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Checking Probabilistic Noninterference
Using JOANA

Gregor Snelting, Dennis Giffhorn, Jürgen Graf, Christian Hammer, Martin Hecker, Martin Mohr, Daniel Wasserrab

Abstract: JOANA is a tool for software security analysis, checking up to 100kLOC of
full multi-threaded Java. JOANA is based on sophisticated program analysis techniques
and thus very precise. It includes a new algorithm guaranteeing probabilistic
noninterference, named RLSOD. JOANA needs few annotations and has a nice GUI.
The tool is open source and was applied in several case studies. The article presents an
overview of JOANA and its underlying technology.
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Program analysis; General and reference → Verification; Software and its engineering →
Software verification and validation
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1 Overview

Classical software security techniques, such as certi-
ficates, do not analyse the actual behaviour of pro-
grams and thus cannot provide guarantees about inte-
grity and confidentiality of software. Information flow
control (IFC) is an additional fine-grained analysis of
software source or machine code, which uncovers all se-
curity leaks, or provides a true guarantee about integri-
ty resp. confidentiality. IFC is typically based on some
notion of noninterference, which demands that public
behaviour is not influenced by secret data and thus
guarantees confidentiality.1 Many noninterference cri-
teria have been proposed, and many IFC analysis algo-
rithms constructed; these vary widely in features such
as soundness (“all leaks guaranteed to be found”), pre-
cision (“no false alarms”), scalability (“big programs”),
language (“full Java”), usability (“few annotations”),
compositionality (“modular analysis”), and others.
JOANA is an IFC tool developed at KIT. JOANA is
available for public download, or can be used by eve-
rybody through a Java webstart GUI.2 The engineer
must provide Java sources to be analysed, where all
input and output statements are annotated “high” (se-
cret) or “low” (public)3 – other statements do not need
annotations. JOANA can handle full Java bytecode

1 Integrity is dual to confidentiality, thus in the following we
only discuss the latter. JOANA can handle both.
2 joana.ipd.kit.edu provides download, webstart application,
and other information
3 In fact JOANA allows arbitrary lattices of security levels.

with arbitrary threads, scales to ca. 100kLOC, and em-
pirically demonstrated high precision [12, 11, 10]. JO-
ANA is based on a stack of sophisticated program ana-
lysis algorithms (pointer analysis, exception analysis,
program dependence graphs). JOANA minimizes false
alarms through flow-, context-, object-, field-, time-,
and lock-sensitive analysis techniques. JOANA allows
declassification along sequential information flows. In
concurrent programs, all possibilistic and probabilistic
leaks are discovered. JOANA comes with a soundness
proof; the soundness proof for the sequential part was
machine-checked in Isabelle [31, 30]. JOANA was used
in realistic case studies such as [18, 17]. Practical app-
lication is described in detail in [7].
In the following, we will summarize experiences with
JOANA, and sketch the underlying technology. In-
depth descriptions of the latter can be found in [12, 6].

2 Application of JOANA

Figure 1 shows the JOANA plugin for Eclipse. In the
source code window, the full source for example (1)
from Figure 2 can be seen. Security level annotations
for input and output are added, as well as a declas-
sification of x in the IF condition. Once the analysis
is activated, illegal flows are highlighted in the source
code. In the example, the illegal flow from the secret
inputPIN via x via y to the public print(y) can be
seen; due to the declassification, the flow to print(0)
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Figure 1: JOANA screenshot demonstrating classification, de-
classification, and illegal flow.

has been suppressed (these flows are explained in mo-
re detail in section 3). Full details on an illegal flow
are available on demand. JOANA offers various opti-
ons for analysis precision (e.g. object-sensitive points-
to analysis, time-sensitive backward slicing). JOANA
analyses Java bytecode and uses IBM’s WALA analy-
sis frontend; recently, a frontend for Android bytecode
was added.
JOANA was able to provide security guarantees for
several examples from the literature which are consi-
dered difficult, such as the EuroStoxx program in [20].
More interesting is perhaps the successful analysis of
an experimental e-voting system developed by Küsters
et al [18]. In a scalability study, the full source code of
the HSQLDB database was analysed; analysis needed
one day on a standard PC. Industrial applications are
in preparation.

