
No Type Stamps and No Structure Stamps |a Referentially-Transparent Higher-OrderModule LanguageFranz-Josef Grosch

@
Informatik-Bericht Nr. 95-05Juli 1995c
 Abteilung SoftwaretechnologieInstitut f�ur ProgrammiersprachenTechnische Universit�at BraunschweigGau�stra�e 17D-38106 BraunschweigGermany

No Type Stamps and No Structure Stamps {a Referentially-Transparent Higher-Order Module LanguageFranz-Josef Grosch�Abteilung SoftwaretechnologieTechnische Universit�at Braunschweig, GermanyAbstractA language for programming-in-the-large should sup-port architectural descriptions of an entire productline. The evaluation of programs-in-the-large shouldgenerate the architecture of individual products andshould link implementations-in-the-small to form anexecutable product. The Standard ML (SML) mod-ule language [20] could serve this task, but it is notreferentially transparent. Furthermore, it does notdistinguish between architectural and implementa-tional concerns.This paper presents a general module language thatis based on a typed �-calculus extended by systems.Overcoming SML's drawbacks, the module languagepermits syntactic control of type and structure gen-erativity resulting in referential transparency. Fur-thermore, splitting up architectural and implemen-tational concerns, the implementation of elementarymodules is not part of the module language. Themodule calculus is essentially simply typed, with el-ementary modules and types as simple values, andinterfaces and kinds as types. Function and systeminterfaces are value-dependent types.Key words: module language, ML, type systems1 IntroductionA main task in software engineering is to arrangemodules into a sensible system architecture. Todaya good architectural design should describe an en-tire product line in terms of a reference architecture[7]. The reference architecture should enable individ-ual product architectures to be instantiated, re�nedor generated. Following the observations that \pro-gramming languages are frozen software engineering�This work is funded by the Deutsche Forschungsgemein-schaft, grant Sn11/4-1. Author's current address: Techni-sche Universit�at Braunschweig, Abteilung Softwaretechnolo-gie, Gau�str. 17, D-38092 Braunschweig/Germany. E-mail:grosch@ips.cs.tu-bs.de.

knowledge"[13] and \programming-in-the-large is es-sentially typed functional programming" [27] a lan-guage for programming-in-the-large should generateindividual product architectures by the evaluation offunctional architectural programs.The Standard ML (SML) module language [20,19, 16] supports a functional style for programming-in-the-large: Structures are elementary components,functors are component-valued functions and signa-tures are component speci�cations. Large systemscan be built by successively applying component-valued functions to previously constructed compo-nents. This approach has successfully been used inthe development of large software systems [3, 6].The SML module language can serve as a modelfor a general module language, independent of theembedded implementation language [27]. However,it has some disadvantages:� it is not referentially transparent, and� programming-in-the-large is not clearly sepa-rated from implementing single components.Referential transparency and equational reasoningabout large systems are inhibited by the fact thatevery functor application generates a new structure.Thus, structure and type generativity may be re-garded as side-e�ects on the module level. They re-quire a rather complicated stamp-based semantics,especially in combination with higher-order functors[18].From a software-engineering point of view, archi-tectural concerns like de�ning interfaces and design-ing the system architecture should be completelyseparated from the implementation of single compo-nents. The module system of Modula-2 [30] supportsthis separation. Interfaces are de�ned in de�nitionmodules and the system architecture is designed byimport lists referring to module names. Completelyseparated, the implementations of single components
1

are contained in implementation modules. But, a sys-tem architecture in Modula-2 is frozen. SML's func-tors (parameterized modules) enable a
exible archi-tecture to be designed, but a functorized architec-ture cannot be de�ned without supplying implemen-tations; architectural and implementational concernsare mixed up.In this work we present a typed, referentially trans-parent and higher-order module language that mayserve as a general module language for several typedimplementation languages. Module programs de-scribe architectures for a product line. The evaluationof a module program generates a product architec-ture, and, if possible, links implementations in orderto form an executable program. The formal founda-tion for the module language is an extended typed�-calculus called the ��-calculus, which permits thesyntactic control of generativity. The typing is basedon dependent types [2, 29] due to manifest speci�ca-tions [10, 14, 15] in signatures. The calculus is es-sentially simply typed, with elementary modules andtypes as simple values, with elementary signaturesand kinds as simple types, and with value-dependentfunctions and systems as type constructors. Imple-mentations of elementary modules are not part of thecalculus, i. e. the calculus constitutes a separate layerabove any implementation language.1.1 Syntactic control of generativityWe now intuitively explain the syntactic control ofgenerativity using Core-SML as the paradigmatic im-plementation language. Partially adopting SML'sterminology, we call an elementary module a struc-ture and the interface for a structure a signature.The basis for our language is a typed lambda calcu-lus. The well-known identity function of the lambdacalculus (�x :T : x) becomes the identity function formodule expressions:module id =fun x: sigtype tval equal: t * t -> boolend-> xThe interface of parameter x must describe a struc-ture containing a type de�nition for t and a func-tion equal. Now assume there is a structure namedintOrd with a matching interface. Then every appli-cation (id intOrd) reduces to the same componentintOrd according to the usual �-conversion.intOrd is the name of a structure that is neitherfun-bound nor prede�ned. In order to bind such

