): concept analysis is similar in
spirit to spectral analysis of continuous signals.

3 The Reverse Engineering Tool

We have developed a tool which implements the approach
described in the previous sections. This tool accepts source
code as input and produces a graphical display of the con-
cept lattice as output. The source language is arbitrary, but
the input file must stick to the conventions of the C pre-
processor. Our tool consists of the following phases:

1. front end: the front end separates code pieces and pre-
processor statements, syntactically analyses the latter,
and constructs the context table according to the rules
described below.

2. kernel: the kernel is is a software package developed by
P. Burmeister in Darmstadt; it reads a context table and
computes the corresponding concept lattice.

3. back end: the back end accepts a description of the
concept lattice and produces a graphical display.

As usual, our tool is invoked as a UNIX command with the
source file name as a parameter; additional options which
control some display parameters may be added.

3.1 Construction of the context table

In our application of concept analysis, code pieces are not
only governed by simple preprocessor symbols, but also by
complex expressions, e.g.

#if defined(A)||defined(B)&&defined(C)
We will now describe the treatment of such expressions.

After syntax analysis, the context table is constructed
according to the following semiformal rules (A, B, C denote
preprocessor symbols, p-p, n-n, q-q denote code pieces).

• The basic rule for code pieces governed by single pre-
processor symbols is:

... A ...

p-p
n-n ... X ...
q-q

...p-p...
#ifdef A
...n-n... =)
#endif
...q-q...

Of course,#if defined(A) has the same meaning
as #ifdef A .

• If a code piece is governed by a conjunction of pre-
processor symbols, the rule is:

...p-p...
#if defined(A) &&

defined(B) &&
... && defined(C)

...n-n...
#endif
...q-q...

=)

... A B ... C ...
p-p
n-n ... X X ... X ...
q-q

This is correct, since a set of columns in a formal context
is itself a conjunction of single columns.

• If a symbol occurs in negated form, this negated symbol
needs a column of its own, since a basic formal context
can express only positive statements. The rule thus is:

#if defined(A)
...p-p...
#endif =)
...
#if !defined(A)
...n-n...
#endif

... A ... !A ...
p-p ... X
...

n-n X ...

A similar rule applies to
#ifdef ... #else ... #endif

In the theory of concept lattices, the resulting table is
called the “dichotomised context”. Prolog programmers
have known the same trick (explicit rules for negated
predicates) for a long time.

• Disjunctions of symbols are a little bit more compli-
cated. The basic idea is as follows: In order to handle
#if defined(A) || defined(B) , we introduce
a separate column forA _ B. As bothA andB imply
A _ B, we must therefore place a cross in theA _ B
column whenever we place a cross in the column forA
or B. The basic rule for disjunctions hence is:

#if defined(A)
...p-p...
#endif
#if defined(A) || defined(B)
...n-n...
#endif
#if defined(B)
...q-q...
#endif

=)

... A B ... A||B ...

p-p ... X X ...
n-n X ...
q-q X ... X ...

Simple disjunctions show up as suprema in the concept
lattice. In case there are complex conditions arbitrarily
built up from conjunctions, disjunctions and negations,
these are first transformed into conjunctive normal form
by applying the distributive and de Morgan laws. Af-
terwards, all expressions are of the form(A1 _ A2 _
:::Ai) ^ (B1 _B2 _ :::Bj)^ :::(C1 _ C2 _ :::Ck), where
all A�; B� ; C� are either simple symbols or negated sym-
bols. Expressions in conjunctive normal form can then
be treated by the above rules.

• Nested #ifdefs, #defines, and #undefs are treated as im-
plications. For example, in

#ifdef A
...p-p...
#define B
#ifdef B
...n-n... =)
#endif
#endif
...q-q...

... A B ...

p-p ... X ...

n-n ... X X ...

q-q

we must add a cross in the “B”-column whenever we
place a cross in the “A”-column; a similar mechanism is
used for “#undef”s.

It should be noted that transforming an expression into an
equivalent one (e.g.A _A ^B � A) does not change the
concept lattice. In particular, it is not necessary to use a
minimal conjunctive normal form; any conjunctive normal
form will do. Intuitively, the reason is that a concept is a
maximalfilled rectangle in a table.