3 Probabilistic Noninterference

IFC for sequential programs must discover explicit and
implicit leaks, which arise if (parts of) secret values are
copied to public variables, resp. if secret values influ-
ence control flow (see example (1) in Figure 2). IFC
for multi-threaded programs is much more challenging,
as it must additionally prevent possibilistic or proba-
bilistic information leaks. Both types of leaks depend
on the interleaving of concurrent threads: possibilistic
leaks may or may not occur depending on a specific in-
terleaving, while probabilistic leaks exploit the proba-
bility distribution of interleaving orders. Example (2)
in Figure 2 has a possibilistic leak, e.g., for interlea-
ving order 5, 8, 9, 6, which causes the secret PIN to be
printed on public output. Example (3) has no possibi-

listic channel leaking PIN information. But the PIN’s
value may alter the probabilities of public outputs, be-
cause the running time of the loop may influence the
interleaving order of the two assignments to x.
Most IFC approaches check some form of noninterfe-
rence, and to this end classify program variables, in-
put and output as high (secret) or low (public). Non-
interference in its simplest form then demands that
variations in secret input data do not cause varia-
tions in public output data (“low-equivalent inputs
cause low-equivalent outputs”) [23]. For concurrent
programs with threads, Probabilistic Noninterference
(PN) [27, 25, 24, 26, 19] is the established security
criterion. PN explicitly allows nondeterminism in pro-
grams and demands that the probability of any obser-
vable behaviour is not influenced by secret values.4 It
is difficult to guarantee PN, as an IFC must in prin-
ciple check all possible interleavings and their impact
on execution probabilities.
One specific form of PN however is scheduler in-
dependent: Low-Security Observational Determinism
(LSOD) demands that for a program which runs on
two low-equivalent inputs, all possible traces are low-
equivalent [22, 32, 14]. The following criterion is suffi-
cient to guarantee LSOD and hence PN [32, 5]: 1. pro-
gram parts contributing to low-observable behaviour
are free of execution order conflicts, i.e. there is no low
nondeterminism; 2. implicit or explicit flows do not
leak high data to low-observable behaviour. Schedu-
ler independence is a big practical advantage, but note
that LSOD will absolutely prohibit any (even secure)
low-nondeterminism.

4 IFC Algorithms

IFC algorithms check noninterference for a given pro-
gram. For sequential programs, many IFC algorithms
have been published, and several tools are available
(see section 10). However not all algorithms can hand-
le full sequential Java (or C), and some are rather
imprecise and cause many false alarms. In particular,
context-insensitive algorithms cause false alarms be-
cause they merge different calls to the same procedure
(example (4) in Figure 2), and flow-insensitive algo-
rithms cause false alarms because they ignore state-
ment order (example (5) in Figure 2). For object-
oriented programs, object- and field-sensitivity are si-
milarly important [12]. Many security type systems
used for IFC (such as [27] and its various successors)
are however flow- and/or context-insensitive and will
reject examples (4) and/or (5). The type system in [15]
is flow-sensitive, but not context-sensitive.
For multi-threaded programs, various algorithms ha-
ve been proposed which check probabilistic noninterfe-

4 Due to lack of space, we cannot explain the rather intricate
technical definitions and issues of PN
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(1)
1 void main ( ) :
2 x = inputPIN ( ) ;
3 // inputPIN i s
4 // s e c r e t
5 i f ( x < 1234)
6 pr in t ( 0 ) ;
7 y = x ;
8 pr in t ( y ) ;
9 // p u b l i c output

(2)
1 void main ( ) :
2 f o rk thread_1 ( ) ;
3 f o rk thread_2 ( ) ;
4 void thread_1 ( ) :
5 x = input ( ) ;
6 pr in t ( x ) ;
7 void thread_2 ( ) :
8 y = inputPIN ( ) ;
9 x = y ;

(3)
1 void main ( ) :
2 f o rk thread_1 ( ) ;
3 f o rk thread_2 ( ) ;
4 void thread_1 ( ) :
5 x = 0 ;
6 pr in t ( x ) ;
7 void thread_2 ( ) :
8 y = inputPIN ( ) ;
9 while ( y != 0)

10 y−−;
11 x = 1 ;

(4)
1 void main ( ) :
2 h = inputPIN ( ) ;
3 l = 2 ;
4 // l i s p u b l i c
5 x = f (h ) ;
6 y = f ( l ) ;
7 pr in t ( y ) ;
8