components we introduce a second binding operatorcalled (system) declaration. Such a declaration intro-duces (dec) the name of a structure (or a type) andits interface description|very similar to a de�nitionmodule in Modula-2. The name can be used insidethe module expression following the back arrow <-.This module expression is called export part, becauseit allows the access to a system.module makeIntOrd =dec intOrd: sigtype t = intval less: t * t -> boolval equal: t * t -> boolend<- (id intOrd)Since (id intOrd) reduces to intOrd, the systemmakeIntOrd only declares the structure name intOrdand exports this structure. The module expression(id intOrd) is correctly typed, because the interfaceof intOrd is a subinterface of the required interfacefor the argument x, according to the usual notion ofmodule subtyping [10, 14].The normal form for makeIntOrd is a completemodule expression without any free identi�ers. In or-der to access the export part an additional constructbind is needed. For examplebind m to makeIntOrd in (id m)permits to use the export part of system makeIntOrdby the name m in the module expression (id m) fol-lowing keyword in. In order to prevent intOrd fromescaping its scope, the scope for intOrd is expanded:bind m to makeIntOrd in (id m)� bind m to(dec intOrd: sig .. end <- (id intOrd))in (id m)� dec intOrd: sig .. end<- (id m)[m := (id intOrd)]� dec intOrd: sig .. end <- (id (id intOrd))� dec intOrd: sig .. end <- intOrdThe reduction shows that dec-bindings never disap-pear, only their scope can be expanded. Similar to�-conversion the reduction for bind must consider�-conversion to prevent name clashes. As expectedthe expression reduces to an expression equivalent tomakeIntOrd, since only the identity function is ap-plied to the export part.Function abstractions and system declarations canbe mixed as desired. For example, generic modules,similar to generic packages in Ada [1] or templates inC++ [28], are described as module functions return-ing a system.
2

module makeSet =fun elements : sigtype tval equal: t * t -> boolend-> dec set : sigtype element = elements.ttype setval empty : setval member : element -> set-> boolend<- setmakeSet is a module function parameterized with astructure elements that requires a type de�nition tand a function equal. It returns a system (dec set: .. <- set) describing a set that depends on theparameter elements. The dependency is expressedin the manifest type speci�cation for element. Man-ifest speci�cations substitute sharing constraints asused in SML. Besides types also substructures can bespeci�ed manifestly.Using the module expression linkIntOrdSet aproduct architecture can be generated:module linkIntOrdSet =bind intElems to makeIntOrdin (makeSet intElems)Evaluating linkIntOrdSet results in a speci�c sys-tem declaring the name of an element and a set struc-ture and exporting the set structure.linkIntOrdSet� bind intElems to(dec intOrd: sig .. end <- intOrd)in (makeSet intOrd)� dec intOrd: sig .. end<- (makeSet intElems)[intElems := intOrd]� dec intOrd: sig .. end<- (dec set: sig .. intOrd.t .. end<- set)So far, no structure implementations have beensupplied and the evaluation of the module expressiononly generates a skeletal product architecture. How-ever, the resulting system is generated in a referen-tially transparent way by the evaluation of interface-correct module expressions.1.2 Supplying implementationsStructure implementations establish the connectionbetween module and implementation language. If animplementation is given for each structure name, the

evaluation of a module expression not only generatesa skeletal architecture but also links implementationsforming an executable program. In order to achievethis, an implementation has to be supplied for everydec-bound name. The syntax requires the implemen-tation to follow the signature. The implementationcan access those modules also visible in the signature.In our toy example, two structure declarations haveto be implemented.module makeIntOrd =dec intOrd: sig ... endis structtype t = intfun less (x, y) = ...fun equal (x, y) = (x = y)...end<- intOrdmodule makeSet =fun elements : sig ... end-> dec set : sig ... endis structtype element = elements.ttype set = element listval empty = []fun member x s = ..elements.equal.....end<- setWhile the implementation language determines themodule language's signatures, structure implementa-tions do not belong to the module language. Struc-ture implementations are only connected to the mod-ule name and have no in
uence on the evaluation ofmodule expressions. If the structure implementationsmatch the given signatures, they are linked duringevaluation.2 The �� module calculusWe now formally introduce the �� module calculus,�� for short.Although unusual from a theoretical point of view,generativity, especially type generativity, is a com-mon feature in many programming languages. InSML's module language, the generation of type andstructure names may be regarded as a side e�ect. Thecentral idea of �� is to introduce a new binding con-struct (�) which controls the generation of new typeand structure names syntactically.
3

Module expressions:t ::= tp module pathj �x :T : t (function) abstractionj t1 t2 applicationj � x :T : t (system) declarationj bind x to t1 in t2 usetp ::= x module identi�erj l structure/type labelj t:l structure componentInterface expressions:T ::= Ts simple interfacej �x :T1 : T2 function interfacej T t application interfacej 9x :T1 : T2 system interfacej Bind x To t In T use interfaceTs ::= fE g signaturej type kindE ::= D;E signature entriesj "D ::= l : T abstract structure/type speci�cationj l : T = t manifest structure/type speci�cationj l : � value speci�cation� ::= tp type pathj int j bool implementationj � ! � j list(�) j : : : language typesFigure 1: Syntax for ��2.1 Module expressionsFigure 1 shows the syntax for ��. Module expres-sions (t) are built from function abstraction and ap-plication and from system declaration and use. Thereduction rule for application is �-reduction in con-sideration of �-conversion (Figure 2).A module expression may be referred to by a mod-ule path tp. A module path is either a module iden-ti�er x or a label quali�ed by a module expression.Of course, the qualifying expression must denote astructure name. Inside a signature (see 2.2), a mod-ule expression may be referred to by a label directly.A system declaration introduces a structure or typename, which is bound in the body. The body is calledexport part, since it can be accessed from outside us-