3.2 A small example

Consider the source text and its corresponding concept lat-
tice:

UNIX || DOS

UNIX

III

II I, IV

V

DOS || X_win

UNIX || X_win

DOS

#ifdef UNIX
...I...
#endif
#ifdef DOS
...II...
#endif
#if defined(DOS)||

defined(X_win)
...III...
#endif
#ifdef UNIX
...IV...
#endif
#if defined(UNIX)||

(defined(DOS)&&defined(X_win))
...V...
#endif

The lattice shows that code pieces I and IV are governed by
UNIX, code piece II is governed byDOS, UNIX || X_win
implies UNIX || DOS (which means that any code piece
valid for X-windows is also valid for UNIX or DOS) etc.
Such dependencies are not easy to see in more complicated
sources, but nevertheless the reader might ask: so what?
After all, we mentioned the analogy to spectral analysis,
and using spectral analysis, astronomers have shown that
the universe is expanding!

Although we cannot offer such spectacular insights, the
lattice clearly shows thatthe configuration structure is
faulty. Two important software engineering principles are
separation of concernsandanticipation of change. For ex-
ample, operating system issues should be separated from
user interface issues, and it should be easy to incorporate
another window system into a future version. The lattice
shows that OS as well as UI issues show up in both main
configuration threads, and that —worse— there is a cross
dependency between them. Cross dependencies prevent the
lattice from being decomposed into independent sublattices,
and this shows there is low coherence and strong coupling
between configuration threads. Hence, concept analysis not
only provides a detailed account of all dependencies, but
can serve as a quality assurance tool in order to check for
good design of the configuration structure, or to limit en-
tropy increase as a software system evolves.

In general, low coupling of configuration threads is
achieved when “semantically different” preprocessor sym-

bols appear in disjoint sublattices: .

Paths which are glued together in their top or bottom sec-
tions are acceptable, but cross arcs between sublattices al-
ways indicate interference between orthogonal configuration
threads.

High cohesionis achieved, if, for a subset of preprocessor
symbols in the same semantic (sub)domain, the correspond-

ing sublattice is a grid: . Missing arcs indicate

that certain combinations of defined symbols have not been
taken into consideration, which is at least suspicious.

Unfortunately, only a human can decide whether pre-
processor symbols are “semantical neighbours”. Usually,
the names of the preprocessor symbols indicate their mean-
ing. This helps to interpret the lattice, but nevertheless
certain experience is needed.

3.3 Data Reduction

Often one would like to obtain a quick overview of the
configuration structure and explore the full details later. For
such purposes, two simple data reduction techniques have
been implemented.

First, the user may specify a maximal nesting depth
for nested “ifdef”s. All #ifdefs and #defines which are
more deeply nested are ignored. This results in a concept
lattice which displays only the overall structure of possible
configurations, ignoring fine-grained details.

The second technique is based on the observation that
certain code pieces are often governed by almost identical
preprocessor settings. The corresponding rows in the con-
text table can be merged into one row if they “do not differ
too much”. The user may specify a threshold valuet, and
if a set of rows can be identified where all rows do pairwise
differ in less thant positions, these rows are replaced by a
new row which has crosses in a column ifall original rows
had. Such a “multirow” thus describes a set of code pieces
such that all code pieces have at least all attributes which
are marked (but some may have more). This gives us a
conservative approximation (we loose some dependencies,
but we never introduce false ones). In the concept lattice,
the technique has the effect that several concepts are merged
into one concept: row merging induces a lattice congruence
and hence is compatible with supremum and infimum.

3.4 Graphical Display

It is a non-trivial task to display the concept lattice in such
a way that interesting properties show up immediately. In
fact, a number of sophisticated algorithms has been devised
for that purpose [8,14]. Some of the techniques used are
to embed lattices into grids, or to present the lattice as
a (sub)direct product of smaller lattices. Such techniques
allow to detect e.g. the automorphisms of the lattice, or to
check whether the lattice is distributive.

