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Abstract

A language for programming-in-the-large should sup-
port architectural descriptions of an entire product
line. The evaluation of programs-in-the-large should
generate the architecture of individual products and
should link implementations-in-the-small to form an
executable product. The Standard ML (SML) mod-
ule language [20] could serve this task, but it is not
referentially transparent. Furthermore, it does not
distinguish between architectural and implementa-
tional concerns.

This paper presents a general module language that
is based on a typed A-calculus extended by systems.
Overcoming SML’s drawbacks, the module language
permits syntactic control of type and structure gen-
erativity resulting in referential transparency. Fur-
thermore, splitting up architectural and implemen-
tational concerns, the implementation of elementary
modules is not part of the module language. The
module calculus is essentially simply typed, with el-
ementary modules and types as simple values, and
interfaces and kinds as types. Function and system
interfaces are value-dependent types.
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1 Introduction

A main task in software engineering is to arrange
modules into a sensible system architecture. Today
a good architectural design should describe an en-
tire product line in terms of a reference architecture
[7]. The reference architecture should enable individ-
ual product architectures to be instantiated, refined
or generated. Following the observations that “pro-
gramming languages are frozen software engineering
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sche Universitdt Braunschweig, Abteilung Softwaretechnolo-
gie, GauBistr. 17, D-38092 Braunschweig/Germany. E-mail:
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knowledge” [13] and “programming-in-the-large is es-
sentially typed functional programming” [27] a lan-
guage for programming-in-the-large should generate
individual product architectures by the evaluation of
functional architectural programs.

The Standard ML (SML) module language [20,
19, 16] supports a functional style for programming-
in-the-large: Structures are elementary components,
functors are component-valued functions and signa-
tures are component specifications. Large systems
can be built by successively applying component-
valued functions to previously constructed compo-
nents. This approach has successfully been used in
the development of large software systems [3, 6].

The SML module language can serve as a model
for a general module language, independent of the
embedded implementation language [27]. However,
it has some disadvantages:

e it is not referentially transparent, and

e programming-in-the-large is not clearly sepa-
rated from implementing single components.

Referential transparency and equational reasoning
about large systems are inhibited by the fact that
every functor application generates a new structure.
Thus, structure and type generativity may be re-
garded as side-effects on the module level. They re-
quire a rather complicated stamp-based semantics,
especially in combination with higher-order functors
[18].

From a software-engineering point of view, archi-
tectural concerns like defining interfaces and design-
ing the system architecture should be completely
separated from the implementation of single compo-
nents. The module system of Modula-2 [30] supports
this separation. Interfaces are defined in definition
modules and the system architecture is designed by
import lists referring to module names. Completely
separated, the implementations of single components



are contained in implementation modules. But, a sys-
tem architecture in Modula-2 is frozen. SML’s func-
tors (parameterized modules) enable a flexible archi-
tecture to be designed, but a functorized architec-
ture cannot be defined without supplying implemen-
tations; architectural and implementational concerns
are mixed up.

In this work we present a typed, referentially trans-
parent and higher-order module language that may
serve as a general module language for several typed
implementation languages. Module programs de-
scribe architectures for a product line. The evaluation
of a module program generates a product architec-
ture, and, if possible, links implementations in order
to form an executable program. The formal founda-
tion for the module language is an extended typed
A-calculus called the Ad-calculus, which permits the
syntactic control of generativity. The typing is based
on dependent types [2, 29] due to manifest specifica-
tions [10, 14, 15] in signatures. The calculus is es-
sentially simply typed, with elementary modules and
types as simple values, with elementary signatures
and kinds as simple types, and with value-dependent
functions and systems as type constructors. Imple-
mentations of elementary modules are not part of the
calculus, i. e. the calculus constitutes a separate layer
above any implementation language.

1.1 Syntactic control of generativity

We now intuitively explain the syntactic control of
generativity using Core-SML as the paradigmatic im-
plementation language. Partially adopting SML’s
terminology, we call an elementary module a struc-
ture and the interface for a structure a signature.