Module expressions:(�x :T : t1) t2 !t t1[x := t2]bind x2 to (� x1 :T : t1)in t2 !t � x1 :T1 : (t2[x2 := t1])Interface expressions:(�x :T1 : T2) t !T T2[x := t]Bind x2 To (� x1 :T1 : t)In T2 !T 9x1 :T1 : (T2[x2 := t])Manifest speci�cations:l : T = t !D l : (T=t) = tDe�nition of =:fE g=t = fE=t g(l :T;E)=t = (l : (T=(t:l)) = t:l; E=t)(l :T = u;E)=t = (l :T = u;E=t)(l :�; E)=t = (l :�; E=t)T=t = TFigure 2: Reduction rulesing bind. The system use bind x to t1 in t2 enablesthe export part of system t1 to be named x in mod-ule expression t2. The reduction rule for system use isshown in �gure 2. Again �-conversion is assumed toprevent name clashes. A system is used by extendingthe scope of a �-bound name and accessing the exportpart. The reduction rule shows that �-bound namesnever disappear. Due to �-conversion two uses of thesame system \generate" distinct �-bound names:� f :F : let m = � a :A : a inbind x to m inbind y to m in f x y!t � f :F : � a :A : bind y to � a :A : a in f a y!t � f :F : � a :A : � a0 :A : f a a0There is no notion of structure implementation inthe module calculus. Structures are introduced by a�-bound name and its signature; they are de�nitionmodules in the sense of Modula-2. Structure imple-mentations have no in
uence on static or operationalsemantics of ��.A module expression containing only �s is regardedas observable and describes a (sub)system architec-ture.2.2 Interfaces�� is typed. The types of module expressions are in-terfaces. Simple interfaces (Ts) comprise signatures,
4

and the kind type of all types. Signature entries canbe selected by labels; they specify types, substruc-tures, and values of the implementation language.Types as well as substructures may be speci�ed ab-stractly or manifestly. We assume that abstract sig-nature entries are named together with the surround-ing structure. Therefore, the reduction rule !D usesthe operation = in order to propagate manifest equal-ities. Operation = (Figure 2) recursively traversesall signature entries and incorporates manifest equal-ities for abstract type and abstract structure speci�-cations. The following example demonstrates the useof !D: � a :f t :type g :� b :fm :f t :type g = a; v :m:t g : b!D � a :f t :type g :� b :fm :f t :type = a:t g = a; v :m:t g : bDue to manifest speci�cations we obtain a notionof value-dependent types or, more precisely, module-dependent interfaces. Abstractions have dependentfunction interfaces of the form (�x : T1 : T2), wherex may occur free in T2. (T t) determines the inter-face for a function application. A system interface issimilar to a weak dependent sum (9x :T1 : T2), whereagain x may occur free in T2. (Bind x To t In T)determines the interface for a system use. Figure 2shows the reduction rules for dependent interfaces.(i) (� a :A : a) : (9 a :A : A)(ii) (bind m to (� a :A : a) in m): (Bind m To (� a :A : a) In A)(iii) Bind m To (� a :A : a) In A!T 9 a :A : (A[m := a])� 9 a :A : AThe examples show: (i) a very simple system and itsinterface, (ii) a system use and its interface, and (iii)the reduction of a system-use interface.2.3 Interface inference rulesThe presentation of ��'s interface inference rules fol-lows Barendregt's presentation of typed lambda cal-culi in [2]. There are constants � and �s. � is theinterface kind of all interfaces and �s is the interfacekind of all simple interfaces, which in turn is an in-terface subkind of �. A declaration D is of the formx : T; l : Ts; l : Ts = t or l : � , where x is a moduleidenti�er and l is a label. A statement S is of theform t : T; T : �; T : �s. lab(E) denotes the setof labels used in a sequence of signature entries. A

