
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Befehlsanordnung auf
expliziten

Abhängigkeitsgraphen

Masterarbeit von

Steffen Kromm

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: M. Sc. Andreas Fried

Abgabedatum: 23. April 2019

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Die Befehlesanordnung hat die Aufgabe, die durch Abhängigkeiten teilgeordneten
Befehle eines Abhängigkeitsgraphen in eine total geordnete Liste zu überführen. Die
konkrete Ordnung beeinflusst dabei die Laufzeit der resultierenden Programme.
Diese Arbeit implementiert ein verbessertes Befehlsanordnungsverfahren im libFIRM
Compiler.
Es werden verschiedene Optimierungsmöglichkeiten der Befehlsanordnung betrachtet
und geeignete Optimierungen implementiert.
Die Evaluation der Implementierung zeigt, dass Befehlsanordnung auf Grundblöcken
auf moderner Hardware nur ein geringes Optimierungspotenzial besitzt und aufwendi-
gere Verfahren in Zukunft benötigt werden.

Instruction scheduling defines a total order on the partial order of explicit dependency
graphs. Additionally, it orders the instruction in a way that optimizes the runtime
of the resulting programs.
This thesis implements an improved instruction scheduler in the libFIRM compiler
infrastructure.
We inspect different optimization strategies for instruction scheduling and implement
suitable new optimizations in the libFIRM library.
The evaluation of implemented optimizations shows that instruction scheduling on
basic block level on modern processors has only a low optimization potential and
more advanced approaches are needed to achieve significant improvements.

Title image source
https://www.flickr.com/photos/157089461@N07/27559983948

https://www.flickr.com/photos/157089461@N07/27559983948

Contents

1. Introduction 7

2. Foundations 9
2.1. Compiler design . 9
2.2. SSA form . 10
2.3. FIRM . 11

2.3.1. Explicit dependency graphs 11
2.4. LibFIRM compiler design . 13
2.5. Instruction scheduling . 14
2.6. Scheduling scope . 15
2.7. Scheduling approaches . 16

2.7.1. List scheduling . 16
2.7.2. Constraint programming . 17
2.7.3. LibFIRM compiler instruction scheduling 17

3. Related work 19
3.1. LibFIRM . 19

3.1.1. Register-pressure-aware instruction scheduling 19
3.2. Instruction scheduling . 19

3.2.1. Scheduling heuristics . 19
3.2.2. Global scheduling . 20

3.3. Related research fields . 20
3.3.1. Modulo scheduling . 20
3.3.2. Microcode compaction . 20

4. Design and implementation 23
4.1. Requirements and limitations . 23
4.2. Simplifications . 24
4.3. Coarse design . 24

4.3.1. Register usage and ILP tradeoff 24
4.3.2. Base Algorithm . 25

4.4. List scheduling . 25
4.5. Priority heuristics . 25

4.5.1. Instruction Latency . 28
4.5.2. Maximum path latency . 30

5

Contents

4.5.3. Register pressure . 32
4.5.4. Dependencies . 33

4.6. Implemented heuristic variants . 33
4.6.1. Variant A . 33
4.6.2. Variant B . 34

4.7. Alternative approaches . 34
4.7.1. Machine learning . 34

5. Evaluation 37
5.1. Platform independence . 37
5.2. Performance . 37
5.3. Optimization potential of basic blocks 41
5.4. Effects of basic block size . 41
5.5. Performance of maximum path latency 42
5.6. Exceptions . 42

6. Conclusion and outlook 45
6.1. Conclusion . 45
6.2. Further work . 45
6.3. Outlook . 46

A. Code samples 51
A.1. LibFIRM maximum path latency implementation 51

6

1. Introduction

A compiler is a translator program that transforms source code written by a pro-
grammer in a high-level programming language into assembly code that a processor
can execute.
Since high-level programming languages are designed to abstract from hardware
details and be understandable for humans a compiler needs to perform optimizations
in the translation process in order to create a program that is efficiently executable
on a target processor.
In a program, the instruction order defined initially by the programmer is not always
necessary for the correctness of the program. A processor can execute every instruc-
tion at any point in time, where the values that the instruction needs are available,
meaning the instructions which calculate these values are executed. Any instruction
order that fulfills these instruction dependencies is valid. In the compilation process,
the original code is often converted to different representation forms, like explicit
dependency graphs, which lose the initial total order and define the program only
with the partial order of the dependencies between the instructions. The instruction
scheduler defines a total order on the instructions of the resulting program.
In early processors, only one instruction was executed at a time. On these machines,
the order of instructions did not influence the execution time of programs.
Modern processors can execute multiple instructions concurrently by exploiting the
instruction level parallelism(ILP) of the code [1]. ILP is a term used to describe the
amount of independent and therefore parallel executable instructions in the code. We
use the term potential ILP to describe the maximal possible amount of instructions
executed in parallel in the execution of a program. In contrast, the plain term ILP
of a piece of code is used to describe the actual amount of ILP in the current order
of the instructions.
Due to limited resources of the processor hardware and the dependencies between
instructions, the order of instructions changes the overall execution time of a program
in these modern processors.
The performance difference between the default instruction order and an optimized
order can be significant [2]. Because of this, compilers implement an optimization
step, the so-called instruction scheduler. This step analyses the program and reorders
instructions to maximize performance.
List scheduling is a simple algorithm to solve the instruction scheduling problem. A
variant of list scheduling is implemented to facilitate the instruction scheduling in
the libFIRM compiler infrastructure.

7

This thesis analyzes different optimization strategies to instruction scheduling and
especially the list scheduling approach and tests the boundaries of list scheduling
algorithm. We integrate multiple variants of an adjusted selection heuristic of the
instruction scheduler in the libFIRM compiler infrastructure. These adjustments are
evaluated to gain new insights into the implementation of list scheduling on explicit
dependency graphs and the limitations of this approach.

8

2. Foundations

The following chapter describes the foundations required for the understanding of
this thesis.

2.1. Compiler design

A compiler is, in general, any piece of software that translates source code of one
programming language into an equivalent code of another language. In this thesis,
the examined compilers are compilers that translate source code in a high-level
programming language like C into assembly code for a particular processor.
Modern compilers have a frontend-backend architecture, which uses an intermediate
representation to abstract from different source and target languages. The frontend
is source language dependent, while the backend is dependent on the target language,
or in the special case of this thesis, depending on the assembly instruction set of the
target processor architecture:

Intermediate representation An intermediate representation is a language which
is used internally by a compiler instead of the source language. Through
this intermediate representation, the compiler performs optimizations more
efficiently ([3]).
Since any source language is converted into the intermediate representation and
since the intermediate representation can be converted to any target language,
optimizations are language-independent.

Language frontend The language frontend is the part of a compiler that parses
a specific source language program and translates it into an intermediate
representation program. It performs no additional optimizations.

Middle end The intermediate representation is used to make optimizations easier.
The middle end is the part of the compilation pipeline that performs opti-
mization on intermediate representation programs without any target platform
specifics.

9

2.2. SSA FORM

Architecture backend The backend takes an intermediate representation program,
generates assembly code for a specific processor architecture and outputs a
binary program.

Intermediate representations do not only decouple frontend and backend; they also
assist in the optimization process.

