Abstracting Denotational Interpreters

A Pattern for Sound, Compositional and Higher-order Static Program Analysis

- SEBASTIAN GRAF, Karlsruhe Institute of Technology, Germany
- SIMON PEYTON JONES, Epic Games, UK
- SVEN KEIDEL, TU Darmstadt, Germany

1 2

3 4

5

6

7

17

18

25

26

8 We explore *denotational interpreters*: denotational semantics that produce coinductive traces of a corresponding small-step operational semantics. By parameterising our denotational interpreter over the semantic domain 9 and then varying it, we recover dynamic semantics with different evaluation strategies as well as summary-10 based static analyses such as type analysis, all from the same generic interpreter. Among our contributions is 11 the first provably adequate denotational semantics for call-by-need. The generated traces lend themselves 12 well to describe operational properties such as evaluation cardinality, and hence to static analyses abstracting 13 these operational properties. Since static analysis and dynamic semantics share the same generic interpreter 14 definition, soundness proofs via abstract interpretation decompose into showing small abstraction laws about 15 the abstract domain, thus obviating complicated ad-hoc preservation-style proof frameworks. 16

CCS Concepts: • Software and its engineering \rightarrow Semantics; Automated static analysis; Compilers; *Procedures, functions and subroutines*; Functional languages; Software maintenance tools.

Additional Key Words and Phrases: Programming language semantics, Abstract Interpretation, Static Program
 Analysis

21 ACM Reference Format:

Sebastian Graf, Simon Peyton Jones, and Sven Keidel. 2024. Abstracting Denotational Interpreters: A Pattern
 for Sound, Compositional and Higher-order Static Program Analysis. *Proc. ACM Program. Lang.* 1, ICFP,
 Article 1 (January 2024), 73 pages. https://doi.org/10.1145/111111

1 INTRODUCTION

A static program analysis infers facts about a program, such as "this program is well-typed", "this 27 higher-order function is always called with argument $\lambda x.x + 1$ " or "this program never evaluates 28 29 x". In a functional-language setting, such static analyses are often defined *compositionally* on the input term. For example, consider the claim "(even 42) has type Bool". Type analysis asserts that 30 even :: Int \rightarrow Bool, 42 :: Int, and then applies the function type to the argument type to produce the 31 result type even 42 :: Bool. The function type $Int \rightarrow Bool$ is a summary of the definition of even: 32 33 Whenever the argument has type Int, the result has type Bool. Function summaries enable efficient 34 modular higher-order analyses, because it is much faster to apply the summary of a function instead 35 of reanalysing its definition at use sites in other modules.

If the analysis is used in a compiler to inform optimisations, it is important to prove it sound, because lacking soundness can lead to miscompilation of safety-critical applications [Sun et al. 2016]. In order to prove the analysis sound, it is helpful to pick a language semantics that is also

- Authors' addresses: Sebastian Graf, Karlsruhe Institute of Technology, Karlsruhe, Germany, sgraf1337@gmail.com; Simon Peyton Jones, Epic Games, Cambridge, UK, simon.peytonjones@gmail.com; Sven Keidel, TU Darmstadt, Darmstadt, Germany, sven.keidel@tu-darmstadt.de.
- Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
- the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
- ⁴⁶ © 2024 Copyright held by the owner/author(s).
- 47 ACM 2475-1421/2024/1-ART1
- 48 https://doi.org/10.1145/111111

49

compositional, such as a *denotational semantics* [Scott and Strachey 1971]; then the semantics and
 the analysis "line up" and the soundness proof is relatively straightforward. Indeed, one can often
 break up the proof into manageable sub goals by regarding the analysis as an *abstract interpretation* of the compositional semantics [Cousot 2021].

Alas, traditional denotational semantics does not model operational details – and yet those details might be the whole point of the analysis. For example, we might want to ask "How often does e evaluate its free variable x?", but a standard denotational semantics simply does not express the concept of "evaluating a variable". So we are typically driven to use an *operational semantics* [Plotkin 2004], which directly models operational details like the stack and heap, and sees program execution as a sequence of machine states. Now we have two unappealing alternatives:

- Develop a difficult, ad-hoc soundness proof, one that links a non-compositional operational semantics with a compositional analysis.
- Reimagine and reimplement the analysis as an abstraction of the reachable states of an operational semantics. This is the essence of the *Abstracting Abstract Machines* (AAM) [Van Horn and Might 2010] recipe, a very fruitful framework, but one that follows the *call strings* approach [Sharir et al. 1978], reanalysing function bodies at call sites. Hence the new analysis becomes non-modular, leading to scalability problems for a compiler.

In this paper, we resolve the tension by exploring *denotational interpreters*: total, mathematical objects that live at the intersection of structurally-defined *definitional interpreters* [Reynolds 1972] and denotational semantics. Our denotational interpreters generate small-step traces embellished with arbitrary operational detail and enjoy a straightforward encoding in typical higher-order programming languages. Static analyses arise as instantiations of the same generic interpreter, enabling succinct, shared soundness proofs just like for AAM or big-step definitional interpreters [Darais et al. 2017; Keidel et al. 2018]. However, the shared, compositional structure enables a wide range of summary mechanisms in static analyses that we think are beyond the reach of non-compositional reachable-states abstractions like AAM.

We make the following contributions:

- We use a concrete example (absence analysis) to argue for the usefulness of compositional, summary-based analysis in Section 2 and we demonstrate the difficulty of conducting an ad-hoc soundness proof wrt. a non-compositional small-step operational semantics.
- Section 4 walks through the definition of our generic denotational interpreter and its type class algebra in Haskell. We demonstrate the ease with which different instances of our interpreter endow our object language with call-by-name, call-by-need and call-by-value evaluation strategies, each producing (abstractions of) small-step abstract machine traces.
- A concrete instantiation of a denotational interpreter is *total* if it coinductively yields a (possibly-infinite) trace for every input program, including ones that diverge. Section 5.2 proves that the by-name and by-need instantiations are total by embedding the generic interpreter and its instances in Guarded Cubical Agda.
- Section 5.1 proves that the by-need instantiation of our denotational interpreter adequately generates an abstraction of a trace in the lazy Krivine machine [Sestoft 1997], preserving its length as well as arbitrary operational information about each transition taken.
- By instantiating the generic interpreter with a finite, abstract semantic domain in Section 6, we recover summary-based usage analysis, a generalisation of absence analysis in Section 2. Further examples in the Appendix comprise Type Analysis and 0CFA control-flow analysis, demonstrating the wide range of applicability of our framework.
 - In Section 7, we apply abstract interpretation to characterise a set of abstraction laws that the type class instances of an abstract domain must satisfy in order to soundly approximate

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

101 102 103

105

106

107

108 109

110 111 112

113 114

115

116

117

118

123

124

125

126

132

133

134

135

136

137 138

139

140

141

142

143

144

99

100

 $\mathcal{A}[\![_]\!]_{-}:\mathsf{Exp}\to(\mathsf{Var}\rightharpoonup\mathsf{AbsTy})\to\mathsf{AbsTy}$ $\begin{aligned} \mathcal{A}[\![\mathbf{x}]\!]_{\rho} &= \rho(\mathbf{x}) \\ \mathcal{A}[\![\bar{\lambda}\mathbf{x}.\mathbf{e}]\!]_{\rho} &= fun_{\mathbf{x}}(\lambda\theta.\ \mathcal{A}[\![\mathbf{e}]\!]_{\rho[\mathbf{x}\mapsto\theta]}) \end{aligned}$ $a \in Absence ::= A \mid U$ $\varphi \in \mathsf{Uses}$ = Var \rightarrow Absence $\mathcal{A}\llbracket \mathbf{e} \mathbf{x} \rrbracket_{\rho} = app(\mathcal{A}\llbracket \mathbf{e} \rrbracket_{\rho})(\rho(\mathbf{x}))$ $\varsigma \in \text{Summary} ::= a \circ \varsigma \mid \text{Rep} a$ $\mathcal{A}\llbracket \text{let } \mathbf{x} = \mathbf{e}_1 \text{ in } \mathbf{e}_2 \rrbracket_{\rho} = \mathcal{A}\llbracket \mathbf{e}_2 \rrbracket_{\rho \llbracket \mathbf{x} \mapsto \mathbf{x} \& \mathcal{A} \llbracket \mathbf{e}_1 \rrbracket_{\rho} \rrbracket_{\rho}}$ $\theta \in AbsTy$ $::= \langle \varphi, \zeta \rangle$ $\operatorname{Rep} a \equiv a \operatorname{\mathbb{S}} \operatorname{Rep} a$ $fun_{\mathsf{x}}(f) = \langle \varphi[\mathsf{x} \mapsto \mathsf{A}], \varphi(\mathsf{x}) \colon \varsigma \rangle$ where $\langle \varphi, \varsigma \rangle = f(\langle [\mathbf{x} \mapsto \mathbf{U}], \operatorname{Rep} \mathbf{U} \rangle)$ $A * \varphi = [] \quad U * \varphi = \varphi$ $app(\langle \varphi_f, a \circ \varsigma \rangle)(\langle \varphi_a, \neg \rangle) = \langle \varphi_f \sqcup (a \circ \varphi_a), \varsigma \rangle$ $\mathbf{x} \& \langle \varphi, \varsigma \rangle = \langle \varphi [\mathbf{x} \mapsto \mathsf{U}], \varsigma \rangle$

Fig. 1. Absence analysis

by-name and by-need interpretation. None of the proof obligations mention the generic interpreter, and, more remarkably, none of the laws mention the concrete semantics or the Galois connection either! This enables to prove usage analysis sound wrt. the by-name and by-need semantics in half a page, building on reusable semantics-specific theorems.

• We compare to the enormous body of related approaches in Section 8.

2 THE PROBLEM WE SOLVE

What is so difficult about proving a compositional, summary-based analysis sound wrt. a noncompositional small-step operational semantics? We will demonstrate the challenges in this section,
by way of a simplified *absence analysis* [Peyton Jones and Partain 1994], a higher-order form of
neededness analysis to inform removal of dead bindings in a compiler.

2.1 Object Language

To set the stage, we start by defining the object language of this work, a lambda calculus with *recursive* let bindings and algebraic data types:

Variables	x, y	\in	Var		Constructors $K \in Con$ with arity $\alpha_K \in \mathbb{N}$
Values	v	\in	Val	::=	$\bar{\lambda}$ x.e $K \bar{\mathbf{x}}^{\alpha_K}$
Expressions	e	∈	Exp	::=	$x v e x let x = e_1 in e_2 case e of \overline{K \overline{x}^{\alpha_K} \rightarrow e}$

This language is very similar to that of Launchbury [1993] and Sestoft [1997]. It is factored into *A*-normal form, that is, the arguments of applications are restricted to be variables, so the difference between lazy and eager semantics is manifest in the semantics of let. Note that $\bar{\lambda}x.x$ (with an overbar) denotes syntax, whereas $\lambda x. x + 1$ denotes an anonymous mathematical function. In this section, only the highlighted parts are relevant, but the interpreter definition in Section 4 supports data types as well. Throughout the paper we assume that all bound program variables are distinct.

2.2 Absence Analysis

In order to define and explore absence analysis in this subsection, we must clarify what absence means, semantically. A variable x is *absent* in an expression e when e never evaluates x, regardless of the context in which e appears. Otherwise, the variable x is *used* in e.

Figure 1 defines an absence analysis $\mathcal{A}[\![e]\!]_{\rho}$ for lazy program semantics that conservatively approximates semantic absence.¹ It takes an environment $\rho \in Var \rightarrow Absence$ containing absence

¹⁴⁵ ¹For illustrative purposes, our analysis definition only works for the special case of non-recursive let. The generalised ¹⁴⁶ definition for recursive as well as non-recursive let is $\mathcal{A}[[let x = e_1 in e_2]]_{\rho} = \mathcal{A}[[e_2]]_{\rho[x \mapsto lfp(\lambda\theta. x \& \mathcal{A}[[e_1]]_{\rho[x \mapsto \theta]})]$.

information about the free variables of e and returns an *absence type* $\langle \varphi, \varsigma \rangle \in AbsTy$; an abstract 148 representation of e. The first component $\varphi \in U$ ses of the absence type captures how e uses its free 149 150 variables by associating an Absence flag with each variable. When $\varphi(x) = A$, then x is absent in e; otherwise, $\varphi(x) = U$ and x might be used in e. The second component $\zeta \in$ Summary of the absence 151 type summarises how e uses actual arguments supplied at application sites. For example, function 152 $f \triangleq \bar{\lambda}x.y$ has absence type $\langle [y \mapsto U], A \approx \text{Rep } U \rangle$. Mapping $[y \mapsto U]$ indicates that f may use its free 153 variable y. The literal notation $[y \mapsto U]$ maps any variable other than y to A. Furthermore, summary 154 155 A \otimes Rep U indicates that f's first argument is absent and all further arguments are potentially used. The summary Rep U denotes an infinite repetition of U, as expressed by the non-syntactic equality 156 Rep U ≡ U \otimes Rep U. 157

We illustrate the analysis at the example expression $e \triangleq \mathbf{let} \ k = \bar{\lambda} y \cdot \bar{\lambda} z \cdot y$ in $k x_1 x_2$, where 158 the initial environment for e, $\rho_{e}(x) \triangleq \langle [x \mapsto U], \text{Rep } U \rangle$, declares the free variables of e with a 159 160 pessimistic summary Rep U. 161

173 Let us look at the steps in a bit more detail. Step (1) extends the environment with an absence type for 174 the let right-hand side of k. The steps up until (5) successively expose applications of the *app* and *fun* 175 helper functions applied to environment entries for the involved variables. Step (5) then computes 176 the summary as part of the absence type $fun_u(\lambda \theta_y, fun_z(\lambda \theta_z, \theta_y)) = \langle [], U \circ A \circ Rep U \rangle$. The Uses 177 component is empty because $\lambda y. \lambda z. y$ has no free variables, and k & ... will add $[k \mapsto U]$ as the single 178 use. The *app* steps (6) and (7) simply zip up the uses of arguments $\rho_1(x_1)$ and $\rho_1(x_2)$ with the Absence flags in the summary U: A: Rep U as highlighted, adding the Uses from $\rho_1(x_1) = \langle [x_1 \mapsto U], \text{Rep U} \rangle$ 180 but not from $\rho_1(x_2)$, because the first actual argument (x_1) is used whereas the second (x_2) is absent. The join on Uses follows pointwise from the order A \sqsubset U, i.e., $(\varphi_1 \sqcup \varphi_2)(x) \triangleq \varphi_1(x) \sqcup \varphi_2(x)$. 182

The analysis result $[k \mapsto \bigcup, x_1 \mapsto \bigcup]$ infers k and x_1 as potentially used and x_2 as absent, despite it occurring in argument position, thanks to the summary mechanism.

Function Summaries, Compositionality and Modularity 2.3

Instead of coming up with a summary mechanism, we could simply have "inlined" k during analysis 187 of the example above to see that x_2 is absent in a simple first-order sense. The *call strings* approach 188 to interprocedural program analysis [Sharir et al. 1978] turns this idea into a static analysis, and 189 the AAM recipe could be used to derive a call strings-based absence analysis that is sound by 190 construction. In this subsection, we argue that following this paths gives up on modularity, and 191 thus leads to scalability problems in a compiler. 192

Let us clarify that by a summary mechanism, we mean a mechanism for approximating the 193 semantics of a function call in terms of the domain of a static analysis, often yielding a symbolic, 194 finite representation. In the definition of $\mathcal{A}[-]$, we took care to explicate the mechanism via *fun* 195

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

179

181

183

184 185

186

and *app*. The former approximates a functional $(\lambda \theta, ...)$: AbsTy \rightarrow AbsTy into a finite AbsTy, and *app* encodes the adjoint ("reverse") operation.²

To support efficient separate compilation, a compiler analysis must be *modular*, and summaries are indispensable in achieving that. Let us say that our example function $k = (\bar{\lambda}y.\bar{\lambda}z.y)$ is defined in module A and there is a use site $(k \ x_1 \ x_2)$ in module B. Then a *modular analysis* must not reanalyse A.k at its use site in B. Our analysis $\mathcal{A}[[-]]$ facilitates that easily, because it can serialise the summarised AbsTy for k into module A's signature file. Do note that this would not have been possible for the functional $(\lambda \theta_y. \lambda \theta_z. \theta_y)$: AbsTy \rightarrow AbsTy that describes the inline expansion of k, which a call strings-based analysis would need to invoke at every use site.

The same way summaries enable efficient *inter*-module compilation, they enable efficient *intra*module compilation for *compositional* static analyses such as $\mathcal{A}[-]$.³ Compositionality implies that $\mathcal{A}[[\text{let } f = \bar{\lambda}x.e_{big} \text{ in } f f f f]]$ is a function of $\mathcal{A}[[\bar{\lambda}x.e_{big}]]$, itself a function of $\mathcal{A}[[e_{big}]]$. In order to satisfy the scalability requirements of a compiler and guarantee termination of the analysis in the first place, it is important not to repeat the work of analysing $\mathcal{A}[[e_{big}]]$ at every use site of f. Thus, it is necessary to summarise $\mathcal{A}[[\bar{\lambda}x.e_{big}]]$ into a finite AbsTy, rather than to call the inline expansion of type AbsTy \rightarrow AbsTy multiple times, ruling out an analysis that is purely based on call strings.