context � is a �nite, ordered sequence of declarationseach with di�erent identi�ers or labels.The notion � ` S is de�ned by the axioms andrules shown in �gure 3.There are two axioms. According to the four formsof declarations, there are four start rules and cor-responding weakening rules. The interface formationrules ensure that interface expressions are wellformed.Note the restriction in the formation rule for systeminterfaces: interfaces for a �-bound name have to besimple (kind �s), i. e. a � declares a type or a structurename. The interface formation rules also include re-strictions for abstractions: the interface for a �-boundidenti�er must be either a system interface, a functioninterface or a simple interface, but no application oruse interface.The rules for abstraction and application are thestandard rules for value-dependent function types [2,29].A system interface is described by 9x : T1 : T2.There are similarities to weak existential sums whichjustify this notation. � x :T2 : t might be considered asa pair consisting of a module name x and a moduleexpression t[x] containing x as a free variable. Theinterface 9x :T2 :T1 is a module-dependent sum of in-terfaces T1[x], where x ranges over implementationssatisfying T2. In fact it is a weak dependent sum,since the implementation itself is hypothetical; it isnot even part of the calculus.The commonly used elimination rule for weak de-pendent sums [29, 5] is:� ` t1 : (9 y :T1 : T3) �; y :T1; x :T3 ` t2 : T2� ` (open t1 as (y; x) in t2) : T2with the additional constraint that y must not escapeits scope. This is not appropriate if we consider ybeing a structure and x being a module expressiondepending on y. In contrast, it is neccessary that t2and T2 depend on y. In order to solve the problem, weuse bind as described above instead of open. Unlikeopen, bind enables only the export part of a systemdeclaration to be accessed. The corresponding typingrule is:� ` t1 : (9 y :T1 : T3) �; y :T1; x :T3 ` t2 : T2� ` (bind x to t1 in t2) : (Bind x To t1 In T2)The assumptions are the same as in the rule for open,while the inferred interface is calculated by Bind.The interfaces of structure components are deducedby the structure and access rules. The opacity ruleallows to forget manifest type or structure identities.The transparency rule guarantees that a structure
5

(axiom) hi ` fg : �s hi ` type : �s(start) � ` T : ��; x :T ` x : T ; x =2 � � ` T : ��; l :T ` l : T ; l =2 � � ` t : T � ` T : ��; l :T = t ` l : T = t ; l =2 � � ` � : type�; l :� ` l : � ; l =2 �(weakening) � ` S � ` T : ��; x :T ` S ; x =2 � � ` S � ` T : ��; l :T ` S ; l =2 � � ` S � ` t : T � ` T : ��; l :T = t ` S ; l =2 �� ` S � ` � : type�; l :� ` S ; l =2 � (subkind) � ` T : �s� ` T : �(interface formation) � ` T1 : � �; x :T1 ` T2 : �� ` (�x :T1 : T2) : � � ` T1 : �s �; x :T1 ` T2 : �� ` (9x :T1 : T2) : �� ` T : �s �; l :T ` fE g : �s� ` f l :T;E g : �s ; l =2 lab(E) � ` � : type �; l :� ` fE g : �s� ` f l :�; E g : �s ; l =2 lab(E)� ` t : T � ` T : �s �; l :T = t ` fE g : �s� ` f l :T = t; E g : �s ; l =2 lab(E)(abstraction) �; x :T1 ` t : T2 � ` (�x :T1 : T2) : �� ` (�x :T1 : t) : (�x :T1 : T2) (application) � ` t1 : (�x :T2 : T1) � ` t2 : T2� ` (t1 t2) : ((�x :T2 : T1) t2)(declaration) �; x :T1 ` t : T2 � ` (9x :T1 : T2) : �� ` (� x :T1 : t) : (9x :T1 : T2) (use) � ` t1 : (9 y :T1 : T3) �; y :T1; x :T3 ` t2 : T2� ` (bind x to t1 in t2) : (Bind x To t1 In T2)(structure) � ` t : f l :T;E g� ` t : (fE g[l := t:l]) � ` t1 : f l :T = t2; E g� ` t1 : (fE g[l := t2]) � ` t : f l :�; E g� ` t : fE g(component) � ` t : f l :T;E g� ` t:l : T � ` t1 : f l :T = t2; E g� ` t1:l : T = t2 � ` t : f l :�; E g� ` t:l : �(opacity) � ` t1 : T = t2� ` t1 : T (transparency) � ` t : T� ` t : T=t(conversion) � ` t : T1 � ` T2 : � T1 �R T2� ` t : T2 � ` t : T1 � ` T2 : � T1 <: T2� ` t : T2 � ` t : T1 � ` T2 : � T1 �� T2� ` t : T2Figure 3: Interface inference rulesdetermines the identity for its generative signatureentries|it makes abstract identities manifest.The conversion rules permit three di�erent conver-sion relations between interfaces. Relation �R is acongruence relation, de�ning syntactic equality be-tween interfaces under consideration of the reductionrules !t;!T and !D, up to �-conversion. Relation<: de�nes subtyping between interfaces; function in-terfaces are contravariant, while system interfaces arecovariant. Relation �� de�nes manifest equality of
interfaces. Figure 4 shows the de�nitions for <: and��.Structure implementations are not part of ��. Thelink to the implementation language is established byvalue speci�cations. Value speci�cations in signaturesdo not contribute to the static and dynamic seman-tics of ��. They simply specify exported values whichcan be used by other implementations. However, in-terface formation rules and access rules take valuespeci�cations into consideration. At this point, the