2.2. SSA form

The SSA form1 is a property of program code[4]. A piece of code is in SSA form if
every variable is defined before it is used and has only one definition. If an assignment
statement defines a variable that a previous statement has already defined, a new
variable is declared instead, which is defined with the new value (see section 2.2). In
the context of SSA, we do not speak of variables but only values which are used.

int a = 1 ;
a = a + 3 ;

Listing 2.1: Sample code without
SSA form

int a1 = 1 ;
int a2 = a1 + 3 ;

Listing 2.2: Sample code con-
verted to SSA form

A problem with SSA conversion is the case of a value varying depending on the
control flow. For example, depending on which branch of an if clause is executed,
the actual value of x3 may be x2 or x1. Having two assignments to x3 in each branch
breaks the SSA form.
A function often referred to as Φ function solves this problem. We define a Φ
function with Φ(x1, x2) as the value of x3. Depending on the actual control flow,
the function returns a different value. This way, the SSA form of a program can be
conserved. The most significant benefit of SSA form is that it makes the data flow of
the program explicit because every declared variable has a constant value after the
initial definition. That way, many optimizations become implicit or easy to handle,
like eliminating unused variables and code. If no statement uses a value, then the
value is not used and does not need to be stored (the statement of the assignment
still has to be executed if it contains side effects). Significant optimizations that are
improved by using SSA form include ([5]):

• Constant propagation

• Value range propagation
1Single static assignment

10

2.3. FIRM

• Sparse conditional constant propagation

• Dead code elimination

• Global value numbering

• Partial redundancy elimination

• Strength reduction

• Register allocation

As stated above, the SSA form helps with many optimization steps in the compilation
process. Therefore many modern intermediate representations are designed to only
be able to represent programs in SSA form. This restriction can be realized by
representing the program in a graph data structure. One of these modern intermediate
representations is FIRM.

2.3. FIRM

FIRM is a fully graph-based, SSA-based intermediate representation developed as
part of the compiler research of the IPD at KIT ([6]).

2.3.1. Explicit dependency graphs

FIRM uses a directed acyclic graph (DAG) to represent the instructions of basic blocks
and their dependencies. Due to this fact, the graph is called explicit dependency
graphs. A basic block is in this case a piece of code that contains no jump instructions
except at the end and contains no jump targets. Therefore, if a basic block is executed,

int main (int argc , char∗∗ argv) {
int a = (int) argv [2] ;
int b = (int) argv [3] ;
return a ∗ (a + b) ;

}

Listing 2.3: Sample c program for which the corresponding FIRM graph was gener-
ated.

11

2.3. FIRM

Return 96

Proj M M 91Mul Is 95

Add Is 94

Conv Is 80

Proj P res 79

Conv Is 93

Proj P res 92

Load[P] 90

Proj M M 78

Load[P] 77

Proj M M 65Add P 76

Const 0x10 Ls 75

Add P 89

Const 0x18 Ls 88 Proj P Arg 1 67

Proj T T_args 64

Start 62

01

001

01

0

0

0

0

01

0

01

00 101

0

0

Figure 2.1.: FIRM graph of 2.3

12

2.4. LIBFIRM COMPILER DESIGN

all of its contained instruction are guaranteed to be executed. The program, on the
other hand, is represented by a graph data structure with basic blocks as nodes, but
this graph can contain loops. A DAG is a graph that has directed edges and does
not contain cycles. Inside the basic block DAG, every node abstracts an instruction;
every edge is used to represent a dependency. A directed edge that points from node
A to node B means B can only start execution if A has already been executed.
Through the use of a DAG, the dependencies between instructions become explicit.
Additionally, the existing FIRM nodes in combination with the DAG data structure
only allow SSA form programs.

2.4. LibFIRM compiler design

LibFIRM is a compiler infrastructure that is being developed by the IPD at KIT. It
consists of the core library libFIRM, which implements the SSA-based intermediate
representation language FIRM, optimizations on FIRM graphs and the assembly
generation for the FIRM DAG for different architectures, especially the x86 architec-
ture.
LibFIRM is suitable for every programming language. All that is needed in order
to create a compiler is a frontend that generates a FIRM graph for a given source
code programming language. The most mature libFIRM frontend is cparser, which
implements a frontend for the C programming language2.
The most important steps of the code generation of the compilation process in
libFIRM are the following, executed in the given order:

Instruction selection The instruction selection maps FIRM instructions onto the
instructions of the target language. This step largely influences the following
steps in the compilation because the mapping of source to target instruction is
not bijective and sets the limits of available instruction level parallelism and
register usage.
In the context of this thesis, the instructions are exact assembly machine
instructions, which means the steps following the instruction selection must
handle different instruction sets of processor architectures.

Instruction scheduling FIRM uses a explicit dependency graph to represents the
instructions of a program, which defines no total order on the instructions.
The instructions need to be in a total ordered list so that a processor can
execute the program. The instruction scheduling performs this ordering of
the instructions. It also rearranges instructions, if possible, to increase ILP
and reduce register usage, to optimize the execution time of the program. If
the processor executes more instructions in parallel, it also needs to store an

2C99

13

2.5. INSTRUCTION SCHEDULING

increased amount of values. This increases the amount of needed registers. If
more register are needed than the hardware has available, some values need
to be stored and loaded from memory instead of registers, which induces a
performance penalty [7].

Register allocation The register allocation is the last major step of the code gener-
ation and is done after the instruction scheduling. At this point, instructions
are actual assembly instructions of a real architecture (for example x86). Only
the register names in the instructions are still virtual registers. The register
allocation now assigns actual hardware register names to every instruction
and inserts spill code if the program execution needs more registers than the
hardware has available. After this final step, a processor that implements the
target architecture can execute the generated assembly code.

Besides these steps, libFIRM performs many other optimization steps. The steps
described above are the most relevant steps for instruction scheduling.

2.5. Instruction scheduling

Instruction scheduling refers to any optimization step in a compiler that defines
a total order on the partially ordered instructions of a program while maximizing
resource usage and that way optimizing the execution time of the instructions. The
algorithm that defines the instruction order is called an instruction scheduler.
Modern processors implement a variety of techniques to speed up the execution of
programs. The majority of these techniques exploit the ILP of the program.
The first major technique is instruction pipelining. The execution of an instruction
is split into multiple steps, with each step working parallel to the others. Every one
of the steps of the pipeline contains a different instruction. With this approach, the
execution of instructions overlaps, and if there are n steps, then there are at most n
instruction concurrently in execution at the same time.
This important, fundamental optimization technique of modern processors introduced
also new dependency conflicts between instructions. All instructions that are in
execution access the same hardware registers, which can lead to conflicts due to the
limited number of registers.
What’s more, is that data dependencies can occur if multiple instruction access the
same register to access the same value.
The register pressure is the number of values a processor needs to store in registers
for the currently executed instructions of an instruction pipeline. If the loaded
instruction needs more registers than are physical register available, the processor
must write the value of another register into the cache hierarchy or even main
memory. These load and store instructions, called register spills are very costly due

14

2.6. SCHEDULING SCOPE

to the latency of the memory access so that even L1 cache access can largely exceed
the average latency of integer or boolean arithmetic operations, which induces a
substantial performance penalty [7].
The goal of instruction scheduling, therefore, is to define a total order for the execution
of instructions of a program which also has optimal performance.
With the advent of superscalar out-of-order and VLIW processors, which have
multiple execution units and allow the concurrent execution of multiple instructions,
instruction scheduling also needs to consider the ILP of the scheduled instruction
order. This way, as many execution units as possible are used, improving the overall
runtime due to higher ILP.
VLIW processors store multiple instruction in one super-instruction and therefore
depend totally on software scheduling to create these super-instructions from the
code during scheduling.
Out-of-order processors on the other hand fetch multiple instructions, the concrete
amount defined by a processor specific instruction window, at every cycle. These
instructions are then passed through the processor pipeline and later submitted to
their corresponding execution unit. This submission is done by a hardware scheduler.
This hardware scheduler can only operate on the instructions, that are fetched within
the instruction window. Therefore a software scheduler can still optimize the code
by scheduling on scopes higher than the instruction window size.
An instruction scheduler Ω creates an optimal schedule for a DAG G if it minimizes
the following term:

n∑
i=0

latencyΩG(i) ∗ ILPΩG(i) + #spillsΩG(i) (2.1)

where n is the number of scheduled instructions and ΩG(i) is the instruction, the
scheduler Ω selects at the ith position in the total order from G. ILP is a factor in
the interval [0, 1] defined for each instruction and is used to describe the reduction
of the total sum of latencies in the scheduled order defined by Ω due to parallel
execution. The number of spills defines the overhead by spilling and additional
memory operations that is caused by scheduling an instruction at position i.