The basis for our language is a typed lambda calcu-
lus. The well-known identity function of the lambda
calculus (Az:T . ) becomes the identity function for
module expressions:

module id =
fun x: sig

type t
val equal: t * t -> bool
end

-> X

The interface of parameter x must describe a struc-
ture containing a type definition for t and a func-
tion equal. Now assume there is a structure named
intOrd with a matching interface. Then every appli-
cation (id intOrd) reduces to the same component
int0Ord according to the usual S-conversion.

int0Ord is the name of a structure that is neither
fun-bound nor predefined. In order to bind such

components we introduce a second binding operator
called (system) declaration. Such a declaration intro-
duces (dec) the name of a structure (or a type) and
its interface description—very similar to a definition
module in Modula-2. The name can be used inside
the module expression following the back arrow <-.
This module expression is called ezport part, because
it allows the access to a system.

module makeIntOrd =
dec intOrd: sig
type t = int
val 1less: t * t -> bool
val equal: t * t -> bool
end
<- (id int0Ord)

Since (id int0rd) reduces to intOrd, the system
makeIntOrd only declares the structure name int0Ord
and exports this structure. The module expression
(id int0rd) is correctly typed, because the interface
of int0rd is a subinterface of the required interface
for the argument x, according to the usual notion of
module subtyping [10, 14].

The normal form for makeIntOrd is a complete
module expression without any free identifiers. In or-
der to access the export part an additional construct
bind is needed. For example

bind m to makeIntOrd in (id m)

permits to use the export part of system makeIntOrd
by the name m in the module expression (id m) fol-
lowing keyword in. In order to prevent intOrd from
escaping its scope, the scope for int0Ord is expanded:

bind m to makeIntOrd in (id m)

= bind mn to
(dec intOrd: sig .. end <- (id int0rd))
in (id m)
= dec intOrd: sig .. end

<= (id m)[m := (id intOrd)]
dec int0Ord: sig ..
dec int0Ord: sig ..

end <- intOrd

The reduction shows that dec-bindings never disap-
pear, only their scope can be expanded. Similar to
(-conversion the reduction for bind must consider
a-conversion to prevent name clashes. As expected
the expression reduces to an expression equivalent to
makeIntOrd, since only the identity function is ap-
plied to the export part.

Function abstractions and system declarations can
be mixed as desired. For example, generic modules,
similar to generic packages in Ada [1] or templates in
C++ [28], are described as module functions return-
ing a system.

end <- (id (id intOrd))



module makeSet =
fun elements : sig

type t
val equal: t * t -> bool
end

-> dec set : sig
type element = elements.t
type set
val empty : set
val member : element -> set
-> bool
end
<- set

makeSet is a module function parameterized with a
structure elements that requires a type definition t
and a function equal. It returns a system (dec set
<- set) describing a set that depends on the
parameter elements. The dependency is expressed
in the manifest type specification for element. Man-
ifest specifications substitute sharing constraints as
used in SML. Besides types also substructures can be
specified manifestly.
Using the module expression 1linkIntOrdSet a
product architecture can be generated:

module 1inkIntOrdSet =
bind intElems to makeIntOrd
in (makeSet intElems)

Evaluating 1inkIntOrdSet results in a specific sys-
tem declaring the name of an element and a set struc-
ture and exporting the set structure.

linkIntOrdSet
bind intElems to
(dec intOrd: sig ..
in (makeSet intOrd)

end <- int0rd)

= dec intOrd: sig .. end
<- (makeSet intElems)[intElems := intOrd]

= dec intOrd: sig .. end
<- (dec set: sig .. intOrd.t .. end

<- set)

So far, no structure implementations have been
supplied and the evaluation of the module expression
only generates a skeletal product architecture. How-
ever, the resulting system is generated in a referen-
tially transparent way by the evaluation of interface-
correct module expressions.

1.2 Supplying implementations

Structure implementations establish the connection
between module and implementation language. If an
implementation is given for each structure name, the

evaluation of a module expression not only generates
a skeletal architecture but also links implementations
forming an executable program. In order to achieve
this, an implementation has to be supplied for every
dec-bound name. The syntax requires the implemen-
tation to follow the signature. The implementation
can access those modules also visible in the signature.
In our toy example, two structure declarations have
to be implemented.

module makeIntOrd =
dec int0Ord: sig ... end
is struct
type t = int
fun less (x, y) = ...
fun equal (x, y) = (x = y)

end
<- intOrd

module makeSet =
fun elements : sig ... end
-> dec set : sig ... end
is struct

type element = elements.t
type set = element list
val empty = []
fun member x s = ..elements.equal..

end
<- set

While the implementation language determines the
module language’s signatures, structure implementa-
tions do not belong to the module language. Struc-
ture implementations are only connected to the mod-
ule name and have no influence on the evaluation of
module expressions. If the structure implementations
match the given signatures, they are linked during
evaluation.

