
Institute for Program Structures
and Data Organization (IPD)

Professor Dr.-Ing. Snelting

Qualitative Modelling of
Biological Signalling Pathways
using SAT-solving in Prolog

Bachelor Thesis by

Jan-Martin Knorr

at the Department of Informatics

Reviewer: Prof. Dr.-Ing. Gregor Snelting

Advisors: Dr. Olaf Klinke (DKFZ Heidelberg)
Dipl.-Math. Dipl.-Inform. Joachim Breitner

Duration: July 1, 2013 – October 31, 2013

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

2

Abstract

This work introduces and investigates a boolean modelling approach for signalling path-
ways of biological cells. Processes occuring inside one cell are abstracted in the model,
where boolean formulae capture the semantics of the presented models. Considering the
formulae as a satisfiability instance, its satisfying variable assignments correspond to
situations where all modelled processes of the cell are in equilibrium. A Prolog imple-
mentation is presented that translates a model into its describing boolean formulae and
solves the resulting satisfiability problem.

The major profit of the modelling approach presented here is the verification of circum-
stances and dependencies presumed in a cell and stated in a model. This verification
is possible for cells in equilibrium. There are also limited opportunities for simulating
dynamic behaviour of cells, although other approaches are preferable for this task.

3

I declare that I have developed and written the enclosed thesis completely by myself,
and have not used sources or means without declaration in the text, and have followed
the rules of the KIT for upholding good scientific practise.

Karlsruhe, 31st October 2013

. .
(Jan-Martin Knorr)

4

Contents

1 Introduction 7

2 Qualitative Pathway Model 9

2.1 Motivation and Modelling goals . 9

2.2 Model Syntax . 11

2.3 Model Semantics . 13

2.4 Network Motifs . 15

2.5 Expressing Model Semantics as a SAT instance 16

3 Model-to-SAT transformation in Prolog 19

3.1 Encoding pathway models . 19

3.2 Encoding SAT instances . 20

3.3 Creating SAT instances . 22

4 Max-SAT solving in Prolog 27

4.1 Extending a regular SAT solver to a Max-SAT solver 27

4.2 Simplifying SAT assignments . 29

5 Finding Fixed States 33

6 Dynamic Behaviour 37

6.1 Prediction of Dynamic Behaviour . 37

6.2 Oscillations . 39

7 Comparison 43

5

8 Conclusion and Outlook 47

Bibliography 49

6

Chapter 1

Introduction

Signal transductions inside a biological cell are similar to computerised information pro-
cessing [19]. Regarded as a computational unit, a cell accepts certain inputs and reacts
with certain outputs. The processing inside the cell that creates the output for an input
is described by signalling pathways.

The inputs are exterior stimuli detected by receptors on the cell wall [18]: “Upon intercel-
lular communication or cellular stress response, the cell senses extracellular signals. They
are transformed into intracellular signals and sequences of reactions. Different external
changes or events may stimulate signaling. Typical stimuli are hormones, pheromones,
heat, cold, light, osmotic pressure, appearance, or concentration change of substances
like glucose or K+, Ca+, or cAMP.”[12, p. 92]

The signals of these exterior stimuli trigger signalling pathways inside the cell. “A
biological pathway is a series of actions among molecules in a cell that leads to a certain
product or a change in a cell.”[18] Thus, pathways control the cellular responses and
determine the outputs for the inputs.

As the output “a pathway can trigger the assembly of new molecules, such as a fat or
protein. Pathways can also turn genes on and off, or spur a cell to move.”[18]

The different components of the cell or events occuring in the cell are referred to as
species. This expression needs to be distinguished from biological or chemical species.
The meaning of species in this work is more general and allows more abstraction than
the standard meaning of chemical species. Modelling the behaviour of and interactions
between these species helps to understand how information is transferred in signalling
pathways.

Two basic approaches for modelling pathways can be distinguished [21]. In the boolean
approach, which is pursued in this work, the species are assumed as either activated
(appearing in a high concentration) or not activated (appearing in a low concentration)
in the cell. Typically, the change of a species’ concentration under a stimulus describes

7

a sigmoid curve1 [23, p. 3]. After determining a threshold value, this sigmoid curve
can be approximated by a stepfunction, so the simplification of a binary decision is
justifiable [ib.]. Furthermore this binary distinction of concentrations appears naturally
in experiments where the concentrations of some species vary and the measured result is
compared against a reference measurement. Then all species existing in a significantly
lower concentration than in the reference are assumed to be not activated and all others
to be activated.

A more detailed approach is provided by continuous dynamic models of the kinetic laws
between species. Typically differential equations are used. Partial differential equations
model the species’ location inside the cell over time. For modelling temporal changes
only, ordinary differential equations suffice [12, p. 42].

General-purpose computing environments like MATLAB2 or Mathematica3 can solve the
differential equations of continuous dynamic models numerically [12, p. 527]. Boolean
models can be investigated using model checkers such as BIOCHAM [3], PRISM [13]
and Antelope [2] which verify that a model meets certain properties.

Although the differential equations approach is more accurate, boolean models are pre-
fered in some cases. Besides the fact that dynamical systems require more computational
effort [21, 24], it is not easy to experimentally determine the kinetic parameters needed
for differential equations [24]. Moreover, this additional effort is unnecessary when only
the cell’s states are considered [4]. A more detailed overview and further possibilities for
modelling signalling pathways is given in [11].

This work shows how boolean pathway models that claim dependencies between certain
species can be verified by measuring the species of a cell which is in equilibrium. The
models are translated into satisfiability (SAT) instances that are solved by a SAT solver.
Then the measured species can be compared against the solutions of the SAT instances.
This idea already appeared in [24].

As the examined model may be erroneous, a measurement may not fit to the satisfying
assignments of the SAT instance. In this case a sub-model can be found that claims less
dependencies than the initial model, but is compatible with the measurement. Max-SAT
solvers can be used to find a sub-model with as few omitted dependencies as possible.

Chapter 2 motivates and formalises the pathway models and points out how these mo-
dels can be translated into SAT instances. Next, Chapter 3 describes how a pathway
model can be encoded and transformed into a corresponding SAT instance using Prolog.
Chapter 4 describes Max-SAT solving for these instances in Prolog. Chapter 5 puts the
results from the preceeding sections to use by presenting a programme that computes
all possible equilibrium situations of a cell according to its model. Chapter 6 exhibits
some limitations of the boolean approach when modelling dynamic behaviour inside the
cell.

1A sigmoid curve is an S-shaped curve. The graph of the hyperbolic tangent describes a sigmoid curve.
2http://www.mathworks.de/products/matlab/
3http://www.wolfram.com/mathematica/

8

http://www.mathworks.de/products/matlab/
http://www.wolfram.com/mathematica/

Chapter 2

Qualitative Pathway Model

Example 1 The following simplified p53-pathway will serve as a running example.

p53
mdm2

cell cycle arrest

ARF

2.1 Motivation and Modelling goals

In this work’s modelling approach of signalling pathways, the components of a biolo-
gical cell and the interactions between these components are all considered as actions,
processes constantly occurring in the cell. This reflects the fact that in biology everything
changes continuously [12, p. 10]. An action describes either a single entity, called species,
or a composition of a species and another action that indicates the relation between the
two. Species denote atomic model elements whereas composite actions denote their
dependencies.

A pathway model, which is completely defined by its actions, can be illustrated as a
directed graph as shown in the example above. Each vertex depicts a species. In the
simplified p53-pathway the species are p53, mdm2, ARF and cell cycle arrest. The edges
connect the vertices analogous to the composite actions. As the protein p53 triggers the
cell cycle arrest, a corresponding arrow points from p53 to cell cycle arrest. Since
composite actions may affect other composite actions, edges pointing at other edges are
allowed here.

It depends on the research interests which components and interactions are abstracted
as actions in the model [19]. “An abstraction – a mapping from a real-world domain
to a mathematical domain – highlights some essential properties while ignoring other,

9

complicating ones.”[19] Actions can cover different levels of abstraction. An action may
model that the concentration of a certain molecule is high or low inside the cell or that
one enzyme has a catalyzing effect on a certain reaction. But actions can also represent
abstract events like ’cell division’ or ’cell cycle arrest’ involving many different types
of molecules. Nevertheless these events may themselves be investigated further using
another more detailed model.

In this qualitative model the continuous biological processes are simplified by approxi-
mating boolean model actions. Every action is either activated or not activated and can
also be regarded as turned on resp. off. For a species representing the concentration of
some molecule this means for instance whether the concentration is relatively high or
low. A composite action which is activated implies that the action takes effect.

The following actions are supported:

• s: The process denoted by the species s is activated or not activated.

• on ⊸ T : Some process (not further modelled) turns on T .

• off ⊸ T : Some process (not further modelled) turns off T .

• s→ T : s enhances T .

• sx T : s inhibits T .

• s⊸ T : s controls T enhancing.

• sp T : s controls T inhibiting.

• sÐ? T : s unspecifically affects T . Either s→ T or sx T holds.

Here s is always a species and T may be any action.

First of all, the model can simulate enhancing (→) and inhibiting (x) actions. It means
that if the species on the left-hand side of the action is on, then the action on the right-
hand side is turned on resp. off. This only holds once the enhancing or inhibiting action
itself is on, as composite actions can be inactive as well.

Whenever it is unknown whether an enhancing or an inhibiting action applies1, this
uncertainty can be expressed using a dummy action s Ð? T which means that either
s→ T or sx T holds.

Additionally the controlling actions ⊸ and p are supported. The action s⊸ T means
that once this enhancing control action is on, s and T are either both on or both off. With
this control action, complexes consisting of various components can be simulated. In this
case a complex is controlled by each of its components. In contrast the action s p T
expresses that s or T is on while the other is off, provided that the inhibiting control
action is on. The control actions are conducive to the modelling of not only signalling

1The protein interactions in the STRING database [22] are not explicitly enhancing or inhibiting.

10

pathways but also metabolism. The chemical transformations referred to as metabolism
gain energy or construct components for the cell [12, p. 83 f.]. While signalling pathways
means transfer of information, metabolism means transfer of mass [12, p. 92].

Turning actions on or off is again expressed by actions. With on ⊸ T and off ⊸ T
the action T can be turned on resp. off. Consider that on and off can be regarded as
species which are always on resp. off and thus on ⊸ and off ⊸ actions can be regarded
as special ⊸ actions.

Mapping the species and composite actions to on resp. off provides a state of the whole
model, an on/off-configuration that indicates which actions are activated and which are
not.

As a first step this work shows how biological models can be verified by comparing
measured species’ concentrations in fixed states against calculated possible outcomes.
In a fixed state the cell reached an equilibrium in the sense that every action stays
activated resp. not activated forever2. This is the case when the on/off-configuration is
consistent with the model’s composite actions.

After formalising the model syntax in 2.2 and its semantics in 2.3, Section 2.4 outlines
some differences of this semantics as compared to other commonly used semantics. Sec-
tion 2.5 describes how model actions can be expressed in SAT clauses with a variable
for every action. There is an analogy between on/off-configurations of the actions and
truth-assignments to the corresponding variables in the SAT instance. Then a fixed
state is characterised as an assignment which satisfies all clauses.

In order to find all fixed states of a model, not only one satisfying truth assignment
is necessary, but all of them. Since this is not required in the standard satisfiability
problem, not every SAT solver is able to find all satisfying assignments. Prolog is used
for the implementation here because its built-in backtracking algorithm is suitable for
this requirement. Chapter 3 describes this implementation.

2.2 Model Syntax

A pathway model consists of actions. An action is either a species or a composite action,
i.e. a relation between a species, on or off and another action.