2.6. Scheduling scope

Instruction scheduling can perform on different scopes. One is called local instruction
scheduling, or basic block scheduling, because the scheduling is only done within the
basic blocks of the program.
In contrast to basic block scheduling, there are also global scheduling methods. In
these, more instructions than one basic block are scheduled at once. This way, the
scheduler can move instructions from one basic block to another and increase the ILP

15

2.7. SCHEDULING APPROACHES

of the code further. A basic block itself is not guaranteed to be executed. Therefore
the scheduled instructions are not guaranteed to be executed anymore, and the
scheduler may then need to copy code if it moves an instruction outside of its original
basic block. Therefore, global scheduling methods have a higher complexity.
.

2.7. Scheduling approaches

Instruction scheduling on explicit dependency graphs is the problem of converting a
DAG datastructure into a total ordered list of the nodes of the DAG while maintaining
the partial order defined by the edges (instruction dependencies) of the DAG.

2.7.1. List scheduling

Instruction scheduling as a special case of general scheduling is an NP-complete
problem [8]. Therefore heuristic algorithms are used instead of analytical solutions.
A simple heuristic algorithm for instruction scheduling is list scheduling. List
scheduling refers to any algorithm that collects all ready instructions in a priority
list and then selects the instruction with the highest priority from the list. The
algorithm can use any heuristic to calculate the priority for each instruction.
An instruction is ready if all of its incoming instructions have been scheduled, meaning
all its needed values have been scheduled.

Data: DAG, candidates = []
Result: schedule = []
candidates = DAG.root
while candidates not empty do

instruction = select(candidates)
schedule.push(instruction)
candidates.remove(instruction)
for successor in instruction.successors do

if successor is ready then
candidates.add(succesor)

else
end

end
Algorithm 1: List scheduling

16

2.7. SCHEDULING APPROACHES

List scheduling is the base for the instruction scheduler in the GCC[9] and LLVM[10]
compilers.

2.7.2. Constraint programming

Instead of selecting instructions from a list based on some heuristic, which is the
approach of list scheduling, another algorithm used in instruction schedulers is
through constraint programming. With this, multiple constraints have been defined
that limit the space of possible schedules. New constraints are added until only one
valid schedule is available. In contrast to list scheduling, constraint programming
schedules globally on the whole DAG instead of only inspecting the ready list at
each scheduling step ([11]).

2.7.3. LibFIRM compiler instruction scheduling

LibFIRM performs the instruction scheduling with list scheduling before the register
allocation on the basic block level. It uses only register pressure as the list selection
priority, which means it schedule to minimize register pressure independent of the
actual register usage and the potential ILP.

17

3. Related work

3.1. LibFIRM

This thesis is a part of the ongoing development and research effort of the IPD
on libFIRM. Therefore it elaborates and builds on previous works on the libFIRM
compiler infrastructure.

3.1.1. Register-pressure-aware instruction scheduling

Foremost, this thesis enhances the existing instruction scheduler of libFIRM. The used
instruction scheduler in libFIRM is the so-called register pressure-aware instruction
scheduler developed as part of the diploma thesis of Christoph Mallon [12].
It builds on top of the list scheduling framework developed by Sebastian Hack et
al.[13]. The scheduler calculates register costs for each instruction at each point they
could be scheduled and then uses this number as a selection heuristic. This way, it
implements minimal register usage.

3.2. Instruction scheduling

3.2.1. Scheduling heuristics

The first research on actual instruction scheduling as defined in this thesis was done
as part of research on vector machines [14]. With the advent of pipeline architectures,
instruction scheduling became useful for scalar processors.
Gibbons et al. did early work on pipeline architecture optimizations and especially
instruction scheduling on basic block level. They used a priority list of heuristics
calculated for every instruction, which they described in [8].
Goodman et al. ([15]) developed a novel instruction scheduling technique which

19

3.3. RELATED RESEARCH FIELDS

combines register allocation and scheduling in one step and trying to solve the
dependency problem between register allocation and instruction scheduling.

3.2.2. Global scheduling

The majority of research investigates how global level instruction scheduling can
improve performance.
Havanki [16] introduced Treegion scheduling. This scheduling approach defines a
treegion over the control flow graph, the graph structure that consists of basic blocks.
A treegion is a tree graph of basic blocks. For a basic block, the corresponding
treegion consists of all the following basic blocks that only have a single predecessor
basic block.

3.3. Related research fields

In the following relevant papers on the research on compiler design and instruction
scheduling are presented which are related to the content of this thesis but do not
exactly match the goal of this thesis or are misleadingly confused with instruction
scheduling as understood in the context of this thesis.

3.3.1. Modulo scheduling

An extensive amount of research inspects modulo scheduling and how it can be
implemented effectively. Modulo scheduling is a loop unrolling technique and a special
case of instruction scheduling which is not part of this thesis. Modulo scheduling is
a preprocessing step for actual instruction scheduling, as it increases the size of basic
blocks.
An overview of modulo scheduling is given in [17].

3.3.2. Microcode compaction

Joseph A. Fisher presented in [18] trace scheduling as a microcode compaction tech-
nique. Microcode compaction and the developed techniques represent the predecessor
work to later work on instruction scheduling. [19] adopted microcode compaction

20

3.3. RELATED RESEARCH FIELDS

algorithms for instruction scheduling on superscalar machines.

21

4. Design and implementation

This chapter describes the design decisions that were made to implement different
instruction scheduling variants, which are subject to evaluation in this thesis.
The design and implementation process for optimizing the instruction scheduler of
libFIRM was lead by the following questions:

• What optimization potential leaves the register pressure-aware scheduler?

• Which metrics can additionally be used?

• How do the metrics influence the performance?

• What optimization potential has basic block scheduling?

4.1. Requirements and limitations

A new solution has to fit in the libFIRM environment which implies a few require-
ments and restrictions to the solution.
The libFIRM library is microprocessor agnostic, so it has to work with abstractions
over all existing architectures.
It does not handle specific microprocessor architecture implementations, like the
different Intel and AMD x86 generation architectures. This makes sense since most
software is distributed as binaries. As these binaries are precompiled for an architec-
ture like x86, the actual architecture is unknown due to the unknown target hardware.
To handle explicit architecture implementations or variants, changes to the overall
architecture are required.
In the compilation process of libFIRM, the instruction selection is made before
instruction scheduling. That means that the instruction scheduler does not handle
a DAG of libFIRM node types, but every node represents an actual architecture
instruction.
We implement the instruction scheduler only for the ia32 instruction set, though the
steps to implement this logic can be easily replicated for other architectures.

23

4.2. SIMPLIFICATIONS

4.2. Simplifications

Besides the imposed restrictions, we make some simplification to reduce the opti-
mization space.
Firstly optimizations and benchmarks are implemented with a microprocessor with
the Intel Skylake architecture. Architecture-specific implementations also were
developed for the Skylake architecture only. Though this is a restriction, the im-
plementation and techniques in this thesis are meant to apply to any particular
microprocessor architecture. Restrictions that were imposed by the x86 architecture
or the Skylake implementation are mentioned inside the following chapter.
Our solution targets superscalar out-of-order processors. We do not consider VLIW
processors in our solution.

4.3. Coarse design

First, we research what possibilities are available to improve the existing instruction
scheduler of libFIRM.

4.3.1. Register usage and ILP tradeoff

In libFIRM, instruction scheduling is done before register allocation. This is a
relevant piece of information, as there is a significant dependency between instruction
scheduling and register allocation that affects the overall performance of the program.
Register allocation is the process of assigning actual hardware register names to
variables and thereby define which variable is stored in which actual registers. If
there are more variables active at one point in the execution than hardware register
available than spilling code has to be inserted: Values have to be stored and accessed
in memory via load and store operations. This memory access overhead creates a
performance penalty.
The instruction scheduler rearranges instructions to maximize performance. As
objective 2.1 shows, this can be achieved by either improving the ILP of the program
or by reducing the register spills. By rearranging instructions for higher ILP, the
lifetime of values used by these instructions is modified, which then can affect the
amount of additional memory accesses that the register allocation has to add. So
scheduling for higher ILP tends to increase register spills and scheduling for a minimal
amount of register spills ignores the ILP of the program. So the two terms of 2.1 are
often negatively correlated. A common belief is that minimizing register spills tends

24

4.4. LIST SCHEDULING

to outperform higher ILP.