9 int f ( int x )
10 {return x+42;}

(5)
1 void main ( ) :
2 f o rk thread_1 ( ) ;
3 f o rk thread_2 ( ) ;
4 void thread_1 ( ) :
5 l = 42 ;
6 h = inputPIN ( ) ;
7 void thread_2 ( ) :
8 pr in t ( l ) ;
9 l = h ;

Figure 2: Small but typical leaks and precision problems. Programs 1 – 3 leak secret data to public output. (1) Explicit and implicit
leaks, (2) possibilistic leak, (3) probabilistic leak. Programs 4 and 5 are secure, but only a precise analysis will see this. (4) context-
insensitive analysis will generate a false alarm because calls to f are merged, (5) flow-insensitive analysis will generate false alarm
because statement order in thread_2 is ignored.

rence, e.g. [27, 25, 32, 14]. Unfortunately, most of these
algorithms eventually turned out to be very restrictive,
or had soundness problems. For example, [27] does not
work with round-robin scheduling, [32] had a sound-
ness leak, and [14] does not allow low statements after
loops with high guards (and thus will reject almost any
practical program).

IFC based on program dependence graphs (PDGs)
was introduced because PDGs are naturally flow- and
context-sensitive [12]. This not only improves preci-
sion for sequential IFC, but also avoids the above-
mentioned problems with PN algorithms. Figure 3
presents two example PDGs. Nodes represent program
statements or expressions, edges represent data depen-
dencies, control dependencies, or inter-thread data de-
pendencies. We will not discuss PDG details; it is suf-
ficient to know the Slicing Theorem:

Theorem [13]. If there is no PDG path a →∗ b, it
is guaranteed that there is no information flow from
statement a to statement b in any program run.

Thus all statements which might influence a specific
program point are those on backward paths from this
point (the so-called “backward slice”). The PDG can
be used to check whether there are any explicit or im-
plicit leaks; technically it is required that no high sour-
ce is in the backward slice of a low sink. This criterion
is enough to guarantee sequential noninterference.

Note that the slicing theorem does not cover physical
side channels such as power consumption profiles, nor
does it cover corrupt schedulers or defect hardware; it
only covers “genuine” program behaviour. There are
stronger versions of the theorem, which consider only
paths which can indeed be dynamically executed (“rea-
lizable” paths); these make a big difference in precision
e.g. for programs with procedures or threads.

The construction of precise PDGs for full languages
is absolutely nontrivial and requires additional infor-
mation such as points-to analysis and exception ana-
lysis [12]; there is an abundant literature on PDG
construction. C. Hammer was the first to introduce

object- and field-sensitive PDGs for Java [10]. J. Krinke
and D. Giffhorn provided precise algorithms for multi-
threaded PDGs [5]. Today PDGs for full Java or C can
handle several hundred thousand LOC.

5 The RLSOD Criterion

D. Giffhorn demonstrated that flow-sensitivity is the
key to eliminate the above-mentioned problems with
PN algorithms, and proposed a new noninterference
criterion in the LSOD tradition. The criterion is cal-
led Relaxed Low-Security Observational Determinism
(RLSOD) and is based on PDGs for multi-threaded
programs. RLSOD is termination insensitive5, but
flow- context- and object-sensitive. From a practical
viewpoint, we believe that these features are more im-
portant than termination sensitivity. RLSOD will in
particular allow secure low-nondeterminism, while gua-
ranteeing soundness.
To understand RLSOD, consider Figure 3 (right),
which presents the PDG for Figure 2 (5). inputPIN
is annotated low, and print is annotated high. The
security level of all other PDG nodes is computed by a
fixpoint iteration [12]. RLSOD first checks for explicit
or implicit leaks, exploiting the slicing theorem. The-
re is no path from “l=h;” to “print(l);”; and hence
no path from “inputPIN()” to “print(l);”. Therefo-
re it is guaranteed that the printed value of l is not
influenced by the secret inputPIN. More technically,
statement “l=h;” is not considered low-observable and
does not contribute to public behaviour; this is a con-
sequence of the fact that in the PDG-based approach –
due to flow-sensitivity – variables are not globally clas-
sified as secret or public (for details, see [6, 12]). Hence
the example does not contain explicit or implicit leaks.
For probabilistic noninterference, according to LSOD
one must additionally show that public output is not