The formal language of actions is defined by the following production rules:

∀s ∈ S ∶ T Ð→ s ∣ on ⊸ T ∣ off ⊸ T ∣ s→ T ∣ sx T ∣
s⊸ T ∣ sp T ∣ sÐ? T

where S is a set of species indentifiers with on /∈ S and off /∈ S. The action s of a single
species only indicates that the species s is part of the model. Recall that to describe
that a species s is on or off, the rules on ⊸ s or off ⊸ s are used.

2This is a simplification. As every natural object constantly changes, there are only quasi-steady
states [12, p. 10].

11

a

b

x y

Figure 2.1: invalid model with the
duplicate action ap b

a

b
x y

a1 a2

Figure 2.2: possible valid modelling of
the duplicate action

A pathway model M is a set of actions, where any action appearing in one of these
actions are also part of the model. This means that

on ⊸ T ∈M
off ⊸ T ∈M } ⇒ T ∈M and

s→ T ∈M
sx T ∈M
s⊸ T ∈M
sp T ∈M
sÐ? T ∈M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒ s, T ∈M.

Since the dummy action implies an enhancing or an inhibiting action, both possibilities
need to be covered by the model as well, so in addition

sÐ? T ∈M ⇒ s→ T, sx T ∈M.

The model for the p53-pathway is M = {ARF x (mdm2 ⊸ (p53 x p53)), mdm2 ⊸
(p53x p53), p53x p53, p53→ cell cycle arrest, p53, mdm2, ARF, cell cycle arrest}.

If a composite action affects a species and has the form off ⊸ s′ or s → s′ for example,
it is called simple. In contrast, a nested action is a composite action affecting another
composite action, like s x (s′ ⊸ s′′) or on ⊸ (s x s′). In the p53-pathway model the
simple actions are p53x p53 and p53→ cell cycle arrest whereas the nested actions are
ARF x (mdm2⊸ (p53x p53)) and mdm2⊸ (p53x p53).

The requirements for correct models entail that only the outermost actions, which are
not affected by another action, need to be given, in order to fully describe a model. These
actions are called free. Also a s Ð? T action is free when unaffected by other actions,
while the corresponding s → T and s x T actions are not free. The model contains all
non-free actions implicitly. Also the Prolog programme presented in this work uses just
the free actions as a reduced description of a model. The free actions of the simplified
p53-pathway are ARF x (mdm2⊸ (p53x p53)) and p53 → cell cycle arrest.

As a model is a set of actions, every action is unique. So, as an example, x x (a p b)
and y x (a p b) both affect the same action a p b. Although, a could control b in
two different ways, where one is inhibited by x and the other one by y. In order to
express that x and y inhibit different actions a p b (depicted in Figure 2.1) in a valid
model, additional actions are required. Figure 2.2 shows how this can be achieved with
auxiliary species and composite actions.

12

2.3 Model Semantics

The result of an experimental measurement of species’ concentrations at equilibrium can
be expressed as an on/off-configuration of the model. This allocation is mathematically
described by a mapping from the set of actions to the boolean values true and false.
Such a mapping defines a state of the model. If the model describes the considered
biological cells at equilibrium adequately, the state has to be consistent with all actions.
That means that the requirements resulting from the action’s meanings motivated in
Section 2.1 are met. A state that fulfills these requirements is called a fixed state.
Otherwise, if there are unsatisfied actions, this suggests the measured cell was not in
equilibrium or that the model or the measured configuration itself is erroneous. The
latter can occur when mapping measurements of the real cell to an on/off-configuration
of the model.

In detail, a fixed state f must satisfy the boolean formulae below.

f(on ⊸ T) ⇒ [f(T)]
f(off ⊸ T) ⇒ [¬f(T)]
f(s→ T) ⇒ [f(s) ⇒ f(T)]
f(sx T) ⇒ [f(s) ⇒ ¬f(T)]
f(s⊸ T) ⇒ [f(s) ⇔ f(T)]
f(sp T) ⇒ [f(s) ⇔ ¬f(T)]
f(sÐ? T) ⇒ [f(s→ T) XOR f(sx T)]

(∗)

All these rules for composite actions are implications with the configuration for the
action on the left-hand side and a boolean formula capturing the meaning of the action
on the right-hand side. Since only composite actions have effects on other actions, no
rule exists for species.

The set F of all fixed states is defined as

F ∶= {f ∶ T → {true,false} ∣ f is consistent with (∗)},

where T ∶= {T ∣ T action} is the set of all actions.

For a model M ⊂ T , any fixed state f ∈ F restricted to M is a fixed state of the model.

FM ∶= {f ∣M ∶M → {true,false} ∣ f ∈ F}.

Conversely, every fixed state of M is also part of some fixed state in F which is shown
in Lemma 1. The concistency with (∗) of restricted state functions f ∣M is well-defined
since every rule for an action in (∗) refers to its sub-actions and these are contained in
the model M by definition.

The set FM can be determined by generating a SAT instance that describes M which
will be explained in Section 2.5. Every possible solution of this SAT instance describes
one fixed state in FM .

13

Lemma 1 For any pathway model M , the set FM contains all fixed states of the model.

Proof. Let f ∶ M → {true,false} be a fixed state of M . Define the state f ′ ∶ T →
{true,false} as the extension that maps any action T ∈ T /M to false. Thereby
f ′ ∈ F because mapping an action to false cannot produce inconsistencies to (∗). Since
f ′ ∈ F and f ′∣M = f , one has f ∈ FM . ◻

Lemma 2 Every model has a fixed state.

Proof. The mapping f(T) = false for all actions T ∈M is a fixed state for any model
M , since every implication in (∗) is trivially satisfied if its left-handed side is false. ◻
When creating a composite action which is not affected by any other action, the modeller
probably wants to express that this composite action always applies. So this action
should always be activated intuitively. From now on, all (outermost) free actions shall
be on in a valid state. This way the trivial fixed state where all actions are off is avoided.

The next lemma shows that the number of dummy Ð? actions should be low when
verfying models. The rules for a Ð? action in (∗) can always be satisfied and thus these
actions are not excluding any states to be fixed states.

Lemma 3 Let M be a model where all free composite actions are unspecified Ð? ac-
tions.3 Let M ′ ⊂M be the model without these free Ð? actions and their corresponding
→ and x actions. All fixed states of M ′ can be extended to fixed states of M , even if all
free Ð? actions are activated in M .

Proof. Let f ′ ∶M ′ → {true,false} be a fixed state of M ′. Then f ′ can be extended to a
state f of M while choosing f(sÐ? T) = true for any free composite action sÐ? T ∈M .
It remains to show that the → and x actions, which are implied by the free Ð? actions
in M , have an on/off-configuration that is consistent with the requirements in (∗).
Let sÐ? T be a free action in M that is thus not included in M ′. Since f(sÐ? T) = true,
f(s → T) XOR f(s x T) must hold, according to (∗). If f ′(T) = f(T) = true, setting
f(s → T) = true and f(s x T) = false fulfills the requirements for a fixed state.
Otherwise f ′(T) = f(T) = false holds; then a configuration with f(s→ T) = false and
f(sx T) = true meets the rules of (∗). ◻
Given any model with only Ð? composite actions (and the accordingly implied → and
x actions) this lemma implies that there is a fixed state for every on/off-configuration
of the species. Thus the models in the STRING database [22], already mentioned in
Section 2.1 and consisting of Ð? actions only, are not suitable for the verification with
the approach presented here. Nevertheless it can help to specify these models. If a free
action sÐ? T appears in a model and the species s is activated in some measurement of
the cell at equilibrium, then sÐ? T can be resolved to s→ T resp. sx T , depending on
whether T is activated resp. deactivated. Thus a measurement of species at equilibrium
can possibly eliminate some free Ð? actions.

3Recall that the → and the x action implied by a Ð? action are non-free actions.

14

x

Figure 2.3: nega-
tive autoregulation

x

Figure 2.4: posi-
tive autoregulation

x y z

Figure 2.5: posi-
tive cascade

x y z

Figure 2.6: nega-
tive cascade

x y

Figure 2.7: double-
negative-feedback loop

x y

Figure 2.8: double-
positive-feedback loop

x y

Figure 2.9: negative-
feedback loop

2.4 Network Motifs

Network motifs are patterns that occur in many pathways. The figures above show
seven motifs as they are commonly expressed in other pathway models, like in [20]. These
examples demonstrate that modelling in this approach differs from other approaches due
to different semantics. Hence the translation between different graphical representations
of models must be done carefully.

Autoregulation motifs as depicted in Figures 2.3 and 2.4 have effects on the dynamic
behaviour of a cell, but not on its equilibrium situations. An autoregulated protein
slows down or speeds up its own response time [20, 1]. These dynamics are difficult
to capture in boolean models. In the models presented here, a negative autoregulation
forces the species involved to be off in a fixed state, since [f(x) ⇒ ¬f(x)] is true only
for f(x) = false. On the other hand, a positive autoregulation has no influence on a
model at all, because [f(x) ⇒ f(x)] is a tautology and always true. The dynamics of a
negative autoregulation are discussed further in Section 6.2.

A positive cascade describes a sequential activation of species which is again mainly
important for dynamic considerations. The cascade model in Figure 2.5 can be simpli-
fied by the single composite action x → z omitting the species y. Negative cascades as
depicted in Figure 2.6 are intended to express an alternating activation and deactivation
of the species involved [20]. If x is activated, y shall be deactivated and z be activated
again in a fixed state. This semantic is actually captured by the p actions in the ap-
proach of this paper. Thus the negative cascade in Figure 2.6 is appropriately expressed
by the actions xp y and yp z.

The double-negative-feedback loop in Figure 2.7 uses this different semantics for x as
well and the adequate model would be given by the actions xp y and y p x. Double-
negative-feedback loops forces one of the involved species to be activated and the other
one to be deactivated. In contrast, the species in double-positive-feedback loops are
both either activated or deactivated. The common representation of this circumstance
is depicted in Figure 2.8 which is also in this work’s semantics an appropriate model.

The last example motif in Figure 2.9 shows a negative-feedback loop. A negative-
feedback loop leads to oscillations or occasionally pulses of the species concentrations

15

[20, 1]. It prevents the cell from reaching an equilibrium. To avoid fixed states, the
adequate model is given by the free actions x p y and y ⊸ x. Further explanations
about this motif can be found in Section 6.2.

2.5 Expressing Model Semantics as a SAT instance

The boolean satisfiability problem (SAT) asks for a satisfying variable assignment of a
boolean formula, usually given in conjunctive normal form.

In order to create a SAT instance for a given model M , a SAT variable is introduced for
every action in M . If T is an action, T̃ denotes the variable for T . The requirements
for composite actions in (∗) can be directly converted into boolean formulae of the
corresponding variables. These formulae brought into conjunctive normal form make up
the SAT instance. Let JT K denote the boolean formula capturing the semantic of the
composite action T ∈M . As motivated in Section 2.3 there are no formulae for species.