4.3.2. Base Algorithm

LibFIRM implements instruction scheduling with a list scheduling framework on the
basic block level that is based on the thesis of Christoph Mallon [12].
We decided to investigate further the optimization potential of this instruction
scheduler instead of implementing alternative approaches to list scheduling. This
allowed us to concentrate on the optimization potential of list scheduling in more
detail. As presented in the foundations, list scheduling selects instructions from a
ready list based on a priority.
The priority selection is defined by various heuristics, which in turn are ordered in
a list. If two instructions have the same heuristic value, then the next heuristic in
the list is selected to resolve the tie. The last heuristic is the unique (and arbitrary)
instruction index of the FIRM graph node, which guarantees a total order over the
DAG and that the scheduler is deterministic.

4.4. List scheduling

4.5. Priority heuristics

A list scheduler selects ready instruction based on priority defined for every instruction
at the selection time (the priority of an instruction can change depending on the
previous scheduling decisions). There are two ways of how a list scheduler can
perform better results. The first way is to increase the amount of instruction on
which the scheduling is performed. The amount of instruction that the instruction
scheduler can choose at each scheduling point is restricted by the logical dependencies
of the program. This cannot be changed. Besides these dependencies that limit
the scope of available instructions at each scheduling timepoint, there are a few
possibilities, to maximize the scheduling scope:

Loop unrolling Loop unrolling is a compiler optimization technique, that "unrolls"
the instructions of multiple iterations of a loop and puts the instructions into
one single iteration. This is possible due to the partial independence of loop
iterations. This way, the number of mostly independent instructions of basic
blocks can be dramatically increased.

25

4.5. PRIORITY HEURISTICS

Instruction selection The instruction selection is the process of selecting what actual
hardware instructions are used instead of the virtual instructions.

Global scheduling Scheduling on basic blocks simplifies scheduling because within a
basic block all instructions are guaranteed to be executed. This simplification
is a tradeoff with the mostly small scope of basic blocks. While the above
techniques, especially loop unrolling, can increase the size of basic blocks, global
scheduling techniques allow to schedule over multiple basic blocks or the whole
program and therefore increase the scheduling scope immensely.

None of these possibilities were viable in the scope of this thesis. Loop unrolling and
instruction selection are different optimizations in the compilation process and do
only concern instruction scheduling as a supporting optimization.
Global scheduling requires too much additional effort. It was not further investigated,
as this thesis explores the potential and limitations of basic block scheduling, and
implementing even a simple global scheduler would require the effort of an additional
thesis.
As the especially possibility to improve a list scheduler, increasing the scope is
either out of the scope of the context of this thesis or not investigated due to
time restrictions, the second possibility is to improve the selection heuristic of the
scheduler.
In the current implementation of libFIRM, at every scheduling timepoint, the
instruction with the lowest increase in register pressure is scheduled. The results of
the thesis by Mallon show that this implementation partly performed worse than
the previous implementation.
As stated before, it is not clear if scheduling for higher ILP yields better performance
than minimizing register pressure. Even if scheduling for minimal register pressure
is optimal, there are cases where two or more instructions have the same amount of
register pressure increase. In these cases, the current implementation decides by the
original (arbitrary) index that is assigned to every node. At least on these degrees of
freedom to the total order that register pressure metric leaves scheduling for higher
ILP could increase the overall performance.
To test these assumptions, we need to be able to schedule for potential ILP. An
instruction scheduler that optimizes instruction level parallelism selects available
instructions, so they occupy as many execution units as possible and that way execute
the maximal possible amount of instructions in parallel.
An optimal solution would need the concrete amount of different execution units
that are available, to schedule accordingly.
In reality, applications are normally compiled against an abstract architecture like
ia32 and then distributed. Therefore, the compilation cannot depend on the concrete
number of execution units that are available, because they vary between processors
of the same architecture family. Also, which instructions share the same execution
units is unknown for an abstract architecture like ia32.
Therefore all information to actual schedule directly for high ILP is not available.

26

4.5. PRIORITY HEURISTICS

To understand how ILP can be optimized we examine objective 2.1. As processor
hardware increases capabilities, we do a theoretic experiment and inspect a system
with unlimited resources. There are no register spills, so the sum of spills equals 0,
which leads to:

n∑
i=0

latencyΩG(i) ∗ ILPΩG(i)

Because this ideal system has unlimited resources, it can execute an unlimited amount
of instructions in parallel. Therefore the ILP factors are either 1 for instructions on
the critical path, or 0 because all other instructions run in parallel and do not add
to the total latency of the program.
The length or latency of a program path is the sum of the latencies of all instructions
in the path. A path is a queue of instructions, where every instruction is directly
depending on the previous, and the first instruction is a root and the last instruction
a leaf node. The critical path is the path with the greatest length.
If the instructions on the critical path are scheduled first, an optimal schedule for
this imaginary machine is created.
Now imagine a system, which does not have unlimited execution units, but still
unlimited registers.
Scheduling for the critical path can lead to long dependency chains because the
instructions on the critical path are scheduled until the dependencies of the critical
path instructions require to execute other instructions. This could lead to an increased
amount of register pressure.
Besides that, after scheduling an instruction on the critical path, the critical path
of the remaining unscheduled graph can change. At every point in time, we want
to schedule the instruction that lays on the current critical path and not the global
critical path. Therefore we define the maximum path latency metric for an instruction
as the length of the longest path that exists from the instruction to the root node of
the graph. From all ready instruction, the instruction with the highest maximum
path latency is the instruction on the current critical path. Even if we do not
explicitly schedule for higher ILP with this metric, any selection metric that directly
increases ILP can only deviate in the selection from the maximum path latency if
two instructions have a tie on the maximum path latency because a faster schedule
than the critical path is not possible.
At last, we need to consider register pressure. Depending on the program, either
minimizing register pressure first or selecting maximum path latency yields better
performance. What every metric is chosen first, the other metric can be used on the
degrees of freedom the first one leaves (instruction with the same metric value).
To calculate the maximum path latency of instruction, the instruction latency of
every instruction is needed.

27

4.5. PRIORITY HEURISTICS

4.5.1. Instruction Latency

The latency of an instruction defines how many cycles the processor needs to process
an instruction, that is, the time from loading the instruction into an execution unit
until the results of the instruction are available to other instructions.
For a particular microprocessor, we can define the correct latency for every instruction.
In general, a compiler only compiles against an architecture, without knowledge
about a concrete implementation. Because of this, the latencies of instructions need
to be guessed, if the architecture does not guarantee them, which is not the case in
general.
For scheduling, the latencies do not need to represent the accurate cycles, but
rather, the ratio between the latency values of different instructions need to be
correct. This way, it is easier to generalize over all implementations of architecture,
while maintaining the ability to calculate. A good estimation of latencies should
consider the correct values of different microprocessors of the same architecture
and weight them based on the usage of the microprocessor. This approach requires
constant maintenance due to new processors and their potentially deviating latencies.
For purposes of this thesis, we didn’t calculate approximated latency values like
described above but rather used latency values just for the Skylake architecture. The

instruction old libFIRM new libFIRM
add 1 1
mul 10 4
div 25 20
fadd 4 1
fmul 4 3
fdiv 20 40
shl 1 1
and 1 1

Figure 4.1.: Table shows the latency numbers of some basic x86/x87 instructions
for the current libFIRM implementation and the Agner benchmarks
results[7] for the Intel Skylake architecture used as the new latency
values for libFIRM.

latency values already used in libFIRM are defined for the ia32 architecture. A good
measurement for the latency values specific to the Intel Skylake architecture gives
Agner [7].