2.4 Problem: Proving Soundness of Summary-Based Analyses

In this subsection, we demonstrate the difficulty of proving summary-based analyses sound.

Theorem 1 ($\mathcal{A}[-]]$ infers absence). If $\mathcal{A}[e]_{\rho_e} = \langle \varphi, \varsigma \rangle$ and $\varphi(x) = A$, then x is absent in e.

What are the main obstacles to prove it? As the first step, we must define what absence *means*, in a formal sense. There are many ways to do so, and it is not at all clear which is best. One plausible definition is in terms of the standard operational semantics in Section 3:

Definition 2 (Absence). A variable x is used in an expression e if and only if there exists a trace (let x = e' in e, ρ, μ, κ) $\hookrightarrow^* \dots \xrightarrow{LOOK(x)} \dots$ that looks up the heap entry of x, i.e., it evaluates x. Otherwise, x is absent in e.

Note that absence is a property of many different traces, each embedding the expression e in different machine contexts so as to justify rewrites via contextual improvement [Moran and Sands 1999]. Furthermore, we must prove sound the summary mechanism, captured in the following *substitution lemma* [Pierce 2002]:⁴

Lemma 3 (Substitution). $\mathcal{A}\llbracket e \rrbracket_{\rho[x \mapsto \rho(y)]} \sqsubseteq \mathcal{A}\llbracket (\bar{\lambda}x.e) y \rrbracket_{\rho}$.

Definition 2 and the substitution Lemma 3 will make a reappearance in Section 7. They are necessary components in a soundness proof, and substitution is not too difficult to prove for a simple summary mechanism. Building on these definitions, we may finally attempt the proof for Theorem 1. We suggest for the reader to have a cursory look by clicking on the theorem number, linking to the Appendix. The proof is exemplary of far more ambitious proofs such as in Sergey et al. [2017] and Breitner [2016, Section 4]. Though seemingly disparate, these proofs all follow an established preservation-style proof technique at heart.⁵ The proof of Sergey et al. [2017] for a

245

213

214

215 216

217

218 219

220

221

222

223

224 225

226

227

228

229

230 231

232

233

234

235

236

237

²³⁹ ²Proving that *fun* and *app* form a Galois connection is indeed important for a soundness proof and corresponds to a substitution Lemma 3.

³Cousot and Cousot [2002] understand modularity as degrees of compositionality.

⁴This statement amounts to $id \sqsubseteq app \circ fun_x$, one half of a Galois connection. The other half $fun_x \circ app \sqsubseteq id$ is eta-expansion $\mathcal{A}[[\lambda x.e x]]_{\rho} \sqsubseteq \mathcal{A}[[e]]_{\rho}$.

 ²⁴³ ⁵A "mundane approach" according to Nielson et al. [1999, Section 4.1], applicable to *trace properties*, but not to *hyperproperties* (Clarkson and Schneider 2010).

generalisation of $\mathcal{A}[-]$ is roughly structured as follows (non-clickable references to Figures and 246 Lemmas below reference Sergey et al. [2017]): 247

- 248 (1) Instrument a standard call-by-need semantics (a variant of our reference in Section 3) such 249 that heap lookups decrement a per-address counter; when heap lookup is attempted and 250 the counter is 0, the machine is stuck. For absence, the instrumentation is simpler: the LOOK 251 transition in Figure 2 carries the let-bound variable that is looked up.
 - (2) Give a declarative type system that characterises the results of the analysis (i.e., $\mathcal{A}[-])$ in a lenient (upwards closed) way. In case of Theorem 1, we define an analysis function on machine configurations for the proof.
 - (3) Prove that evaluation of well-typed terms in the instrumented semantics is bisimilar to evaluation of the term in the standard semantics, i.e., does not get stuck when the standard semantics would not. A classic logical relation [Nielson et al. 1999]. In our case, we prove that evaluation preserves the analysis result.

Alas, the effort in comprehending such a proof in detail, let alone formulating it, is enormous.

- The instrumentation (1) can be semantically non-trivial; for example the semantics in Sergey et al. [2017] becomes non-deterministic. Does this instrumentation still express the desired semantic property?
 - Step (2) all but duplicates a complicated analysis definition (i.e., A[[_]]) into a type system (in Figure 7) with subtle adjustments expressing invariants for the preservation proof.
- Furthermore, step (2) extends this type system to small-step machine configurations (in Figure 13), i.e., stacks and heaps, the scoping of which is mutually recursive.⁶ Another page worth of Figures; the amount of duplicated proof artifacts is staggering. In our case, the analysis function on machine configurations is about as long as on expressions.
- This is all setup before step (3) proves interesting properties about the semantic domain of the analysis. Among the more interesting properties is the *substitution lemma* A.8 to be applied during beta reduction; exactly as in our proof.
- While proving that a single step $\sigma_1 \hookrightarrow \sigma_2$ preserves analysis information in step (3), we noticed that we actually got stuck in the UPD case, and would need to redo the proof using step-indexing [Appel and McAllester 2001]. In our experience this case hides the thorniest of surprises; that was our experience while proving Theorem 56 which gives a proper account. Although the proof in Sergey et al. [2017] is perceived as detailed and rigorous, it is quite terse in the corresponding EUPD case of the single-step safety proof in lemma A.6.

The main takeaway: Although analysis and semantics might be reasonably simple, the soundness proof that relates both is *not*; it necessitates an explosion in formal artefacts and the parts of the proof that concern the domain of the analysis are drowned in coping with semantic subtleties that ultimately could be shared with similar analyses. Furthermore, the inevitable hand-waving in proofs of this size around said semantic subtleties diminishes confidence in the soundness of the proof to the point where trust can only be recovered by full mechanisation.

It would be preferable to find a framework to prove these distractions rigorously and separately, once and for all, and then instantiate this framework for absence analysis or cardinality analysis, so that only the highlights of the preservation proof such as the substitution lemma need to be shown.

Abstract interpretation provides such a framework. Alas, the book of Cousot [2021] starts from a compositional semantics to derive compositional analyses, but small-step operational semantics are non-compositional! This begs the question if we could have started from a compositional 290 denotational semantics. While we could have done so for absence or strictness analysis, denotational

- 292 ⁶We believe that this extension can always be derived systematically from a context lemma [Moran and Sands 1999, Lemma 293 3.2] and imitating what the type system does on the closed expression derivable from a configuration via the context lemma.
- 294

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

263

264

265

266

267

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

291

252

253

254

255

256

257

Addresses $a \in Addr \simeq \mathbb{N}$

295

296

308

309 310 311

312

313

314

315

316

317

318

319

320

321

322 323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

Rule	$\sigma_1 \hookrightarrow \sigma_2$	where
Let ₁	$(\mathbf{let} \ \mathbf{x} = \mathbf{e}_1 \ \mathbf{in} \ \mathbf{e}_2, \rho, \mu, \kappa) \hookrightarrow (\mathbf{e}_2, \rho', \mu[\mathbf{a} \mapsto (\mathbf{x}, \rho', \mathbf{e}_1)], \kappa)$	$a \notin dom(\mu), \ \rho' = \rho[x \mapsto a$
APP_1	$(\mathbf{e} \mathbf{x}, \rho, \mu, \kappa) \hookrightarrow (\mathbf{e}, \rho, \mu, \mathbf{ap}(\mathbf{a}) \cdot \kappa)$	$\mathbf{a} = \rho(\mathbf{x})$
Case ₁	(case e_s of $\overline{K \ \overline{x} \to e_r}$, $\rho, \mu, \kappa) \hookrightarrow (e_s, \rho, \mu, \text{sel}(\rho, \overline{K \ \overline{x} \to e_r}) \cdot \kappa)$	
Look(y)	$(\mathbf{x}, \rho, \mu, \kappa) \hookrightarrow (\mathbf{e}, \rho', \mu, \mathbf{upd}(\mathbf{a}) \cdot \kappa)$	$\mathbf{a} = \rho(\mathbf{x}), \ (\mathbf{y}, \rho', \mathbf{e}) = \mu(\mathbf{a})$
APP_2	$(\bar{\lambda}\mathbf{x}.\mathbf{e},\rho,\mu,\mathbf{ap}(\mathbf{a})\cdot\kappa) \hookrightarrow (\mathbf{e},\rho[\mathbf{x}\mapsto\mathbf{a}],\mu,\kappa)$	
CASE ₂	$(K' \ \overline{y}, \rho, \mu, \mathbf{sel}(\rho', \overline{K \ \overline{x} \to \mathbf{e}}) \cdot \kappa) \hookrightarrow (\mathbf{e}_i, \rho'[\overline{\mathbf{x}_i \mapsto \mathbf{a}}], \mu, \kappa)$	$K_i = K', \ \overline{\mathbf{a} = \rho(\mathbf{y})}$
Upd	$(\mathbf{v}, \rho, \mu, \mathbf{upd}(\mathbf{a}) \cdot \kappa) \hookrightarrow (\mathbf{v}, \rho, \mu[\mathbf{a} \mapsto (\mathbf{x}, \rho, \mathbf{v})], \kappa)$	$\mu(a) = (x, ,)$

Heaps $\mu \in \mathbb{H} = \text{Addr} \rightarrow \text{Var} \times \mathbb{E} \times \text{Exp}$ Environments $\rho \in \mathbb{E}$ = Var \rightarrow Addr

States $\sigma \in \mathbb{S} = \text{Exp} \times \mathbb{E} \times \mathbb{H} \times \mathbb{K}$

Fig. 2. Lazy Krivine transition semantics \hookrightarrow

semantics is insufficient to express operational properties such as usage cardinality, i.e., "e evaluates x at most u times", but usage cardinality is the entire point of the analysis in Sergey et al. [2017].⁷

For these reasons, we set out to find a compositional semantics that exhibits operational detail just like the trace-generating semantics of Cousot [2021], and were successful. The example of usage analysis in Section 6 (generalising $\mathcal{A}[-]$, as suggested above) demonstrates that we can derive summary-based analyses as an abstract interpretation from our semantics. Since both semantics and analysis are derived from the same compositional generic interpreter, the equivalent of the preservation proof for usage analysis in Lemma 9 takes no more than a substitution lemma and a bit of plumbing. Hence our *denotational interpreter* does not only enjoy useful compositional semantics and analyses as instances, the soundness proofs become compositional in the semantic domain as well.

REFERENCE SEMANTICS: LAZY KRIVINE MACHINE 3

Before we get to introduce our novel denotational interpreters, let us recall the semantic ground truth of this work and others [Breitner 2016; Sergey et al. 2017]: The Mark II machine of Sestoft [1997] given in Figure 2, a small-step operational semantics. It is a Lazy Krivine (LK) machine implementing call-by-need. (A close sibling for call-by-value would be a CESK machine [Felleisen and Friedman 1987].) A reasonable call-by-name semantics can be recovered by removing the UPD rule and the pushing of update frames in LOOK. Furthermore, we will ignore CASE1 and CASE2 in this section because we do not consider data types for now.

The configurations σ in this transition system resemble abstract machine states, consisting of a control expression e, an environment ρ mapping lexically-scoped variables to their current heap address, a heap μ listing a closure for each address, and a stack of continuation frames κ . There is one harmless non-standard extension: For LOOK transitions, we take note of the let-bound variable y which allocated the heap binding that the machine is about to look up. The association from address to let-bound variable is maintained in the first component of a heap entry triple and requires slight adjustments of the LET1, LOOK and UPD rules.

The notation $f \in A \rightarrow B$ used in the definition of ρ and μ denotes a finite map from A to B, a partial function where the domain dom(f) is finite and rng(f) denotes its range. The literal

⁷Useful applications of the "at most once" cardinality are given in Sergey et al. [2017]; Turner et al. [1995], motivating 341 inlining into function bodies that are called at most once, for example. 342

notation $[a_1 \mapsto b_1, ..., a_n \mapsto b_n]$ denotes a finite map with domain $\{a_1, ..., a_n\}$ that maps a_i to b_i . Function update $f[a \mapsto b]$ maps a to b and is otherwise equal to f.

The initial machine state for a closed expression e is given by the injection function *init*(e) = (e, [], [], **stop**) and the final machine states are of the form (v, \neg, stop) . We bake into $\sigma \in \mathbb{S}$ the simplifying invariant of *well-addressedness*: Any address a occurring in ρ , κ or the range of μ must be an element of dom(μ). It is easy to see that the transition system maintains this invariant and that it is still possible to observe scoping errors which are thus confined to lookup in ρ .

We conclude with two example traces. The first one evaluates let $i = \overline{\lambda}x.x$ in i i:

$$(\operatorname{let} i = \overline{\lambda} x.x \operatorname{in} i i, [], [], \operatorname{stop}) \xrightarrow{\operatorname{LeT}_{1}} (i i, \rho_{1}, \mu, \operatorname{stop}) \xrightarrow{\operatorname{APP}_{1}} (i, \rho_{1}, \mu, \kappa) \xrightarrow{\operatorname{Look}(i)} (\overline{\lambda} x.x, \rho_{1}, \mu, \operatorname{upd}(a_{1}) \cdot \kappa) \xrightarrow{\operatorname{UPD}} (\overline{\lambda} x.x, \rho_{1}, \mu, \kappa) \xrightarrow{\operatorname{APP}_{2}} (x, \rho_{2}, \mu, \operatorname{stop}) \xrightarrow{\operatorname{Look}(i)} (\overline{\lambda} x.x, \rho_{1}, \mu, \operatorname{upd}(a_{1}) \cdot \operatorname{stop}) \xrightarrow{\operatorname{UPD}} (\overline{\lambda} x.x, \rho_{1}, \mu, \operatorname{stop}) \xrightarrow{(\Lambda x.x, \rho_{1}, \mu, \operatorname{stop})} (1)$$

where
$$\kappa = ap(a_1) \cdot stop$$
, $\rho_1 = [i \mapsto a_1]$, $\rho_2 = [i \mapsto a_1, x \mapsto a_1]$, $\mu = [a_1 \mapsto (i, \rho_1, \lambda x. x)]$

The corresponding by-name trace simply omits the highlighted update steps. The second example evaluates $e \triangleq let i = (\bar{\lambda}y.\bar{\lambda}x.x) i$ in *i i*, demonstrating memoisation of *i*:

$$(\mathbf{e}, [], [], \mathbf{stop}) \xrightarrow{\mathrm{Ler}_{1}} (i \ i, \rho_{1}, \mu_{1}, \mathbf{stop}) \xrightarrow{\mathrm{APP}_{1}} (i, \rho_{1}, \mu_{1}, \kappa_{1}) \xrightarrow{\mathrm{Look}(i)} ((\bar{\lambda}y.\bar{\lambda}x.x) \ i, \rho_{1}, \mu_{1}, \kappa_{2}) \xrightarrow{\mathrm{APP}_{1}} (\bar{\lambda}y.\bar{\lambda}x.x, \rho_{1}, \mu_{1}, \mathbf{ap}(\mathbf{a}_{1}) \cdot \kappa_{2}) \xrightarrow{\mathrm{APP}_{2}} (\bar{\lambda}x.x, \rho_{2}, \mu_{1}, \kappa_{2}) \xrightarrow{\mathrm{UPD}} (\bar{\lambda}x.x, \rho_{2}, \mu_{2}, \kappa_{1})$$

$$\xrightarrow{\mathrm{APP}_{2}} (x, \rho_{3}, \mu_{2}, \mathbf{stop}) \xrightarrow{\mathrm{Look}(i)} (\bar{\lambda}x.x, \rho_{2}, \mu_{2}, \mathbf{upd}(\mathbf{a}_{1}) \cdot \mathbf{stop}) \xrightarrow{\mathrm{UPD}} (\bar{\lambda}x.x, \rho_{2}, \mu_{2}, \mathbf{stop})$$

$$\xrightarrow{\mathrm{APP}_{2}} (x, \rho_{3}, \mu_{2}, \mathbf{stop}) \xrightarrow{\mathrm{Look}(i)} (\bar{\lambda}x.x, \rho_{2}, \mu_{2}, \mathbf{upd}(\mathbf{a}_{1}) \cdot \mathbf{stop}) \xrightarrow{\mathrm{UPD}} (\bar{\lambda}x.x, \rho_{2}, \mu_{2}, \mathbf{stop})$$

$$\xrightarrow{\mathrm{Where}} \begin{array}{c} \rho_{1} = [i \mapsto \mathbf{a}_{1}], \quad \rho_{2} = [i \mapsto \mathbf{a}_{1}, y \mapsto \mathbf{a}_{1}], \quad \rho_{3} = [i \mapsto \mathbf{a}_{1}, y \mapsto \mathbf{a}_{1}, x \mapsto \mathbf{a}_{1}], \\ \mu_{1} = (\rho_{1}, (i, \bar{\lambda}y.\bar{\lambda}x.x) \ i), \mu_{2} = [\mathbf{a}_{1} \mapsto (i, \rho_{2}, \bar{\lambda}x.x)], \kappa_{1} = \mathbf{ap}(\mathbf{a}_{1}) \cdot \mathbf{stop}, \kappa_{2} = \mathbf{upd}(\mathbf{a}_{1}) \cdot \kappa_{1} \end{array}$$

4 A DENOTATIONAL INTERPRETER

In this section, we present the main contribution of this work, namely a generic *denotational interpreter*⁸ for a functional language which we can instantiate with different semantic domains. The choice of semantic domain determines the *evaluation strategy* (call-by-name, call-by-value, call-by-need) and the degree to which *operational detail* can be observed. Yet different semantic domains give rise to useful *summary-based* static analyses such as usage analysis in Section 6, all from the same interpreter skeleton. Our generic denotational interpreter enable sharing of soundness proofs, thus drastically simplifying the soundness proof obligation per derived analysis (Section 7).