Jon ⊸ T K = (̃on ⊸ T ⇒ T̃)
= (¬ ̃on ⊸ T ∨ T̃)

Joff ⊸ T K = (̃off ⊸ T ⇒ ¬T̃)
= (¬ ̃off ⊸ T ∨ ¬T̃)

Js→ T K = (s̃→ T ⇒ (s̃⇒ T̃))
= (¬s̃→ T ∨ ¬s̃ ∨ T̃)

Jsx T K = (s̃x T ⇒ (s̃⇒ ¬T̃))
= (¬s̃x T ∨ ¬s̃ ∨ ¬T̃)

Js⊸ T K = (s̃⊸ T ⇒ (s̃⇔ T̃))
= (¬s̃⊸ T ∨ s̃ ∨ ¬T̃) ∧ (¬s̃⊸ T ∨ ¬s̃ ∨ T̃)

Jsp T K = (s̃p T ⇒ (s̃⇔¬T̃))
= (¬s̃⊸ T ∨ s̃ ∨ T̃) ∧ (¬s̃⊸ T ∨ ¬s̃ ∨ ¬T̃)

JsÐ? T K = (s̃Ð? T ⇒ (s̃→ T XOR s̃x T))
= (¬s̃Ð? T ∨ s̃→ T ∨ s̃x T) ∧

(¬s̃Ð? T ∨ ¬s̃→ T ∨ ¬s̃x T)

16

a

a-and-b

b

Figure 2.10: AND-
Pathway

a

a-or-b

b

Figure 2.11: OR-
Pathway

a

not-a

Figure 2.12: NOT-
Pathway

For the example p53-pathway the SAT instance is given by the boolean formulae

JARF
γ
x (mdm2

β
⊸ (p53

αx p53))K = (¬γ̃ ∨ ¬ÃRF ∨ ¬β̃),

Jmdm2
β
⊸ (p53

αx p53)K = (¬β̃ ∨ m̃dm2 ∨ ¬α̃) ∧ (¬β̃ ∨ ¬m̃dm2 ∨ α̃),

Jp53
αx p53K = (¬α̃ ∨ ¬p̃53 ∨ ¬p̃53),

Jp53
δ→ cell cycle arrestK = (¬δ̃ ∨ ¬p̃53 ∨ ̃cell cycle arrest),

where the composite actions are abbreviated by the greek letters above the actions.

Apart from p and Ð?, all composite actions translate to Horn-clauses [8] which are
clauses with at most one positive literal. Since Horn-SAT is solvable in linear time [6],
one possible fixed state for a model without p and Ð? actions can be found in linear
time as well.

On the other hand, finding a fixed state for a model which includes also p actions
can be as complex as solving an arbitrary SAT instance. Figures 2.10, 2.11 and 2.12
depict pathway models for the boolean functions ∧ (AND), ∨ (OR) and ¬ (NOT). For
any configuration of the species a and b, the other species’ truth-value in each model is
given by the corresponding boolean function, provided that the model reached a fixed
state. This can easily be verified with the Prolog programme presented in the following
sections. Since the three boolean functions are the operations of a boolean algebra,
arbitrary boolean functions can be expressed in pathway models by combining copies of
the models in Figures 2.10, 2.11 and 2.12. The species representing the output of this
function can be enforced to be true resp. false with on ⊸ resp. off ⊸. Thus, every
SAT instance can be encoded as a pathway model.

The idea of transforming boolean pathway models into SAT instances already appeared
in [24]. In that approach no variables are introduced for the species, but only for reactions
which are simple composite actions with possibly several reactants and products. That
leads to less variables, but more complex clauses for expressing whether certain species
are activated or not. Moreover, nested actions are not supported.

17

In a nutshell, the SAT instance to a model M is given by the set of variables

V = {T̃ ∣ T ∈M}

and the set of clauses

C = {¬ ̃on ⊸ T ∨ T̃ ∣ on ⊸ T ∈M} ∪
{¬ ̃off ⊸ T ∨ ¬T̃ ∣ off ⊸ T ∈M} ∪
{¬s̃→ T ∨ ¬s̃ ∨ T̃ ∣ s→ T ∈M} ∪
{¬s̃x T ∨ ¬s̃ ∨ ¬T̃ ∣ sx T ∈M} ∪
{¬s̃⊸ T ∨ s̃ ∨ ¬T̃ , ¬s̃⊸ T ∨ ¬s̃ ∨ T̃ ∣ s⊸ T ∈M} ∪
{¬s̃p T ∨ s̃ ∨ T̃ , ¬s̃p T ∨ ¬s̃ ∨ ¬T̃ ∣ sp T ∈M} ∪
{¬s̃Ð? T ∨ s̃→ T ∨ s̃x T , ¬s̃Ð? T ∨ ¬s̃→ T ∨ ¬s̃x T ∣ sÐ? T ∈M}.

18

Chapter 3

Model-to-SAT transformation in Prolog

This section shows the correctness of the model-to-SAT transformation in Prolog. This
proves that the boolean formulae resulting from the model syntax are captured by the
SAT instance encoding. Thus, the following diagram commutes, assuming that the SAT
solver works properly.

model
syntax

boolean
formulae

Prolog
SAT instance

satisfying
solutions

logicProlog

solver

semantics

3.1 Encoding pathway models

Species are encoded as Prolog atoms which are set in single quotation marks or start
with a lower-case character.

Five new Prolog operators are defined by

:- op(500, xfy, ’-->’).

114 :- op(500, xfy, ’--/’).

:- op(500, xfy, ’-<>’).

116 :- op(500, xfy, ’-><’).

:- op(500, xfy, ’--?’).

in order to encode the actions

19

Turn on (on ⊸ a) on-<>a,
Turn off (off ⊸ a) off-<>a,
Enhancement (a→ b) a-->b,
Inhibition (ax b) a--/b,
Control enhancing (a⊸ b) a-<>b,
Control inhibiting (ap b) a-><b,
Dummy (aÐ? b) a--?b.

These operators are right-associative, e.g. a-->b--/c is equivalent to a-->(b--/c).

A pathway model is encoded as a list of all free actions appearing in the model. The
implicitly contained actions and species will be determined by the programme. Hypo-
thetically, also species’ encodings may appear in the model’s list. But either the species
already appears in a composite action and is thus implicitly contained already without
explicitly mentioning. Or the species has no connection to the rest of the model and
whether it is on or off is irrelevant. In both cases adding a species to the model’s list of
actions is futile.

3.2 Encoding SAT instances

A SAT instance is encoded as a list of clauses together with a list of variables. All
variables appearing in one of the clauses must be contained in the variables list. The
variables as well as the clauses are labelled. The label indicates what action the variable
resp. clause represents.

A labelled variable has the representation

label:Variable.

A clause is encoded in Prolog as

label:[pol1-Var1, pol2-Var2, ... , polN-VarN].

The literals of a clause are represented by the Prolog variables Var1, . . . , VarN together
with a polarity pol1, . . . , polN indicating whether the literal is positive or negative.
A polarity is either true or false, where the former stands for a positive literal and
the latter for a negative one. This encoding is adopted from the Prolog SAT solver
implementation in [9], which is utilised in this work’s programme.

20

The encoded actions are transferred into encoded SAT clauses analogously to their se-
mantics presented in Section 2.5. For an encoded action T , LT M denotes the encoded
SAT clauses capturing the meaning of T .

Jon ⊸ T K = (¬ ̃on ⊸ T ∨ T̃)
Lon -<> T M = on-<>T:[false- ̃on ⊸ T,true-T̃]

Joff ⊸ T K = (¬ ̃off ⊸ T ∨ ¬T̃)
Loff -<> T M = off-<>T:[false- ̃off ⊸ T,false-T̃]

Js→ T K = (¬s̃→ T ∨ ¬s̃ ∨ T̃)
Ls --> T M = s-->T:[false-s̃→ T,false-s̃,true-T̃]

Jsx T K = (¬s̃x T ∨ ¬s̃ ∨ ¬T̃)
Ls --/ T M = s--/T:[false-s̃x T,false-s̃,false-T̃]

Js⊸ T K = (¬s̃⊸ T ∨ s̃ ∨ ¬T̃) ∧ (¬s̃⊸ T ∨ ¬s̃ ∨ T̃)
Ls -<> T M = s-<>T:[false-s̃⊸ T,true-s̃,false-T̃],

s-<>T:[false-s̃⊸ T,false-s̃,true-T̃]

Jsp T K = (¬s̃p T ∨ s̃ ∨ T̃) ∧ (¬s̃p T ∨ ¬s̃ ∨ ¬T̃)
Ls ->< T M = s-><T:[false-s̃p T,true-s̃,true-T̃],

s-><T:[false-s̃p T,false-s̃,false-T̃]

JsÐ? T K = (¬s̃Ð? T ∨ s̃→ T ∨ s̃x T) ∧ (¬s̃Ð? T ∨ ¬s̃→ T ∨ ¬s̃x T)
Ls --? T M = s--?T:[false-s̃Ð? T,true-s̃→ T,true-s̃x T],

s--?T:[false-s̃Ð? T,false-s̃→ T,false-s̃x T]

Here T̃ stands for the SAT variable as well as for the encoding’s Prolog variable of
the action T . The Prolog variables for the SAT instance encoding will be generated
automatically by Prolog’s unification algorithm and have undefined names.

21

The example of the p53-pathway can be encoded as the following list of labelled clauses.
Here the Prolog variables start with the capital letter V followed by the identifier for a
species and a number for a composite action. The assignment of composite actions to
numbered Prolog variables is noted above each action. These notions are not part of the
actual encoding.

[arf
V1

--/(mdm2
V2
-<>(p53

V3

--/p53)):[false-V1,false-Varf,false-V2],

mdm2
V2
-<>(p53

V3

--/p53):[false-V2,true-Vmdm2,false-V3],

mdm2
V2
-<>(p53

V3

--/p53):[false-V2,false-Vmdm2,true-V3],

p53
V3

--/p53:[false-V3,false-Vp53,false-p53],

p53
V4
-->cell_cycle_arrest:[false-V4,false-Vp53,true-Vcell_cycle_arrest]]

3.3 Creating SAT instances

This section proves the correctness of the create_sat/6 predicate and the other required
predicates called during unification. For a given pathway model the create_sat/6 predi-
cate returns the encoded SAT instance consisting of a clauses list Clauses and a variables
list Vars. The model is given by the list Free_Actions which consists of its free actions.

create_sat(Free_Actions, Unfolded_Actions, Species_vars, Actions_vars, Vars, Clauses) :-

151 extract_species(Free_Actions, Species),

create_vars(Species, Species_vars),

153 unfold_actions(Free_Actions, Unfolded_Actions),

create_vars(Unfolded_Actions, Actions_vars),

155 append(Species_vars, Actions_vars, Vars),

maplist(create_clauses(Species_vars, Actions_vars),

157 Unfolded_Actions, Clauses0),

flatten(Clauses0, Clauses), !.

In order to create the SAT instance, variables for the actions need to be generated. The
variables for the species and composite actions are treated separately for simplicity and
efficiency reasons. In the first place the species appearing in the given free actions need
to be extracted via the extract_species/2 predicate.

extract_species(Actions, Species) :-

162 extract_species_(Actions, Species0),

list_to_set(Species0, Species).

In extract_species/2 the auxiliary predicate extract_species_/2 is called which ite-
rates over the actions list Actions and appends every appearing species to the output

22

list Species. This output list may contain duplicates which are removed using the
list_to_set/2 predicate from the lists library.

extract_species_([on-<>(T)|Actions], Species) :-

165 extract_species_([T|Actions], Species), !.

extract_species_([off-<>(T)|Actions], Species) :-

167 extract_species_([T|Actions], Species), !.

extract_species_([Act|Actions], [S|Species]) :-

169 action(Act, S, T), extract_species_([T|Actions], Species), !.

extract_species_([S|Actions], [S|Species]) :-

171 extract_species_(Actions, Species), !.

extract_species_([], []).

The species extraction in extract_species_/2 (with duplicates) for a model given by
the list of free actions [T1, . . ., Tn] shall follow the rules stated below. The Prolog
expression τ is converted into LτM, such that if Actions is the list of free actions defining
the model, then LActionsM is the list of the species contained.

L[]M = []

L[T,T1, . . . , Tk]M = [LT M | L[T1, . . . , Tk]M]

LsM = [s] Lon -<> T M
Loff -<> T M } = LT M

Ls --> T M
Ls --/ T M
Ls -<> T M
Ls ->< T M
Ls --? T M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [s | LT M].

The first two rules of extract_species_/2 treat on-<>T and off-<>T actions. Species
only appear on the right-hand side T in this case. To find the species there, the predicate
calls itself with T as the first element in the actions list. This recursion similarly works
for all other actions in the third rule. The action/3 predicate ensures that the third
rule is only applied on composite actions, i.e. terms of the form S-->T, S--/T, S-<>T,
S-><T or S--?T. Here the left-hand side of an action is a species which is appended to
the output list of species. The recursion stops when there is no action discovered in
the third rule and the fourth rule applies. It inserts the species to the output list and
recurses on the rest of the actions list. Cuts at the end of every rule ensure correct case
differentiation. The last rule terminates the recursion of the predicate when the end of
the actions list is reached.