2 The A0 module calculus

We now formally introduce the Ad module calculus,
A6 for short.

Although unusual from a theoretical point of view,
generativity, especially type generativity, is a com-
mon feature in many programming languages. In
SML’s module language, the generation of type and
structure names may be regarded as a side effect. The
central idea of AJ is to introduce a new binding con-
struct (9) which controls the generation of new type
and structure names syntactically.



Module expressions:

t u= 0t module path
| Az:T.t (function) abstraction
| t1to application
| da:T.¢ (system) declaration
| bind z tot; int, use
module identifier

structure/type label

t, = x
|
| ¢l structure component

Interface expressions:

T = T simple interface
| Ma:Ty.Ts function interface
| Tt application interface
| Jz:T). Ty system interface
| Bindz TotInT use interface
T, == {E} signature
| type kind
E == DE signature entries
| €
D == 1:T abstract structure/
type specification
| 1:T=t manifest structure/
type specification
| I:7 value specification
T u= type path
| int | bool implementation
|

T — 7| list(T) | ... language types

Figure 1: Syntax for A¢

2.1 Module expressions

Figure 1 shows the syntax for Ad. Module expres-
sions (t) are built from function abstraction and ap-
plication and from system declaration and use. The
reduction rule for application is SB-reduction in con-
sideration of a-conversion (Figure 2).

A module expression may be referred to by a mod-
ule path t,. A module path is either a module iden-
tifier x or a label qualified by a module expression.
Of course, the qualifying expression must denote a
structure name. Inside a signature (see 2.2), a mod-
ule expression may be referred to by a label directly.

A system declaration introduces a structure or type
name, which is bound in the body. The body is called
export part, since it can be accessed from outside us-

Module expressions:

(AiL“Ttl) to —¢ tl[iL“ = tz]
bind z; to (0 z1:T . t;)
in ty —¢ (5.’1,'1 A (tQ[.’I}z = tl])

Interface expressions:

(H.’I,':Tl . Tg) t —T TQ[.’I} = t]
Bind 2> To (6 :T} - t)
In T2 —T 3.’1,'1 :Tl . (TQ[.’L‘Q = t])

Manifest specifications:
1:T=t —-p 1:(T/t)y=t
Definition of /:

{E}/t

|
—~—

&
~

~
—

(I:T,E)/t = (I:(T/(tl) =tl,EJt)
(I:T=u,E)/t = (I:T=u,E/t)
(l:1,E)/t = (I:1,E/t)

T/t =T

Figure 2: Reduction rules

ing bind. The system use bind z to ¢; in ¢» enables
the export part of system ¢; to be named z in mod-
ule expression t5. The reduction rule for system use is
shown in figure 2. Again a-conversion is assumed to
prevent name clashes. A system is used by extending
the scope of a J-bound name and accessing the export
part. The reduction rule shows that J-bound names
never disappear. Due to a-conversion two uses of the
same system “generate” distinct d-bound names:

Af:F.letm=4da:A.ain
bind z to m in
bindytomin fzy
=t Af:F.0a:A.bindytoda:A.ain fay
=t Af:F.0a:A.0ad:A.fad

There is no notion of structure implementation in
the module calculus. Structures are introduced by a
0-bound name and its signature; they are definition
modules in the sense of Modula-2. Structure imple-
mentations have no influence on static or operational
semantics of AJ.

A module expression containing only ds is regarded
as observable and describes a (sub)system architec-
ture.