Denotational interpreters can be implemented in any higher-order language such as OCaml, Scheme or Java with explicit thunks, but we picked Haskell for convenience.⁹

4.1 Semantic Domain

Just as traditional denotational semantics, denotational interpreters assign meaning to programs in some *semantic domain*. Traditionally, the semantic domain D comprises *semantic values* such as base values (integers, strings, etc.) and functions $D \rightarrow D$. One of the main features of these semantic domains is that they lack *operational*, or, *intensional detail* that is unnecessary to assigning each

 ⁸This term was coined by Might [2010]. We find it fitting, because a denotational interpreter is both a *denotational semantics* [Scott and Strachey 1971] as well as a total *definitional interpreter* [Reynolds 1972].

 ⁹We extract from this document a runnable Haskell file which we add as a Supplement, containing the complete definitions.
 Furthermore, the (terminating) interpreter outputs are directly generated from this extract.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

393 type $(:\rightarrow) = Map; \varepsilon :: Ord k \Rightarrow k :\rightarrow v$ 394 $[_\mapsto_]$:: Ord $k \Rightarrow (k \Rightarrow v) \rightarrow k \rightarrow v \rightarrow (k \Rightarrow v)$ data Exp 395 $_[_ \mapsto _] :: \text{Ord } k \Rightarrow (k : \rightharpoonup v) \rightarrow [k] \rightarrow [v]$ = Var Name | Let Name Exp Exp 396 $\rightarrow (k \rightarrow v)$ Lam Name Exp | App Exp Name 397 | ConApp Tag [Name] | Case Exp Alts (!) :: Ord $k \Rightarrow (k \rightarrow v) \rightarrow k \rightarrow v$ 398 *dom* :: Ord $k \Rightarrow (k : \rightarrow v) \rightarrow \text{Set } k$ type Name = String 399 **type** Alts = Tag : \rightarrow ([Name], Exp) (\in) :: Ord $k \Rightarrow k \rightarrow \text{Set } k \rightarrow \text{Bool}$ 400 **data** Tag = ...; *conArity* :: Tag \rightarrow Int $(\triangleleft) :: (b \to c) \to (a :\to b) \to (a :\to c)$ 401 assocs :: $(k \rightarrow v) \rightarrow [(k, v)]$ 402 Fig. 3. Syntax 403

Fig. 4. Environments

observationally distinct expression a distinct meaning. For example, it is not possible to observe evaluation cardinality, which is the whole point of analyses such as usage analysis (Section 6).

A distinctive feature of our work is that our semantic domains are instead traces that describe the steps taken by an abstract machine, and that end in semantic values. It is possible to describe usage cardinality as a property of the traces thus generated, as required for a soundness proof of usage analysis. We choose D_{na} , defined below, as the first example of such a semantic domain, because it is simple and illustrative of the approach. Instantiated at D_{na} , our generic interpreter will produce precisely the traces of the by-name variant of the Krivine machine in Figure 2.

We can define the semantic domain D_{na} for a call-by-*na*me variant of our language as follows:¹⁰

416 417 418 419 420	type D $\tau = \tau$ (Value τ); type D _{na} = D T data T v = Step Event (T v) Ret v data Event = Lookup Name Update App ₁ App ₂ Let ₀ Let ₁ Case ₁ Case ₂ data Value τ = Stuck Fun (D $\tau \rightarrow$ D τ) Con Tag [D τ]	instance Monad T where <i>return</i> $v = \text{Ret } v$ Ret $v \ge k = k v$ Step $e \tau \ge k = \text{Step } e (\tau \ge k)$
421		

A trace T either returns a value (Ret) or makes a small-step transition (Step). Each step Step ev rest is 422 decorated with an event *ev*, which describes what happens in that step. For example, event Lookup x 423 describes the lookup of variable *x* :: Name in the environment. Note that the choice of Event is 424 use-case (i.e. analysis) specific and suggests a spectrum of intensionality, with data Event = Unit 425 on the more abstract end of the spectrum and arbitrary syntactic detail attached to each of Event's 426 constructors at the intensional end of the spectrum.¹¹ 427

A trace in $D_{na} = T$ (Value T) eventually terminates with a Value that is either stuck (Stuck), a function waiting to be applied to a domain value (Fun), or a constructor constructor application giving the denotations of its fields (Con). We postpone worries about well-definedness and totality of this encoding to Section 5.2.

4.2 The Interpreter

Traditionally, a denotational semantics is expressed as a mathematical function, often written $[e]_{\rho}$, to give an expression e :: Exp a meaning, or *denotation*, in terms of some semantic domain

441

404

405 406

407

408

409

410

411

412

413

414

428

429

430

431 432

433

434

435 436

¹⁰For a realistic implementation, we would define D as a newtype to keep type class resolution decidable and non-437 overlapping. We will however stick to a type synonym in this presentation in order to elide noisy wrapping and unwrapping 438 of constructors.

⁴³⁹ ¹¹If our language had facilities for input/output and more general side-effects, we could have started from a more elaborate trace construction such as (guarded) interaction trees [Frumin et al. 2023; Xia et al. 2019]. 440

1:10

442

443	S[-] :: (Trace <i>d</i> , Domain <i>d</i> , HasBind <i>d</i>)	С
445	$\Rightarrow \text{Exp} \rightarrow (\text{Name} :\rightarrow d) \rightarrow d$	
444		С
	$S[[e]]_{\rho} = \text{case } e \text{ of}$	
446	$\operatorname{Var} x \mid x \in \operatorname{dom} \rho \to \rho ! x$	
447	$ otherwise \rightarrow stuck$	
448	Lam $x \ body \rightarrow fun \ x \ \$ \lambda d \rightarrow$	
449	step App ₂ ($\mathcal{S}[body]_{(\rho[x \mapsto d])}$)	
450	App $e x \mid x \in dom \ \rho \rightarrow step \ App_1 \$	
451 452	apply $(\mathcal{S}\llbracket e \rrbracket_{\rho})$ $(\rho ! x)$	С
452	$ $ otherwise \rightarrow stuck	
454	Let $x e_1 e_2 \rightarrow bind$	
455	$(\lambda d_1 \to \mathcal{S}\llbracket e_1 \rrbracket_{\rho[x \mapsto step (Lookup x) d_1]})$	
456	$(\lambda d_1 \to step \operatorname{Let}_1 (\mathcal{S}\llbracket e_2 \rrbracket_{\rho[x \mapsto step} (\operatorname{Lookup} x) d_1]))$	iı
457	ConApp $k xs$	
458	$ all (\in dom \rho) xs, length xs \equiv conArity k$	iı
459	$\rightarrow con \ k \ (map \ (\rho \ !) \ xs)$	
460	otherwise	
461	\rightarrow stuck	
462	Case <i>e alts</i> \rightarrow <i>step</i> Case ₁ \$	
463	-	
464	select $(\mathcal{S}\llbracket e \rrbracket_{\rho})$ (cont \triangleleft alts)	
465	where	
466	$cont(xs, e_r) ds \mid length xs \equiv length ds$	
467	$= step \operatorname{Case}_2 \left(\mathcal{S}\llbracket e_r \rrbracket_{\rho[\overline{xs \mapsto ds}]} \right)$	
468	otherwise	iı
469	= stuck	
470		
471		

class Trace d where step :: Event $\rightarrow d \rightarrow d$ lass Domain d where stuck :: d*fun* :: Name \rightarrow ($d \rightarrow d$) $\rightarrow d$ $apply :: d \to d \to d$ $con :: Tag \rightarrow [d] \rightarrow d$ select :: $d \rightarrow (\text{Tag} :\rightarrow ([d] \rightarrow d)) \rightarrow d$ lass HasBind *d* where bind :: $(d \rightarrow d) \rightarrow (d \rightarrow d) \rightarrow d$ (a) Interface of traces and values nstance Trace (T v) where *step* = Step **nstance** Monad $\tau \Rightarrow$ Domain (D τ) where *stuck* = *return* Stuck $fun _ f = return$ (Fun f) apply $d = d \gg \lambda v \rightarrow case v$ of Fun $f \rightarrow f a; _ \rightarrow stuck$ con k ds = return (Con k ds)select $dv \ alts = dv \gg \lambda v \rightarrow case v \ of$ Con k ds | $k \in dom \ alts \rightarrow (alts ! k) \ ds$ \rightarrow stuck nstance HasBind Dna where bind rhs body = let d = rhs d in body d

(b) Concrete by-name semantics for D_{na}

Fig. 5. Abstract Denotational Interpreter

D. The environment $\rho ::: \text{Name} :\rightarrow D$ gives meaning to the free variables of e, by mapping each free variable to its denotation in D. We sketch the Haskell encoding of Exp in Figure 3 and the API of environments and sets in Figure 4. For concise notation, we will use a small number of infix operators: $(:\rightarrow)$ as a synonym for finite Maps, with m! x for looking up x in m, ε for the empty map, $m[x \mapsto d]$ for updates, *assocs* m for a list of key-value pairs in m, $f \triangleleft m$ for mapping f over every value in m, *dom* m for the set of keys present in the map, and (\in) for membership tests in that set.

Our denotational interpreter $S[_]_: Exp \to (Name :\to D_{na}) \to D_{na}$ can have a similar type as $[_]_.$ However, to derive both dynamic semantics and static analysis as instances of the same generic interpreter $S[_]_.$ we need to vary the type of its semantic domain, which is naturally expressed using type-class overloading, thus:

488 489 490

477

478

479

480

481

482

483

484

485

486

487

S[-]:: (Trace *d*, Domain *d*, HasBind *d*) \Rightarrow Exp \rightarrow (Name : \rightarrow *d*) \rightarrow *d*.

We have parameterised the semantic domain *d* over three type classes Trace, Domain and HasBind, whose signatures are given in Figure 5a.¹² Each of the three type classes offer knobs that we will tweak to derive different evaluation strategies as well as static analyses.

Figure 5 gives the complete definition of S[-] together with instances for domain D_{na} that we introduced in Section 4.1. Together this is enough to actually run the denotational interpreter to produce traces. We use *read* :: String \rightarrow Exp as a parsing function, and a Show instance for D τ that displays traces. For example, we can evaluate the expression let $i = \bar{\lambda}x.x$ in *i i* like this:

$$\lambda > S[[read]"$$
let i = $\lambda x.x$ in i i"] $_{\varepsilon} :: D_{na}$

$$Let_1 \hookrightarrow App_1 \hookrightarrow Look(i) \hookrightarrow App_2 \hookrightarrow Look(i) \hookrightarrow \langle \lambda \rangle,$$

where $\langle \lambda \rangle$ means that the trace ends in a Fun value. We cannot print $D_{na}s$ or Functions thereof, but in this case the result would be the value $\bar{\lambda}x.x$. This is in direct correspondence to the earlier call-by-name small-step trace (1) in Section 3.

The definition of $\mathcal{S}[-]_{-}$, given in Figure 5, is by structural recursion over the input expression. 505 For example, to get the denotation of Lam x body, we must recursively invoke $S[-]_{-}$ on body, 506 extending the environment to bind x to its denotation. We wrap that body denotation in step App_2 , 507 508 to prefix the trace of *body* with an App_2 event whenever the function is invoked, where *step* is a method of class Trace. Finally, we use *fun* to build the returned denotation; the details necessarily 509 depend on the Domain, so fun is a method of class Domain. While the lambda-bound x :: Name 510 passed to fun is ignored in in the Domain D_{na} instance of the concrete by-name semantics, it 511 is useful for abstract domains such as that of usage analysis (Section 6). The other cases follow 512 a similar pattern; they each do some work, before handing off to type class methods to do the 513 domain-specific work. 514

The HasBind type class defines a particular *evaluation strategy*, as we shall see in Section 4.3. The 515 bind method of HasBind is used to give meaning to recursive let bindings: it takes two functionals 516 for building the denotation of the right-hand side and that of the let body, given a denotation for the 517 right-hand side. The concrete implementation for *bind* given in Figure 5b computes a *d* such that 518 d = rhs d and passes the recursively-defined d to body.¹³ Doing so yields a call-by-name evaluation 519 strategy, because the trace d will be unfolded at every occurrence of x in the right-hand side e_1 . We 520 will shortly see examples of eager evaluation strategies that will yield from *d* inside *bind* instead of 521 calling *body* immediately. 522

We conclude this subsection with a few examples. First we demonstrate that our interpreter is *productive*: we can observe prefixes of diverging traces without risking a looping interpreter. To observe prefixes, we use a function *takeT* :: Int $\rightarrow \top v \rightarrow \top$ (Maybe v): *takeT* $n \tau$ returns the first *n* steps of τ and replaces the final value with Nothing (printed as ...) if it goes on for longer.

$$\lambda > takeT 5 \$ S[[read "let x = x in x"]]_{\varepsilon} ::: T (Maybe (Value T))$$

$$Let_1 \hookrightarrow Look(x) \hookrightarrow Look(x) \hookrightarrow Look(x) \hookrightarrow Look(x) \hookrightarrow \dots$$

531 $\lambda > takeT 9 \$ S[[read]" let w = \lambda y. y y in w w"]]_{\varepsilon} ::: T (Maybe (Value T))$

Let $_1 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{Look}(w) \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{Look}(w) \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{Look}(w) \hookrightarrow \dots$

534 535

532

527 528

529 530

 ⁵³⁶ ¹²One can think of these type classes as a fold-like final encoding [Carette et al. 2007] of a domain. However, the significance
 ⁵³⁷ is in the *decomposition* of the domain, not the choice of encoding.

¹³Such a *d* corresponds to the *guarded fixpoint* of *rhs*. Strict languages can define this fixpoint as d () = *rhs* (d ()).

540	$S_{name}[\![e]\!]_{\rho} = S[\![e]\!]_{\rho} :: D (ByName T)$
541	newtype ByName $\tau v =$ ByName { <i>unByName</i> :: τv }
542	instance Monad $\tau \Rightarrow$ Monad (ByName τ) where
543	instance Trace $(\tau v) \Rightarrow$ Trace (ByName τv) where
544	instance HasBind (D (ByName τ)) where
545	
546	Fig. 6. Redefinition of call-by-name semantics from Figure 5b
547	
548	The reason $\mathcal{S}[\![-]\!]_{-}$ is productive is due to the coinductive nature of $ op$'s defi
549	Productivity requires that the monadic bind operator (\gg) for \top guards the
550 551	delay monad of Capretta [2005].
551	Data constructor values are printed as $Con(K)$, where K indicates the Tag. 1
553	interesting ways (type errors) to get Stuck (i.e., the wrong value of Milner [1]
554	
555	$\lambda > S[[read "let zro = Z() in let one = S(zro) in case one of { S($
556	$Let_1 \hookrightarrow Let_1 \hookrightarrow Case_1 \hookrightarrow Look(\mathit{one}) \hookrightarrow Case_2 \hookrightarrow Look(\mathit{zro}) \hookrightarrow \langle \mathit{Con}(Z) \rangle$
557 558	$\lambda > S[[read]]$ "let zro = Z() in zro zro" $]]_{\varepsilon} :: D_{na}$
559	
560	$\text{Let}_1 \hookrightarrow \text{App}_1 \hookrightarrow \text{Look}(zro) \hookrightarrow \langle \frac{i}{4} \rangle$
561	4.3 More Evaluation Strategies
562	C C
563	By varying the HasBind instance of our type D, we can endow our language evaluation strategies. The appeal of that is, firstly, that it is possible to do so! For the strategies of the strategies of the strategies are strategies at the strategies of the strategies at the strategies
564	introduce the $-$ to our knowledge $-$ first provably adequate denotational seman
565	We will go on to prove usage analysis sound wrt. by-need evaluation in Sect
566	we will go on to prove usage analysis sound wit. by-need evaluation in Sect

is due to the coinductive nature of T's definition in Haskell.¹⁴ ponadic bind operator (\gg) for \top guards the recursion, as in the

nted as Con(K), where K indicates the Tag. Data types allow for get Stuck (i.e., the wrong value of Milner [1978]), printed as $\frac{1}{2}$:

let one = S(zro) in case one of { S(z) \rightarrow z }" $_{\varepsilon}$:: D_{na} $one) \hookrightarrow Case_2 \hookrightarrow Look(zro) \hookrightarrow (Con(Z))$ zro zro"]_ε::D_{na} 5)

es

of our type D, we can endow our language Exp with different of that is, firstly, that it is possible to do so! Furthermore, we thus first provably adequate denotational semantics for call-by-need. lysis sound wrt. by-need evaluation in Section 7. The different by-value semantics demonstrate versatility, in that our approach is applicable to strict languages as well and thus can be used to study the differences between by-need and by-value evaluation.