Having the list of species available, the variables for the species can be created.

23

create_var(Label, Label:V) :- nonvar(Label), var(V).

188 create_vars(As, Vars) :- maplist(create_var, As, Vars).

To create a new labelled variable for an action, the create_var/2 rule assures that the
second argument V is a free variable, but the first argument Label is not. The built-
in predicates var/1 and nonvar/1 find out whether a term is a free variable. These
variables are generated automatically during Prolog’s unification algorithm. In order to
get the list of labelled variables for a species list, it suffices to apply the map combinator
on the species list with the function create_var/2. The map combinator is offered by
the maplist/3 predicate from the apply library. The create_vars/2 predicate invokes
the map combinator.

The create_vars/2 rule can be directly applied on the species list. The Free_Actions

list however includes only free actions. There may be nested actions, i.e. actions affecting
other actions. These actions need to be unfolded via unfold_actions/2 before mapping,
such that the implicitly included non-free actions are also part of the list. That way every
composite action, regardless of whether free or non-free, can be mapped to a variable.

unfold_actions(Actions, Unfolded) :-

176 unfold_actions_(Actions, Unfolded0),

list_to_set(Unfolded0, Unfolded), !.

178 unfold_actions_([S--?(T)|Actions], [S--?(T),S-->(T),S--/(T)|Unfolded]) :-

unfold_actions_([T|Actions], Unfolded), !.

180 unfold_actions_([A|Actions], [A|Unfolded]) :-

action(A, _S, T), unfold_actions_([T|Actions], Unfolded), !.

182 unfold_actions_([_|Actions], Unfolded) :-

unfold_actions_(Actions, Unfolded), !.

184 unfold_actions_([], []).

Unfolding actions has some similarities to the extraction of species. The auxiliary pred-
icate unfold_actions_/2 iterates over all nested actions and collects every single com-
posite action in a list. The duplicates1 of this list are removed afterwards with the
list_to_set/2 predicate.

For a model, given by a list of free actions [T1, . . ., Tn], the list of all composite actions
(including possible duplicates) can be obtained by unfolding the free actions according
to the following rules, where T shall be converted into LT M by unfold_actions_/2. If
Actions is the list of free actions defining the model, then LActionsM is the list of all
actions of the model.

L[]M = []

L[T,T1, . . . , Tk]M = [LT M | L[T1, . . . , Tk]M]
1Duplicates appear if one action is affected by several other actions, like ax (x→ y) and bx (x→ y).

24

LsM = []

Lon -<> T M = [on-<>T | LT M]
Loff -<> T M = [off-<>T | LT M]

Ls --> T M = [s-->T | LT M]
Ls --/ T M = [s--/T | LT M]
Ls -<> T M = [s-<>T | LT M]
Ls ->< T M = [s-><T | LT M]
Ls --? T M = [s--?T, s-->T, s--/T | LT M]

Similarly to extract_species_/2 the unfold_actions_/2 predicate recurses on the
right-hand side of a composite action, which may be another composite action as well.
The first rule treats Ð? actions separately. Since S--?T means that either S-->T or
S--/T holds, variables are needed for both possibilities and S--?T as well as S-->T and
S--/T are added to the output list Unfolded. Otherwise the action stands only for itself
and the second rule appends it to the output list. The recursion over the right-hand
sides stops at a species, in the third rule leaving the output list unchanged. The whole
predicate terminates when the actions list is empty in the last rule.

In the fourth line of the create_sat/6 predicate variables for the unfolded actions are
created. The species variables together with the composite action variables are the
variables of the SAT instance. So, for the variable list Var the lists of species variables
and composite action variables are concatenated in the fifth line using the append/3

predicate from the lists library.

In order to create the clauses for the SAT instance, the clauses expressing the action’s
semantic (as explained in Section 2.3) need to be created for every composite action. A
map combinator with the function create_clauses/4 applied on the list of unfolded
actions does this. Since not every action can be encoded in one clause (disjunction of
literals), the create_clauses/4 predicate returns a list of clauses. To get rid of these
lists the flatten combinator is applied on the map result. The flatten combinator is
provided by the flatten/2 predicate from the lists library.

var_of([X:V|_Vars], X, V) :- !.

237 var_of([_|Vars], X, V) :- var_of(Vars, X, V), !.

239 var_of(_Species_vars, Actions_vars, X, V) :- composite_action(X),

var_of(Actions_vars, X, V), !.

241 var_of(Species_vars, _Actions_vars, X, V) :- var_of(Species_vars, X, V).

Every create_clauses/4 rule treats one composite action type and creates the labelled
clauses for this type according to Section 3.2. The variables for the species and composite
actions are looked up using the var_of predicates. To speed up the lookup, species
variables and composite action variables are treated separately. For a given list of labelled

25

variables and a label the var_of/3 predicate returns the variable for the label using
linear search over the variables list. The var_of/4 predicate simplifies the lookup in
case it is unknown whether the variable of a species or a composite action is required.
The composite_action/1 predicate is used to distinguish between terms of species and
composite actions. All create_clauses/4 rules are given below.

% s-->X (s enhances X)

192 create_clauses(Species_vars, Actions_vars, S-->(X), Clauses) :-

var_of(Species_vars, S, Var_S),

194 var_of(Actions_vars, S-->(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

196 Clauses = [S-->(X):[false-Var_S,false-Var_A,true-Var_X]].

% a--/X (a inhibits X)

198 create_clauses(Species_vars, Actions_vars, S--/(X), Clauses) :-

var_of(Species_vars, S, Var_S),

200 var_of(Actions_vars, S--/(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

202 Clauses = [S--/(X):[false-Var_S,false-Var_A,false-Var_X]].

% on-<>X (X is on)

204 create_clauses(Species_vars, Actions_vars, on-<>(X), Clauses) :-

var_of(Actions_vars, on-<>(X), Var_A),

206 var_of(Species_vars, Actions_vars, X, Var_X),

Clauses = [on-<>(X):[false-Var_A, true-Var_X]].

208 % off-<>X (X is off)

create_clauses(Species_vars, Actions_vars, off-<>(X), Clauses) :-

210 var_of(Actions_vars, off-<>(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

212 Clauses = [off-<>(X):[false-Var_A, false-Var_X]].

% a-<>X (a controls X enhancing)

214 create_clauses(Species_vars, Actions_vars, S-<>(X), Clauses) :-

var_of(Species_vars, S, Var_S),

216 var_of(Actions_vars, S-<>(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

218 Clauses = [S-<>(X):[false-Var_A,false-Var_S, true-Var_X],

S-<>(X):[false-Var_A, true-Var_S,false-Var_X]].

220 % a-><X (a uncontrols X inhibiting)

create_clauses(Species_vars, Actions_vars, S-><(X), Clauses) :-

222 var_of(Species_vars, S, Var_S),

var_of(Actions_vars, S-><(X), Var_A),

224 var_of(Species_vars, Actions_vars, X, Var_X),

Clauses = [S-><(X):[false-Var_A,true-Var_S, true-Var_X],

226 S-><(X):[false-Var_A, false-Var_S,false-Var_X]].

% a--?X (a enhances or inhibits X)

228 create_clauses(_Species_vars, Actions_vars, S--?(X), Clauses) :-

var_of(Actions_vars, S--?(X), Var_Aq),

230 var_of(Actions_vars, S-->(X), Var_Ae),

var_of(Actions_vars, S--/(X), Var_Ai),

232 Clauses = [S--?(X):[false-Var_Aq,true-Var_Ae,true-Var_Ai],

S--?(X):[false-Var_Aq,false-Var_Ae,false-Var_Ai]].

26

Chapter 4

Max-SAT solving in Prolog

4.1 Extending a regular SAT solver to a Max-SAT solver

The presented Max-SAT solver uses the SAT solver from [9] at its core. This SAT solver
is an implementation of the DPLL [5] algorithm with watched literals [16]. It is written
in Prolog as well and can compute not only one but all satisfying assignments for a
given SAT instance, utilizing the resatisfiability of predicates in Prolog’s backtracking
algorithm. The solver is only slightly modified such that it ignores the labels of variables
and clauses.

The used SAT solver [9] is called with the sat/2 predicate. It takes a SAT instance
given as a list of clauses in the first argument and a list of variables in the second. The
encodings for these lists are given in Section 3.2. The SAT solver establishes a watch
for every clause that observes literals of this clause and assures that at least one literal
is satisfied. Afterwards the variables are initialised to true or false.

max_sat(Clauses, Vars, Satisfied, Unsatisfied) :-

47 gen_subset(Clauses, Satisfied, Unsatisfied),

sat_unsat(Vars, Satisfied, Unsatisfied).

For a Max-SAT solver, the solver for the regular SAT problem is applied on the subsets
of the clauses set.

range(X, _Y, X).

60 range(X, Y, Z) :- X>Y, X1 is X-1, range(X1, Y, Z).

range(X, Y, Z) :- X<Y, X1 is X+1, range(X1, Y, Z).

62

subset([],[],[]).

64 subset([E|R], [E|Xs], Ys) :- subset(R, Xs, Ys).

subset([E|R], Xs, [E|Ys]) :- subset(R, Xs, Ys).

66

27

gen_subset(R, X, Y) :-

68 length(R, K),

range(K, 0, N),

70 M is K - N,

length(X, N),

72 length(Y, M),

subset(R, X, Y).

The gen_subset/3 predicate, called first in max_sat/4, generates all subsets of the
given clauses set. The subsets are generated in decreasing order by cardinality, wich is
provided by the built-in length/2 predicate. The initial clauses set in the first argument
is partitioned into the generated subset in the second argument and the rest in the third
argument. In the gen_subset/3 predicate, range/3 binds N to the integers from K

down to 0 and M always to K-N, where K is the cardinality of the initial set. The range/3

predicate is a generalisation of the built-in between/3 predicate and can also count down
if the first integer argument is larger than the second. Afterwards, subset/3 generates
the partitions of the set R into X of size N and Y of size M. The subset/3 predicate can
generate all possible partitions of R, but as the sizes of X and Y are restricted beforehand,
only the subsets of proper sizes are generated.

Since Prolog’s backtracking algorithm tries to resatisfy the last goal first, all subsets of
size N are generated before decreasing N. Hence the gen_subset/3 predicate generates
subsets in decreasing order of cardinality and works as requested.

unsat(true-Var) :- Var = false.

77 unsat(false-Var) :- Var = true.

unsatisfied(_Label:Clause) :- maplist(unsat, Clause).

79

sat_unsat(Vars, Satisfied, Unsatisfied) :-

81 maplist(unsatisfied, Unsatisfied),

sat(Satisfied, Vars).

After a subset of the clauses set is generated in max_sat/4, the sat_unsat/3 predicate
is called which finds the assignments satisfying exactly the clauses in the Satisfied list,
but not the ones in Unsatisfied. A clause is unsatisfied by an assignment if none of
its literals appear in that assignment. This is the case if the polarity of every variable
appearing in the clause differs from the truth-value assigned to that variable. This pro-
perty is enforced for every variable of a given labelled clause by the unsatisfied/1 rule
using the built-in maplist/2 predicate. In sat_unsat/3 the unsatisfied/1 predicate is
applied to every clause in Unsatisfied in order to instantiate the variables appearing in
these clauses such that the resulting assignment unsatisfies these clauses if possible. After
that, the sat/2 predicate from [9] tries to find a satisfying assignment for the clauses in
Satisfied. Note that the variables already instantiated by the unsatisfied/1 predi-
cate keep their truth-values and are not varied during the unification of sat/2. However,

28

apart from these variables the SAT solver starts from scratch for every subset of the
clauses.