2.2 Interfaces

A6 is typed. The types of module expressions are in-
terfaces. Simple interfaces (Ts) comprise signatures,



and the kind type of all types. Signature entries can
be selected by labels; they specify types, substruc-
tures, and values of the implementation language.
Types as well as substructures may be specified ab-
stractly or manifestly. We assume that abstract sig-
nature entries are named together with the surround-
ing structure. Therefore, the reduction rule —p uses
the operation / in order to propagate manifest equal-
ities. Operation / (Figure 2) recursively traverses
all signature entries and incorporates manifest equal-
ities for abstract type and abstract structure specifi-
cations. The following example demonstrates the use
of —D:

da:{t:type}.
0b:{m:{t:type} =a,v:m.t}.b

—p da:{t:type}.
ob:{m:{t:type=a.t} =a,v:m.i}.b

Due to manifest specifications we obtain a notion
of value-dependent types or, more precisely, module-
dependent interfaces. Abstractions have dependent
function interfaces of the form (Ilz : T .T%), where
x may occur free in Ty. (T t) determines the inter-
face for a function application. A system interface is
similar to a weak dependent sum (Jz:7; .T»), where
again z may occur free in T5. (Bind z To t In T)
determines the interface for a system use. Figure 2
shows the reduction rules for dependent interfaces.

(1) (ba:A.a):(Ja:A.A)

(15) (bind m to (0a:A.a)inm)
:(Bind m To (da:A.a)In A)

(7i7) Bind m To (da:A.a)In A
—r Ja:A. (A[m = a])
= Ja:A. A

The examples show: (i) a very simple system and its
interface, (i) a system use and its interface, and (iii)
the reduction of a system-use interface.

2.3 Interface inference rules

The presentation of Ad’s interface inference rules fol-
lows Barendregt’s presentation of typed lambda cal-
culi in [2]. There are constants * and *s. * is the
interface kind of all interfaces and *, is the interface
kind of all simple interfaces, which in turn is an in-
terface subkind of x. A declaration D is of the form
x:T,1:Ts, 1:Ts =torl:7, where z is a module
identifier and [ is a label. A statement S is of the
formt : T, T : %, T : 5. lab(E) denotes the set
of labels used in a sequence of signature entries. A

context ' is a finite, ordered sequence of declarations
each with different identifiers or labels.

The notion I' S is defined by the axioms and
rules shown in figure 3.

There are two axioms. According to the four forms
of declarations, there are four start rules and cor-
responding weakening rules. The interface formation
rules ensure that interface expressions are wellformed.
Note the restriction in the formation rule for system
interfaces: interfaces for a J-bound name have to be
simple (kind %), i. e. a § declares a type or a structure
name. The interface formation rules also include re-
strictions for abstractions: the interface for a A-bound
identifier must be either a system interface, a function
interface or a simple interface, but no application or
use interface.

The rules for abstraction and application are the
standard rules for value-dependent function types [2,
29].

A system interface is described by dx : Ty . Tb.
There are similarities to weak existential sums which
justify this notation. § z:75 .t might be considered as
a pair consisting of a module name z and a module
expression t[z] containing = as a free variable. The
interface 3z :T5 . T} is a module-dependent sum of in-
terfaces Ti[x], where x ranges over implementations
satisfying T5. In fact it is a weak dependent sum,
since the implementation itself is hypothetical; it is
not even part of the calculus.

The commonly used elimination rule for weak de-
pendent sums [29, 5] is:

Phty:(Fy:Ty.T3) T,y:Ty,x:T3tto:Th

't (opent; as (y,z) inty) : Ts

with the additional constraint that y must not escape
its scope. This is not appropriate if we consider y
being a structure and z being a module expression
depending on y. In contrast, it is neccessary that ¢
and T3 depend on y. In order to solve the problem, we
use bind as described above instead of open. Unlike
open, bind enables only the export part of a system
declaration to be accessed. The corresponding typing
rule is:

Pht:(Fy:Ty.T3) T,y:Ty,x:T3tto:Th
'k (bind z to t; in t2) : (Bind z To t; In T5)

The assumptions are the same as in the rule for open,
while the inferred interface is calculated by Bind.