28

4.5. PRIORITY HEURISTICS

Difficulties

The actual latency value of instruction is even for a particular architecture like the
Intel Skylake architecture not certain. There are several problems:

Load instructions The latency of load instructions is unknown due to cache misses
and hits. We do not handle the varying latency of load instructions in this
thesis.

Register size The latency of instruction varies depending on the size of the registers.
The latency values defined in libFIRM do not differentiate between register
size. We could add a constant to the latency depending on the register size,
but not all instruction varies with different register sizes. Therefore we used a
median between 32 and 64-bit register latency, as these instructions on these
register are far more common.

Implementation in libFIRM

The used latency value is an architecture (implementation) specific value, which is
assigned to every instruction.
The file ir/be/be_t.h contains the definition of the instruction scheduling step of the
libFIRM compilation through the function void be_step_schedule(ir_graph ∗irg).
We modify the signature of this function by adding a structure to this function
as the second parameter after the DAG graph structure irg so the signature is
void be_step_schedule(ir_graph ∗irg, instrsched_if_t ∗instrschedif). The struc-
ture instrsched_if_t is an interface that contains function definitions that every
architecture implements.
To implement the architecture specific latency value, we introduce the function
unsigned get_instruction_latency(ir_node ∗irn) as a field of instrsched_if_t that
is implemented to return the architecture specific instruction latencies.
Because this property is only defined for nodes that represent instructions of the
target architecture we introduce also a callback function that returns a boolean that
signals if the node represents a, in our example, x86 instruction or not. We only
query the latency for actual x86 instruction, and use 0 as the latency value for other
nodes. The latency itself is not too useful as a metric but is used to calculate the
maximum path latency metric.

29

4.5. PRIORITY HEURISTICS

A,2

B,4 C,7

C,4

A,1

A,5

Figure 4.2.: Example graph for the maximum path latency. The graph consists of
three fictive node types, A with latency 1, B with latency 2 and C
with latency 3. Every graph node is labeled with the node type and its
maximum path latency, separated by comma.

4.5.2. Maximum path latency

The maximum path latency metric is calculated by adding the latency of instruction
and the highest maximum latency of all dependent instructions, as shown in algo-
rithm 2. The resulting maximum path latency values are visualized by figure 4.2

Data: DAG, instruction I εDAG
Result: maximum path latency of I
if I.dependent_instructions.length == 0 then

return I.latency;
else

return I.latency + max of I.dependent_instruction.total_path_latency
end

Algorithm 2: Calculate maximum path latency

Implementation in libFIRM

In order to implement maximum path latency as a heuristic in libFIRM, we use the
recursive algorithm 2. The current implementation of the instruction scheduler step
in libFIRM uses a struct flag_and_cost to store information for every node. We use
this struct to store the calculated maximum path latency of the node. Every node is

30

4.5. PRIORITY HEURISTICS

initialized with a maximum path latency of UINT_MAX and is used as a marker
for unvisited nodes. We iterate every node in the DAG and calculate their maximum
path latency if their maximum path latency is UINT_MAX.
The maximum path latency calculation is implemented through the recursive function
calculate_total_latency and a second function that calculates the maximum of the
maximum path latencies of all successors of a given node.
stat ic void ca l cu l a t e_to ta l_ la t ency (ir_node∗ i r n)
{

flag_and_cost ∗ f c = get_irn_flag_and_cost (i r n) ;
i f (! fc−>no_root) {

fc−>minimal_path_latency = get_ins t ruc t i on_latency (i r n) ;
} else {

unsigned max_succ_latency = get_max_latency_succ (i r n) ;
fc−>minimal_path_latency =

get_ins t ruc t i on_la tency (i r n) + max_succ_latency ;
}

}

stat ic unsigned get_max_latency_succ (ir_node∗ i r n)
{

unsigned max = 0 ;
foreach_irn_out (i rn , index , succ) {

flag_and_cost ∗ fc_succ = get_irn_flag_and_cost (succ) ;
i f (fc_succ−>minimal_path_latency == UINT_MAX)

ca l cu l a t e_to ta l_ la t ency (succ) ;
max = MAX(max , fc_succ−>minimal_path_latency) ;

}
return max ;

}

Listing 4.1: Simplified maximum path latency calculation
Listing 4.5.2 calculates the maximum path latency, but only in trivial cases. For
most FIRM graphs, it will fail to calculate the correct maximum path latency or not
terminate.

Handling special FIRM nodes

FIRM contains a few node types that are not translated to actual instructions, but
rather are needed to realize the strict SSA-form of FIRM graphs. The nodes which
need special case handling are:

Pin Pin the value of the node in the current block. No users of the Pin node can
float above the Block of the Pin. The node cannot float behind this block.
Often used to Pin the NoMem node.

31

4.5. PRIORITY HEURISTICS

Sync A sync node synchronizes multiple nodes that are independent of each other.

Proj A projection node extracts a value from a node that returns a tuple of values.

For these and a few other special nodes, the flag and cost struct does not exist. The
flag and cost struct only exists for nodes that represent an actual instruction.
The calculation needs to be proxied to actual nodes that have flag and cost.

i f (is_Pin (i r n) | | is_Sync (i r n) | | i s_Proj (i r n)) {
foreach_irn_out (i rn , index , succ) {

i f (succ == i rn) continue ;
c a l cu l a t e_to ta l_ la t ency (succ) ;

}
return ;

}

Handling graph corner cases

In actual FIRM graphs, circular dependencies can exist in the graph structure. To
solve these, the maximum path latency of a node is set to 0, when it’s calculation is
started and then after the recursive calculation is stopped, set to its actual value.
This is needed, so infinite recursions are stopped.
The complete implementation can be viewed in the appendix A.1.

4.5.3. Register pressure
With maximum path latency, we try to reduce the first ILP term of 2.1. We could
also reduce the register spills to improve overall performance.
The existing instruction scheduler of libFIRM already implements a register pressure
heuristic as the number of registers active, when an instruction is scheduled. This
heuristic can be used to minimize register pressure.
Minimizing register pressure does not necessarily yield the best performances. Schedul-
ing instructions for minimal register pressure, while the number of active registers is
below the available number of registers is without effect, because no matter which
instruction is scheduled, the memory access overhead does not change. In these cases,
it makes sense to switch to maximum path latency as a scheduling metric to further
increase the overall runtime performance.
The problem with this approach is missing information about what registers are used
because the scheduling is performed before register allocation and therefore handles
virtual register names. Therefore the scheduler schedules to reduce register pressure,
even if no spills are needed.
A widespread assumption is that on modern processors business applications always
have too many variables to avoid register spills, so there is always overhead, and
therefore the existing register pressure metric performs optimally.

32

4.6. IMPLEMENTED HEURISTIC VARIANTS

The register pressure metric is already implemented as part of the existing register
pressure-aware instruction scheduler.

4.5.4. Dependencies
Maximum path latency and register pressure as metrics still can leave degrees of
freedom in the schedule, where both metrics have a tie on two instructions. We
look into an auxiliary metric than can be used to schedule smarter than just by the
instruction index.
Every node of the program DAG represents an instruction. Also, the incoming and
outgoing edges in the DAG abstract incoming and outgoing dependencies of the
instruction. While scheduling an instruction, the incoming dependencies are not of
interest, because all these instruction must have been scheduled already.
The outgoing dependencies, the instruction that is dependent on the complete execu-
tion of the instruction can be used in the scheduling process. A higher number of
dependent instruction means that after the execution of the instruction potentially
more instruction can be scheduled. If more instructions can be scheduled simultane-
ously, than a higher amount of potential ILP is available.
Because of this, using the number of dependent instructions can be a useful metric
for instruction scheduling.

Implementation in libFIRM

The number of dependencies of instruction is equal to the number of incoming
edges of a FIRM node. This number can directly be queried with the function
get_irn_n_outs.