All in all, during backtracking of the max_sat/4 predicate Prolog first tries to find
another variable assignment that satisfies the current subset of clauses, while at the same
time unsatisfies the remaining clauses. Second, it tries to find another clauses subset of
the same cardinality and finally, it decreases the number for the subset cardinality.

Since the number of subsets grows exponentially in the cardinality of the initial set,
the Max-SAT solver has an exponential worst case running time for finding one solution,
even if the SAT solver finds solutions in polynomial time as with Horn-SAT1. It is known
that the maximisation problem for Horn-SAT is NP-hard [10]. Although in the case of
application which is considered in this work, at most a small number of unsatisfiable
clauses is likely to occur. When verifying pathway models, only a few actions should be
incorrect. If a pathway model contains too many contradictory actions, there is no good
opportunity that the model can be corrected.

4.2 Simplifying SAT assignments

With the max_sat/4 predicate it takes several redo instructions in order to find all satis-
fying variable assignments for a current subset of clauses. The max_sat_minimized/5

predicate presents all these assignments more clearly in the Sat_Assignments argument
by grouping up all satisfying variable assignments for one subset and by merging these
assignments for a compressed output.

max_sat_minimized(Clauses, Vars, Satisfied, Unsatisfied, Sat_Assignments) :-

51 gen_subset(Clauses, Satisfied, Unsatisfied),

findall(Vars,

53 sat_unsat(Vars, Satisfied, Unsatisfied),

Sat_Assignments_),

55 Sat_Assignments_ \== [],

simplify_assignments(Sat_Assignments_, Sat_Assignments).

In max_sat_minimized/5 subsets of the clauses set are generated in decreasing order
of cardinality using the range/3 and subset_gen/3 predicates just like before. For one
clauses subset all assignments of variables in the Vars list, that satisfy exactly this subset,
are collected with the built-in findall/3 predicate. The result Sat_Assignments_ is a
list of variable lists, i.e. unified instances of the Vars list. If no matching instantiation of
Vars can be found, Sat_Assignments_ is the empty list which is precluded, since only
matching assignments are desired.

1The SAT instance for a pathway model without p and Ð? actions consists of Horn clauses only, see
Section 2.5.

29

simplify_assignments(Assignments, Simplified) :-

86 merge_assignments(Assignments, Merged),

del_implied_vars(Merged, Simplified_),

88 list_to_set(Simplified_, Simplified).

The simplify_assignments/2 rule tries to simplify this list of solutions by repeatedly
merging two assignments (Vars list instantiations) that differ from each other in exactly
one position. Once two assignments differ only at one variable, this variable can be set
arbitrarily and it suffices to specify the assignment for all other variables. This idea is
known from the Quine-McCluskey algorithm [15] for minimising boolean functions.

merge_vars([Label:Var|Assignments1], [Label:Var|Assignments2], [Label:Var|Merged]) :-

104 !, merge_vars(Assignments1, Assignments2, Merged).

merge_vars([Label:_|Merged], [Label:_|Merged], [Label:dontcare|Merged]) :- !.

Two assignments that can be merged fulfil the merge_vars/3 predicate. The third
argument Merged of this predicate is the merging result for the assignments in the first
two arguments Assignment1 and Assignment2. The first rule of merge_vars/3 iterates
over the elements that the assignments have in common. This suffices to compare the
assignments because of the fact that the order of the actions variables in a Vars list is
fixed. Once the first rule fails, Assignment1 and Assignment2 differ in the currently
considered position. If the rests of the assignments are identical, Assignment1 and
Assignment2 can be merged and a dontcare atom marks the action at this position in
the Merged list. The dontcare atom indicates that the corresponding action variable
can be chosen arbitrarily. The second rule captures this case. Otherwise, merging is not
possible and the predicate fails.

merge_assignments([], []) :- !.

91 merge_assignments(Assignments, Merged) :-

merge_assignments_(Assignments, Merged_Step),

93 merge_assignments(Merged_Step, Merged_Rest),

append(Assignments, Merged_Rest, Merged).

95 merge_assignments_([], []) :- !.

merge_assignments_([X|Assignments], Merged) :-

97 findall(X_Y,

(member(Y, Assignments), merge_vars(X, Y, X_Y)),

99 Merged_Current),

merge_assignments_(Assignments, Merged_Rest),

101 append(Merged_Current, Merged_Rest, Merged).

As a first step in simplify_assignments/2, the merge_assignments/2 predicate re-
peatedly adds the representations of merged assignments given by merge_vars/3 to the
assignments list, until there are no two assignments left to merge. The helping predicate
merge_assignments_/2 returns a list of all possible merged assignments in the second

30

argument which can be obtained from the assignments given in the first argument. The
merge_assignments/2 predicate calls the helping predicate and recurses on the result of
this merging step in order to further merge. The outcome of this recursion is appended
to the assignments and returned as the predicate’s second argument. The predicate
stops recursing at the empty list.

To find all possible pairs of assignments which can be merged, the helping predicate
merge_assignments_/2 iterates over all assignments in the list given in the first argu-
ment. For any assignment it searches the remaining list for all other assignments that can
be merged with the former one and thus fulfils the merge_vars/3 predicate. The built-in
findall/3 predicate collects the newly merged assignments in the list Merged_Current.
Together with the results of the recursion in Merged_Rest, this list forms the output for
the predicate in the second argument. The exit condition for the recursion is again an
empty list.

del_implied_vars([M|Merged], [M|Simplified]) :-

108 forall(member(M0, Merged), not(merge_vars(M, _, M0))),

!, del_implied_vars(Merged, Simplified).

110 del_implied_vars([_|Merged], Simplified) :-

!, del_implied_vars(Merged, Simplified).

112 del_implied_vars([], []).

Since the result of the merge_assignments/2 predicate still contains the assignments
that are implied by the merged assignments added, these implied assignments are re-
moved using del_implied_vars/2 when simplifying with simplify_assignments/2.
The del_implied_vars/2 predicate iterates over the list of assignments given in the
first argument and removes all assignments implied by a merged one. The output is
returned in the second argument Simplified. An assignment is implied by another
one if the merge_vars/3 predicate can be successfully unified with these assignments.
The first rule of del_implied_vars/2 treats a non-implied assignment. In this case
the assignment is kept. The built-in forall/2 predicate assures that all assignments
in the tail of the list cannot fulfil the merge_vars/3 predicate. This suffices since
the merged assignments follow the assignments implied by them in the list created by
merge_assignments/2. Otherwise the assignment is implied and the second rule applies
which does not add it to Simplified. Cuts ensure correctness here. At an empty list,
the third rule applies and finishes the recursion.

31

s
x1 x2 x3

x4

x5
x6

. . .
xk

The computational effort needed for one max_sat_minimized/5 query de-
pends not only on the size of the SAT instance, but also on the number
of possible assignments that satisfy the currently considered subset of
clauses. There are pathway models for which the corresponding SAT in-
stance has exponentially many satisfying assignments. The fixed states for these models
are computed in worst-case exponential running time. The star shaped pathway model
depicted on the right has at least 2k fixed states for each configuration of the xi when s is
off, which is exponential in the number of actions. Recall that the output of the assign-
ments is simplified with dontcare atoms when possible, but the backtracking algorithm
of Prolog detects every assignment individually.

In this regard models with few fixed states can be processed faster. On the other hand
the restrictiveness of models with few fixed states bases on many composite actions and
many SAT clauses. As the free actions are always activated, it mainly depends on the
number of non-free actions how much computational effort is necessary to find all fixed
states. The attempt to verify a pathway model of more than 4000 non-free actions failed
to terminate in acceptable time on a desktop computer.

32

Chapter 5

Finding Fixed States

With an implementation creating SAT instances for pathway models and a suitable
Max-SAT solver available, determining a model’s fixed states is straightforward. Given
a pathway model as its encoded free actions, the fixed_states/3 predicate returns all
fixed states whereby the actions in the Unsatisfied_Actions list are unfulfilled in these
fixed states. The Max-SAT solver assures that the fixed states contradicting the least
number of actions are returned first.

fixed_states(Free_Actions, Fixed_States, Unsatisfied_Actions) :-

249 create_sat(Free_Actions, _Unfolded_Actions,

_Species_vars, Actions_vars, Vars, Clauses),

251 init_free_actions(Free_Actions, Actions_vars),

max_sat_minimized(Clauses, Vars,

253 _Satisfied_Clauses, Unsatisfied_Clauses, Fixed_States),

maplist(label, Unsatisfied_Actions, _, Unsatisfied_Clauses).

After creating the SAT instance with create_sat/6 for the model given by the list
Free_Actions, the variables for the free actions are instantiated. Since free composite
actions are always supposed to be active, their corresponding variables are set to true

using the init_free_actions/2 predicate.

init_free_actions(Free_Actions, A_vars) :- maplist(init_action(A_vars), Free_Actions).

257 init_action(_A_vars, Action) :- not(composite_action(Action)).

init_action(A_vars, Action) :- var_of(A_vars, Action, true).

This predicate calls init_action/2 for every free action with the aid of the maplist/2

predicate from the apply library. The first rule of init_action/2 applies if the free
action is not a composite action and hence a species1. In this case the action’s variable
is not instantiated yet. Otherwise, a composite action is present and the second rule

1As explained in Section 3.1, this case is futile but not forbidden.

33

instantiates the corresponding variable by calling the var_of/3 predicate with the true

atom as third argument.

Next in fixed_states/3, the max_sat_minimized/5 predicate is called which finds all
satisfying assignments for as many SAT clauses as possible. As described in Chapter 4,
the last argument of this predicate is a list of all possible satisfying assignments in a
minimized representation. Note that the variables of the free actions already instantiated
before calling max_sat_minimized/5 keep their values while solving the SAT instance.
The unsatisfied clauses in the Unsatisfied_Clauses list belong to actions which could
not be fulfilled. As all clauses correspond to model actions, the satisfying assignments
correspond to the fixpoints of the model without the unfulfilled actions. For better
readability the action labels corresponding to the unsatisfied clauses are extracted in the
last line of the fixed_states/3 predicate.

The rules for the s⊸ T , sp T and sÐ? T actions are expressed with two SAT clauses
each, whereas the rules for all other actions need only one clause each. Nevertheless, for
any assignment no two unsatisfied clauses correspond to the same action. It is impossible
to unsatisfy both such clauses at the same time since both clauses always share a literal
with different polarity. This shows that n unsatisfied clauses correspond to exactly n
unfulfilled actions.

A user, who wants to find out the fixed states for a pathway model, first encodes this
model with a list of the free actions as described in Section 3.1. The fixed_states/3

predicate is called with the list encoding the model as the first argument. Hence a query
for the fixed states of the AND-pathway depicted in Figure 2.10 from Section 2.5 is

?- Model = [b -<> (a -<> a_and_b), a_and_b --> b],

fixed_states(Model, Fixed_States, Unsatisfied_Actions).

The first answer to this query is the following:

Model = [b-<>a-<>a_and_b,a_and_b-->b],

Fixed_States =

[[b:true,a:true,a_and_b:true,

b-<>a-<>a_and_b:true,a-<>a_and_b:true,a_and_b-->b:true],

[b:true,a:false,a_and_b:false,

b-<>a-<>a_and_b:true,a-<>a_and_b:true,a_and_b-->b:true],

[b:false,a:dontcare,a_and_b:false,

b-<>a-<>a_and_b:true,a-<>a_and_b:false,a_and_b-->b:true]],

Unsatisfied_Actions = []

34

For improved clarity the output can be displayed as a table using the print_assignments/1
predicate. It is called with the desired fixed states list as the argument. In the table the
symbols 1, 0 resp. - abbreviates true, false resp. dontcare. The AND-pathway query
with the fixed states presented as a table is

?- Model = [b -<> (a -<> a_and_b), a_and_b --> b],

fixed_states(Model, Fixed_States, Unsatisfied_Actions).

print_assignments(Fixed_States).