6

Subtyping of interfaces:� <: �; T <: TE1 <: E2) fE1 g <: fE2 gE <: "E1 <: E2) (l :T;E1) <: E2E1 <: E2) (l :T = t; E1) <: E2E1 <: E2) (l :�; E1) <: E2T1 <: T2; E1 <: E2) (l :T1 = t; E1) <: (l :T2; E2)T1 <: T2; E1 <: E2) (l :T1; E1) <: (l :T2; E2)T1 <: T2; E1 <: E2) (l :T1 = t; E1) <: (l :T2 = t; E2)�1 <: �2; E1 <: E2) (l :�1; E1) <: (l :�2; E2)T2 <: T1; U1 <: U2) (�x :T1 : U1) <: (�x :T2 : U2)T1 <: T2) (T1 t) <: (T2 t)T1 <: T2; U1 <: U2) (9 a :T1 : U1) <: (9 a :T2 : U2)T1 <: T2) (Bind x To t In T1) <: (Bind x To t In T2)Manifest equality of interfaces:T1 �� T2;� ` t1 : T1 = t2; E1 ��0 E2) (l :T1 = t1; E1) �� (l :T2 = t2; E2); where �0 = (�; l :T1 = t1)T1 �� T2; E1 ��0 E2) (l :T1; E1) �� (l :T2; E2); where �0 = (�; l :T1)E1 �� E2) (l : �; E1) �� (l : �; E2)E1 �� E2) fE1g �� fE2gT1 �� T2; U1 ��0 U2) (�x :T1 : U1) �� (�x :T2 : U2); where �0 = (�; x :T1)T1 �� T2) (T1 t) �� (T2 t)T1 �� T2; U1 ��0 U2) (9x :T1 : U1) �� (9x :T2 : U2); where �0 = (�; x :T1)T1 �� T2) (Bind x To t In T1) �� (Bind x To t In T2)T �� TT �� U) U �� TT �� U;U �� V) T �� VFigure 4: Conversion relationsrules are incomplete, due to the fact that rules forimplementation-language types that permit to infer� ` � : type are omitted.To summarize, �� is essentially a simply-typedmodule calculus, with structures and types as sim-ple values and signatures and kinds as simple types.Manifest speci�cations cause a notion of value-dependent interfaces, and a simple form of polymor-phism is gained due to subtyping between interfaces.3 A module language on top of Core-SMLThe �� module calculus as introduced in the last sec-tion, is the foundation of a general module language,that can be used on top of several typed implemen-tation languages. In order to compare our module

language to the SML module language and its vari-ants, we now sketch a module language on top ofcore-SML as the implementation language. In gen-eral, a module language based on �� is in
uenced bythe embedded implementation language. Other im-plementation languages are possible, e.g. in [9] weuse a module language on top of Modula-2.A module program is a sequence of top-level dec-larations. A top-level declaration is either a namedmodule expression (module) or a named interfacede�nition (interface). Module expressions are trans-lated straight forward to ��. Figure 5 shows thetranslation.The interfaces for elementary modules are signa-tures as known from SML. The main di�erence is thattypes and substructures can be speci�ed manifestly|this eliminates the need for sharing contraints as usedin SML. For example, the interfaces describing an ab-stract EQUALITY or a manifest INTORDER (as used in
7

�x :T : t � fun x:T -> t� x :T : t � dec x:T <- t�x :T1 : T2 � all x:T1 => T29x :T1 : T2 � some x:T1 <= T2fE g � sig E endFigure 5: Translation of ��the introduction) can be named by the following in-terface de�nitions:interface EQUALITY =sigtype tval equal: t * t -> boolendinterface INTORDER =sigtype t = intval less: t * t -> boolval equal: t * t -> boolendThe de�nition of subinterfaces is facilitated by thesyntactic short cut with which enables signatures tobe extended and signature entries to be overwritten.For example, INTORDER could be de�ned as a subin-terface of EQUALITY:interface INTORDER =EQUALITY with sigtype t = intval less: t * t -> boolendAdditionally, we introduce parameterized interfaces.Parameterized interfaces are not part of ��, theyonly occur as top-level de�nitions. The interfaceINTORDER can be computed by a parameterized in-terface MANIFEST ORD applied to int:interface MANIFEST_ORDER =Fun x: type=> (EQUALITY with sigtype t = xval less : t * t -> boolend)interface INTORD = (MANIFEST_ORDER int)Parameterized interfaces map module expressionsto module interfaces. The di�erence to function in-terfaces is quite subtle. Function interfaces can be

implemented by module functions, technically spo-ken, their interface kind is �. Parameterized inter-faces cannot be implemented by module expressions,they are only used to compute other interfaces. Forexample, the kind of MANIFEST ORDER is type! �.This di�erence maintains the distinctionparameterized (program speci�cation) 6=(parameterized program) speci�cationrequired by Sanella, Sokolowski and Tarlecki [26] inthe context of algebraic speci�cations.3.1 Representation of software systemsIn the following we compare our module languageto SML's module language and its variants. First,we consider the representation of a software system.Usually, a software system is represented as a hierar-chy of structures. In SML, a software system is re-garded as a structure containing the next-lower levelof the system hierarchy as substructures. In our mod-ule language, a software system is a module expres-sion containing declarations only. The structures con-stituting a system are in topological order w.r.t. theirdependencies. The export part is a single structure,usually the last structure in the topological order,possibly containing substructures describing a com-plex export. The essential di�erence to SML is thatno implementations are necessary to build a concretesoftware system from a functorized architecture.3.2 Fully transparent higher-order functorsAnother interesting aspect is the interface descrip-tion for the paradigmatic higher-order functor applythat has been considered by Leroy [15] and Biswas[4]. The explicit control of type and structure gen-erativity in our calculus in
uences the way how typeand structure equalities are propagated.In our module language the higher-order modulefunction apply is de�ned as:interface S = sigtype tendmodule apply =fun f: (all x : S => (some m : S <= S))-> fun x: S-> f xapply has a \fully transparent" behaviour, similarto [18]. This is best explained by an example. Theparameter f of apply must be a function returning asystem of the given interface. The following moduleexpression makePair could be a matching parameterfor f:
8