4.6. Implemented heuristic variants
We use a list of metrics to calculate the priority of a FIRM node. If two nodes have
the same metric value for the first metric in the list, the second metric in the list is
chosen to solve the tie and so forth.
To investigate the influence of ILP and register pressure we implement two variants,
one who has to minimize register pressure as a key objective; the other one focuses
on the potential ILP.

4.6.1. Variant A
. The first variant A uses lowest register pressure as its first metric and tries thereby
to minimize the number of spills. On the remaining degrees of freedom, we use the
highest maximum path latency to achieve a higher ILP.

1. lowest register pressure

33

4.7. ALTERNATIVE APPROACHES

2. highest maximum path latency

3. highest number of dependent instructions

4. index

4.6.2. Variant B
The maximum path latency schedules the instructions to maximize ILP. Ties are
then schedules by register pressure, to minimize spills. Variant B reverses this order
with:

1. highest maximum path latency

2. lowest register pressure

3. highest number of dependent instructions

4. index

In both cases, we use the highest number of dependent instructions as the third
metric, since it only offers auxiliary function in the form of potentially increasing
the number of ready instruction in the next scheduling step.

4.7. Alternative approaches

4.7.1. Machine learning
An alternative list scheduling and a static list of selection metrics we investigated in
this thesis is the use of machine learning.
The idea was to train a machine learning algorithm, that outputs weights for every
metric that can be used to calculate a total priority for every instruction. The
algorithm would be able to recognize different code patterns and solve the scheduling
better than a static list of metrics like the one used in this thesis.
We didn’t choose this approach however, due to some concerns and potential prob-
lems:

Training data To create a useful prediction many training data is needed. This
training data does not exist for a compiler. Because optimal scheduling depends
theoretically even on particular hardware, this is an even bigger concern.

Benefit cost ratio Due to the previous concern, it seems not useful to pursue this
approach, because the expected performance boost would not justify the
development effort of such a solution. Global scheduling could potentially
increase the gains to a degree, where it would be viable to develop. Such a
solution was way beyond the scope of this thesis.

34

4.7. ALTERNATIVE APPROACHES

Nonetheless, the implemented static priority list of metrics of this thesis gives new
insights and tests some common beliefs about the performance of scheduling metrics
that were made under significantly different hardware environments.

35

5. Evaluation
In the following, we evaluate the different implemented variants of the instruction
scheduler.
The benchmark system, which was used in the evaluation of this thesis is an Intel
Core i7-6700 processor with 3.4 GHz, 4 physical cores with hyperthreading and 64
bytes instruction window.

5.1. Platform independence
The implementation is developed explicitly for the Intel Skylake architecture with its
specific instruction latency values. At the moment libFIRM is not designed to handle
specific processor architecture implementations, so the Skylake latencies are used in
place of the overall x86 latency values. To support different processor architecture
implementations, additional development effort is needed. To effectively support a
new architecture, code scheme that was used to implement the latency values in the
ia32 backend can easily be copied.

5.2. Performance
We use the SPEC2000INT benchmark suite[20] to compare the performance of the
different variants of the selection heuristic used in the instruction scheduler. The
existing register-pressure-aware scheduler is used as a base reference. Each test for
each variant is sampled 50 times. We only measure the raw runtime.
We say a benchmark was significantly slower or faster than another reference if
the difference of their means is at least two times the size of the biggest standard
deviations of both benchmark results.
In the SPEC2000INT spec suite, variant a only showed a significant increase in
performance in the test cases 175.vpr of about 0.5%. Besides that, variant also
showed a significant slowdown of 1.7% in 300.twolf, 0.47% in 197.parser, 0.56% in
186.crafty and 0.45% in 176.gcc. The remaining tests showed a few improvements,
all insignificant though. Overall variant a could be an improvement to the existing
scheduler, but more tests are needed to validate this claim.
Variant b had similar results to variant a but showed significant improvements of
1.07% in 252.perlbmk and 0.84% in 255.vortex. It performed worse than the base
with 1.66% in 300.twolf, 0.49% in 197.parser, 1.84% in 186.crafty and 0.73% in
176.gcc. It also was significantly slower in test 175.vpr than variant a.

37

5.2. PERFORMANCE

Though variant b has greater performance gains, it also has greater slowdowns in
the same test variant a showed significant slowdowns. So overall variant a seems to
be preferable to variant b.
The deviations between the different variants can be explained by the different
basic block sizes, register pressure and ILP of the different test programs of the
SPEC2000INT test suite. So different test cases yield better results on different
variants.

38

5.2.
PER

FO
R

M
A

N
C

E

Test base trivial variant a variant b
runtime σ runtime ratio σ runtime ratio σ runtime ratio σ

164.gzip 59.51 0.06 59.90 0.66% 0.22 60.38 1.46% 0.41 59.92 0.69% 0.23
175.vpr 43.11 0.11 43.24 0.30% 0.10 42.90 -0.49% 0.09 43.14 0.07% 0.09
176.gcc 17.71 0.02 17.86 0.85% 0.02 17.79 0.45% 0.02 17.84 0.73% 0.02
181.mcf 20.73 0.11 20.60 -0.63% 0.11 20.72 -0.05% 0.11 20.74 0.05% 0.11
186.crafty 23.35 0.04 23.48 0.56% 0.03 23.48 0.56% 0.02 23.78 1.84% 0.02
197.parser 53.31 0.07 53.83 0.98% 0.06 53.56 0.47% 0.07 53.57 0.49% 0.09
253.perlbmk 43.73 0.02 40.75 -6.81% 0.03 43.62 -0.25% 0.03 43.26 -1.07% 0.03
254.gap 21.65 0.08 21.57 -0.37% 0.10 21.50 -0.69% 0.12 21.50 -0.69% 0.10
255.vortex 32.17 0.18 32.00 -0.53% 0.08 31.99 -0.56% 0.10 31.90 -0.84% 0.09
256.bzip2 42.89 0.12 43.50 1.42% 0.09 42.83 -0.14% 0.09 43.07 0.42% 0.12
300.twolf 59.03 0.23 59.19 0.27% 0.19 60.04 1.71% 0.21 60.01 1.66% 0.24

Table 5.1.: Table shows the base register pressure-aware scheduler, the trivial and the implemented instruction schedulers
in variant a and variant b. The ratio describe the runtime change against the base scheduler. σ is the standard
deviation of the corresponding mean with a sample size of 50. The standard deviation and runtime are measured in
seconds.

39

5.2.
PER

FO
R

M
A

N
C

E

Test base trivial maximum path latency
runtime σ runtime ratio σ runtime ratio σ

164.gzip 59.51 0.06 59.90 0.66% 0.22 59.95 0.74% 0.33
175.vpr 43.11 0.11 43.24 0.30% 0.10 42.98 -0.30% 0.08
176.gcc 17.71 0.02 17.86 0.85% 0.02 17.97 1.47% 0.03
181.mcf 20.73 0.11 20.60 -0.63% 0.11 20.85 0.58% 0.11
186.crafty 23.35 0.04 23.48 0.56% 0.03 23.59 1.03% 0.03
197.parser 53.31 0.07 53.83 0.98% 0.06 53.67 0.68% 0.08
253.perlbmk 43.73 0.02 40.75 -6.81% 0.03 43.86 0.30% 0.08
254.gap 21.65 0.08 21.57 -0.37% 0.10 22.20 2.54% 0.13
255.vortex 32.17 0.18 32.00 -0.53% 0.08 31.81 -1.12% 0.07
256.bzip2 42.89 0.12 43.50 1.42% 0.09 43.43 1.26% 0.11
300.twolf 59.03 0.23 59.19 0.27% 0.19 59.88 1.44% 0.20

Table 5.2.: Table shows the base register pressure-aware scheduler, the trivial and variant an instruction scheduler that only
selects by highest maximum path latency. The ratio describes the runtime change against the base instruction
scheduler. σ is the standard deviation of the corresponding mean with a sample size of 50. The standard deviation
and runtime are measured in seconds.