Then the output also includes the following table:

b | a | a_and_b | b-<>a-<>a_and_b | a-<>a_and_b | a_and_b-->b |

1 | 1 | 1 | 1 | 1 | 1 |

1 | 0 | 0 | 1 | 1 | 1 |

0 | - | 0 | 1 | 0 | 1 |

35

36

Chapter 6

Dynamic Behaviour

6.1 Prediction of Dynamic Behaviour

So far, cells at their equilibrium were considered in order to verify a proposed pathway
model. Looking at it the other way round and assuming the model to be correct, the
model’s fixed states reveal whether a measurement of the species’ concentrations was
undertaken at equilibrium or not. If a pathway model is in a fixed state, the appendant
cell reached an equilibrium for all modelled processes. In a non-fixed state however,
some processes in the cell have not taken effect. These processes will happen in future,
provided that the model appropriately characterises the real processes inside the cell.

In pathway models discussed in this work, every action abstracts from a process which
is assumed to occur in the cell. A composite action T ′ affects the action T on its right-
hand side. This latter action T is dependent on T ′, such that either T ′ enhances T or
inhibits T . If a model state conflicts the rule for T ′ stated at (∗) in Section 2.3, the
model suggests that the process identified by T ′ is not at equilibrium and will activate
resp. deactivate the process identified by T at some future point of time.

Considering a biological cell at discrete time steps, its dynamics can be reconstructed
with a describing pathway model M and several state functions ft ∶M → {true,false},
one per time step t. If a rule in (∗) is unfulfilled at a given state ft, the composite
action corresponding to this rule suggests that the action on its right-hand side will be
activated resp. deactivated by some process in the cell. With a state ft′ where the latter
action is toggled from on to off or vice versa, the status of the cell at time step t′ > t
can be predicted. By repeatedly determining a succeding state for a non-fixed state,
there may be opportunities to predict the cell’s dynamic behaviour accurately with the
pathway models. Consider for instance, the model containing only the enhancing action
a → b. The state f1 where a is on, but b is off (i.e. f1(a) = true, f1(b) = false) is a
non-fixed state, since the rule f1(a → b) ⇒ [f1(a) ⇒ f1(b)] from (∗) does not hold.
Since the rule for action a→ b is conflicted in f1, the right-hand side b is toggled in the

37

a

b

c

Figure 6.1: Different
orders of action speeds

time

off

on

a

c
b

Figure 6.2: a x b faster
than b→ c

time

off

on

a
c

b

Figure 6.3: a x b slower
than b→ c

succeeding state f2. Hence, for f2 holds f2(a) = f2(b) = true. This is a fixed state as all
rules in (∗) are satisfied for f2.

Let ft be a state of the model M at the time step t and for an action T ′ ∈ M , the
corresponding rule in (∗) shall be contradicted by ft.

1 In the next state ft+1 the truth-
value for the right-hand side of T ′ can be toggled, in order to fulfil the rule of T ′ in ft+1.
Hence, if T is the right-hand side of T ′, for the next state ft+1 holds

ft+1(T) =
⎧⎪⎪⎨⎪⎪⎩

true, ft(T) = false
false, ft(T) = true.

In order to determine a succeeding state for a given state ft, the truth-values of some
actions in alterable(ft) are toggled.

alterable(ft) ∶=
⎧⎪⎪⎨⎪⎪⎩
T ∈M

RRRRRRRRRRR

∃ action in M (i) whose rule is contradicted in ft and
(ii) with T as the right-hand side

⎫⎪⎪⎬⎪⎪⎭

Various processes inside cells may take effect with various speeds. Thus, whenever more
than one action is not in equilibrium, i.e. its rule in (∗) is conflicting in the state, there
are several possibilities for the order in which the dependent actions are toggled. The
order influences the sequence of predicted model states and can even determine which
states arise at all. For example, consider the model in Figure 6.1 and assume the state
f1(a) = f1(b) = true, f1(c) = false which is not fixed. Both of the rules that are implied
by the model f1(a x b) ⇒ [f1(a) ⇒ ¬f1(b)] and f1(b → c) ⇒ [f1(b) ⇒ f1(c)] are
not fulfilled, so alterable(f1) = {b, c} and b or c can be toggled. If b is turned off first
because of a x b, the model reaches the fixed state f2(a) = true, f2(b) = f2(c) = false.
This series of states is illustrated in Figure 6.2. Since b is turned off fast, the species
c is barely affected by b → c and thus not toggled. Otherwise, c is turned on first
because of b → c, after which a x b takes action. In this case the resulting fixed state
is f̄2(a) = f̄2(c) = true, f̄2(b) = false as illustrated in Figure 6.3. Whenever there is
no certain or exact hierarchy of process speeds available, all possible sequences of state
transitions can be enumerated. The modelling environment BIOCHAM [3] follows this
approach using specific probabilities for the state transitions.

1Note that the action T ′ must be activated in ft, i.e. ft(T
′
) = true, because otherwise the state ft

would always statisfy the rule for T ′.

38

a

b

c
a

b

c

a’

Figure 6.4: Expressing
actions, acting with dif-
ferent speeds

a b

Figure 6.5: Negative-
feedback loop (a simple
oscillating model)

time

off

on
a

b

Figure 6.6: ODE-
solution for the negative-
feedback loop

For simplicity, all processes are assumed to act with the same speed in the following.
When going over from a current state ft to the next state ft+1, all actions which are
dependent in a disequilibrium, i.e. all actions in alterable(ft), are toggled:

∀T ∈ alterable(ft) ∶ ft+1(T) ∶=
⎧⎪⎪⎨⎪⎪⎩

true, ft(T) = false,
false, ft(T) = true.

For all other actions the value does not change in the next state, in order to stay in
equilibrium:

∀T ∈M/alterable(ft) ∶ ft+1(T) ∶= ft(T).

Although all actions in alterable(ft) are toggled simultaneously for the next state, dif-
ferent process speeds can be modelled using auxiliary species. Consider the model
on the left of Figure 6.4. To express that a → b acts slower than a → c, an addi-
tional species a′ can be appended, which leads to the model depicted in the right of
Figure 6.4. Starting in the state f1(a) = true, f1(a′) = f1(b) = f1(c) = false, the
next state will be f2(a) = f2(a′) = f2(c) = true, f2(b) = false whereupon the state
f3(a) = f3(a′) = f3(b) = f3(c) = true follows. In this sequence of states c is indeed
activated before b.

6.2 Oscillations

A fixed state will not always be reached by iteratively determining successive states.
The model in Figure 6.5 for example has no fixed states at all. In a state where a is on,
a ⊸ b will turn b on, after which a will be turned off according to b p a. After that
a⊸ b turns b off. Then the rule for bp a in (∗) is unfulfilled and a is toggled back on
again. The model oscillates in the four possible states forever. The set of states a model
oscillates between is called a limit cycle of this model.2

In this case the predicted sequence of states is adequate. The model in Figure 6.5
represents a network motif3 with two proteins, called negative-feedback loop, that can

2Starting at any state in a limit cycle, the model will come back to this state at some time.
3See Section 2.4.

39

xon

Figure 6.7: Negative autoregulation
(mistakenly oscillating model)

time

off

on x

Figure 6.8: ODE-solution for the
negative autoregulation

lead to oscillations [1]. A system of ordinary differential equations (ODE) describing the
dynamics for this negative-feedback loop is the following:

a′(t) = −b(t) + λ
b′(t) = a(t) − λ

(λ > 0)

The functions a(t) and b(t) estimate the concentrations for both proteins a and b at a
point of time t ∈ N. Since a is inhibited by b, b(t) appears with a minus-sign in the first
derivative a′(t). When the concentration of b is low, the concentration of a increases
because the inhibiting action b p a is a controlling action. The positive constant λ in
a′(t) takes account of this fact. In the derivative b′(t) the function a(t) appears with a
plus-sign since b is enhanced by a. As b is even controlled by a, the concentration of b
decreases as well once the concentration of a is low. This circumstance is captured by
the constant λ with a minus-sign in b′(t). The differential equations have the following
solution.

a(t) = −k2 sin(t) + k1 cos(t) + λ
b(t) = k1 sin(t) + k2 cos(t) + λ

(k1, k2 ∈ R)

The graphs of these functions are outlined in Figure 6.6.

Beginning with the state f1, the following states are predicted by the model:

f1(⋅) f2(⋅) f3(⋅) f4(⋅) f5(⋅) = f1(⋅) f6(⋅) = f2(⋅)
a false true true false false . . .
b false false true true false

This sequence of states can be tracked in the outlined graph in Figure 6.6. In this case
the state prediction of the transition function presented in Section 6.1 is adequately
describing actual dynamics in the cell.

However, some predictions grounded upon the pathway models presented in this work
are misleading. Figure 6.7 depicts another network motif with one protein, a so called
negative autoregulation. The model for this pathway would suggest that the concen-
tration of protein x will oscillate. When the species x is off, on ⊸ x will turn x on,
whereupon x is turned off again because of x x x. This predicted behaviour is not
correctly describing how the concentration of a negatively autoregulated protein devel-
ops in biology. The concentration actually converges to a steady level near the threshold
that seperates high (on) and low (off) concentrations [1].

40

Ordinary differential equations can help to model the species concentration over time
more adequately in the case of a negative autoregulation. The dependencies of the
autoregulated protein x are captured by the following equation.

x′(t) = −x(t) + λ (λ > 0)

In the first derivative x′(t) appears x(t) with a minus-sign because of the inhibiting
action x x x. The fact that the concentration of x constantly increases is captured by
the positive constant λ. The following function solves this differential equation.

x(t) = ke−t + λ (k ∈ R)

This exponential function with a negative exponent is not periodic and shows that the
species x does not oscillate. The graph of x(t) is outlined in Figure 6.8.

The misleading prediction for a negative autoregulation illuminates limitations of boolean
modelling. Given a certain state ft of a model, the next state ft+1 can easily be com-
puted; for example by iterating over all actions and toggling all actions in alterable(ft).
In [7] there is also an efficient algorithm presented that can be used to find fixed states
and limit cycles for boolean models of this type. Nevertheless, a limit cycle found in
the model does not necessarily mean that oscillations occur in the actual biological cell.
Moreover, the boolean approach is insufficient, whenever the concentration of a species
needs to be discretised in more than two niveaus in order to obtain an adequate model.
The example of negative autoregulation shows both insufficiencies.

41

42

Chapter 7

Comparison

There are other boolean modelling approaches of signalling pathways, in which fixed
states and limit cycles were determined using exhaustive search. Starting from any
state, the next state is repeatedly computed until either a fixed state or a limit cycle is
detected. By applying this strategy for every possible starting state, all fixed states of
the examined model can be found as well. The results of this method for two different
pathways of yeast cells are presented in [14] and [4].

Both papers take a state transition function as a basis which differs from the one de-
scribed in this work. The pathway models in [14] and [4] only support → and x actions
between two species, hence only simple and no nested composite actions are supported.
This means that every composite action is free and thus always activated. So the model’s
state depends on the species configuration only. For the state transition function, the
number of enhancing and the number of inhibiting actions is of concern. Given a model
M , define the number of enhancing resp. inhibiting actions affecting a species s ∈M in
a certain state f ∶M → {true,false} as

enh(f, s) ∶= ∣{s′ → s ∈M ∣ s′ ∈M,f(s′) = true}∣ resp.

inh(f, s) ∶= ∣{s′ x s ∈M ∣ s′ ∈M,f(s′) = true}∣.

The transition from one state ft to the next state ft+1 is given by

ft+1(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

true, enh(ft, s) > inh(ft, s),
false, enh(ft, s) < inh(ft, s),
ft(s), enh(ft, s) = inh(ft, s).