interface RESULT =Fun x : S => sigtype t = x.t * x.tendmodule makePair =fun x : S-> dec pair : (RESULT x)<- pairIn order to use apply we need a second parameter forx that satis�es the interface constraints:module makeIntMod =dec intMod : sig type t = int end<- intModmodule useApply1 =bind x to makeIntModin bind y to (apply makePair) xin yInterface checking useApply1 propagates the typeequalities of pair.t and deduces for y thaty.t �� pair.t �� (intMod.t * intMod.t)in a context �, where intMod.t �� int.If we decide to declare abstractPair as a structurecontaining an abstract type abstractPair.t:module makeAbstractPair =fun x : S-> dec abstractPair : S<- abstractPairthe abstract identity is propagated inmodule useApply2 =bind x to makeIntModin bind y to (apply makeAbstractPair) xin yand interface checking only can deduce for y thaty.t �� abstractPair.tHowever, it is possible to describe the propagationof type and structure equalities using manifest spec-i�cations. For example, apply could be de�ned as:module apply =fun f: (all x : S =>(some m : (RESULT x) <= (RESULT x)))-> fun x: S-> f xlimiting the usability of apply to useApply1. Inter-face checking useApply2 detects an error, because theinterface of makeAbstractPair is no longer a subin-terface of parameter f.

3.3 GenerativityIn SML, generativity is sometimes used to create dif-ferent instances of a structure by repeated functor ap-plications. In our calculus, a similar e�ect is gainedby the use of bind. Imagine a generic module queuethat is to be implemented by the use of two back-to-back stacks. This could be expressed at the modulelevel in the following way.interface STACK =Fun x : type => sigtype elem = xval push : elem -> ()val pop : () -> elem...endmodule makeStack =fun elem : type-> dec stack : (STACK elem)<- stackinterface QUEUE =Fun x : type => sigtype elem = xval enqueue: elem -> ()...endmodule makeQueue =fun elem : type-> let elemStack = (makeStack elem)in bind front to elemStackin bind back to elemStackin dec queue : (QUEUE elem)is struct... front.push ... back.pushend<- queueThere is one parameterized subsystem makeStackwhich is instantiated to the subsystem elemStack.elemStack is used two times and \generates" twodi�erent stack structures due to the reduction rulefor bind. The resulting subsystem is parameterizedby the element type elem. It consists of two stacksfront and back and one queue queue, where thequeue structure is exported.3.4 Applicative semanticsDue to the explicit control of generativity, our mod-ule language is referentially transparent. Further, theseparation of module language and implementationlanguage guarantees that module expressions cannotdepend on the store. In fact, there is no notion ofstore at the module level. This is di�erent to Leroy's[15] variant of SML's module language. He argues
9

that in a strati�ed language like SML applicative se-mantics for types can be sound, while applicative se-mantics for structures is unsound. The reason is thatin SML module expressions may depend on the storeand side e�ects prevent a referentially transparent be-haviour of functor application. Leroy further arguesthat in a module language with side e�ects and mod-ules as �rst class values [10], applicative semantics forfunction applications is always unsound.3.5 Functorial polymorphismIn [4], Biswas identi�es a new form of polymorphismfound in higher-order functors. He argues that in acertain context, where for example a module function(functor) with interfaceall x : sig type t = int end=> sig type t = int endis expected, a module function with interfaceall x : sig type t end=> sig type t = x.t endwould do as well. He calls this form of polymorphismfunctorial polymorphism. In our module language,the necessary type conversion is simply a combinationof subtyping (<:) with manifest equality (��):all x : sig type t end=> sig type t = x.t end<:all x : sig type t = int end=> sig type t = x.t end��all x : sig type t = int end=> sig type t = int end3.6 Phase distinctionAs pointed out in [12], the use of dependent types con-
icts with compile-time type checking since a type ex-pression (expected to evaluate at compile time) maydepend on arbitrary runtime expressions. Checkingthe equality of type expressions may involve decidingthe equality of arbitrary run-time expressions, whichin general is not decidable.In our module language, the equality of run-time module expressions is decided syntatically (�R).Since the module language does not allow recursivefunctions, syntactic equality is su�cient for interfacechecking.Furthermore, both, interface checking as well asthe evaluation of module expressions is considered tohappen at system compile-time. Interface checking