The interfaces of structure components are deduced
by the structure and access rules. The opacity rule
allows to forget manifest type or structure identities.
The transparency rule guarantees that a structure



(axiom) () F{}:%s () F type: =,
T :x FET:x F'Ft:T THET:x I'F7:type
(start) —— % ——1¢T J¢DD —————1¢T
Ne:Thkax:T ri:TrTrl:T Ci:T=tkl:T=t Cl:rt1:7
'S I'HT:x 'S I'+T:x S 'kt:T THT:x
(weakening) , T JA¢r J¢r
Ne:TkHS ri:TkES rir=tk+S
kS T'kr1:type LET:xg
J¢T (subkind) ——
ri:r+ S LET: %
F"Tlt* F,ﬂ?ZTll_th* F"Tlt*s F,iL“ZTll_Tgt*

(interface formation)
P Mx:Ty.Ts) : *

FET %

T :TH{E}:*,

P-Jax:T).To) : %

Pkr:type L[l:TH{E}:x%,

¢ lab(E ¢ lab(E
PCH{I:T,E} : =, ¢ (B) PH{l:T,E}: %, ¢ (&)
PHt:T THT:%s T):T=tF{E}:%
¢ lab(E)
CH{L:T=t,E}: %4
. F,:UZTll_tZTZ F"(H:UTsz)* A A F"tli(HCUZTQ.Tl) Fl_tQZTZ
(abstraction) (application)
Fl‘(}\.’L‘Tlt)(H.’I}TlTQ) Fl_(tlt2)((H$T2T1)t2)
. F,ﬂ?ZTl'_tZTQ F"(EiL“Tsz)* Fl—tl(Einng) F,yZTl,iL“ZTgl_tQZTZ
(declaration) (use)
PH@z:Ty.t): (Fz:Ty.T>) 'k (bind z to t; in t2) : (Bind z To t; In T5)
¢ {I:T,E} 'kt :{l:T=t,E} TFrt:{l:7,E}
(structure)

Tht:({E}[:=td)

Tkt :({E} =t

Tt {E}

P+t {l:T,E} Trt,:{l:T=t,E} TFrt:{l:1,E}

(component)
r+tl:T F'Et.d:T =t T'ktl:r
. FHt:T =t TH¢t:T
(opacity) ——— (transparency) ——
'kt : T CH¢:T/t
. F"tTl F"Tgl* TlERT2 F"tTl F"TQC* T1<3T2 Fl‘tTl FI_TQS* T1N[‘T2
(conversion)
Ckt:Ty PHt:Ty PHt:Ty

Figure 3: Interface inference rules

determines the identity for its generative signature
entries—it makes abstract identities manifest.

The conversion rules permit three different conver-
sion relations between interfaces. Relation =g is a
congruence relation, defining syntactic equality be-
tween interfaces under consideration of the reduction
rules —;, =7 and —p, up to a-conversion. Relation
<: defines subtyping between interfaces; function in-
terfaces are contravariant, while system interfaces are
covariant. Relation =r defines manifest equality of

interfaces. Figure 4 shows the definitions for <: and
~r.

Structure implementations are not part of Ad. The
link to the implementation language is established by
value specifications. Value specifications in signatures
do not contribute to the static and dynamic seman-
tics of Ad. They simply specify exported values which
can be used by other implementations. However, in-
terface formation rules and access rules take value
specifications into consideration. At this point, the



Subtyping of interfaces:

T, T<:T
E, < E, = {E1}<2{E2}
E<:e
E <: E, = (lT El) <: Es
B, <: By = (:T=t5)<:E
E, < B, = (lZT El) <: FE,
T <: TQ, E.< B, = (lZTl =t El) (l Tz,Ez)
T\ < Ty Ei<:Ey = (l:Tl,El) (l TQ,EQ)
T\ < Ty Ei<:Ey = (l:Tl =t El) (l T = t,EQ)
T <:To, F1 <: FEy = (l:Tl,El) (l TQ,EQ)
Th<:Ty, Uy <:Us = (H:U T1 ) (H:UTzUz)
T, <: T = (T 1) <: (T 1)
Ty < Ty, Uy <:Us = (Ela T1 ) (3(1 15 . Uz)
Ty <: Ty = (Bindz TotInT)) <: (Bind z To t In T3)
Manifest equality of interfaces:
T1 ~r TQ,Fl—tl :T1 :tg,El T Eg = (l:letl,El) ~r (l:TQZtQ,EQ), where F’:(F,Z:letl)
T\ ~r TQ,El ~r Fo = (l:Tl,El) T (l:TQ,EQ), where IV = (F,Z:Tl)
E, ~r E> = (lZT,El)%F(lZT,Ez)
E, ~r B> = {Ei}~=~r {Ez}
Tl ~r TQ,Ul ISl U2 = (HZL“ T1 ) ~r (HQZTZ . UQ), where I'' = (F,:UZTl)
T, ~r 1Ty = ( ) Xr (T2 )
Ty, ~p Ty, U; =1/ Us = (3.’1} T . ) Xr (3.’1} 1. UQ) where IV = (F,.’L‘:Tl)
T, ~r Ty = (Bindz TotInT)) ~r (Bind x To t In T5)
sz T
T~r U = U=rT
T~rUU~=rV = T~V