Stable configurations according to this transition function shall be called fixed points,
in contrast to fixed states which were discussed throughout this work. The fixed points
of a model are the fixed points of the transition function above, so for a fixed point ft
holds ft = ft+1.

43

Cell Size

Cln3

SBF

Cln1,2

Cdh1

Cdc20&Cdc14 Swi5

Clb1,2

Sic1

MBF

Clb5,6

Mcm1/SFF

Figure 7.1: Simplified budding yeast cell
cycle model from [14]

Start

SK

Rum1Ste9 Cdc2/Cdc13

PP Cdc25

Slp1 Wee1/Mik1

Cdc2/Cdc13*

Figure 7.2: Fission yeast cell cycle
regulation model from [4]

The pathway models of yeast cells depicted in Figure 7.1 resp. Figure 7.2 are taken from
[14] resp. [4]. The fixed points of the models are stated already in these papers and are
given in the tables below. The table entry 0, 1 resp. − represents false, true resp.
dontcare, like in the output tables introduced in Chapter 5. The fixed points were
computed using exhaustive search according to the transition function above, where the
transition function in [4] was slightly adjusted to some particular species.

The fixed points of the budding yeast model depicted in Figure 7.1 according to [14]:
Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1

0 0 1 1 0 0 0 0 0 0 0
0 - 0 0 - 0 0 0 1 0 0
0 0 0 0 - 0 0 0 - 0 0

The fixed points of the fission yeast model depicted in Figure 7.2 according to [4]:
SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/Cdc13* Wee1/Mik1 Cdc25 PP

0 0 - 1 0 0 - - 0
0 0 1 - 0 0 - - 0

The fixed states of these models interpreted as models with the semantics presented
in this work are given below. Because of different semantics of the model actions, the
resulting stable configurations differ from each other as well. The different modelling
approaches cannot be converted into one another in a simple and obvious way. Pathway
models must be transformed manually into the other model semantics.

The fixed states of the budding yeast model depicted in Figure 7.1:
Cln3 MBF SBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1

0 0 0 0 - 0 0 0 - 0 0

The fixed states of the fission yeast model depicted in Figure 7.2:
SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/Cdc13* Wee1/Mik1 Cdc25 PP

0 0 - - 0 0 - 0 0

44

Nevertheless, the two yeast pathways indicate that fixed states of such small models can
be found efficiently with the modelling approach from in this work. The fixed points for
both models were determined by the Prolog implementation presented in the Chapters
3-5 in just a few minutes each on a desktop computer.

45

46

Chapter 8

Conclusion and Outlook

This work presented a boolean modelling approach for pathways of biological cells. The
foundation of the models is the intuition that every object of research in a cell can be
regarded as a process, which is occuring or not occuring at a certain point of time.
The processes of research interest are abstracted by the actions of the model, where
dependencies between processes are expressed in actions as well.

The specified semantics of a model’s actions are immediately expressed in boolean formu-
lae. These formulae are considered as a SAT instance. Every satisfying assignment of the
SAT instance corresponds to a fixed state of the model which represents an equilibrium
situation of the modelled cell. In order to verify a model, measured configurations of
the cell at equilibrium are compared against the fixed states of the model. It has been
shown how models can be encoded and transformed into SAT instances in Prolog and
how fixed states can be determined.

When a measurement is not compatible with a model, a Max-SAT solver can find sub-
models with the least number of contradicted actions. For that purpose a Prolog Max-
SAT solver was presented. This approach could be improved further by specifying a
number indicating the certainty for every stated action in the model. Dependencies
between proteins which were already asserted in several studies would get a high number,
whereas new claims recieve a low number. A suitable solver can treat the resulting
Weighted-Max-SAT instance.

Prolog proved to be useful and easy to use for SAT solving when all possible satisfying
assignments are required. The Prolog SAT solver from [9] can be enhanced to a Max-
SAT solver by additional predicates, but without changing the original solver. The
presented implementation for finding fixed states of pathway models benefits from the
use of higher-order predicates that are already built-in in SWI-Prolog. More about
higher-order programs in logic programming can be found in [17].

Some possiblities, but also limitations were outlined for predicting the cell’s dynamic
behaviour with the presented approach. The models are not suitable for a reliable
prediction of dynamic behaviour.

47

The comparison with another pathway model showed that the semantics of other mod-
elling approaches cannot be simulated easily with the approach presented in this work.

48

Bibliography

[1] U. Alon (2007). Network motifs: theory and experimental approaches. Nature
Review Genetics, Vol. 8, pp. 450-461, doi:10.1038/nrg2102.

[2] G. Arellano (2011). “Antelope”: a hybrid-logic model checker for branching-
time Boolean GRN analysis. BMC Bioinformatics, Vol. 12, Issue 1, pp. 490-504,
doi:10.1186/1471-2105-12-490.

[3] L. Calzone, F. Fages and S. Soliman (2006). BIOCHAM: an environment for
modeling biological systems and formalizing experimental knowledge. Bioinfor-
matics, Vol. 22, Issue 14, pp. 1805-1807, doi:10.1093/bioinformatics/btl172.

[4] M. I. Davidich and S. Bornholdt (2008). Boolean Network Model Pre-
dicts Cell Cycle Sequence of Fission Yeast. PLoS ONE, Vol. 3, Issue 2,
doi:10.1371/journal.pone.0001672.

[5] M. Davis, G. Logemann and D. Loveland (1962). A Machine Program for
Theorem-Proving. Communications of the ACM, Vol. 5, Issue 7, pp. 394-397,
doi:10.1145/368273.368557.

[6] W. F. Dowling and J. H. Gallier (1984). Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Programming,
Vol. 1, Issue 3, pp. 267–284, doi:10.1016/0743-1066(84)90014-1.

[7] E. Dubrova and M. Teslenko (2011). A SAT-Based Algorithm for Comput-
ing Attractors in Synchronous Boolean Networks. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, Vol. 8, Issue 5, pp. 1393-1399,
doi:10.1109/TCBB.2010.20.

[8] A. Horn (1951). On Sentences Which are True of Direct Unions of Algebras.
The Journal of Symbolic Logic, Vol. 16, No. 1, pp. 14-21, doi:10.2307/2268661.

[9] J. M. Howe and A. King (2010). A Pearl on SAT Solving in Prolog. 10th
International Symposium on Functional and Logic Programming, Vol. 6009,
pp. 165-174, doi:10.1007/978-3-642-12251-4˙13.

49

[10] B. Jaumard and B. Simeone (1987). On the complexity of the maximum sat-
isfiability problem for Horn formulas. Information Processing Letters, Vol. 26,
Issue 1, pp. 1-4, doi:10.1016/0020-0190(87)90028-7.

[11] H. de Jong (2002). Modeling and simulation of genetic regulatory systems: A
literature review. Journal of Computational Biology, Vol. 9, Issue 1, pp. 67-103,
doi:10.1089/10665270252833208.

[12] E. Klipp et. al. (2009). Systems Biology. Wiley-VCH.

[13] M. Kwiatkowska, G. Norman and D. Parker (2010). Advances and
Challenges of Probabilistic Model Checking. 48th Annual Allerton Con-
ference on Communication, Control, and Computing, pp. 1691-1698,
doi:10.1109/ALLERTON.2010.5707120.

[14] F. Li (2004). The yeast cell-cycle network is robustly designed. PNAS, Vol. 101,
No. 14, pp. 4781-4786, doi:10.1073/pnas.0305937101.

[15] E. J. McCluskey (1956). Minimization of Boolean functions. The Bell System
Technical Journal, Vol. 35, No. 5, pp. 1417-1444.

[16] M. W. Moskewicz (2001). Chaff: Engineering an Efficient SAT Solver. Pro-
ceedings of the 38th annual Design Automation Conference (DAC 2001),
pp. 530-535, doi:10.1145/378239.379017.

[17] L. Naish (1996). Higher-order logic programming in Prolog. Available at
http://ww2.cs.mu.oz.au/~lee/papers/ho/, last visited 10/05/2013.

[18] National Human Genome Institute (2012). Biological Pathways (Fact Sheet).
Available at http://www.genome.gov/27530687, last visited 10/05/2013.

[19] A. Regev and E. Shapiro (2002). Cellular abstractions: Cells as Computation.
Nature, Vol. 419, Issue 6905. pp. 343.

[20] O. Shoval and U. Alon (2010). SnapShot: Network Motifs. Cell, Vol. 143, Issue
2, pp. 326-326.e1, doi:10.1016/j.cell.2010.09.050.

[21] P. Smolen, D. A. Baxter and J. H. Byrne (2000). Mathemati-
cal Modeling of Gene Networks. Neuron, Vol. 26, pp. 567-580,
doi:10.1016/S0896-6273(00)81194-0.

[22] B. Snel et. al. (2000). STRING: a web-server to retrieve and display the re-
peatedly occurring neighbourhood of a gene. Nucleic Acids Research, Vol. 28,
No. 18, pp. 3442-3444, doi:10.1093/nar/28.18.3442.

[23] R. Thomas and R. D’Ari (1990). Biological Feedback. CRC Press.

50

http://ww2.cs.mu.oz.au/~lee/papers/ho/
http://www.genome.gov/27530687

[24] A. Tiwari et. al. (2007). Analyzing Pathways using SAT-based Approaches. Pro-
ceedings of the 2nd international conference on Algebraic biology, Vol. 4545,
pp. 155-169, doi:10.1007/978-3-540-73433-8˙12.

51

52

Appendix: Prolog source code

%------[SAT-Solver by J. Howe and A. King]------

2 % J. M. Howe and A. King (2010). A Pearl on SAT Solving in Prolog.

% 10th International Symposium on Functional and Logic Programming,

4 % Vol. 6009, p. 165-174, doi:10.1007/978-3-642-12251-4 13.

% available at http://www.soi.city.ac.uk/~jacob/solver/index.html

6

initialise(_).

8

search(Clauses, Vars, Sat, _) :-

10 sat(Clauses, Vars),

!,

12 Sat = true.

search(_Clauses, _Vars, false, _).

14

sat(Clauses, Vars) :-

16 problem_setup(Clauses), elim_var(Vars).

18 elim_var([]).

elim_var([_Label:Var | Vars]) :-

20 elim_var(Vars), (Var = true; Var = false).

22 problem_setup([]).

problem_setup([_Label:Clause | Clauses]) :-

24 clause_setup(Clause),

problem_setup(Clauses).

26

clause_setup([Pol-Var | Pairs]) :- set_watch(Pairs, Var, Pol).

28

set_watch([], Var, Pol) :- Var = Pol.

30 set_watch([Pol2-Var2 | Pairs], Var1, Pol1) :-

when((nonvar(Var1);nonvar(Var2)),watch(Var1, Pol1, Var2, Pol2, Pairs)).

32

watch(Var1, Pol1, Var2, Pol2, Pairs) :-

34 nonvar(Var1) ->

update_watch(Var1, Pol1, Var2, Pol2, Pairs);

36 update_watch(Var2, Pol2, Var1, Pol1, Pairs).

53

38 update_watch(Var1, Pol1, Var2, Pol2, Pairs) :-

Var1 == Pol1 -> true; set_watch(Pairs, Var2, Pol2).

40

42

44

%------[Max-SAT-Solver]------

46 max_sat(Clauses, Vars, Satisfied, Unsatisfied) :-

gen_subset(Clauses, Satisfied, Unsatisfied),

48 sat_unsat(Vars, Satisfied, Unsatisfied).

50 max_sat_minimized(Clauses, Vars, Satisfied, Unsatisfied, Sat_Assignments) :-

gen_subset(Clauses, Satisfied, Unsatisfied),

52 findall(Vars,

sat_unsat(Vars, Satisfied, Unsatisfied),

54 Sat_Assignments_),

Sat_Assignments_ \== [],

56 simplify_assignments(Sat_Assignments_, Sat_Assignments).

58

range(X, _Y, X).