Following a similar approach as Darais et al. [2017], we maximise reuse by instantiating the same D at different wrappers of T, rather than reinventing Value and T.

571 4.3.1 *Call-by-name*. We redefine by-name semantics via the ByName *trace transformer* in Figure 6, 572 so called because ByName τ inherits its Monad and Trace instance from τ and in reminiscence of 573 Darais et al. [2015]. The old D_{na} can be recovered as D (ByName T) and we refer to its interpreter 574 instance as $S_{name}[e]_{\rho}$. 575

4.3.2 *Call-by-need.* The use of a stateful heap is essential to the call-by-need evaluation strategy in 576 order to enable memoisation. So how do we vary θ such that $D \theta$ accommodates state? We certainly 577 cannot perform the heap update by updating entries in ρ , because those entries are immutable 578 once inserted, and we do not want to change the generic interpreter. That rules out $\theta \cong T$ (as for 579 ByName T), because then repeated occurrences of the variable x must yield the same trace $\rho \mid x$. 580 However, the whole point of memoisation is that every evaluation of x after the first one leads to 581 a potentially different, shorter trace. This implies we have to *paramaterise* every occurrence of x 582 over the current heap μ at the time of evaluation, and every evaluation of x must subsequently 583 update this heap with its value, so that the next evaluation of x returns the value directly. In other 584 words, we need a representation $D \theta \cong \text{Heap} \rightarrow T$ (Value θ , Heap). 585

586 587

588

567

568

569

 $^{^{14}}$ In a strict language, we need to introduce a thunk in the definition of Step, e.g., Step of event \star (unit -> 'a t).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

589	
590	$S_{need}\llbracket e \rrbracket_{\rho}(\mu) = unByNeed (S\llbracket e \rrbracket_{\rho} :: D (ByNeed T)) \mu$
	type Addr = Int; type Heap τ = Addr : \rightarrow D τ ; nextFree :: Heap $\tau \rightarrow$ Addr
591	newtype ByNeed τ v = ByNeed { <i>unByNeed</i> :: Heap (ByNeed τ) $\rightarrow \tau$ (v, Heap (ByNeed τ)) }
592	
593	get :: Monad $\tau \Rightarrow$ ByNeed τ (Heap (ByNeed τ)); get = ByNeed ($\lambda \mu \rightarrow return (\mu, \mu)$)
594	put :: Monad $\tau \Rightarrow$ Heap (ByNeed τ) \rightarrow ByNeed τ (); put μ = ByNeed ($\lambda_{-} \rightarrow$ return ((), μ))
595	instance Monad $\tau \Rightarrow$ Monad (ByNeed τ) where
596	
597	instance $(\forall v. \text{Trace } (\tau v)) \Rightarrow \text{Trace } (ByNeed \tau v)$ where step $e \ m = ByNeed \ (step \ e \circ unByNeed \ m)$
598	fetch :: Monad $\tau \Rightarrow \text{Addr} \rightarrow D$ (ByNeed τ); fetch $a = get \gg \lambda \mu \rightarrow \mu ! a$
599	<i>memo</i> :: $\forall \tau$. (Monad τ , $\forall v$. Trace (τv)) \Rightarrow Addr \rightarrow D (ByNeed τ) \rightarrow D (ByNeed τ)
600	memo $a d = d \gg \lambda v \rightarrow ByNeed (upd v)$
601	
602	where upd Stuck $\mu = return$ (Stuck :: Value (ByNeed τ), μ)
603	upd v $\mu = step \cup pdate (return (v, \mu[a \mapsto memo \ a (return \ v)]))$
603	instance (Monad τ , $\forall v$. Trace (τv)) \Rightarrow HasBind (D (ByNeed τ)) where
	bind rhs body = do $\mu \leftarrow get$
605	
606	let $a = nextFree \mu$
607	put $\mu[a \mapsto memo \ a \ (rhs \ (fetch \ a))]$
608	body (fetch a)
609	Fig. 7. Call-by-need
610	rig. 7. Can by field
611	

Our trace transformer ByNeed in Figure 7 solves this type equation via $\theta \triangleq$ ByNeed T. It embeds a standard state transformer monad,¹⁵ whose key operations *get* and *put* are given in Figure 7.

So the denotation of an expression is no longer a trace, but rather a *stateful function returning a trace* with state Heap (ByNeed τ) in which to allocate call-by-need thunks. The Trace instance of ByNeed τ simply forwards to that of τ (i.e., often T), pointwise over heaps. Doing so needs a Trace instance for τ (Value (ByNeed τ), Heap (ByNeed τ)), but we found it more succinct to use a quantified constraint ($\forall v$. Trace (τv)), that is, we require a Trace (τv) instance for every choice of v. Given that τ must also be a Monad, that is not an onerous requirement.

The key part is again the implementation of HasBind for D (ByNeed τ), because that is the only 620 place where thunks are allocated. The implementation of *bind* designates a fresh heap address *a* to 621 hold the denotation of the right-hand side. Both *rhs* and *body* are called with *fetch a*, a denotation 622 that looks up *a* in the heap and runs it. If we were to omit the *memo a* action explained next, 623 we would thus have recovered another form of call-by-name semantics based on mutable state 624 instead of guarded fixpoints such as in ByName and ByValue. The whole purpose of the memo a d 625 combinator then is to *memoise* the computation of d the first time we run the computation, via 626 fetch a in the Var case of S_{need} [.]. (.). So memo a d yields from d until it has reached a value, and 627 then *upd*ates the heap after an additional Update step. Repeated access to the same variable will run 628 the replacement *memo a* (*return v*), which immediately yields v after performing a *step* \cup pdate 629 that does nothing.¹⁶ 630

Although the code is carefully written, it is worth stressing how compact and expressive it is. We were able to move from traces to stateful traces just by wrapping traces \top in a state transformer

637

¹⁵Indeed, we derive its monad instance via StateT (Heap (ByNeed τ)) τ [Blöndal et al. 2018].

¹⁶More serious semantics would omit updates after the first evaluation as an *optimisation*, i.e., update with $\mu[a \mapsto return \nu]$, ⁶³⁵but doing so complicates relating the semantics to Figure 2, where omission of update frames for values behaves differently. ⁶³⁶For now, our goal is not to formalise this optimisation, but rather to show adequacy wrt. an established semantics.

638	$S_{\text{value}}[\![e]\!]_{\rho} = S[\![e]\!]_{\rho} :: D (ByValue T)$
639	newtype ByValue τ v = ByValue { <i>unByValue</i> :: τ v}
640 641	instance Monad $\tau \Rightarrow$ Monad (ByValue τ) where
642	instance Trace $(\tau v) \Rightarrow$ Trace (ByValue τv) where
643	class Extract τ where getValue :: $\tau v \rightarrow v$
644	instance Extract T where getValue (Ret v) = v ; getValue (Step $_{-}\tau$) = getValue τ
645	instance (Trace (D (ByValue τ)), Monad τ , Extract τ) \Rightarrow HasBind (D (ByValue τ)) where
646	bind rhs body = step Let ₀ (do $v_1 \leftarrow d$; body (return v_1))
647 648	where $d = rhs (return v)$::: D (ByValue τ)
649	$v = getValue (unByValue d) :: Value (ByValue \tau)$
650	Fig. 8. Call-by-value
651	5

By Need, without modifying the main S[-] function at all. In doing so, we provide the simplest encoding of a denotational by-need semantics that we know of.¹⁷

Here is an example evaluating let $i = (\bar{\lambda}y.\bar{\lambda}x.x)$ *i* in *i i*, starting in an empty heap:

 $\lambda > S_{need}[[read "let i = (\lambda y.\lambda x.x) i in i i"]]_{\varepsilon}(\varepsilon) ::: T (Value _, Heap _)$

 $\operatorname{Let}_1 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{Look}(i) \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{Upd} \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{Look}(i) \hookrightarrow \operatorname{Upd} \hookrightarrow \langle (\lambda, [0 \mapsto _]) \rangle$

This trace is in clear correspondence to the earlier by-need LK trace (2). We can observe memoisation at play: Between the first bracket of LOOK and UPD events, the heap entry for *i* goes through a beta reduction before producing a value. This work is cached, so that the second LOOK bracket does not do any beta reduction.

4.3.3 Call-by-value. Call-by-value eagerly evaluates a let-bound RHS and then substitutes its *value*, rather than the reduction trace that led to the value, into every use site.

The call-by-value evaluation strategy is implemented with the ByValue trace transformer shown in Figure 8. Function *bind* defines a denotation d :: D (ByValue τ) of the right-hand side by mutual recursion with v :: Value (ByValue τ) that we will discuss shortly.

As its first action, *bind* yields a Let₀ event, announcing in the trace that the right-hand side of a **let** is to be evaluated. Then monadic bind $v_1 \leftarrow d$; *body* (*return* v_1) yields steps from the right-hand side *d* until its value v_1 :: Value (ByValue τ) is reached, which is then passed *return*ed (i.e., wrapped in Ret) to the let *body*. Note that the steps in *d* are yielded *eagerly*, and only once, rather than duplicating the trace at every use site in *body*, as the by-name form *body d* would.

To understand the recursive definition of the denotation of the right-hand side *d* and its value *v*, consider the case $\tau = T$. Then *return* = Ret and we get d = rhs (Ret *v*) for the value *v* at the end of the trace *d*, as computed by the type class instance method *getValue* :: $T v \rightarrow v$.¹⁸ The effect of Ret (*getValue* (*unByValue d*)) is that of stripping all Steps from *d*.¹⁹

Since nothing about *getValue* is particularly special to T, it lives in its own type class Extract so that we get a HasBind instance for different types of Traces, such as more abstract ones in Section 6. Let us trace let $i = (\bar{\lambda}y.\bar{\lambda}x.x)$ *i* in *i i* for call-by-value:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

 ¹⁷It is worth noting that nothing in our approach is particularly specific to Exp or Value! We have built similar interpreters
 for PCF, where the rec, let and non-atomic argument constructs can simply reuse *bind* to recover a call-by-need semantics.
 The Event type needs semantics- and use-case-specific adjustment, though.

 $^{^{18}}$ The keen reader may have noted that we could use Extract to define a MonadFix instance for deterministic au.

⁶⁸⁴ ¹⁹We could have defined *d* as one big guarded fixpoint *fix* (*rhs* \circ *return* \circ *getValue* \circ *unByValue*), but some co-authors prefer to see the expanded form.

687	$S_{\text{vinit}}[\![e]\!]_{\rho}(\mu) = unByVInit \left(S[\![e]\!]_{\rho} :: D (ByVInit T)\right) \mu$
688	newtype ByVInit τ v = ByVInit { <i>unByVInit</i> :: Heap (ByVInit τ) $\rightarrow \tau$ (v, Heap (ByVInit τ)) }
689	instance (Monad $\tau, \forall v$. Trace (τv)) \Rightarrow HasBind (D (ByVInit τ)) where
690	bind rhs body = do $\mu \leftarrow get$
691	let $a = nextFree \mu$
692	$put \ \mu[a \mapsto stuck]$
693	
694	step Let_0 (memo a (rhs (fetch a))) > body \circ return
695	Fig. 9. Call-by-value with lazy initialisation
696	
697	
698	$S_{\text{clair}}[\![e]\!]_{\rho} = runClair S[\![e]\!]_{\rho} :: T (Value (Clairvoyant T))$
699 700	data Fork $f a = \text{Empty}$ Single a Fork ($f a$) ($f a$); data ParT $m a = \text{ParT} (m (\text{Fork (ParT } m) a))$
700	instance Monad $\tau \Rightarrow$ Alternative (ParT τ) where
701	<i>empty</i> = ParT (<i>pure</i> Empty); <i>l</i> < > <i>r</i> = ParT (<i>pure</i> (Fork <i>l r</i>))
702	newtype Clairvoyant τ a = Clairvoyant (ParT τ a)
704	<i>runClair</i> :: D (Clairvoyant T) \rightarrow T (Value (Clairvoyant T))
705	
706	instance (Extract τ , Monad τ , $\forall v$. Trace (τv)) \Rightarrow HasBind (D (Clairvoyant τ)) where
707	bind rhs body = Clairvoyant (skip < > let') \gg body
708	where <i>skip</i> = <i>return</i> (Clairvoyant <i>empty</i>)
709	$let' = fmap \ return \ step \ Let_0 \ s \dots \ fix \dots \ rhs \dots \ getValue \dots$
710	Fig. 10. Clairvoyant Call-by-value
711	
712	
713	$\lambda > S_{value}[read "let i = (\lambda y.\lambda x.x) i in i i"]_{\varepsilon}$
714 715	$\operatorname{Let}_0 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{Let}_1 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{Look}(i) \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{Look}(i) \hookrightarrow \langle \lambda \rangle$
716	The beta reduction of $(\bar{\lambda}y.\bar{\lambda}x.x)$ <i>i</i> now happens once within the Let ₀ /Let ₁ bracket; the two subse-
717	quent LOOK events immediately halt with a value.
718	Alas, this model of call-by-value does not yield a total interpreter! Consider the case when the
719	right-hand side accesses its value before yielding one, e.g.,
720 721	$\lambda > takeT 5 $ $\mathcal{S}_{value}[[read "let x = x in x x"]]_{\varepsilon}$
722 723	$Let_0 \hookrightarrow Look(x) \hookrightarrow Let_1 \hookrightarrow App_1 \hookrightarrow Look(x) \hookrightarrow {}^{\circ}CInterrupted$
724	
	This loops forever unproductively, rendering the interpreter unfit as a denotational semantics.
725	
725 726	
725 726 727	4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields
725 726 727 728	4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields a potentially looping interpreter. Typical strict languages work around this issue in either of two
725 726 727 728 729	4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields a potentially looping interpreter. Typical strict languages work around this issue in either of two ways: They enforce termination of the RHS statically (OCaml, ML), or they use <i>lazy initialisation</i>
725 726 727 728 729 730	4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields a potentially looping interpreter. Typical strict languages work around this issue in either of two ways: They enforce termination of the RHS statically (OCaml, ML), or they use <i>lazy initialisation</i> techniques [Nakata 2010; Nakata and Garrigue 2006] (Scheme, recursive modules in OCaml). We
725 726 727 728 729 730 731 732	4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields a potentially looping interpreter. Typical strict languages work around this issue in either of two ways: They enforce termination of the RHS statically (OCaml, ML), or they use <i>lazy initialisation</i> techniques [Nakata 2010; Nakata and Garrigue 2006] (Scheme, recursive modules in OCaml). We recover a total interpreter using the semantics in Nakata [2010], building on the same encoding as
725 726 727 728 729 730 731	4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields a potentially looping interpreter. Typical strict languages work around this issue in either of two ways: They enforce termination of the RHS statically (OCaml, ML), or they use <i>lazy initialisation</i> techniques [Nakata 2010; Nakata and Garrigue 2006] (Scheme, recursive modules in OCaml). We recover a total interpreter using the semantics in Nakata [2010], building on the same encoding as ByNeed and initialising the heap with a <i>black hole</i> [Peyton Jones 1992] <i>stuck</i> in <i>bind</i> as in Figure 9.
725 726 727 728 729 730 731 732 733	4.3.4 Lazy Initialisation and Black-holing. Recall that our simple ByValue transformer above yields a potentially looping interpreter. Typical strict languages work around this issue in either of two ways: They enforce termination of the RHS statically (OCaml, ML), or they use <i>lazy initialisation</i> techniques [Nakata 2010; Nakata and Garrigue 2006] (Scheme, recursive modules in OCaml). We recover a total interpreter using the semantics in Nakata [2010], building on the same encoding as ByNeed and initialising the heap with a <i>black hole</i> [Peyton Jones 1992] <i>stuck</i> in <i>bind</i> as in Figure 9. $\lambda > S_{\text{vinit}}[[read "let x = x in x x"]_{\varepsilon}(\varepsilon) :: T (Value _, Heap _)$

4.3.5 Clairvoyant Call-by-value. Clairvoyant call-by-value [Hackett and Hutton 2019] is an approach to call-by-need semantics that exploits non-determinism and a cost model to absolve of the heap. We can instantiate our interpreter to generate the shortest clairvoyant call-by-value trace as well, as sketched out in Figure 10. Doing so yields an evaluation strategy that either skips or speculates let bindings, depending on whether or not the binding is needed:

$$\lambda > S_{clair}[read "let f = \lambda x.x in let g = \lambda y.f in g"]_{\varepsilon} ::: T (Value (Clairvoyant T))$$

743 Let₁
$$\hookrightarrow$$
 Let₀ \hookrightarrow Let₁ \hookrightarrow Look(g) \hookrightarrow $\langle \lambda \rangle$

⁷⁴⁴ $\lambda > S_{clair}[[read "let f = \lambda x.x in let g = \lambda y.f in g g"]]_{\varepsilon} :: T (Value (Clairvoyant T))$

$$_{746}^{745} \qquad \text{Let}_0 \hookrightarrow \text{Let}_1 \hookrightarrow \text{Let}_0 \hookrightarrow \text{Let}_1 \hookrightarrow \text{App}_1 \hookrightarrow \text{Look}(g) \hookrightarrow \text{App}_2 \hookrightarrow \text{Look}(f) \hookrightarrow \langle \lambda \rangle$$

The first example discards f, but the second needs it, so the trace starts with an additional LET₀ event. Similar to ByValue, the interpreter is not total so it is unfit as a denotational semantics without a complicated domain theoretic judgment. Furthermore, the decision whether or not a LET₀ is needed can be delayed for an infinite amount of time, as exemplified by

 $\sum_{r=1}^{751} \lambda > S_{clair}[[read "let i = Z() in let w = \lambda y. y y in w w"]_{\varepsilon} ::: T (Value (Clairvoyant T))$

753 ^CInterrupted

758

768

770

771 772 773

776

777

778

782

783 784

The program diverges without producing even a prefix of a trace because the binding for *i* might be needed at an unknown point in the future (a *liveness property* and hence impossible to verify at runtime). This renders Clairvoyant call-by-value inadequate for verifying properties of infinite executions.