5 Due to lack of space, we cannot discuss the subtleties of ter-
mination sensitivity in connection with (R)LSOD; see [6, 5]
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int x , y ;

void thread_1 ( ) :

x = y + 1 ;
y = 0 ;

void thread_2 ( ) :
a = y ;
x = <input >;
i f a > 0

b = 0 ;
else

y = 0 ;

thread_2

a > 0

a = y

b = 0

thread_1

control dep.

data dep.

interference dep.

x yx y y x

x = y + 1

x

y = 0

y = 0

x = <input>

y

thread_1 thread_2

l = h

l = 0 print(l)

h = inputPIN()

interference dependence
control dependence

Figure 3: Left/middle: Example for a multi-threaded program and its PDG (from [6]). The backward slice of y=0 is shaded. Right:
PDG for program (5) in Figure 2. The backward slice of print(l) is shaded.

influenced by execution order conflicts such as data ra-
ces [32, 6]. This can again be checked using PDGs and
an additional analysis called “May happen in paral-
lel” (MHP); the latter will uncover potential execution
order conflicts or races. The complex technical details
and proofs can be found in [6, 5]. In the example there
are no possible execution order conflicts between secret
operations which may influence the print statement.
However statements l=42; and print(l) – which are
both classified low – can be executed in parallel, and
the scheduler nondeterministically decides which exe-
cutes first – resulting in either 42 or 0 to be printed.
Thus there is visible low nondeterminism, which is pro-
hibited by classical LSOD. The program however is se-
cure in the sense of PN (see [6] for a formal definition
of PN and a detailed analysis of this example).
RLSOD allows secure low-nondeterminism. Technical-
ly, RLSOD allows execution order conflicts between
low observable events, if these cannot be reached from
high events. The latter condition can easily be checked
in the multi-threaded control flow graph (CFG): if the-
re are no paths in the CFG from a high statement to
two different low statements which can be executed in
parallel, no execution will ever transport secret infor-
mation to the public nondeterminism. In the above ex-
ample, the execution order conflict between l=42; and
print(l) cannot be reached from high values. Hence
the RLSOD criterion is fulfilled, and the program is
guaranteed to be secure by JOANA. The example de-
monstrates that only the “R” optimization makes the
LSOD idea practically usable.

6 Soundness Proof

Informally, the soundness property is stated as follows.
Theorem. If the RLSOD criterion is fulfilled for a
program, it is probabilistically noninterferent.
Soundness is based on a simpler theorem for sequential
programs without threads:
Theorem. If no high data source is in the (context-
sensitive) backward slice of a low data sink, a program
is (sequentially) noninterferent.
Snelting’s original proof is in [28]. Later, Wasserrab
provided a machine-checked proof which relies on a
formal semantics for Java and PDGs [31, 30]. In [5, 6]
Giffhorn showed the following much stronger theorem

for multi-threaded programs and LSOD. It relies on
discovering data conflicts (i.e. for two statements which
can be executed in parallel, one writes a variable, and
the other uses the same variable) and order conflicts
(i.e. two low statements which can happen in parallel).
Theorem. If
1. no high source is in the (multi-threaded) backward

slice of a low sink;
2. statements which can happen in parallel (MHP) are

not both classified low;
3. for any low sink, no data conflict is in its backward

slice
then LSOD and hence PN holds. The resulting PDG-
based LSOD check is scheduler independent.
For the “R”LSOD optimization, a machine-checked so-
undness proof is in progress. RLSOD is independent of
scheduler policies. But note that a malicious scheduler
could make the execution order of some low events de-
pendent on high values, which under RLSOD might
create a leak, as in {h=0;||h=1;}; {l=0;||l=1;}.
The “R” optimization thus assumes, similar to [25],
that the scheduler does not depend on high data.