60 range(X, Y, Z) :- X>Y, X1 is X-1, range(X1, Y, Z).

range(X, Y, Z) :- X<Y, X1 is X+1, range(X1, Y, Z).

62

subset([],[],[]).

64 subset([E|R], [E|Xs], Ys) :- subset(R, Xs, Ys).

subset([E|R], Xs, [E|Ys]) :- subset(R, Xs, Ys).

66

gen_subset(R, X, Y) :-

68 length(R, K),

range(K, 0, N),

70 M is K - N,

length(X, N),

72 length(Y, M),

subset(R, X, Y).

74

76 unsat(true-Var) :- Var = false.

unsat(false-Var) :- Var = true.

78 unsatisfied(_Label:Clause) :- maplist(unsat, Clause).

80 sat_unsat(Vars, Satisfied, Unsatisfied) :-

maplist(unsatisfied, Unsatisfied),

82 sat(Satisfied, Vars).

84

simplify_assignments(Assignments, Simplified) :-

86 merge_assignments(Assignments, Merged),

54

del_implied_vars(Merged, Simplified_),

88 list_to_set(Simplified_, Simplified).

90 merge_assignments([], []) :- !.

merge_assignments(Assignments, Merged) :-

92 merge_assignments_(Assignments, Merged_Step),

merge_assignments(Merged_Step, Merged_Rest),

94 append(Assignments, Merged_Rest, Merged).

merge_assignments_([], []) :- !.

96 merge_assignments_([X|Assignments], Merged) :-

findall(X_Y,

98 (member(Y, Assignments), merge_vars(X, Y, X_Y)),

Merged_Current),

100 merge_assignments_(Assignments, Merged_Rest),

append(Merged_Current, Merged_Rest, Merged).

102

merge_vars([Label:Var|Assignments1], [Label:Var|Assignments2], [Label:Var|Merged]) :-

104 !, merge_vars(Assignments1, Assignments2, Merged).

merge_vars([Label:_|Merged], [Label:_|Merged], [Label:dontcare|Merged]) :- !.

106

del_implied_vars([M|Merged], [M|Simplified]) :-

108 forall(member(M0, Merged), not(merge_vars(M, _, M0))),

!, del_implied_vars(Merged, Simplified).

110 del_implied_vars([_|Merged], Simplified) :-

!, del_implied_vars(Merged, Simplified).

112 del_implied_vars([], []).

114

116

118 %------[Pathway Model encoding]------

:- op(500, xfy, ’-->’).

120 :- op(500, xfy, ’--/’).

:- op(500, xfy, ’-<>’).

122 :- op(500, xfy, ’-><’).

:- op(500, xfy, ’--?’).

124

action(X-->(Y), X, Y).

126 action(X--/(Y), X, Y).

action(X-<>(Y), X, Y).

128 action(X-><(Y), X, Y).

action(X--?(Y), X, Y).

130

composite_action(A) :- action(A, _, _).

132

134 valid_model(_Species, []) :- !.

valid_model(Species, [Term|Actions]) :-

55

136 valid_term(Species, Term), !,

valid_model(Species, Actions).

138

valid_term(Species, Action) :-

140 action(Action, X, Y),

member(X, Species),

142 (member(Y, Species);

valid_term(Species, Y)), !.

144

146

148

%------[Model-to-SAT transformation]------

150 create_sat(Free_Actions, Unfolded_Actions, Species_vars, Actions_vars, Vars, Clauses) :-

extract_species(Free_Actions, Species),

152 create_vars(Species, Species_vars),

unfold_actions(Free_Actions, Unfolded_Actions),

154 create_vars(Unfolded_Actions, Actions_vars),

append(Species_vars, Actions_vars, Vars),

156 maplist(create_clauses(Species_vars, Actions_vars),

Unfolded_Actions, Clauses0),

158 flatten(Clauses0, Clauses), !.

160

extract_species(Actions, Species) :-

162 extract_species_(Actions, Species0),

list_to_set(Species0, Species).

164 extract_species_([on-<>(T)|Actions], Species) :-

extract_species_([T|Actions], Species), !.

166 extract_species_([off-<>(T)|Actions], Species) :-

extract_species_([T|Actions], Species), !.

168 extract_species_([Act|Actions], [S|Species]) :-

action(Act, S, T), extract_species_([T|Actions], Species), !.

170 extract_species_([S|Actions], [S|Species]) :-

extract_species_(Actions, Species), !.

172 extract_species_([], []).

174

unfold_actions(Actions, Unfolded) :-

176 unfold_actions_(Actions, Unfolded0),

list_to_set(Unfolded0, Unfolded), !.

178 unfold_actions_([S--?(T)|Actions], [S--?(T),S-->(T),S--/(T)|Unfolded]) :-

unfold_actions_([T|Actions], Unfolded), !.

180 unfold_actions_([A|Actions], [A|Unfolded]) :-

action(A, _S, T), unfold_actions_([T|Actions], Unfolded), !.

182 unfold_actions_([_|Actions], Unfolded) :-

unfold_actions_(Actions, Unfolded), !.

184 unfold_actions_([], []).

56

186

create_var(Label, Label:V) :- nonvar(Label), var(V).

188 create_vars(As, Vars) :- maplist(create_var, As, Vars).

190

% s-->X (s enhances X)

192 create_clauses(Species_vars, Actions_vars, S-->(X), Clauses) :-

var_of(Species_vars, S, Var_S),

194 var_of(Actions_vars, S-->(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

196 Clauses = [S-->(X):[false-Var_S,false-Var_A,true-Var_X]].

% a--/X (a inhibits X)

198 create_clauses(Species_vars, Actions_vars, S--/(X), Clauses) :-

var_of(Species_vars, S, Var_S),

200 var_of(Actions_vars, S--/(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

202 Clauses = [S--/(X):[false-Var_S,false-Var_A,false-Var_X]].

% on-<>X (X is on)

204 create_clauses(Species_vars, Actions_vars, on-<>(X), Clauses) :-

var_of(Actions_vars, on-<>(X), Var_A),

206 var_of(Species_vars, Actions_vars, X, Var_X),

Clauses = [on-<>(X):[false-Var_A, true-Var_X]].

208 % off-<>X (X is off)

create_clauses(Species_vars, Actions_vars, off-<>(X), Clauses) :-

210 var_of(Actions_vars, off-<>(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

212 Clauses = [off-<>(X):[false-Var_A, false-Var_X]].

% a-<>X (a controls X enhancing)

214 create_clauses(Species_vars, Actions_vars, S-<>(X), Clauses) :-

var_of(Species_vars, S, Var_S),

216 var_of(Actions_vars, S-<>(X), Var_A),

var_of(Species_vars, Actions_vars, X, Var_X),

218 Clauses = [S-<>(X):[false-Var_A,false-Var_S, true-Var_X],

S-<>(X):[false-Var_A, true-Var_S,false-Var_X]].

220 % a-><X (a uncontrols X inhibiting)

create_clauses(Species_vars, Actions_vars, S-><(X), Clauses) :-

222 var_of(Species_vars, S, Var_S),

var_of(Actions_vars, S-><(X), Var_A),

224 var_of(Species_vars, Actions_vars, X, Var_X),

Clauses = [S-><(X):[false-Var_A,true-Var_S, true-Var_X],

226 S-><(X):[false-Var_A, false-Var_S,false-Var_X]].

% a--?X (a enhances or inhibits X)

228 create_clauses(_Species_vars, Actions_vars, S--?(X), Clauses) :-

var_of(Actions_vars, S--?(X), Var_Aq),

230 var_of(Actions_vars, S-->(X), Var_Ae),

var_of(Actions_vars, S--/(X), Var_Ai),

232 Clauses = [S--?(X):[false-Var_Aq,true-Var_Ae,true-Var_Ai],

S--?(X):[false-Var_Aq,false-Var_Ae,false-Var_Ai]].

57

234

236 var_of([X:V|_Vars], X, V) :- !.

var_of([_|Vars], X, V) :- var_of(Vars, X, V), !.

238

var_of(_Species_vars, Actions_vars, X, V) :- composite_action(X),

240 var_of(Actions_vars, X, V), !.

var_of(Species_vars, _Actions_vars, X, V) :- var_of(Species_vars, X, V).

242

244

246

%------[Finding a model’s fixed states]------

248 fixed_states(Free_Actions, Fixed_States, Unsatisfied_Actions) :-

create_sat(Free_Actions, _Unfolded_Actions,

250 _Species_vars, Actions_vars, Vars, Clauses),

init_free_actions(Free_Actions, Actions_vars),

252 max_sat_minimized(Clauses, Vars,

_Satisfied_Clauses, Unsatisfied_Clauses, Fixed_States),

254 maplist(label, Unsatisfied_Actions, _, Unsatisfied_Clauses).

256 init_free_actions(Free_Actions, A_vars) :- maplist(init_action(A_vars), Free_Actions).

init_action(_A_vars, Action) :- not(composite_action(Action)).

258 init_action(A_vars, Action) :- var_of(A_vars, Action, true).

260

label(Label, Var, Labeled_Var) :- Labeled_Var = Label:Var.

262

264

266

%------[Output in table]------

268 space_string(0, ’’) :- !.

space_string(Length, String) :-

270 Length1 is Length - 1,

space_string(Length1, String1),

272 string_concat(’ ’, String1, String).

274 var_specification(Label, Specification) :-

atom_length(Label, LabelLength),

276 PaddingLength is div(LabelLength - 1, 2) + 1,

space_string(PaddingLength, Padding),

278 B is mod(LabelLength + 1, 2),

space_string(B, Padding1),

280 string_concat(Padding, Padding1, Specification1),

string_concat(Specification1, ’~s’, Specification2),

282 string_concat(Specification2, Padding, Specification3),

58

string_concat(Specification3, ’|’, Specification).

284

state_specification(Species, Specification) :-

286 state_specification_(Species, Specification1),

string_concat(Specification1, ’~n’, Specification).

288 state_specification_(Species, Specification) :-

maplist(term_to_atom, Species, AtomLine),

290 maplist(var_specification, AtomLine, Specification1),

foldr(string_concat, Specification1, ’’, Specification).

292

foldr(_F, [], V0, V0).

294 foldr(F, [X|Xs], V0, V) :- foldr(F, Xs, V0, V1), call(F, X, V1, V), !.

296 head_specification([], ’’) :- !.

head_specification([_|Species], Specification) :-

298 head_specification(Species, Specification1),

string_concat(’ ~w |’, Specification1, Specification).

300

label_of(Label:_Var, Label).

302 var_of(_Label:Var, Var).

304 var_to_symbol(true, ’1’).

var_to_symbol(false, ’0’).

306 var_to_symbol(dontcare, ’-’).

308 print_assignments(Assignments) :-

Assignments = [FirstAssignment|_],

310 maplist(label_of, FirstAssignment, Species),

head_specification(Species, HeadSpecification),

312 state_specification(Species, StateSpecification),

format(HeadSpecification, Species),

314 format(’~n’),

maplist(print_assignment(StateSpecification), Assignments).

316

print_assignment(StateSpecification, Assignment) :-

318 maplist(var_of, Assignment, Vars1),

maplist(var_to_symbol, Vars1, Vars),

320 format(StateSpecification, Vars).

59

	Introduction
	Qualitative Pathway Model
	Motivation and Modelling goals
	Model Syntax
	Model Semantics
	Network Motifs
	Expressing Model Semantics as a SAT instance

	Model-to-SAT transformation in Prolog
	Encoding pathway models
	Encoding SAT instances
	Creating SAT instances

	Max-SAT solving in Prolog
	Extending a regular SAT solver to a Max-SAT solver
	Simplifying SAT assignments

	Finding Fixed States
	Dynamic Behaviour
	Prediction of Dynamic Behaviour
	Oscillations

	Comparison
	Conclusion and Outlook
	Bibliography