corresponds to the usual type checking. Evaluationof the module program generates a speci�c systemarchitecture; if all implementations are supplied, theevaluation links the speci�c software system.The evaluation of a linked software system, usuallyconsidered to happen at system run-time, is not partof the dynamic semantics of our module language.Therefore, using dependent interfaces does not de-stroy the desirable phase distinction between systemcompile-time and system run-time.4 Related workSML's module language and its variants have beenthe main inspiration for our module language. Man-ifest type speci�cations have also been used in [15,14, 10]. Contrary to these approaches, we also allowmanifest structure speci�cations.The semantics of higher-order functors in SML'smodule language has been treated by several authors.In [11, 17], a treatment based on strong sums hasbeen given. Leroy [14] provides a description basedon weak sums, which is able to treat generative andnongenerative type speci�cations. The stamp-basedapproach by Biswas [4] does not handle type gener-ativity. Only MacQueen and Tofte's work [18] takesinto account structure generativity. In our approach,structure and type generativity is controlled syntac-tically, therefore, type and structure stamps are nolonger required.The syntactic control of generativity is inspired byMitchell and Plotkin's work [21] on the type-theoreticcharacterisation of abstract types. Roughly, a systemdeclaration is very similar to a packed abstract type,while a system use corresponds to a combination ofunpacking and repacking.The idea of embedding names into a lambda cal-culus for controlling side e�ects can also be foundin Odersky's work [22]. While Odersky proposes acalculus of local names, our module calculus whichcontrolls the side e�ect caused by structure and typegeneration could be called a calculus of global names.While we favour a strict separation of implemen-tation and module language, other authors try to in-tegrate module and implementation language into asingle calculus. Harper and Lillebridge [10] suggestan impredicative calculus with modules as �rst-classvalues based on Girards F! (see for example [8, 2]).The seminal work of MacQueen [17] uses a predica-tive (rami�ed) calculus based on strong sums.5 ConclusionWe started this work from a software-engineeringpoint of view. The motivation was to describe ref-
10

erence architectures for an entire product line. Thefunctorized style suggested by SML's module lan-guage [23] was the main inspiration for our modulelanguage. It supports the development of a generalarchitecture for a whole line of similar products. Thearchitecture for a single product is generated by theevaluation of a module program. The missing separa-tion of architectural and implementational concerns,the rather di�cult stamp-based static semantics andthe non-referential transparent behaviour of functorapplications in SML's module language led to the de-velopment of our calculus.We have presented a module calculus that treatstype and, for the �rst time, structure generativity,in a referentially transparent way without using anytype or structure stamps. Manifest speci�cationsand higher-order expressions substitute SML's shar-ing constraints.Currently, we are working on a prototypical inter-preter for the module language with core-SML as theimplementation language. Our aim is the design ofdomain-speci�c architectures using the module lan-guage. Perhaps we can construct the implementationas a domain-speci�c architecture that can be instan-tiated for di�erent implementation languages and, ifall the implementations are supplied, generates exec-tuable interpreters simply by evaluating module ex-pressions.References[1] Reference Manual for the Ada ProgrammingLanguage, 1983. ANSI/MIL-STD 1815 A.[2] H. P. Barendregt. Lambda calculi with types.In S. Abramsky, Dov M. Gabbay, and T. S. E.Maibaum, editors, Background: ComputationalStructures, volume 2 of Handbook of Logic inComputer Science, pages 117{309. Oxford Uni-versity Press, New York, 1992.[3] Lars Birkedal, Nick Rothwell, Mads Tofte, andDavid N. Turner. The ML Kit version 1. Tech-nical Report 93/14, DIKU, University of Copen-hagen, Denmark, 1993.[4] Sandip K. Biswas. Higher-order functors withtransparent signatures. In POPL-22 [25], pages154{163.[5] Luca Cardelli and Xavier Leroy. Abstract typesand the dot notation. In Manfred Broy andCli� B. Jones, editors, Proc. IFIP TC2 workingconference on Programming Concepts and Meth-ods, pages 479{504. North-Holland, 1990.

[6] Eric Cooper, Robert Harper, and Peter Lee.The Fox project: Advanced development of sys-tems software. Technical Report CMU-CS-91-178, School of Computer Science, Carnegie Mel-lon University, Pittsburgh, PA, 1991.[7] David Garlan and Dewayne E. Perry. Introduc-tion to the special issue on software architec-ture. IEEE Transactions on Software Engineer-ing, 21(4):269{274, April 1994.[8] Jean-Yves Girard. The system F of variabletypes, �fteen years later. Theoretical ComputerScience, 45:159{192, 1980.[9] Franz-Josef Grosch and Bernd Fischer. Archi-tectural programming: from modules to systems(and beyond). Technical report, Abteilung Soft-waretechnologie, Technische Universit�at Braun-schweig, 1995. Forthcoming.[10] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules withsharing. In POPL-21 [24], pages 123{137.[11] Robert Harper and John C. Mitchell. On thetype structure of Standard ML. ACM Transac-tions on Programming Languages and Systems,15(2):211{252, April 1993.[12] Robert Harper, John C. Mitchell, and EugenioMoggi. Higher-order modules and the phase dis-tinction. In 17th Symposium on Principles ofProgramming Languages, pages 341{254. ACMPress, January 1990.[13] Gilles Kahn. Contribution to a discussion atDagstuhl-Seminar: Future directions in soft-ware engineering. Dagstuhl-Seminar-Report: 32,February 1992.[14] Xavier Leroy. Manifest types, modules and sep-arate compilation. In POPL-21 [24], pages 109{122.[15] Xavier Leroy. Applicative functors and fullytransparent higher-order modules. In POPL-22[25], pages 142{153.[16] David MacQueen. Modules for Standard ML. InProc. 1984 ACM Conference on LISP and Func-tional Programming, pages 198{207, New York,1984. ACM Press.[17] David MacQueen. Using dependent types to ex-press modular structure. In 13th Symposiumon Principles of Programming Languages, pages277{286. ACM Press, January 1986.
11