Figure 4: Conversion relations

rules are incomplete, due to the fact that rules for
implementation-language types that permit to infer
'+ 7: type are omitted.

To summarize, AJ is essentially a simply-typed
module calculus, with structures and types as sim-
ple values and signatures and kinds as simple types.
Manifest specifications cause a notion of value-
dependent interfaces, and a simple form of polymor-
phism is gained due to subtyping between interfaces.

3 A module language on top of Core-
SML

The Ad module calculus as introduced in the last sec-
tion, is the foundation of a general module language,
that can be used on top of several typed implemen-
tation languages. In order to compare our module

language to the SML module language and its vari-
ants, we now sketch a module language on top of
core-SML as the implementation language. In gen-
eral, a module language based on AJ is influenced by
the embedded implementation language. Other im-
plementation languages are possible, e.g. in [9] we
use a module language on top of Modula-2.

A module program is a sequence of top-level dec-
larations. A top-level declaration is either a named
module expression (module) or a named interface
definition (interface). Module expressions are trans-
lated straight forward to Ad. Figure 5 shows the
translation.

The interfaces for elementary modules are signa-
tures as known from SML. The main difference is that
types and substructures can be specified manifestly—
this eliminates the need for sharing contraints as used
in SML. For example, the interfaces describing an ab-
stract EQUALITY or a manifest INTORDER (as used in



Ax:T .t ~ fun x:T -> t
ox:T.t ~ dec x:T <- t

He:T7. T ~ all x:T1 => T2
dz:Ty. 175 ~ some x:T1 <= T2

{E} ~ sig E end

Figure 5: Translation of Ad

the introduction) can be named by the following in-
terface definitions:

interface EQUALITY =

sig
type t
val equal: t * t -> bool
end
interface INTORDER =
sig

type t = int

val less: t * t -> bool

val equal: t * t -> bool
end

The definition of subinterfaces is facilitated by the
syntactic short cut with which enables signatures to
be extended and signature entries to be overwritten.
For example, INTORDER could be defined as a subin-
terface of EQUALITY:

interface INTORDER =
EQUALITY with sig
type t = int
val 1less: t * t -> bool
end

Additionally, we introduce parameterized interfaces.
Parameterized interfaces are not part of AJ, they
only occur as top-level definitions. The interface
INTORDER can be computed by a parameterized in-
terface MANIFEST_ORD applied to int:

interface MANIFEST_ORDER =

Fun x: type
=> (EQUALITY with sig
type t = x
val less : t * t -> bool
end )

interface INTORD = (MANIFEST_ORDER int)

Parameterized interfaces map module expressions
to module interfaces. The difference to function in-
terfaces is quite subtle. Function interfaces can be

implemented by module functions, technically spo-
ken, their interface kind is *. Parameterized inter-
faces cannot be implemented by module expressions,
they are only used to compute other interfaces. For
example, the kind of MANIFEST_ORDER is type — *.
This difference maintains the distinction

parameterized (program specification) #
(parameterized program) specification

required by Sanella, Sokolowski and Tarlecki [26] in
the context of algebraic specifications.

3.1 Representation of software systems

In the following we compare our module language
to SML’s module language and its variants. First,
we consider the representation of a software system.
Usually, a software system is represented as a hierar-
chy of structures. In SML, a software system is re-
garded as a structure containing the next-lower level
of the system hierarchy as substructures. In our mod-
ule language, a software system is a module expres-
sion containing declarations only. The structures con-
stituting a system are in topological order w.r.t. their
dependencies. The export part is a single structure,
usually the last structure in the topological order,
possibly containing substructures describing a com-
plex export. The essential difference to SML is that
no implementations are necessary to build a concrete
software system from a functorized architecture.