40

5.3. OPTIMIZATION POTENTIAL OF BASIC BLOCKS

5.3. Optimization potential of basic blocks
The benchmark processor is a modern out-of-order superscalar processor with a
64-byte instruction window. This means that 64 bytes of instruction are fetched
with each cycle.
Due to the only slight changes in runtime in both variants a and b compared to the
base reference, we suspected, that the effect of the instruction scheduler is only very
limited on this processor. To further investigate this, a trivial instruction scheduler
was also implemented and benchmarked, that selects instructions just by their unique
index.
As the table shows, this trivial instruction scheduler performs in between the results
of the base reference and the two variants.
Interestingly, the trivial scheduler performs slightly worse than variant a and b, but
performs better in the test cases, where variant a and b performed better than the
base reference.
Seeing the improvement of any of the different implementations, we can see, that
basic block scheduling has little to no optimization potential on the target benchmark
system.
We do not expect, that a more sophisticated way of calculation the priority of instruc-
tion, either with a machine learning approach or through constraint programming or
another special case handling, introduces an improvement, that is exceedingly higher
and justifies the implementation effort.

5.4. Effects of basic block size
We expect that the seen results depend and are caused by the size of basic blocks in
the current state of the compiler.
The target system is an out-of-order processor, so on the instructions the processor
fetches each cycle it automatically optimizes ILP by assigning ready instruction to
available execution units.
In the previous chapter 4, we inspected the possibilities, to increase the scope of
instruction scheduling. If the average size of basic blocks is below the instruction
window size of the processor, optimizing for higher ILP is not worthwhile or even
useless, because the hardware scheduler already optimizes on these instructions. This
explains why the trivial instruction scheduler performed similarly to variant b, which
used maximum path latency as a first selection heuristic. While trivial instruction
scheduling performs no optimization, the optimization of maximum path latency is
rendered nearly useless due to the out-of-order execution of the hardware.
If we inspect the minimization objective 2.1 of instruction scheduling, we can see
that for an out-of-order machine with a large instruction window, the ILP factors
ILPΩG(i) of the latencies of all instruction are defined by the out-of-order hardware
scheduler due to the automatic ILP optimization, rather than the software scheduler.
So optimizing the instruction scheduling for higher ILP is rendered useless for most

41

5.5. PERFORMANCE OF MAXIMUM PATH LATENCY

basic blocks.
The only way for the software scheduler to optimize the runtime, in this case, is to
reduce the register spill term of the sum. That explains, why the base reference and
variant a perform the best.
The small improvements of maximum path latency scheduler in the tests 175.vpr
and 255.vortex against the trivial scheduler could be explained by some basic blocks,
which do indeed profit from higher ILP by software scheduling due to their size.
Using maximum path latency on the remaining degrees of freedom of register pressure
can then yield a small additional improvement. On the other hand in the test cases
where the trivial performed significantly better than the maximum path latency
scheduler we expect that the reordering by the maximum path latency increases the
number of register spills more which leads to additional overhead.

5.5. Performance of maximum path latency
The maximum path latency scheduler performed for most test cases slightly worse
than the variant b 5.2. Using maximum path latency as a second metric (Variant a)
performed better than using maximum path latency as the first selection heuristic.
Variant b performs in a few cases better than the base reference.
In table 5.2 a new scheduler that only schedules by maximum path latency was
evaluated. If the assumption, that modern out-of-order processor already optimize
for higher ILP on the basic block level, than this scheduler should perform similar to
the trivial scheduler. Like expected this holds true for the tests 164.gzip, 176.gcc,
186.crafty, 197.parser, 255.vortex and 256.bzip2.
However, the table shows also significant deviations between the trivial and maximum
path latency scheduler in the test cases 175.vpr, 181.mcf and 253.perlbmk, 254.gap.
Only in test 181.mcf, 253.perlbmk, and 254.gap was the maximum path scheduler
significantly slower than the trivial scheduler. It is to be noticed that in these cases
the trivial scheduler had a performance increase against the base reference while the
maximum path latency scheduler had a performance decrease against the base. In
the tests 175.vpr, 197.parser, 255.vortex and 256.bzip2 the maximum path latency
was faster than the trivial scheduler. Again, this could be explained by a larger basic
block size on average in these tests.

5.6. Exceptions
The test 252.perlbmk is an exception in all benchmarks. The trivial scheduler has
a significant increase of up to 6.81% in performance against the base. The other
variants and the maximum path latency scheduler are also faster than the base but
only around 1%. For further explanations, we looked at the benchmark results of
our predecessor thesis by Christoph Mallon. His evaluation of the register pressure
aware scheduler, which is our base reference, showed a decreased performance for the

42

5.6. EXCEPTIONS

252.perlbmk test. Also, the number of permutations and copy operations showed a
significant increase. Only the amount of spills was reduced by around 1%.
It seems like for this test case register pressure has a small influence, so the register
pressure-aware scheduler has even a negative impact on the performance. Scheduling
with maximum path latency also seems to have little effect, probably due to the
effects of a small average basic block size inspected in the previous section.
We can only explain the huge performance boost of the trivial scheduler as a lucky
coincidence. It seems like this test is the worst case which does not profit from
register pressure reduction nor maximum path latency. The trivial scheduler creates
the least overhead and yields, therefore, the best performance.

43

6. Conclusion and outlook

6.1. Conclusion
With this thesis, we investigated how instruction scheduling can be optimized
by improving the instruction scheduler of libFIRM. We focused our effort on the
selection strategy of instructions of the instruction scheduler by using the existing
list scheduling framework of libFIRM and basic block scoped scheduling. That way
we evaluated the remaining optimization potential of this given framework.
We implemented the maximum path instruction latency as a new selection metric
and evaluated its performance in comparison to other selection metrics.
We showed that basic block scheduling has low optimization potential on modern
out-of-order processors.
That said, we also showed theoretically and through performance evaluation that
maximum path latency is a useful instruction selection metric beside register pressure.
The effectiveness of maximum path latency instruction schedulers scales with the
size of the basic block due to a higher degree of potential ILP.

6.2. Further work
We do not expect that list scheduling on basic block level can be optimized and yield
significantly higher performance than this thesis showed.
In the chapter "Design and implementation"(4) we inspected which possibilities are
available to optimize instruction scheduling. This resulting decision tree creates a
foundation for further work, which evaluates the remaining optimization possibilities.
The most important of these possibilities are:

Order of instruction scheduling and the number of passes Instruction schedul-
ing is only performed once before the register allocation. A topic of research
([21]) is a unified approach of register allocation and instruction scheduling. A
unified register allocation and instruction scheduling step promises a better
solution to the tradeoff between highest ILP and minimal register pressure.
Alternative it could be investigated, if multiple passes of the instruction sched-
uler or an instruction scheduler pass after register allocation, as Gibbons et al.
[8] suggests, benefit the overall performance.

Global scheduling A huge impact on the effectiveness of list scheduling is the size
of the set of scheduled instructions. A larger instruction set can have a
higher amount of potential parallel (independent) instructions. Implementing

45

6.3. OUTLOOK

a global scheduling schema for the current list scheduler could be another great
performance gain.
The priority list of heuristics may need to be adjusted because, for larger
scheduled blocks, ILP-based heuristics are expected to perform better than
register pressure based heuristics.
Global scheduling also induces additional overhead in the form of code spilling,
because beyond basic blocks are not guaranteed to be executed, and instructions
may depend on values, that vary depending on the execution path. This
overhead has to be taken into account and decreases the potential benefit
of global scheduling, while also increasing the implementation complexity
immensely.
Global scheduling also introduces new metrics for the selection of instructions,
because instructions do not have the property of assured execution like in basic
blocks, and have therefore a probability of execution due to the control flow.

Constraint programming Constraint programming could be further investigated
and integrated. There may be special case scheduling decisions that corre-
spond to specific code patterns and contradict a single priority list of selection
heuristics. Through constraint programming, the DAG could be transformed
to solve these special cases, and then on the remaining degrees of freedom, list
scheduling could be used.