759 5 TOTALITY AND SEMANTIC ADEQUACY

760 In this section, we prove that S_{need} produces small-step traces of the lazy Krivine machine and is indeed a *denotational semantics*.²⁰ Excitingly, to our knowledge, S_{need} $[-]_{-}$ is the first denotational 761 call-by-need semantics that was proven so! Specifically, denotational semantics must be total and 762 763 adequate. Totality says that the interpreter is well-defined for every input expression and adequacy says that the interpreter produces similar traces as the reference semantics. This is an important 764 765 result because it allows us to switch between operational reference semantics and denotational interpreter as needed, thus guaranteeing compatibility of definitions such as absence in Definition 2. 766 As before, all the proofs can be found in the Appendix. 767

769 5.1 Adequacy of $S_{need}[-]$

For proving adequacy of $S_{need}[-]_-$, we give an abstraction function α from small-step traces in the lazy Krivine machine (Figure 2) to denotational traces T, with Events and all, such that

$$\alpha(init(\mathbf{e}) \hookrightarrow ...) = \mathcal{S}_{\mathbf{need}} \llbracket \boldsymbol{e} \rrbracket_{\boldsymbol{\varepsilon}}(\boldsymbol{\varepsilon})$$

where $init(e) \hookrightarrow ...$ denotes the *maximal* (i.e. longest possible) LK trace evaluating the closed expression e. For example, for the LK trace (2), α produces the trace at the end of Section 4.3.2.

It turns out that function α preserves a number of important observable properties, such as termination behavior (i.e. stuck, diverging, or balanced execution [Sestoft 1997]), length of the trace and transition events, as expressed in the following Theorem:

Theorem 4 (Strong Adequacy). Let e be a closed expression, $\tau \triangleq S_{need}[\![e]\!]_{\varepsilon}(\varepsilon)$ the denotational by-need trace and init(e) \hookrightarrow ... the maximal lazy Krivine trace. Then

• τ preserves the observable termination properties of init(e) \hookrightarrow ... in the above sense.

 $^{20}\text{Similar results for }\mathcal{S}_{name}[\![-]\!]_{-} \text{ and }\mathcal{S}_{vinit}[\![-]\!]_{-}(_) \text{ should be derivative.}$

- τ preserves the length (i.e., number of Steps) of init(e) \hookrightarrow ... (i.e., number of transitions).
- every ev :: Event in $\tau = \overline{\text{Step } ev ...}$ corresponds to the transition rule taken in init(e) \hookrightarrow

PROOF SKETCH. Define α by coinduction and prove $\alpha(init(e) \hookrightarrow ...) = S_{need}[\![e]\!]_{\varepsilon}(\varepsilon)$ by Löb induction. Then it suffices to prove that α preserves the observable properties of interest. The full proof for a rigorous reformulation of this result can be found in the Appendix.

5.2 Totality of $S_{name}[-]_{-}$ and $S_{need}[-]_{-}$

Theorem 5 (Totality). The interpreters $S_{name}[\![e]\!]_{\rho}$ and $S_{need}[\![e]\!]_{\rho}(\mu)$ are defined for every e, ρ, μ .

PROOF SKETCH. In the Supplement, we provide an implementation of the generic interpreter $S[-]_$ and its instances at ByName and ByNeed in Guarded Cubical Agda, which offers a total type theory with *guarded recursive types* Møgelberg and Veltri [2019]. Agda enforces that all encodable functions are total, therefore $S_{name}[-]_$ and $S_{need}[-]_$ must be total as well.

The essential idea of the totality proof is that *there is only a finite number of transitions between every Look transition*. In other words, if every environment lookup produces a Step constructor, then our semantics is total by coinduction. Such an argument is quite natural to encode in guarded recursive types, hence our use of Guarded Cubical Agda is appealing. See Appendix B.1 for the details of the encoding in Agda.

6 STATIC ANALYSIS

So far, our semantic domains have all been *infinite*, simply because the dynamic traces they express are potentially infinite as well. However, by instantiating the *same* generic denotational interpreter with a *finite* semantic domain, we can run the interpreter on the program statically, at compile time, to yield a *finite* abstraction of the dynamic behavior. This gives us a *static program analysis*.

We can get a wide range of static analyses, simply by choosing an appropriate semantic domain. For example, we have successfully realised the following analyses as denotational interpreters:

- Appendix C.1 defines a Hindley-Milner-style *type analysis* with let generalisation, inferring types such as $\forall \alpha_3$. option $(\alpha_3 \rightarrow \alpha_3)$. Polymorphic types act as summaries in the sense of the Introduction, and fixpoints are solved via unification.
- Appendix C.2 defines 0CFA *control-flow analysis* [Shivers 1991] as an instance of our generic interpreter. The summaries are sets of labelled expressions that evaluation might return. These labels are given meaning in an abstract store. For a function label, the abstract store maintains a single point approximation of the function's abstract transformer.
 - We have refactored relevant parts of *Demand Analysis* in the Glasgow Haskell Compiler into an abstract denotational interpreter as an artefact. The resulting compiler bootstraps and passes the testsuite.²¹ Demand Analysis is the real-world implementation of the cardinality analysis work of [Sergey et al. 2017], implementing strictness analysis as well. This is to demonstrate that our framework scales to real-world compilers.

In this section, we demonstrate this idea in detail, using a much simpler version of GHC's Demand Analysis: a summary-based *usage analysis*, the code of which is given in Figure 11.

6.1 Trace Abstraction in Trace T_U

In order to recover usage analysis as an instance of our generic interpreter, we must define its finite semantic domain D_U . Often, the first step in doing so is to replace the potentially infinite traces T

 ⁸³⁰ ²¹There is a small caveat: we did not try to optimise for compiler performance in our proof of concept and hence it regresses
 ⁸³¹ in a few compiler performance test cases. None of the runtime performance test cases regress and the inferred demand
 ⁸³² signatures stay unchanged.

834	data $U = U_0 U_1 U_\omega$	data $T_{\cup} v = \langle Uses, v \rangle$	
835	type Uses = Name :→ U	instance Trace $(T_{\cup} v)$ v	vhere
836	class UVec <i>a</i> where		$\langle v \rangle = \langle [x \mapsto \bigcup_1] + \varphi, v \rangle$
837	$(+) :: a \to a \to a$		$= \tau$
838	$(*) :: \cup \to a \to a$	instance Monad T _U wh	
839		-	
840	instance UVec U where	$return \ a = \langle \varepsilon, a \rangle$	
841	instance UVec Uses where	$\langle \varphi_1, a \rangle \gg k = \operatorname{let} \langle \varphi_2,$	$\langle b \rangle = k \ a \ in \ \langle \varphi_1 + \varphi_2, b \rangle$
842	8 [a] - 8[a] D		
843	$\mathcal{S}_{usage}\llbracket e rbracket_{ ho} = \mathcal{S}\llbracket e rbracket_{ ho} :: \mathbb{D}_{\cup}$		data Value _U = U s Value _U Rep U
844	instance Domain D_U where		type $D_U = T_U$ Value _U
845	stuck $= \bot$		instance Lat U where
846	$fun \ x \ f = cas$	e $f \langle [x \mapsto U_1], \text{Rep } U_\omega \rangle$ of	instance Lat Uses where
847	$\langle \varphi, v \rangle \rightarrow \langle \varphi[x \mapsto U_0], \varphi$		
848	apply $\langle \varphi_1, v_1 \rangle \langle \varphi_2, _ \rangle = cas$,	instance Lat Value∪ where
849	$(u, v_2) \rightarrow \langle \varphi_1 + u * \varphi_2, v_2 \rangle$	-	instance Lat D_U where
850		_,	<i>peel</i> :: Value _U → (U, Value _U)
851	5	dl apply $\langle \varepsilon, Rep U_\omega \rangle$ ds	peel (Rep u) = (u , (Rep u))
852	select d fs =		peel $(u \circ v) = (u, v)$
853	$d \gg lub [f(replicate(c))]$	y , , , , , , , , , , , , , , , , , , ,	• • • • • •
854	$ (k,f) \leftarrow assoc$	es fs]	$(!?)$:: Uses \rightarrow Name \rightarrow U
855	instance HasBind D _U where		$m !? x \mid x \in dom \ m = m ! x$
856	bind rhs body = body (klee	neFix rhs)	$ otherwise = U_0$

Fig. 11. Summary-based usage analysis

in dynamic semantic domains such as D_{na} with a finite type such as T_{\cup} in Figure 11. A *usage trace* $\langle \varphi, val \rangle :: T_{\cup} v$ is a pair of a value val :: v and a finite map $\varphi :: Uses$, mapping variables to a *usage* \cup . The usage φ !? x assigned to x is meant to approximate the number of Lookup x events; U_0 means "at most 0 times", U_1 means "at most 1 times", and U_{ω} means "an unknown number of times". In this way, T_{\cup} is an *abstraction* of T: it squashes all Lookup x events into a single entry φ !? $x :: \cup$ and discards all other events.

Consider as an example the by-name trace evaluating $e \triangleq \text{let } i = \bar{\lambda}x.x$ in $\text{let } j = \bar{\lambda}y.y$ in i j j:

$$\operatorname{Let}_1 \hookrightarrow \operatorname{Let}_1 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{App}_1 \hookrightarrow \operatorname{Look}(i) \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{Look}(j) \hookrightarrow \operatorname{App}_2 \hookrightarrow \operatorname{Look}(j) \hookrightarrow \langle \lambda \rangle$$

We would like to abstract this trace into $\langle [i \mapsto \bigcup_1, j \mapsto \bigcup_{\omega}], ... \rangle$. One plausible way to achieve this is to replace every Step (Lookup *x*) ... in the by-name trace with a call to *step* (Lookup *x*) ... from the Trace T_U instance in Figure 11, quite similar to *foldr step* on lists. The *step* implementation increments the usage of *x* whenever a Lookup *x* event occurs. The addition operation used to carry out incrementation is defined in type class instances UVec U and UVec Uses, together with scalar multiplication.²² For example, $\bigcup_0 + u = u$ and $\bigcup_1 + \bigcup_1 = \bigcup_{\omega}$ in \bigcup , as well as $\bigcup_0 * u = \bigcup_0, \bigcup_{\omega} * \bigcup_1 = \bigcup_{\omega}$. These operations lift to Uses pointwise, e.g., $[i \mapsto \bigcup_1] + (\bigcup_{\omega} * [j \mapsto \bigcup_1]) = [i \mapsto \bigcup_1, j \mapsto \bigcup_{\omega}]$.

Following through on the *foldr step* idea to abstract a T into T_U amounts to what Darais et al. [2017] call a *collecting semantics* of the interpreter. Such semantics-specific collecting variants are easily achievable for us as well. It is as simple as defining a Monad instance on T_U mirroring trace concatenation and then running our interpreter at, e.g., D (ByName T_U) \cong T_U (Value T_U) on

857

858 859

 $^{^{22}}$ We think that UVec models U-modules. It is not a vector space because U lacks inverses, but the intuition is close enough.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

expression e from earlier:

$$S[(\text{let } i = \lambda x.x \text{ in let } j = \lambda y.y \text{ in } i j j)]]_{\varepsilon} = \langle [i \mapsto \bigcup_{1}, j \mapsto \bigcup_{\omega}], \lambda \rangle :: D (ByName T_{\cup})$$

It is nice to explore whether the Trace instance encodes the desired operational property in this way, but of little practical relevance because this interpreter instance will diverge whenever the input expression diverges. We fix this in the next subsection by introducing a finite $Value_U$ to replace $Value T_U$.

6.2 Value Abstraction Value_U and Summarisation in Domain D_U

In this subsection, we complement the finite trace type T_U from the previous subsection with a corresponding finite semantic value type $Value_U$ to get the finite semantic domain $D_U = T_U$ $Value_U$ in Figure 11, and thus a *static usage analysis* $S_{usage}[-]_when we instantiate <math>S[-]_a$ at D_U .

The definition of $Value_U$ is just a copy of $\varsigma \in Summary$ in Figure 1 that lists argument usage U instead of Absence flags; the entire intuition transfers. For example, the $Value_U$ summarising $\bar{\lambda}y.\bar{\lambda}z.y$ is $U_1 \circ U_0 \circ Rep \cup_{\omega}$, because the first argument is used once while the second is used 0 times. What we previously called absence types $\theta \in AbsTy$ in Figure 1 is now the abstract semantic domain D_U . It is now evident that usage analysis is a modest generalisation of absence analysis in Figure 1: a variable is absent (A) when it has usage U_0 , otherwise it is used (U).

Consider $S_{usage} [\![(\text{let } k = \bar{\lambda}y.\bar{\lambda}z.y \text{ in } k x_1 x_2)]\!]_{\rho_e} = \langle [k \mapsto \bigcup_1, x_1 \mapsto \bigcup_1], \text{Rep } \bigcup_{\omega} \rangle$, analysing the example expression from Section 2. Usage analysis successfully infers that x_1 is used at most once and that x_2 is absent, because it does not occur in the reported \bigcup ses.

On the other hand, $S_{usage} [\![(\text{let } i = \bar{\lambda}x.x \text{ in let } j = \bar{\lambda}y.y \text{ in } i i j)]\!]_{\varepsilon} = \langle [i \mapsto \bigcup_{\omega}, j \mapsto \bigcup_{\omega}], \text{Rep } \bigcup_{\omega} \rangle$ demonstrates the limitations of the first-order summary mechanism. While the program trace would only have one lookup for j, the analysis is unable to reason through the indirect call and conservatively reports that j may be used many times.

The Domain instance is responsible for implementing the summary mechanism. While *stuck* expressions do not evaluate anything and hence are denoted by $\perp = \langle \varepsilon, \text{Rep } \cup_0 \rangle$, the *fun* and *apply* functions play exactly the same roles as *fun_x* and *app* in Figure 1. Let us briefly review how the summary for the right-hand side $\lambda x.x$ of *i* in the previous example is computed:

 $S[[\operatorname{Lam} x (\operatorname{Var} x)]]_{\rho} = fun \ x (\lambda d \to step \operatorname{App}_2 (S[[\operatorname{Var} x]]_{\rho[x \mapsto d]}))$ $= \operatorname{case} \ step \operatorname{App}_2 (S[[\operatorname{Var} x]]_{\rho[x \mapsto \langle [x \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle]}) \ \text{of} \ \langle \varphi, v \rangle \to \langle \varphi[x \mapsto \cup_0], \varphi \ !? \ x \colon \operatorname{Rep} \cup_{\omega} \rangle$ $= \operatorname{case} \ \langle [x \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle \qquad \text{of} \ \langle \varphi, v \rangle \to \langle \varphi[x \mapsto \cup_0], \varphi \ !? \ x \colon \operatorname{Rep} \cup_{\omega} \rangle$ $= \langle \varepsilon, \cup_1 \colon \operatorname{Rep} \cup_{\omega} \rangle$

The definition of *fun x* applies the lambda body to a *proxy* $\langle [x \mapsto \bigcup_1]$, Rep $\bigcup_{\omega} \rangle$ to summarise how the body uses its argument by way of looking at how it uses *x*.²³ Every use of *x*'s proxy will contribute a usage of \bigcup_1 on *x*, and multiple uses in the lambda body would accumulate to a usage of \bigcup_{ω} . In this case there is only a single use of *x* and the final usage φ !? $x = \bigcup_1$ from the lambda body will be prepended to the summarised value. Occurrences of *x* must make do with the top value (Rep \bigcup_{ω}) from *x*'s proxy for lack of knowing the actual argument at call sites.