3.2 Fully transparent higher-order functors

Another interesting aspect is the interface descrip-
tion for the paradigmatic higher-order functor apply
that has been considered by Leroy [15] and Biswas
[4]. The explicit control of type and structure gen-
erativity in our calculus influences the way how type
and structure equalities are propagated.

In our module language the higher-order module
function apply is defined as:

interface S = sig
type t
end
module apply =
fun f: (all x :
-> fun x: S
-> f x

S => (somem : S <=18))

apply has a “fully transparent” behaviour, similar
to [18]. This is best explained by an example. The
parameter £ of apply must be a function returning a
system of the given interface. The following module
expression makePair could be a matching parameter
for f:



interface RESULT =
Fun x : S => sig
type t = x.t * x.t
end
module makePair =
fun x : S
-> dec pair :
<- pair

(RESULT x)

In order to use apply we need a second parameter for
x that satisfies the interface constraints:

module makeIntMod =
dec intMod : sig type t = int end
<- intMod
module useApplyl =
bind x to makeIntMod
in bind y to (apply makePair) x
iny

Interface checking useApplyl propagates the type
equalities of pair.t and deduces for y that

y.t =p pair.t ~p (intMod.t * intMod.t)

in a context I', where intMod.t ~r int.
If we decide to declare abstractPair as a structure
containing an abstract type abstractPair.t:

module makeAbstractPair =
fun x : S
-> dec abstractPair : S
<- abstractPair

the abstract identity is propagated in

module useApply2 =
bind x to makeIntMod
in bind y to (apply makeAbstractPair) x
iny
and interface checking only can deduce for y that

y.t & abstractPair.t

However, it is possible to describe the propagation
of type and structure equalities using manifest spec-
ifications. For example, apply could be defined as:

module apply =
fun f: (all x : S =>

(some m : (RESULT x) <= (RESULT x)))
-> fun x: S
-> f x

limiting the usability of apply to useApplyl. Inter-
face checking useApply2 detects an error, because the
interface of makeAbstractPair is no longer a subin-
terface of parameter f.

3.3 Generativity

In SML, generativity is sometimes used to create dif-
ferent instances of a structure by repeated functor ap-
plications. In our calculus, a similar effect is gained
by the use of bind. Imagine a generic module queue
that is to be implemented by the use of two back-to-
back stacks. This could be expressed at the module
level in the following way.

interface STACK =

Fun x : type => sig
type elem = x
val push : elem -> ()
val pop : () -> elem
end

module makeStack =
fun elem : type
-> dec stack : (STACK elem)
<- stack
interface QUEUE =
Fun x : type => sig
type elem = x
val enqueue: elem -> ()

end
module makeQueue =
fun elem : type
-> let elemStack = (makeStack elem)
in bind front to elemStack
in bind back to elemStack
in dec queue : (QUEUE elem)
is struct
. front.push ...
end

back.push

<- queue

There is one parameterized subsystem makeStack
which is instantiated to the subsystem elemStack.
elemStack is used two times and “generates” two
different stack structures due to the reduction rule
for bind. The resulting subsystem is parameterized
by the element type elem. It consists of two stacks
front and back and one queue queue, where the
queue structure is exported.

3.4 Applicative semantics

Due to the explicit control of generativity, our mod-
ule language is referentially transparent. Further, the
separation of module language and implementation
language guarantees that module expressions cannot
depend on the store. In fact, there is no notion of
store at the module level. This is different to Leroy’s
[15] variant of SML’s module language. He argues



that in a stratified language like SML applicative se-
mantics for types can be sound, while applicative se-
mantics for structures is unsound. The reason is that
in SML module expressions may depend on the store
and side effects prevent a referentially transparent be-
haviour of functor application. Leroy further argues
that in a module language with side effects and mod-
ules as first class values [10], applicative semantics for
function applications is always unsound.