7 Modular Analysis

PDGs essentially depend on a whole-program analysis
which needs the complete source or byte code inclu-
ding libraries. In the scope of DFG priority program
“Reliably Secure Software Systems” we however deve-
loped a modular variant of PDGs which allows to per-
form IFC analysis on isolated components and adjusts
global PDG structure upon plug-in of a component.
PDGs for isolated components are based on conditio-
nal dependencies which are only valid if the plug-in
context fulfills some additional conditions, written as
component annotations. These conditions are boolean
expressions over may-alias properties at the plug-in si-
te (see example in Figure 4). Annotations induce a
partial order on component contexts:
C1 v C2 ≡ v1 mayAlias v2 in C1 ⇒ v1 mayAlias v2 in C2
The Monotonicity Property allows to guarantee IFC
properties for components without reanalyzing them
in a “smaller” context:

C1 v C2 ∧ component noninterferent in C2
⇒ component noninterferent in C1
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class A { int i ; }

@i fc : a l i a s ( a , b ) => b −> c
int t e s t (A a , A b ) :

int c = a . i +42;
return c ;

@i fc : ? => h −!−> v2 . i
void s e t (A v1 , A v2 , int h ) :

v1 . i = h ;

void main ( ) :
A v1 = new A( ) ;
A v2 = new A( ) ;
int h = inputPIN ( ) ; // s e c r e t
s e t ( v1 , v2 , h ) ;
p r i n t ( v2 . i ) ; // ok
v2 = v1 ;
s e t ( v1 , v2 , h ) ;
p r i n t ( v2 . i ) ; // l e a k

v1

set

v2h

i i

v1

v1.i = h

v1 alias v2control dep.
data dep.
conditional dep.

Figure 4: A small isolated component with annotations (left); corresponding modular PDG with conditional dependency (right).
JOANA can infer a sufficient condition that guarantees no flow from h to v2.i through the annotation “? => h -!-> v2.i”,
yielding ”?” ≡ ¬alias(v1, v2).

The monotonicity property is also used to infer suffi-
cient conditions on the context, which guarantee IFC
properties for a component. In Figure 4, method set()
may write the secret value of parameter h to v2.i de-
pending on the context it is called in; JOANA infers
that the component is safe if there is no may-alias bet-
ween v1 and v2. Details are described in [9].

8 Lock-sensitive Analysis

Recently, time-sensitive and lock-sensitive algorithms
have been added to JOANA. Both are expensive, but
can in difficult cases be activated on demand and eli-
minate more false alarms. Time sensitivity means that
only PDG paths are considered, which can indeed be
realized by a scheduler. Impossible execution orderings
(“time travel”) are excluded [6].
Lock sensitivity was investigated in a cooperation
with M. Müller-Olm, because the original JOANA
MHP analysis does not analyse explicit locks; it on-
ly analyses thread invocation structure (in a context-
sensitive manner [5]). For a fine-grained analysis of
locks, Müller-Olm’s Dynamic Pushdown Networks [4]
have been implemented for full Java and integrated in-
to MHP analysis. Experiments demonstrated that in-
deed spurious dependencies between threads disappe-
ar, but the precision improvement is moderate [8].

9 Future Work

For a better effect of lock-sensitivity, a precise must-
alias analysis for synchronization objects is necessary,
which is however notoriously difficult for Java. Another
possibility is to incorporate a technique called random
isolation [16]. Improving the “R” optimization will ena-
ble even more low-nondeterminism.
A topic for future work is IFC for distributed systems
with message passing. Such systems will be abundant
e.g. in future energy or traffic systems. Message pas-
sing opens a new can of worms, because even if mes-
sages are encrypted, analysis of message patterns can,
in combination with some brutal program analysis of

the source code, recover secret program data. This in-
teresting potential attack will be described in detail
elsewhere.

10 Related Work

JIF [21] is one of the oldest IFC tools, but requires a
special Java dialect and many annotations. The per-
haps commercially most successful tool is TAJ / An-
dromeda by IBM [29]. The tool discovers only explicit
leaks, but this restriction boosts scalability to milli-
ons of LOC. FlowDroid [1] does not handle probabi-
listic leaks, but offers good support for Android apps
and dynamically configured systems. Some tools such
as TaintDroid [3] perform a dynamic IFC at runtime.
Dynamic IFC cannot give guarantees, but effectively
finds many explicit leaks. Recently, combinations of
static and dynamic analysis have been investigated,
which seem promising for script languages [2].

11 Conclusion

Today, JOANA is one of the very few IFC tools
worldwide which can handle full Java with unlimited
threads, and – thanks to the underlying stack of sophi-
sticated program analysis – offers good precision and
scalability. We hope to be able to report industrial ap-
plications, as well as a full machine-checked proof for
RLSOD, in the near future.
Acknowledgements. JOANA was supported by
DFG (including DFG SPP 1496 “Reliably secure soft-
ware systems”) and BMBF in the scope of the software
security competence center KASTEL.
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