[18] David B. MacQueen and Mads Tofte. A seman-tics for higher-order functors. In Donald San-nella, editor, Proc. 5th European Symposium onProgramming, volume 788 of Lecture Notes inComputer Science, pages 409{423, Edinburgh,U.K., April 1994. Springer-Verlag.[19] Robin Milner and Mads Tofte. Commentary onStandard ML. The MIT Press, Cambridge, Mas-sachusetts, 1991.[20] Robin Milner, Mads Tofte, and Robert Harper.The De�nition of Standard ML. The MIT Press,Cambridge, Massachusetts, 1990.[21] John C. Mitchell and Gordon D. Plotkin. Ab-stract types have existential type. ACM Trans-actions on Programming Languages and Sys-tems, 10(3):470{502, July 1988.[22] Martin Odersky. A functional theory of localnames. In POPL-21 [24], pages 48{59.[23] Laurence C. Paulson. ML for the Working Pro-grammer. Cambridge Univerity Press, Cam-bridge, Great Britain, 1991.[24] Conference Record of POPL '94: 21th ACMSIGACT-SIGPLAN Symposium on Principles ofProgramming Languages. ACM Press, January1994.[25] Conference Record of POPL '95: 22th ACMSIGACT-SIGPLAN Symposium on Principles ofProgramming Languages. ACM Press, January1995.[26] Donald Sanella, Stefan Sokolowski, and AndrzejTarlecki. Towards formal development of pro-grams from algebraic speci�cations: Parameter-isation revisited. Technical Report 6/90, Fach-bereich Informatik, Universit�at Bremen, 1990.[27] D. T. Sannella and L. A. Wallen. A calcu-lus for the construction of modular prolog pro-grams. Journal of Logic Programming, 12:147{177, 1992.[28] Bjarne Stroustrup. The Design and Evolution ofC++. Addison-Wesley, 1994.[29] Simon Thompson. Type Theory and FunctionalProgramming. Addison-Wesley, 1991.[30] Niklaus Wirth. Programming in Modula-2.Springer-Verlag, 1988.
12

Technische Universit�at BraunschweigInformatik-Berichte ab Nr. 92-0192-01 F.-J.Grosch, G.Snelting Polymorphic Components for Monomorphic Languages92-02 S.Conrad, M.Gogolla, R.Herzig TROLL light : A Core Language for Specifying Objects93-01 B.Fischer A New Feature Uni�cation Algorithm93-02 G.Snelting Perspektiven der Softwaretechnologie93-03 G.Snelting, A.Zeller Inferenzbasierte Werkzeuge in NORA93-04 W.R�onsch, J.Sch�ule Parallelisierung im Wissenschaftlichen Rechnen93-05 P.L�ohr-Richter, G.Reichwein Object Oriented Life Cycle Models93-06 M.Krone, G.Snelting On the Inference of Con�guration Structures fromSource Code93-07 S.Schwiderski, T.Hartmann,G.Saake Monitoring Temporal Preconditions in a BehaviourOriented Object Model93-08 T.Hartmann, G.Saake Abstract Speci�cation of Object Interaction93-09 G.Snelting, B.Fischer, F.-J.Grosch,M.Kievernagel, A.Zeller Die inferenzbasierte SoftwareentwicklungsumgebungNORA93-10 C.Lindig STYLE { A Practical Type Checker for SCHEME93-11 H.-D.Ehrich Beitr�age zu KORSO- und TROLL light -Fallstudien94-01 A.Zeller Con�guration Management with Feature Logics94-02 J.Sch�onw�alder, H.Langend�orfer Netzwerkmanagement | Beschreibung des Exponatsauf der CeBIT'9494-03 T.Hartmann, G.Saake,R.Jungclaus, P.Hartel, J.Kusch Revised Version of the Modelling Language Troll(Version 2.0)94-04 A.Zeller, G.Snelting Incremental Con�guration Management Based onFeature Uni�cation94-05 S.Conrad A Basic Calculus for Verifying Properties ofSynchronously Interacting Objects94-06 M.Gogolla, N.Vlachantonis,R.Herzig, G.Denker, S.Conrad,H.-D.Ehrich The KORSO Approach to the Development of ReliableInformation Systems94-07 C.Lindig Inkrementelle, r�uckgekoppelte Suche inSoftware-Bibliotheken94-08 B.Fischer, M.Kievernagel,W.Struckmann VCR: A VDM-based software component retrieval tool95-01 V.S.Cherniavsky Philosophische Aspekte des Unvollst�andigkeitstheoremsvon G�odel95-02 G.Snelting Reengineering of Con�gurations Based on MathematicalConcept Analysis95-03 A.Zeller A Uni�ed Con�guration Management Model95-04 H.Bickel, W.Struckmann The Hoare Logic of Data Types95-05 F.-J.Grosch No Type Stamps and No Structure Stamps {a Referentially-Transparent Higher-Order ModuleLanguage