The definition of *apply* to apply such summaries to an argument is nearly the same as in Figure 1, except for the use of + instead of \sqcup to carry over $U_1 + U_1 = U_{\omega}$, and an explicit *peel* to view a Value_U in terms of \mathfrak{s} (it is Rep $u \equiv u \mathfrak{s}$ Rep u). The usage u thus pelt from the value determines how often the actual argument was evaluated, and multiplying the uses of the argument φ_2 with uaccounts for that.

²³As before, the exact identity of x is exchangeable; we use it as a De Bruijn level.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

933 934 935

936 937 938

947

948

949

951

952

953 954

960

961

962

932

class Eq $a \Rightarrow$ Lat a where $\perp :: a; (\sqcup) :: a \rightarrow a \rightarrow a;$ *kleeneFix* :: Lat $a \Rightarrow (a \rightarrow a) \rightarrow a$; *lub* :: Lat $a \Rightarrow [a] \rightarrow a$ *kleeneFix* $f = go \perp$ where go x = let x' = f x in if $x' \sqsubseteq x$ then x' else go x'

Fig. 12. Order theory and Kleene iteration

The example $S_{usage} [(\text{let } z = Z() \text{ in case } S(z) \text{ of } S(n) \to n)]_{\varepsilon} = \langle [z \mapsto \bigcup_{\omega} \rangle, \text{Rep } \bigcup_{\omega} \rangle$ illustrates 939 the summary mechanism for data types. Our analysis imprecisely infers that z might be used many 940 times when it is only used once. That is because we tried to keep Valueu intentionally simple, so 941 our analysis assumes that every data constructor uses its fields many times.²⁴ This is achieved in 942 *con* by repeatedly *apply*ing to the top value (Rep U_{ω}), as if a data constructor was a lambda-bound 943 variable. Dually, *select* does not need to track how fields are used and can pass $\langle \varepsilon, \text{Rep } \cup_{\omega} \rangle$ as 944 proxies for field denotations. The result uses anything the scrutinee expression used, plus the upper 945 bound of uses in case alternatives, one of which will be taken. 946

Much more could be said about the way in which finiteness of D_U rules out injective implementations of fun $x :: (D_U \to D_U) \to D_U$ and thus requires the aforementioned approximate summary mechanism, but it is easy to get sidetracked in doing so. There is another potential source of approximation: the HasBind instance discussed next. 950

Finite Fixpoint Strategy in HasBind DU and Totality 6.3

The third and last ingredient to recover a static analysis is the fixpoint strategy in HasBind D_U , to be used for recursive let bindings.

955 For the dynamic semantics in Section 4 we made liberal use of guarded fixpoints, that is, recursively defined values such as let d = rhs d in body d in HasBind D_{na} (Figure 5). At least for $S_{name}[-]_{-}$ 956 and S_{need} . we have proved in Section 5.1 that these fixpoints always exist by a coinductive 957 argument. Alas, among other things this argument relies on the Step constructor - and thus the 958 *step* method – of the trace type \top being *lazy* in the tail of the trace! 959

When we replaced T in favor of the finite, inductive type $T_{\rm U}$ in Section 6.1 to get a collecting semantics D (ByName T_U), we got a partial interpreter. That was because the *step* implementation of T_U is not lazy, and hence the guarded fixpoint let d = rhs d in body d is not guaranteed to exist.

In general, finite trace types cannot have a lazy *step* implementation, so finite domains such 963 as D_U require a different fixpoint strategy to ensure termination. Depending on the abstract 964 domain, different fixpoint strategies can be employed. For an unusual example, in our type analysis 965 Appendix C.1, we generate and solve a constraint system via unification to define fixpoints. In case 966 of D_U, we compute least fixpoints by Kleene iteration *kleeneFix* in Figure 12. *kleeneFix* requires us to 967 define an order on D_U , which is induced by $U_0 \sqsubset U_1 \sqsubset U_{\omega}$ in the same way that the order on AbsTy in 968 Section 2.2 was induced from the order A \sqsubset U on Absence flags. The iteration procedure terminates 969 whenever the type class instances of D_U are monotone and there are no infinite ascending chains 970 in D_U . 971

The keen reader may feel indignant because our Value Uindeed contains such infinite chains, for 972 example, $U_1 \\\in U_1 \\\in ... \\\in Rep U_0$! This is easily worked around in practice by employing appropriate 973 widening measures such as bounding the depth of Value1. The resulting definition of HasBind is 974 safe for by-name and by-need semantics.²⁵ 975

980

⁹⁷⁷ ²⁴It is clear how to do a better job at least for products; see Sergey et al. [2017].

²⁵Never mind totality; why is the use of *least* fixpoints even correct? The fact that we are approximating a safety prop-978 erty [Lamport 1977] is important. We discuss this topic in Appendix D.2. 979

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

981	Μονο
982	$d_1 \sqsubseteq d_2$ $f_1 \sqsubseteq f_2$
983	apply $f_1 d_1 \sqsubseteq apply f_2 d_2$ and so on, for all methods of Trace, Domain, HasBind
984 985 986	STEP-APPSTEP-SELstep ev (apply d a) \sqsubseteq apply (step ev d) astep ev (select d alts) \sqsubseteq select (step ev d) alts
987 988	UNWIND-STUCKINTRO-STUCK $stuck \sqsubseteq \bigsqcup \{apply \ stuck \ a, \ select \ stuck \ alts\}$ $stuck \sqsubseteq \bigsqcup \{apply \ (con \ k \ ds) \ a, \ select \ (fun \ x \ f) \ alts\}$
989	Beta-Sel
990 991 992	$\begin{array}{l} \text{Beta-App} \\ f \ d = step \ \text{App}_2 \left(\mathcal{S}_{\widehat{D}}[\![e]]_{\rho[x \mapsto d]} \right) \end{array} \qquad (alts ! k) \ ds \ \ len \ ds \not\equiv len \ xs = stuck \\ \ otherwise \qquad = step \ \text{Case}_2 \left(\mathcal{S}_{\widehat{D}}[\![e_r]]_{\rho[\overline{xs \mapsto ds}]} \right) \end{array}$
993	$f a \sqsubseteq apply (fun \ x \ f) \ a \qquad (alts! \ k) (map \ (\rho_1!) \ ys) \sqsubseteq select (con \ k \ (map \ (\rho_1!) \ ys)) \ alts$
994 995 996	BIND-BYNAME $rhs \ d_1 = S_{\widehat{D}}[\![e_1]\!]_{\rho[x \mapsto step \ (Lookup \ x) \ d_1]} \qquad body \ d_1 = step \ Let_1 \ (S_{\widehat{D}}[\![e_2]\!]_{\rho[x \mapsto d_1]})$
997	body (lfp rhs) \sqsubseteq bind rhs body
998	
999	STEP-INC UPDATE $d \sqsubseteq step \ ev \ d$ step Update $d = d$
1000	
1001	

Fig. 13. By-name and | by-need | abstraction laws for type class instances of abstract domain \widehat{D}

It is nice to define dynamic semantics and static analyses in the same framework, but another important benefit is that correctness proofs become simpler, as we will see next.

GENERIC BY-NAME AND BY-NEED SOUNDNESS

In this section we prove and apply a generic abstract interpretation theorem of the form

abstract
$$(S_{need}\llbracket e \rrbracket_{\mathcal{E}}) \sqsubseteq S_{\widehat{D}}\llbracket e \rrbracket_{\mathcal{E}}$$

This statement reads as follows: for a closed expression *e*, the *static analysis* result $S_{\widehat{\square}}[e]_{\varepsilon}$ on the right-hand side *overapproximates* (\supseteq) a property of the by-need *semantics* $S_{need}[\![e]\!]_{\varepsilon}$ on the left-hand side. The abstraction function *abstract* :: D (ByNeed T) \rightarrow D describes what semantic property we are interested in, in terms of the abstract semantic domain \widehat{D} of $S_{\widehat{D}}[\![e]\!]_{\rho}$, which is short for $S[e]_{\rho} :: \widehat{D}$. In our framework, *abstract* is entirely derived from type class instances on \widehat{D} .

We will instantiate the theorem at D_{\cup} in order to prove that usage analysis $S_{usage}[e]_{\rho} = S_{D_{\cup}}[e]_{\rho}$ infers absence, just as absence analysis in Section 2. This proof will be much simpler than the proof for Theorem 1.

This section will only discuss abstraction of closed terms in a high-level, top-down way, but of course the underlying Theorem 56 in the Appendix considers open terms and is best approached bottom-up.

1030 7.1 Sound By-name and By-need Interpretation

This subsection is dedicated to the following proof rule for sound by-need interpretation, referring
 to the *abstraction laws* in Figure 13 by name:

 $\frac{\text{Mono Step-App Step-Sel Unwind-Stuck}}{\text{Intro-Stuck Beta-App Beta-Sel Bind-ByName Step-Inc Update}}$ $\frac{abstract}{abstract} \left(S_{\text{need}} \llbracket e \rrbracket_{\mathcal{E}} \right) \sqsubseteq S_{\widehat{\square}} \llbracket e \rrbracket_{\mathcal{E}}$

In other words: prove the abstraction laws for an abstract domain \widehat{D} of your choosing and we give you for free a proof of sound abstract by-need interpretation for the static analysis $S_{\widehat{D}}[\![e]\!]_{\varepsilon}!$

This proof rule is *opinionated*, in so far as *we* get to determine the abstraction function *abstract* based on the Trace, Domain and Lat instance on your \widehat{D} . The gist is as follows: *abstract* eliminates every Step *evt* in the by-need trace with a call to *step evt*, and eliminates every concrete Value at the end of the trace with a call to the corresponding Domain method. That is, Fun turns into *fun*, Con into *con*, and Stuck into *stuck*, considering the final heap for nested abstraction (the subtle details are best left to the Appendix). Thanks to fixing *abstract*, the abstraction laws can be simplified drastically, as discussed at the end of this subsection. The precise definition of *abstract* can be found in the proof of the following theorem, embodying the proof rule above:

Theorem 6 (Sound By-need Interpretation). Let \widehat{D} be a domain with instances for Trace, Domain, HasBind and Lat, and let abstract be the abstraction function described above. If the abstraction laws in Figure 13 hold, then $S_{\widehat{D}}[-]_{-}$ is an abstract interpreter that is sound wrt. abstract, that is,

abstract
$$(S_{need}\llbracket e \rrbracket_{\varepsilon}) \sqsubseteq S_{\widehat{D}}\llbracket e \rrbracket_{\varepsilon}$$

Let us unpack law BETA-APP to see how the abstraction laws in Figure 13 are to be understood. For a preliminary reading, it is best to ignore the syntactic premises above inference lines. To prove BETA-APP, one has to show that $\forall f \ a \ x. f \ a \sqsubseteq apply (fun \ x f) \ a$ in the abstract domain \widehat{D} .²⁶ This states that summarising f through *fun*, then *apply*ing the summary to a must approximate a direct call to f; it amounts to proving correct the summary mechanism.²⁷ In Section 2, we have proved a substitution Lemma 3, which is a syntactic form of this statement. We will need a similar lemma for usage analysis below, and it is useful to illustrate the next point, so we prove it here:

Lemma 7 (Substitution). $S_{usage}[\![e]\!]_{\rho[x\mapsto\rho!y]} \subseteq S_{usage}[\![Lam x e App' y]\!]_{\rho}$.

In order to apply this lemma in step \sqsubseteq below, it is important that the premise provides us with the syntactic definition of $f \ d \triangleq step \operatorname{App}_2(S_{D_U}[\![e]\!]_{\rho[x \mapsto d]})$. Then we get, for $a \triangleq \rho ! y :: D_U$,

$$f a = step \operatorname{App}_2 \left(\mathcal{S}_{\mathsf{D}_{\mathsf{U}}} \llbracket e \rrbracket_{\rho[x \mapsto a]} \right) = \mathcal{S}_{\mathsf{D}_{\mathsf{U}}} \llbracket e \rrbracket_{\rho[x \mapsto a]} \sqsubseteq \mathcal{S}_{\mathsf{D}_{\mathsf{U}}} \llbracket \operatorname{Lam} x \ e \operatorname{`App'} y \rrbracket_{\rho} = apply \left(fun \ x \ f \right) a.$$

$$(1)$$

Without the syntactic premise of Beta-App to rule out undefinable entities in $D_U \rightarrow D_U$, the rule cannot be proved for usage analysis; we give a counterexample in the Appendix (Example 46).²⁸

Rule BETA-SEL states a similar substitution property for data constructor redexes, which is why it needs to duplicate much of the *cont* function in Figure 5 into its premise. Rule BIND-BYNAME expresses that the abstract *bind* implementation must be sound for by-name evaluation, that is, it must approximate passing the least fixpoint *lfp* of the *rhs* functional to *body*.²⁹ The remaining rules

- ¹⁰⁷⁶ ²⁹We expect that for sound by-value abstraction it suffices to replace BIND-BYNAME with a law BIND-BYVALUE mirroring ¹⁰⁷⁷ the *bind* instance of ByValue, but have not attempted a formal proof.
- 1078

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1043

1044

1045

1046

1047

1048

1049

1050 1051 1052

1053

1054

1055

1056

1057

1058 1059

1060

1061

1062

1067

1068

1069

1070

1071

1072

 $^{^{26}}$ Again, the exact identity of x is irrelevant. We only use it as a De Bruijn level; it suffices that x is chosen fresh.

²⁷To illustrate this point: if we were to pick dynamic Values as the summary as in the "collecting semantics" D (ByNeed T_{\cup}), we would not need to show anything! Then *apply* (*return* (Fun *f*)) a = f a.

 $^{^{28}}$ Finding domains where all entities *d* are definable is the classic full abstraction problem [Plotkin 1977].

are congruence rules involving *step* and *stuck* as well as the obvious monotonicity requirement for all involved operations. In the Appendix, we show a result similar to Theorem 6 for by-name evaluation which does not require the by-need specific rules STEP-INC and UPDATE.

Note that none of the laws mention the concrete semantics or α . This is how our opinionated approach pays off: because both concrete semantics and α are known, the usual abstraction laws such as α (*apply d a*) \sqsubseteq \widehat{apply} (α *d*) (α *a*) further decompose into BETA-APP. We think this is an important advantage to our approach, because the author of the analysis does not need to reason about the concrete semantics in order to soundly approximate a semantic trace property expressed via Trace instance!

1089 7.2 A Much Simpler Proof That Usage Analysis Infers Absence

Equipped with the generic soundness Theorem 6, we will prove in this subsection that usage analysis from Section 6 infers absence in the same sense as absence analysis from Section 2. The reason we do so is to evaluate the proof complexity of our approach against the preservation-style proof framework in Section 2.

¹⁰⁹⁴ The first step is to leave behind the definition of absence in terms of the LK machine in favor of ¹⁰⁹⁵ one using S_{need} [-]_. That is a welcome simplification because it leaves us with a single semantic ¹⁰⁹⁶ artefact – the denotational interpreter – instead of an operational semantics and a separate static ¹⁰⁹⁷ analysis as in Section 2. Thanks to adequacy (Theorem 4), this new notion is not a redefinition but ¹⁰⁹⁸ provably equivalent to Definition 2:

Lemma 8 (Denotational absence). Variable x is used in e if and only if there exists a by-need evaluation context E and expression e' such that the trace $S_{need} \llbracket E[\text{Let } x e' e] \rrbracket_{\varepsilon}(\varepsilon)$ contains a Lookup x event. (Otherwise, x is absent in e.)

We define the by-need evaluation contexts for our language in the Appendix. Thus insulated
 from the LK machine, we may restate and prove Theorem 1 for usage analysis.

1106 Lemma 9 ($S_{usage}[-]_a$ abstracts $S_{need}[-]_b$). Let e be a closed expression and abstract the abstraction 1107 function above. Then abstract ($S_{need}[[e]]_{\varepsilon}$) $\subseteq S_{usage}[[e]]_{\varepsilon}$.

Theorem 10 $(S_{usage}[-]]_{-}$ infers absence). Let $\rho_e \triangleq [\overline{y \mapsto \langle [y \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle}]$ be the initial environment with an entry for every free variable y of an expression e. If $S_{usage}[[e]]_{\rho_e} = \langle \varphi, v \rangle$ and $\varphi \mathrel{!} x = \bigcup_0$, then x is absent in e.

¹¹¹² PROOF SKETCH. If *x* is used in *e*, there is a trace $S_{need}[E[\text{Let } x e' e]]_{\varepsilon}(\varepsilon)$ containing a Lookup *x* ¹¹¹³ event. The abstraction function *abstract* induced by D_{\cup} aggregates lookups in the trace into a ¹¹¹⁴ $\varphi' :: \cup$ ses, e.g., *abstract* $(\text{Look}(i) \hookrightarrow \text{Look}(x) \hookrightarrow \text{Look}(i) \hookrightarrow \langle ... \rangle) = \langle [i \mapsto \bigcup_{\omega}, x \mapsto \bigcup_1], ... \rangle$. ¹¹¹⁵ Clearly, it is $\varphi' !? x \supseteq \bigcup_1$, because there is at least one Lookup *x*. Lemma 9 and a context invariance ¹¹¹⁶ Lemma 38 prove that the computed φ approximates φ' , so $\varphi !? x \supseteq \varphi' !? x \supseteq \bigcup_1 \neq \bigcup_0$. \Box

Let us compare to the preservation-style proof framework in Section 2.