6.3. Outlook
Instruction scheduling is a critical optimization step in a modern compiler. Because
the latency of instructions of architecture implementations is important, scheduling
has to adapt to new and better hardware.
More execution units make scheduling for higher ILP more worthwhile, while the
main border of performance gains the natural dependencies in the code are, which
can only be solved by writing better parallelizable code.
With higher instruction windows of out-of-order processors, scheduling for register
pressure minimization seems more worthwhile, as the hardware already handles
scheduling for high ILP.
Additionally, this decreases the effectiveness of basic block scheduling enormously,
requiring modern instruction schedulers to use global scheduling scope and additional
optimizations like loop unrolling.
Another big issue is the memory performance wall of microprocessors, which make
reducing register usage as important as ILP. New architectures with bigger, less
restrictive register sets induce an even higher performance boost and enable new
scheduling possibilities than more execution units.

46

Bibliography
[1] J. E. Smith and G. S. Sohi, “The microarchitecture of superscalar processors,”

Proceedings of the IEEE, vol. 83, no. 12, pp. 1609–1624, 1995.

[2] T. J. W. I. R. C. R. Division, E. Lawler, J. Lenstra, C. Martel, B. Simons, and
L. Stockmeyer, Pipeline scheduling: A survey. 1987.

[3] V. S. Menon, N. Glew, B. R. Murphy, A. McCreight, T. Shpeisman, A.-R.
Adl-Tabatabai, and L. Petersen, “A verifiable ssa program representation for
aggressive compiler optimization,” in ACM SIGPLAN Notices, vol. 41, pp. 397–
408, ACM, 2006.

[4] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson, “Practical improve-
ments to the construction and destruction of static single assignment form,”
Softw. Pract. Exper., vol. 28, pp. 859–881, July 1998.

[5] S. S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[6] M. Braun, S. Buchwald, and A. Zwinkau, Firm-a graph-based intermediate
representation. KIT, Fakultät für Informatik, 2011.

[7] “The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide
for assembly programmers and compiler makers.” https://www.agner.org/
optimize/microarchitecture.pdf.

[8] P. B. Gibbons and S. S. Muchnick, “Efficient instruction scheduling for a
pipelined architecture,” in Acm sigplan notices, vol. 21, pp. 11–16, ACM, 1986.

[9] M. C. Rosier and T. M. Conte, “Treegion instruction scheduling in gcc,” in
GCC Developers Summit, 2006.

[10] “LLVM Documentation.” http://llvm.org/doxygen/.

[11] K. Wilken, J. Liu, and M. Heffernan, “Optimal instruction scheduling using
integer programming,” in Acm sigplan notices, vol. 35, pp. 121–133, ACM, 2000.

[12] C. H. Mallon, “Registerdruckgewahre Befehlsanordnung.” http://www.info.
uni-karlsruhe.de/papers/da_mallon.pdf, Oct. 2008.

[13] G. Lindenmaier, “libFIRM – a library for compiler optimization research imple-
menting FIRM,” Tech. Rep. 2002-5, Sept. 2002.

47

https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
http://llvm.org/doxygen/
http://www.info.uni-karlsruhe.de/papers/da_mallon.pdf
http://www.info.uni-karlsruhe.de/papers/da_mallon.pdf

Bibliography

[14] S. Arya, “Optimal instruction scheduling for a class of vector processors: an
integer programming approach,” 1983.

[15] J. R. Goodman and W.-C. Hsu, “Code scheduling and register allocation in
large basic blocks,” in ACM International Conference on Supercomputing 25th
Anniversary Volume, pp. 88–98, ACM, 2014.

[16] W. A. Havaki and Jr., “Treegion scheduling for vliw processors,” 1997.

[17] J. M. Codina, J. Llosa, and A. González, “A comparative study of modulo
scheduling techniques,” in Proceedings of the 16th international conference on
Supercomputing, pp. 97–106, ACM, 2002.

[18] J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,”
IEEE transactions on computers, no. 7, pp. 478–490, 1981.

[19] Y.-H. Shiau and C.-P. Chung, “Adoptability and effectiveness of microcode
compaction algorithms in superscalar processing,” Parallel computing, vol. 18,
no. 5, pp. 497–510, 1992.

[20] “SPEC CPU2000 Benchmark Suite.” https://www.spec.org/cpu2000/.

[21] S. S. Pinter, “Register allocation with instruction scheduling,” in ACM SIGPLAN
Notices, vol. 28, pp. 248–257, ACM, 1993.

48

https://www.spec.org/cpu2000/

Erklärung

Hiermit erkläre ich, Steffen Kromm, dass ich die vorliegende Masterarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

49

A. Code samples

A.1. LibFIRM maximum path latency implementation

stat ic unsigned get_max_latency_succ (ir_node∗ i r n)
{

i f (is_End (i r n)) return 0 ;
unsigned max = 0 ;
foreach_irn_out (i rn , index , succ) {

ir_node ∗block = get_nodes_block (i r n) ;
i f (get_nodes_block (succ) != block

| | is_End (succ) | | is_Bad (succ) | | succ == i rn)
continue ;

i f (is_Pin (succ) | | is_Sync (succ) | | i s_Proj (succ)) {
max = MAX(max , get_max_latency_succ (succ)) ;

} else {
flag_and_cost ∗ fc_succ = get_irn_flag_and_cost (succ) ;
c a l cu l a t e_to ta l_ la t ency (succ) ;
max = MAX(max , fc_succ−>maximum_path_latency) ;

}
}
return max ;

}

stat ic void ca l cu l a t e_to ta l_ la t ency (ir_node∗ i r n)
{

flag_and_cost ∗ f c = get_irn_flag_and_cost (i r n) ;
i f (f c && fc−>maximum_path_latency != UINT_MAX) return ;

i f (be_is_Keep (i r n) | | is_End (i r n) | | is_Bad (i r n))
{

i f (f c) fc−>maximum_path_latency = 0 ;
return ;

}
i f (is_Pin (i r n) | | is_Sync (i r n) | | i s_Proj (i r n)) {

foreach_irn_out (i rn , index , succ) {
i f (succ == i rn) continue ;
c a l cu l a t e_to ta l_ la t ency (succ) ;

51

A.1. LIBFIRM MAXIMUM PATH LATENCY IMPLEMENTATION

}
return ;

}

i f (! fc−>no_root) {
fc−>maximum_path_latency = get_ins t ruc t i on_la tency (i r n) ;

} else {
fc−>maximum_path_latency = 0 ;
unsigned max_successor_latency =

get_max_latency_succ (i r n) ;
fc−>maximum_path_latency =

get_ins t ruc t i on_la tency (i r n) + max_successor_latency ;
}

}

52

	Introduction
	Foundations
	Compiler design
	SSA form
	FIRM
	Explicit dependency graphs

	LibFIRM compiler design
	Instruction scheduling
	Scheduling scope
	Scheduling approaches
	List scheduling
	Constraint programming
	LibFIRM compiler instruction scheduling

	Related work
	LibFIRM
	Register-pressure-aware instruction scheduling

	Instruction scheduling
	Scheduling heuristics
	Global scheduling

	Related research fields
	Modulo scheduling
	Microcode compaction

	Design and implementation
	Requirements and limitations
	Simplifications
	Coarse design
	Register usage and ILP tradeoff
	Base Algorithm

	List scheduling
	Priority heuristics
	Instruction Latency
	Maximum path latency
	Register pressure
	Dependencies

	Implemented heuristic variants
	Variant A
	Variant B

	Alternative approaches
	Machine learning

	Evaluation
	Platform independence
	Performance
	Optimization potential of basic blocks
	Effects of basic block size
	Performance of maximum path latency
	Exceptions

	Conclusion and outlook
	Conclusion
	Further work
	Outlook

	Code samples
	LibFIRM maximum path latency implementation