Some of these algorithms have been implemented, but
were not available to us. Thus, we use a simpler approach,
based on the Sugiyama algorithm [11]. This well-known
layout algorithm for arbitrary directed graphs uses the topo-
logical ordering of nodes in order to determine their vertical
position. As the results are not always completely satisfac-
tory, the user may finally change the graph layout manually
(but the system will maintain integrity of the concept lat-
tice).

4 Experimental Results

We applied our tool to several UNIX programs. The reader
should keep in mind that the graph displays below have
been produced by a program which has been developed for
a different purpose, hence the layout is not optimal for con-
cept analysis. We plan to integrate the more sophisticated
display algorithms sketched above in the public–domain ftp
version.

Our first example is a popular shell, the “tcshell” de-
veloped at Berkeley. We have analysed one of its modules,
namely “sh.exec.c”. This program is 959 lines long and uses
24 different preprocessor symbols. In the concept lattice
(figure 4), singleton attribute or object labels are displayed
in the diagram, the others can be looked up in a separate
window through the concept name “Cnn”. It turns out that
the configuration structure is perfect according to the crite-
ria described above. It seems that there is an interference
between the path including C15 and the concepts C15 –
C18, C20. But a look at the source code reveals that both
VFORK andFASTHASH have to do with the hash function
used, hence there are no dependencies between orthogonal
configuration concepts.

Our second example is the stream editor from the RCS
system “rcsedit.c” [12]. This 1656–line program uses 21
preprocessor symbols. The concept lattice is shown in figure
5, together with 25 lines of source code (beginning with
line 179) and the labelling of the concepts. The concepts
below C6 (which concern different file access variants) as
well as those below C8 (C8 is labelled “large_memory”)
have a simple structure, and the concepts below C9/C10
(concerning networking) form a grid-like cluster. But there
is an interference manifest in C27, which is the infimum of

C38 and C15. C38 is labelledhas_NFS, C15 is labelled
has_rename, and C27 is labelled 1425 – 1427. Thus,
lines 1425 – 1427 are governed by bothhas_NFS and
has_rename. A similar interference shows up in C37.

Hence, although the overall structure is quite good, we
suspect that networking issues and file access variants are
not clearly separated in “rcsedit.c”. And indeed: a com-
ment in the source code explains that due to an NFS bug,
“rename()” can in rare cases destroy the RCS file! This
problem has been re-discovered by concept analysis, just by
analysing the configuration structure. The example demon-

strates that our tool can indeed track down bugs, even bugs
which the programmers would like to keep covered: the last
sentence of the comment reads “Since this problem afflicts
scads of Unix programs, but is so rare that nobody seems
to be worried about it, we won’t worry either”2.

Let us finally come back to our introductory example,
“x_load.c” (see figure 1). This program is 724 lines long
and uses 43 preprocessor symbols for configuration man-
agement. The resulting concept lattice has 141 concepts

2 The problem is in fact a little bit more complicated; the interested
reader should look at the source code himself

Figure 4: Configuration structure of tcshell module “sh.exec.c”

Figure 5: Configuration structure of the RCS stream editor

and is shown in figure 6. It looks pretty chaotic, and
we therefore used data reduction to display only the top
4 #ifdef nesting levels (figure 7). Even on the top level,
there are interferences (C19/C24), and the central role of
C33 does not inspire confidence (C19 is the infimum of
C2 and C11; C2 isSVR4 || UTEK || alliant || hex || se-
quent || sgi || sun, C11 is !apollo. C33 is is a set of 9
code pieces governed by the sundriesSYSV386, !LOAD-
STUB and!KVM_ROUTINES). It seems that this program
suffers from configuration hacking.

5 Conclusion

We described a tool for extracting configuration structures
from existing source code. Our point of departure was “con-
figuration management by preprocessing”, but the method
can easily be adapted to more modern configuration man-
agement techniques (e.g. shape [7]). It turned out that math-
ematical concept analysis is a powerful tool for gaining in-
sight into configuration structures, just as Fourier analysis
is for ordinary functions.