- Where there were multiple separate *semantic artefacts* such as a separate small-step semantics and an extension of the absence analysis function to machine configurations σ in order to state a preservation lemma, our proof only has a single semantic artefact that needs to be defined and understood: the denotational interpreter, albeit with different instantiations.
- What is more important is that a simple proof for Lemma 9 in half a page (we encourage the reader to take a look) replaces a tedious, error-prone and incomplete (for a lack of step indexing) *proof for the preservation lemma*. Of course, we lean on Theorem 6 to prove what amounts to a preservation lemma; the difference is that our proof properly accounts
- 1127

1117

1118

1119

1120

1121

1122

1088

1099

1128 1129 1:24

for heap update and can be shared with other analyses that are sound wrt. by-name and by-need such as type analysis and 0CFA.

1130 1131 Thus, we achieve our goal of proving semantic distractions "once and for all".

¹¹³² 8 RELATED WORK

1133 Call-by-need, Semantics. Arguably, Josephs [1989] described the first denotational by-need seman-1134 tics, predating the work of Launchbury [1993] and Sestoft [1997], but not the more machine-centric 1135 (rather than transition system centric) work on the G-machine [Johnsson 1984]. We improve on 1136 Josephs's work in that our encoding is simpler, rigorously defined (Section 5.2) and proven adequate 1137 wrt. Sestoft's by-need semantics (Section 5.1). Sestoft [1997] related the derivations of Launchbury's 1138 big-step natural semantics for our language to the subset of balanced small-step LK traces. Balanced 1139 traces are a proper subset of our maximal LK traces that - by nature of big-step semantics -1140 excludes stuck and diverging traces. 1141

Our denotational interpreter bears strong resemblance to a denotational semantics [Scott and Strachey 1971], or to a definitional interpreter [Reynolds 1972] featuring a finally encoded domain [Carette et al. 2007] using higher-order abstract syntax [Pfenning and Elliott 1988]. The key distinction to these approaches is that we generate small-step traces, totally and adequately, observable by abstract interpreters.

Definitional Interpreters. Reynolds [1972] introduced "definitional interpreter" as an umbrella
 term to classify prevalent styles of interpreters for higher-order languages at the time. Chiefly, it
 differentiates compositional interpreters that necessarily use higher-order functions of the meta
 language from those that do not, and are therefore non-compositional. The former correspond to
 (partial) denotational interpreters, whereas the latter correspond to big-step interpreters.

Ager et al. [2004] pick up on Reynold's idea and successively transform a partial denotational interpreter into a variant of the LK machine, going the reverse route of Section 5.1.

Coinduction and Fuel. Leroy and Grall [2009] show that a coinductive encoding of big-step semantics
 is able to encode diverging traces by proving it equivalent to a small-step semantics, much like we
 did for a denotational semantics. The work of Atkey and McBride [2013]; Møgelberg and Veltri
 [2019] had big influence on our use of the later modality and Löb induction.

Our trace type ⊤ is appropriate for tracking "pure" transition events, but it is not up to the task of modelling user input, for example. We expect that guarded interaction trees [Frumin et al. 2023; Xia et al. 2019] would be very simple to integrate into our framework to help with that.

Contextual Improvement. Abstract interpretation is useful to prove that an analysis approximates the right trace property, but it does not make any claim on whether a transformation conditional on some trace property is actually sound, yet alone an *improvement* [Moran and Sands 1999]. If we were to prove dead code elimination correct based on our notion of absence, would we use our denotational interpreter to do so? Probably not; we would try to conduct as much of the proof as possible in the equational theory, i.e., on syntax. If need be, we could always switch to denotational interpreters via Theorem 4, just as in Lemma 8. Hackett and Hutton [2019] have done so as well.

Abstract Interpretation and Relational Analysis. Cousot [2021] recently condensed his seminal work rooted in Cousot and Cousot [1977]. The book advocates a compositional, trace-generating semantics and then derives compositional analyses by calculational design, inspiring us to attempt the same. However, while Cousot and Cousot [1994, 2002] work with denotational semantics for higher-order language, it was unclear to us how to derive a compositional, *trace-generating* semantics for a higher-order language. The required changes to the domain definitions seemed

1176

1154

daunting, to say the least. Our solution delegates this complexity to the underlying theory ofguarded recursive type theory [Møgelberg and Veltri 2019].

We deliberately tried to provide a simple framework and thus stuck to cartesian (i.e., pointwise)
abstraction of environments as in Cousot [2021, Chapter 27], but we expect relational abstractions
to work just as well. Our generic denotational interpreter is a higher-order generalisation of
the generic abstract interpreter in Cousot [2021, Chapter 21]. Our abstraction laws in Figure 13
correspond to Definition 27.1 and Theorem 6 to Theorem 27.4.

Control-Flow Analysis. CFA [Shivers 1991] computes a useful control-flow graph abstraction for higher-order programs. Such an approximation is useful to apply classic data-flow analyses such as constant propagation or dead code elimination to the interprocedural setting. The contour depth parameter k allows to trade precision for performance, although in practice it is often $k \leq 1$.

The Abstracting Abstract Machines [Van Horn and Might 2010] derives a computable *reachable* states semantics [Cousot 2021] from any small-step semantics, by bounding the size of the heap. Many analyses such as control-flow analysis arise as abstractions of reachable states. In fact, we think that CFA can be used to turn any finite Trace instance such as T_{\cup} into a static analysis, without the need to define a custom summary mechanism.

Darais et al. [2017] and others apply the AAM recipe to big-step interpreters in the style of Reynolds. Backhouse and Backhouse [2004] and Keidel et al. [2018] show that in doing so, correctness of shared code follows by parametricity [Wadler 1989]. We found it quite elegant to utilise parametricity in this way, but unfortunately the free theorem for our interpreter is too weak because it excludes the syntactic premises in Figure 13.

Whenever AAM is involved, abstraction follows some monadic structure inherent to dynamic semantics [Darais et al. 2017; Sergey et al. 2013]. In our work, this is apparent in the Domain (D τ) instance depending on Monad τ . Decomposing such structure into a layer of reusable monad transformers has been the subject of Darais et al. [2015] and Keidel and Erdweg [2019]. The *trace transformers* in Section 4 enable a similar reuse. Likewise, Keidel et al. [2023] discusses a sound, declarative approach to reuse fixpoint combinators which we hope to apply in implementations of our framework as well.

Summaries of Functionals vs. Call Strings. Lomet [1977] used procedure summaries to capture aliasing
effects, crediting the approach to untraceable reports by Allen [1974] and Rosen [1975]. Sharir et al.
[1978] were aware of both [Cousot and Cousot 1977] and [Allen 1974], and generalised aliasing
summaries into the "functional approach" to interprocedural data flow analysis, distinguishing it
from the "call strings approach" (i.e. *k*-CFA).

That is not to say that the approaches cannot be combined; inter-modular analysis led Shivers [1991, Section 3.8.2] to implement the *xproc* summary mechanism. He also acknowledged the need for accurate intra-modular summary mechanisms for scalability reasons in Section 11.3.2. We are however doubtful that the powerset-centric AAM approach could integrate summary mechanisms; the whole recipe rests on the fact that the set of expressions and thus evaluation contexts is finite.

Mangal et al. [2014] have shown that a summary-based analysis can be equivalent to ∞ -CFA for arbitrary complete lattices and outperform 2-CFA in both precision and speed.

Cardinality Analysis. More interesting cardinality analyses involve the inference of summaries
 called *demand transformers* [Sergey et al. 2017], such as implemented in the Demand Analysis of
 the Glasgow Haskell Compiler. The inner workings of the analysis are most similar to Clairvoyant
 call-by-value [Hackett and Hutton 2019], so it is a shame that the Clairvoyant instantiation leads
 to partiality.

1224

1226 **REFERENCES**

- Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. 2004. A functional correspondence between call-by-need evaluators and
 lazy abstract machines. *Inform. Process. Lett.* 90, 5 (2004), 223–232. https://doi.org/10.1016/j.ipl.2004.02.012
- Frances E. Allen. 1974. Interprocedural Data Flow Analysis. In *Information Processing, Proceedings of the 6th IFIP Congress* 1974, Stockholm, Sweden, August 5-10, 1974, Jack L. Rosenfeld (Ed.). North-Holland, 398–402.
- Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying Code. ACM Trans. Program. Lang. Syst. 23, 5 (sep 2001), 657–683. https://doi.org/10.1145/504709.504712
- Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. 1995. A Call-by-Need Lambda
 Calculus. In *Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages* (San
 Francisco, California, USA) (*POPL '95*). Association for Computing Machinery, New York, NY, USA, 233–246. https: //doi.org/10.1145/199448.199507
- Robert Atkey and Conor McBride. 2013. Productive coprogramming with guarded recursion. In *Proceedings of the 18th ACM* SIGPLAN International Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP '13). Association for
 Computing Machinery, New York, NY, USA, 197–208. https://doi.org/10.1145/2500365.2500597
- Kevin Backhouse and Roland Backhouse. 2004. Safety of abstract interpretations for free, via logical relations and Galois
 connections. *Science of Computer Programming* 51, 1 (2004), 153–196. https://doi.org/10.1016/j.scico.2003.06.002
 Mathematics of Program Construction (MPC 2002).
- Lars Birkedal and Aleš Bizjak. 2023. *Lecture Notes on Iris: Higher-Order Concurrent Separation Logic*. Aarhus University, Aarhus, Denmark. https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf.
- Lars Birkedal and Rasmus Ejlers Mogelberg. 2013. Intensional Type Theory with Guarded Recursive Types qua Fixed Points
 on Universes. In *Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '13)*. IEEE
 Computer Society, USA, 213–222. https://doi.org/10.1109/LICS.2013.27
- Baldur Blöndal, Andres Löh, and Ryan Scott. 2018. Deriving via: or, how to turn hand-written instances into an anti-pattern. *SIGPLAN Not.* 53, 7 (sep 2018), 55–67. https://doi.org/10.1145/3299711.3242746
- Joachim Breitner. 2016. Lazy Evaluation: From natural semantics to a machine-checked compiler transformation. Ph. D.
 Dissertation. Karlsruher Institut für Technologie, Fakultät für Informatik. https://doi.org/10.5445/IR/1000054251
- 1248Venanzio Capretta. 2005. General Recursion via Coinductive Types. Logical Methods in Computer Science Volume 1, Issue 21249(July 2005). https://doi.org/10.2168/LMCS-1(2:1)2005
- Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2007. Finally Tagless, Partially Evaluated. In Programming Languages and Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 222–238.
- ¹²⁵¹ Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (sep 2010), 1157–1210.
- Thierry Coquand. 1994. Infinite objects in type theory. In *Types for Proofs and Programs*, Henk Barendregt and Tobias
 Nipkow (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 62–78.
- Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT Press. https://mitpress.mit.edu/9780262044905/principlesof-abstract-interpretation/
- Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by
 construction or approximation of fixpoints. In *Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages* (Los Angeles, California) (*POPL '77*). Association for Computing Machinery, New York, NY,
 USA, 238–252. https://doi.org/10.1145/512950.512973
- P. Cousot and R. Cousot. 1994. Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In *Proceedings of 1994 IEEE International Conference on Computer Languages (ICCL'94)*. 95–112. https://doi.org/10.1109/ICCL.1994.288389
 P. Cousot and R. Cousot. 1994. Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In *Proceedings of 1994 IEEE International Conference on Computer Languages (ICCL'94)*. 95–112. https://doi.org/10.1109/ICCL.1994.288389
- Patrick Cousot and Radhia Cousot. 2002. Modular Static Program Analysis. In *Compiler Construction*, R. Nigel Horspool
 (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 159–179.
- 1263Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons. 2006. Fast and Loose Reasoning is Morally1264Correct. SIGPLAN Not. 41, 1 (jan 2006), 206–217. https://doi.org/10.1145/1111320.1111056
- David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn. 2017. Abstracting Definitional Interpreters (Functional Pearl). *Proc. ACM Program. Lang.* 1, ICFP, Article 12 (aug 2017), 25 pages. https://doi.org/10.1145/3110256
- David Darais, Matthew Might, and David Van Horn. 2015. Galois transformers and modular abstract interpreters: reusable
 metatheory for program analysis. In *Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications* (Pittsburgh, PA, USA) (*OOPSLA 2015*). Association for Computing
 Machinery, New York, NY, USA, 552–571. https://doi.org/10.1145/2814270.2814308
- Mattias Felleisen and D. P. Friedman. 1987. A Calculus for Assignments in Higher-Order Languages. In *Proceedings of the* 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Munich, West Germany) (POPL '87).
 Association for Computing Machinery, New York, NY, USA, 314. https://doi.org/10.1145/41625.41654
- Dan Frumin, Amin Timany, and Lars Birkedal. 2023. Modular Denotational Semantics for Effects with Guarded Interaction
 Trees. arXiv:2307.08514 [cs.PL]

1274

- Jennifer Hackett and Graham Hutton. 2019. Call-by-Need is Clairvoyant Call-by-Value. Proc. ACM Program. Lang. 3, ICFP,
 Article 114 (jul 2019), 23 pages. https://doi.org/10.1145/3341718
- John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems Using Sized Types. In *Proceedings* of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg Beach, Florida, USA) (POPL '96). Association for Computing Machinery, New York, NY, USA, 410–423. https://doi.org/10.1145/237721.240882
- Thomas Johnsson. 1984. Efficient Compilation of Lazy Evaluation. In *Proceedings of the 1984 SIGPLAN Symposium on Compiler Construction* (Montreal, Canada) (*SIGPLAN '84*). Association for Computing Machinery, New York, NY, USA,
- 1281 58-69. https://doi.org/10.1145/502874.502880
- Mark B. Josephs. 1989. The semantics of lazy functional languages. *Theoretical Computer Science* 68, 1 (1989), 105–111. https://doi.org/10.1016/0304-3975(89)90122-9
- Sven Keidel and Sebastian Erdweg. 2019. Sound and reusable components for abstract interpretation. *Proc. ACM Program. Lang.* 3, OOPSLA, Article 176 (oct 2019), 28 pages. https://doi.org/10.1145/3360602
- Sven Keidel, Sebastian Erdweg, and Tobias Hombücher. 2023. Combinator-Based Fixpoint Algorithms for Big-Step Abstract
 Interpreters. *Proc. ACM Program. Lang.* 7, ICFP, Article 221 (aug 2023), 27 pages. https://doi.org/10.1145/3607863
- Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compositional Soundness Proofs of Abstract Interpreters.
 Proc. ACM Program. Lang. 2, ICFP, Article 72 (jul 2018), 26 pages. https://doi.org/10.1145/3236767
- L. Lamport. 1977. Proving the Correctness of Multiprocess Programs. *IEEE Transactions on Software Engineering* SE-3, 2 (1977), 125–143. https://doi.org/10.1109/TSE.1977.229904
- John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In *Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages* (Charleston, South Carolina, USA) (*POPL '93*). Association for
 Computing Machinery, New York, NY, USA, 144–154. https://doi.org/10.1145/158511.158618
- Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. *Information and Computation* 207, 2 (2009), 284–304. https://doi.org/10.1016/j.ic.2007.12.004 Special issue on Structural Operational Semantics (SOS).
- D. B. Lomet. 1977. Data Flow Analysis in the Presence of Procedure Calls. *IBM Journal of Research and Development* 21, 6 (1977), 559–571. https://doi.org/10.1147/rd.216.0559
- Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. A Correspondence between Two Approaches to Interprocedural
 Analysis in the Presence of Join. In *Programming Languages and Systems*, Zhong Shao (Ed.). Springer Berlin Heidelberg,
 Berlin, Heidelberg, 513–533.
- Conor McBride and Ross Paterson. 2008. Applicative programming with effects. *Journal of Functional Programming* 18, 1
 (2008), 1–13. https://doi.org/10.1017/S0956796807006326
- Matthew Might. 2010. Architectures for interpreters: Substitutional, denotational, big-step and small-step.
 https://web.archive.org/web/20100216131108/https://matt.might.net/articles/writing-an-interpreter-substitutiondenotational-big-step-small-step/. Accessed: 2010-02-16.
- Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-0000(78)90014-4
- Rasmus Ejlers Møgelberg and Niccolò Veltri. 2019. Bisimulation as Path Type for Guarded Recursive Types. Proc. ACM
 Program. Lang. 3, POPL, Article 4 (jan 2019), 29 pages. https://doi.org/10.1145/3290317
- Andrew Moran and David Sands. 1999. Improvement in a Lazy Context: An Operational Theory for Call-by-Need. In
 Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Antonio, Texas,
 USA) (*POPL '99*). Association for Computing Machinery, New York, NY, USA, 43–56. https://doi.org/10.1145/292540.
- Alan Mycroft. 1980. The Theory and Practice of Transforming Call-by-need into Call-by-value. In International Symposium on Programming, Proceedings of the Fourth 'Colloque International sur la Programmation', Paris, France, 22-24 April 1980 (Lecture Notes in Computer Science, Vol. 83), Bernard J. Robinet (Ed.). Springer, 269–281. https://doi.org/10.1007/3-540-09981-6_19
- Hiroshi Nakano. 2000. A Modality for Recursion. In *Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS '00)*. IEEE Computer Society, USA, 255.
 USA 255.
- Keiko Nakata. 2010. Denotational Semantics for Lazy Initialization of letrec. In *7th Workshop on Fixed Points in Com- puter Science, FICS 2010, Brno, Czech Republic, August 21-22, 2010,* Luigi Santocanale (Ed.). Laboratoire d'Informatique
 Fondamentale de Marseille, 61–67. https://hal.archives-ouvertes.fr/hal-00512377/document#page=62
- Keiko Nakata and Jacques Garrigue. 2006. Recursive Modules for Programming. SIGPLAN Not. 41, 9 (sep 2006), 74–86.
 https://doi.org/10.1145/1160074.1159813
- Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. *Principles of program analysis*. Springer. https://doi.org/10. 1007/978-3-662-03811-6
- Simon Peyton Jones and Will Partain. 1994. Measuring the effectiveness of a simple strictness analyser. Springer London,
 London, 201–221. https://doi.org/10.1007/978-1-4471-3236-3_17
- Simon L. Peyton Jones. 1992. Implementing lazy functional languages on stock hardware: The Spineless Tagless G-machine.
 Journal of Functional Programming (1992). https://doi.org/10.1017/S0956796800000319
- 1323