3.5 Functorial polymorphism

In [4], Biswas identifies a new form of polymorphism
found in higher-order functors. He argues that in a
certain context, where for example a module function
(functor) with interface

all x : sig type t = int end

=> sig type t = int end
is expected, a module function with interface

all x : sig type t end
=> sig type t = x.t end

would do as well. He calls this form of polymorphism
functorial polymorphism. In our module language,
the necessary type conversion is simply a combination
of subtyping (<:) with manifest equality (=r):

all x : sig type t end
=> sig type t = x.t end
<:
all x : sig type t =
=> sig type t = x.t end

int end

~r
all x : sig type t =
=> sig type t = int end

int end

3.6 Phase distinction

As pointed out in [12], the use of dependent types con-
flicts with compile-time type checking since a type ex-
pression (expected to evaluate at compile time) may
depend on arbitrary runtime expressions. Checking
the equality of type expressions may involve deciding
the equality of arbitrary run-time expressions, which
in general is not decidable.

In our module language, the equality of run-
time module expressions is decided syntatically (=g).
Since the module language does not allow recursive
functions, syntactic equality is sufficient for interface
checking.

Furthermore, both, interface checking as well as
the evaluation of module expressions is considered to
happen at system compile-time. Interface checking

10

corresponds to the usual type checking. Evaluation
of the module program generates a specific system
architecture; if all implementations are supplied, the
evaluation links the specific software system.

The evaluation of a linked software system, usually
considered to happen at system run-time, is not part
of the dynamic semantics of our module language.
Therefore, using dependent interfaces does not de-
stroy the desirable phase distinction between system
compile-time and system run-time.

4 Related work

SML’s module language and its variants have been
the main inspiration for our module language. Man-
ifest type specifications have also been used in [15,
14, 10]. Contrary to these approaches, we also allow
manifest structure specifications.

The semantics of higher-order functors in SML’s
module language has been treated by several authors.
In [11, 17], a treatment based on strong sums has
been given. Leroy [14] provides a description based
on weak sums, which is able to treat generative and
nongenerative type specifications. The stamp-based
approach by Biswas [4] does not handle type gener-
ativity. Only MacQueen and Tofte’s work [18] takes
into account structure generativity. In our approach,
structure and type generativity is controlled syntac-
tically, therefore, type and structure stamps are no
longer required.

The syntactic control of generativity is inspired by
Mitchell and Plotkin’s work [21] on the type-theoretic
characterisation of abstract types. Roughly, a system
declaration is very similar to a packed abstract type,
while a system use corresponds to a combination of
unpacking and repacking.

The idea of embedding names into a lambda cal-
culus for controlling side effects can also be found
in Odersky’s work [22]. While Odersky proposes a
calculus of local names, our module calculus which
controlls the side effect caused by structure and type
generation could be called a calculus of global names.

While we favour a strict separation of implemen-
tation and module language, other authors try to in-
tegrate module and implementation language into a
single calculus. Harper and Lillebridge [10] suggest
an impredicative calculus with modules as first-class
values based on Girards F,, (see for example [8, 2]).
The seminal work of MacQueen [17] uses a predica-
tive (ramified) calculus based on strong sums.

5 Conclusion

We started this work from a software-engineering
point of view. The motivation was to describe ref-



erence architectures for an entire product line. The
functorized style suggested by SML’s module lan-
guage [23] was the main inspiration for our module
language. It supports the development of a general
architecture for a whole line of similar products. The
architecture for a single product is generated by the
evaluation of a module program. The missing separa-
tion of architectural and implementational concerns,
the rather difficult stamp-based static semantics and
the non-referential transparent behaviour of functor
applications in SML’s module language led to the de-
velopment of our calculus.

We have presented a module calculus that treats
type and, for the first time, structure generativity,
in a referentially transparent way without using any
type or structure stamps. Manifest specifications
and higher-order expressions substitute SML’s shar-
ing constraints.

Currently, we are working on a prototypical inter-
preter for the module language with core-SML as the
implementation language. Our aim is the design of
domain-specific architectures using the module lan-
guage. Perhaps we can construct the implementation
as a domain-specific architecture that can be instan-
tiated for different implementation languages and, if
all the implementations are supplied, generates exec-
tuable interpreters simply by evaluating module ex-
pressions.
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