Figure 6: Configuration structure of “x_load.c”

Figure 7: Top level configuration structure of “x_load.c”

It might very well be that concept analysis has other
applications in reverse engineering; this should be investi-
gated. There is an extension of the theory calledconceptual
knowledge systems[15] which allow to infer relationships
betweenuser-definedconcepts (in our tool, concepts are
generated automatically). We will investigate the useful-
ness of this extension to our problem. Another possible
application isrestructuringof configurations: by analysing
and decomposing the concept lattice, hints for improving
the configuration structure may be obtained.

Our tool is part of the inference-based software devel-
opment environment NORA3. NORA aims at utilizing uni-
fication theory and inference technology in software tools;
concepts and preliminary results can be found in [9,5,10].

The tool described in this paper can be obtained via
anonymous ftp:ftp.ips.cs.tu-bs.de (134.169.32.1).

Acknowledgements. Andreas Zeller and Christian
Lindig have been a great help with the graph display pro-
gram. Martin Skorsky from the Darmstadt algebra group
contributed several helpful comments. Peter Burmeister
kindly made available his CONIMP program for concept
analysis.

NORA is funded by the Deutsche Forschungsgemein-
schaft, grants Sn11/1–2 and Sn11/2–1.

6 References

[1] Davey, B.A., Priestley, H.A.: Introduction to Lattices and
Order. Cambridge University Press 1990.

[2] Feiler, P. (ed.): Proc. of the 3rd International Workshop on
Software Configuration Management. ACM 1991.

3 NORA is a drama by the Norwegian writer H. IBSEN. Hence,
NORA is no real acronym.

[3] Ganter, B.: Algorithmen zur formalen Begriffsanalyse. In
[4], pp. 241 – 254.

[4] Ganter, B., Wille, R., Wolff, K. (ed.): Beitr̈age zur Begriff-
sanalyse. B.I. Wissenschaftsverlag 1987.

[5] Grosch, F.-J., Snelting, G.: Polymorphic Components for
Monomorphic Languages. Proc. Second International Work-
shop on Software Reusability. IEEE 1993, pp. 47 – 55.

[6] Krone, M.: Reverse Engineering of Configuration Structures.
Master’s thesis, TU Braunschweig, Institut für Programmier-
sprachen, 1993 (in German).

[7] Mahler, A. und Lampen, A.: An Integrated Toolset for En-
gineering Software Configurations. Proc. ACM Symposium
on Practical Software Development Environments, SIGSOFT
Notices 13, 5 (November 1988), pp. 191 – 200.

[8] Skorsky, M.: Endliche Verbände – Diagramme und Eigen-
schaften. PhD thesis, Technical University of Darmstadt,
Dept. of Mathematics, 1992.

[9] Snelting, G., Grosch, F.-J., Schroeder, U.: Inference-Based
Support for Programming in the Large. Proc. 3rd European
Software Engineering Conference, Milano 1991. LNCS 550,
pp. 396 – 408.

[10] Snelting, G., Zeller, A.: Inferenzbasierte Werkzeuge in
NORA. Proc. Softwaretechnik ’93, pp. 25 – 32, GI 1993
(in German).

[11] Sugiyama, K., Tagawa, S., Toda, M.: Methods for Vi-
sual Understanding of Hierarchical System Structures. IEEE
Transaction on Systems, Man and Cybernetics 11, 2 (1981),
pp. 109 – 125.

[12] Tichy, W. F.: RCS - A System for Version Control. Software
Practice and Experience 15(7), pp. 637 – 654, Juli 1985.

[13] Wille, R.: Restructuring Lattice Theory: An Approach Based
on Hierarchies of Concepts. In: I. Rival (ed.) Ordered Sets.
Reidel 1982, pp. 445 – 470.

[14] Wille, R.: Geometric Representation of Concept Lattices. In:
O. Opitz (ed.): Conceptual and Numerical Analysis of Data.
Springer 1989, pp. 239 – 255.

[15] Wille, R.: Concept Lattices and Conceptual Knowledge
Systems. Computers & Mathematics with Applications 23
(1992), pp. 493 – 515.