- 1324 F. Pfenning and C. Elliott. 1988. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation (Atlanta, Georgia, USA) (PLDI '88). Association for Computing 1325 Machinery, New York, NY, USA, 199-208. https://doi.org/10.1145/53990.54010 1326
- Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT Press. 1327
- G.D. Plotkin. 1977. LCF considered as a programming language. Theoretical Computer Science 5, 3 (1977), 223-255. 1328 https://doi.org/10.1016/0304-3975(77)90044-5
- Gordon D. Plotkin. 2004. A structural approach to operational semantics. The Journal of Logic and Algebraic Programming 1329 60-61 (2004), 17-139. https://doi.org/10.1016/j.jlap.2004.05.001 1330
- John C. Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In Proceedings of the ACM 1331 Annual Conference - Volume 2 (Boston, Massachusetts, USA) (ACM '72). Association for Computing Machinery, New 1332 York, NY, USA, 717-740. https://doi.org/10.1145/800194.805852
- 1333 Barry K Rosen. 1975. Data flow analysis for recursive PL/I programs. IBM Thomas J. Watson Research Center.
- Dana Scott and Christopher Strachey. 1971. Toward a Mathematical Semantics for Computer Languages. Technical Report 1334 PRG06. OUCL. 49 pages. 1335
- Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013. 1336 Monadic abstract interpreters. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design 1337 and Implementation (Seattle, Washington, USA) (PLDI '13). Association for Computing Machinery, New York, NY, USA, 1338 399-410. https://doi.org/10.1145/2491956.2491979
- 1339 Ilya Sergey, Dimitrios Vytiniotis, Simon Peyton Jones, and Joachim Breitner. 2017. Modular, higher order cardinality analysis in theory and practice. Journal of Functional Programming 27 (2017), e11. https://doi.org/10.1017/S0956796817000016 1340
- Peter Sestoft. 1997. Deriving a lazy abstract machine. Journal of Functional Programming 7, 3 (1997), 231-264. https:// 1341 //doi.org/10.1017/S0956796897002712 1342
- Micha Sharir, Amir Pnueli, et al. 1978. Two approaches to interprocedural data flow analysis. New York University. Courant 1343 Institute of Mathematical Sciences
- 1344 Olin Grigsby Shivers. 1991. Control-Flow Analysis of Higher-Order Languages or Taming Lambda.
- Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Drever, and Lars Birkedal. 2021. 1345 Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation Logic. In Proceedings of the 42nd ACM 1346 SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). 1347 Association for Computing Machinery, New York, NY, USA, 80-95. https://doi.org/10.1145/3453483.3454031
- 1348 Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward understanding compiler bugs in GCC and LLVM. In Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016). 1349 Association for Computing Machinery, New York, NY, USA, 294-305. https://doi.org/10.1145/2931037.2931074 1350
- David N. Turner, Philip Wadler, and Christian Mossin. 1995. Once upon a type. In Proceedings of the Seventh International 1351 Conference on Functional Programming Languages and Computer Architecture (La Jolla, California, USA) (FPCA '95). 1352 Association for Computing Machinery, New York, NY, USA, 1-11. https://doi.org/10.1145/224164.224168
- 1353 David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming (Baltimore, Maryland, USA) (ICFP '10). Association for Computing 1354 Machinery, New York, NY, USA, 51-62. https://doi.org/10.1145/1863543.1863553 1355
- Philip Wadler. 1989. Theorems for Free!. In Proceedings of the fourth international conference on Functional programming 1356 languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989, Joseph E. Stoy (Ed.). ACM, 347-359. 1357 https://doi.org/10.1145/99370.99404
- 1358 Philip Wadler and R. J. M. Hughes. 1987. Projections for strictness analysis. In Proc. of a Conference on Functional Programming 1359 Languages and Computer Architecture (Portland, Oregon, USA). Springer-Verlag, Berlin, Heidelberg, 385-407.
- Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2019. 1360 Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc. ACM Program. Lang. 4, POPL, Article 51 1361 (dec 2019), 32 pages. https://doi.org/10.1145/3371119 1362
- 1367 1368

- 1369
- 1370
- 1371
- 1372

START OF APPENDIX 1373

1377

1382

1383 1384

1387

1388

1389

1393

1394

1396

1397

1398 1399

1400

1401

1402

1403

1404

1374 A PROOFS FOR SECTION 2 (THE PROBLEM WE SOLVE)

1375 **Theorem 1 (\mathcal{A}[-]] infers absence).** If $\mathcal{A}[e]_{\rho_e} = \langle \varphi, \varsigma \rangle$ and $\varphi(x) = A$, then x is absent in e. 1376

PROOF. See the proof at the end of this section.

1378 **Definition** 2 (Absence). A variable x is used in an expression e if and only if there exists a trace 1379 $(\textbf{let } \textbf{x} = \textbf{e}' \textbf{ in } \textbf{e}, \rho, \mu, \kappa) \hookrightarrow^* \dots \xrightarrow{LOOK(\textbf{x})} \dots \text{ that looks up the heap entry of } \textbf{x}, \text{ i.e., it evaluates } \textbf{x}.$ 1380 Otherwise, x is absent in e. 1381

Note that for the proofs we assume the recursive let definition

$$\mathcal{A}\llbracket \operatorname{let} \mathbf{x} = \mathbf{e}_1 \text{ in } \mathbf{e}_2 \rrbracket_{\rho} = \mathcal{A}\llbracket \mathbf{e}_2 \rrbracket_{\rho[\mathbf{x} \mapsto \operatorname{lfp}(\lambda \theta. \ \mathbf{x} \& \mathcal{A}\llbracket \mathbf{e}_1 \rrbracket_{\rho[\mathbf{x} \mapsto \theta]})]}.$$

1385 The partial order on AbsTy necessary for computing the least fixpoint lfp follows structurally from 1386 $A \sqsubset U$ (i.e., product order, pointwise order).

Abbreviation 11. The syntax θ . φ for an AbsTy $\theta = \langle \varphi, \zeta \rangle$ returns the φ component of θ . The syntax $\theta.\varsigma$ returns the ς component of θ .

1390 **Definition 12** (Abstract substitution). We call $\varphi[\mathbf{x} \mapsto \varphi'] \triangleq \varphi[\mathbf{x} \mapsto \mathsf{A}] \sqcup (\varphi(\mathbf{x}) * \varphi')$ the abstract 1391 substitution operation on Uses and overload this notation for AbsTy, so that $(\langle \varphi, \varsigma \rangle)[\mathbf{x} \Rightarrow \varphi_{\mathbf{y}}] \triangleq$ 1392 $\langle \varphi[\mathbf{x} \mapsto \varphi_{\mathbf{y}}], \varsigma \rangle.$

Abstract substitution is useful to give a concise description of the effect of syntactic substitution:

1395 **Lemma 13.** $\mathcal{A}[[(\bar{\lambda}x.e) y]]_{\rho} = (\mathcal{A}[[e]]_{\rho[x \mapsto \langle [x \mapsto \cup], \text{Rep } \cup \rangle]})[x \mapsto \rho(y).\varphi].$

PROOF. Follows by unfolding the application and lambda case and then refolding abstract substitution.

Lemma 14. Lambda-bound uses do not escape their scope. That is, when x is lambda-bound in e, it is $(\mathcal{A}\llbracket e \rrbracket_{o}).\varphi(\mathbf{x}) = \mathbf{A}.$

PROOF. By induction on e. In the lambda case, any use of x is cleared to A when returning. **Lemma 15.** \mathcal{A} $[(\bar{\lambda}x.\bar{\lambda}y.e) z]_{\rho} = \mathcal{A}$ $[[\bar{\lambda}y.((\bar{\lambda}x.e) z)]]_{\rho}.$

1405 PROOF.
$$\mathcal{A}[[(\bar{\lambda}x,\bar{\lambda}y,e) z]]_{\rho}$$

1406 $= (fun_{y}(\lambda\theta_{y}, \mathcal{A}[e]]_{\rho[x\mapsto\langle[x\mapsto\cup],\text{Rep U}\rangle,y\mapsto\theta_{y}]}))[x\mapsto\rho(z).\varphi]$
1407 $= fun_{y}(\lambda\theta_{y}, (\mathcal{A}[e]]_{\rho[x\mapsto\langle[x\mapsto\cup],\text{Rep U}\rangle,y\mapsto\theta_{y}]})[x\mapsto\rho(z).\varphi])$
1408 $= \mathcal{A}[[\bar{\lambda}y.((\bar{\lambda}x.e) z)]]_{\rho}$
1410 \square

1411 1412

Lemma 16.
$$\mathcal{A}[\![(\bar{\lambda}x.e) \ y \ z]\!]_{\rho} = \mathcal{A}[\![(\bar{\lambda}x.e \ z) \ y]\!]_{\rho}.$$

$$\begin{array}{ll} \text{PROOF.} & \mathcal{A}[[(\lambda \mathbf{x}, \mathbf{e}) \ \mathbf{y} \ \mathbf{z}]]_{\rho} \\ \text{1416} & = app((\mathcal{A}[[\mathbf{e}]]_{\rho[\langle [\mathbf{x} \mapsto \cup], \operatorname{Rep} \ \cup \rangle]})[\mathbf{x} \mapsto \rho(\mathbf{y}).\varphi])(\rho(\mathbf{z})) \\ \text{1416} & = app(\mathcal{A}[[\mathbf{e}]]_{\rho[\langle [\mathbf{x} \mapsto \cup], \operatorname{Rep} \ \cup \rangle]})(\rho(\mathbf{z}))[\mathbf{x} \mapsto \rho(\mathbf{y}).\varphi] \\ \text{1417} & = \mathcal{A}[[(\bar{\lambda}\mathbf{x}, \mathbf{e} \ \mathbf{z}) \ \mathbf{y}]]_{\rho} \\ \end{array}$$

1419

Lemma 17. \mathcal{A} [[let $z = (\overline{\lambda}x.e_1)$ y in $(\overline{\lambda}x.e_2)$ y]]_{ρ} = \mathcal{A} [[$(\overline{\lambda}x.let z = e_1 in e_2)$ y]]_{ρ}. 1420 1421

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

PROOF. The key of this lemma is that it is equivalent to postpone the abstract substitution from the let RHS e_1 to the let body e_2 . This can easily be proved by induction on e_2 , which we omit here, but indicate the respective step below as "hand-waving". Note that we assume the (more general) recursive let semantics as defined at the begin of this section.

Lemma 3 (Substitution). $\mathcal{A}[\![e]\!]_{\rho[x\mapsto\rho(y)]} \sqsubseteq \mathcal{A}[\![(\bar{\lambda}x.e) y]\!]_{\rho}$.

PROOF. By induction on e.

. . . .

• Case z: When $x \neq z$, then z is bound outside the lambda and can't possibly use x, so $\rho(z).\varphi(x) = A$. We have

Otherwise, we have x = z, thus $\rho(x) = \langle [x \mapsto U], \varsigma = \text{Rep } U \rangle$, and thus

$\mathcal{A}[\![\mathbf{z}]\!]_{\rho[\mathbf{x}\mapsto\rho(\mathbf{y})]}$) x = z
$= \rho(\mathbf{y})$	$\langle \zeta \rangle \subseteq \operatorname{Rep} U$
$\sqsubseteq \langle \rho(\mathbf{y}).\varphi, \operatorname{Rep} U \rangle$	$\int_{-\infty}^{\infty} Definition \text{ of } [_ \Rightarrow _]$
$= (\langle [\mathbf{x} \mapsto \mathbf{U}], \operatorname{Rep} \mathbf{U} \rangle) [\mathbf{x} \mapsto \rho(\mathbf{y}).\varphi]$ $= (\mathcal{A}[\![\mathbf{z}]\!]_{\rho[\mathbf{x} \mapsto \langle [\mathbf{x} \mapsto \mathbf{U}], \operatorname{Rep} \mathbf{U} \rangle]} [\mathbf{x} \mapsto \rho(\mathbf{y}).\varphi]$	$\int Refold \mathcal{A}[-]$
$= \mathcal{A}[[(\bar{\lambda}\mathbf{x}.\mathbf{z}) \mathbf{y}]]_{\rho}$) Lemma 13

• Case λz.e':

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

• **Case** e' z: When x = z: $\mathcal{A}\llbracket e' z \rrbracket_{\rho[x \mapsto \rho(y)]}$ $= \mathcal{A}[\![(\bar{\lambda}\mathbf{x}.\mathbf{e}'\mathbf{z})\mathbf{y}]\!]_{o}$ When $x \neq z$: • Case let $z = e_1$ in e_2 : $\mathcal{A}[\![\mathbf{let} \ \mathsf{z} = \mathsf{e}_1 \ \mathbf{in} \ \mathsf{e}_2]\!]_{\rho[\mathsf{x} \mapsto \rho(\mathsf{y})]}$ $= \mathcal{A}[(\bar{\lambda}x.\mathbf{let} \ z = \mathbf{e}_1 \ \mathbf{in} \ \mathbf{e}_2) \ \mathbf{v}]_{\mathbf{e}_1}$ Whenever there exists ρ such that $\rho(\mathbf{x}).\varphi \not\equiv (\mathcal{A}\llbracket \mathbf{e} \rrbracket_{\rho}).\varphi$ (recall that $\theta.\varphi$ selects the Uses in the first field of the pair θ), then also $\rho_{\mathbf{e}}(\mathbf{x}).\varphi \not\subseteq \mathcal{A}[\![\mathbf{e}]\!]_{\rho_{\mathbf{e}}}$. The following lemma captures this intuition:

Lemma 18 (Diagonal factoring). Let ρ and ρ_{Δ} be two environments such that $\forall x. \rho(x).\varsigma = \rho_{\Delta}(x).\varsigma$. If $\rho_{\Delta}.\varphi(x) \sqsubseteq \rho_{\Delta}.\varphi(y)$ if and only if x = y, then every instantiation of $\mathcal{A}\llbracket e \rrbracket$ factors through $\mathcal{A}\llbracket e \rrbracket_{\rho_{\Delta}}$, that is,

$$\mathcal{A}\llbracket \mathbf{e} \rrbracket_{\rho} = (\mathcal{A}\llbracket \mathbf{e} \rrbracket_{\rho_{\Delta}}) [\mathbf{x} \mapsto \rho(\mathbf{x}) . \varphi]$$

PROOF. By induction on e.

• **Case** e = y: We assert $\mathcal{A}[[y]]_{\rho} = \rho(y) = \rho_{\Delta}(y)[y \mapsto \rho(y).\varphi]$ by simple unfolding.

• **Case** e = e' y: $\begin{array}{l} & (\mathcal{A} \llbracket e' \rrbracket_{\rho, \rho}(\mathbf{y})) \\ & = app(\mathcal{A} \llbracket e' \rrbracket_{\rho, \rho}(\mathbf{y})) \\ & = app((\mathcal{A} \llbracket e' \rrbracket_{\rho, \lambda}) [\mathbf{x} \mapsto \rho(\mathbf{x}) . \varphi], \rho_{\Delta}(\mathbf{y}) [\mathbf{x} \mapsto \rho(\mathbf{x}) . \varphi]). \\ & = app(\mathcal{A} \llbracket e' \rrbracket_{\rho_{\Delta}}, \rho_{\Delta}(\mathbf{y})) [\mathbf{x} \mapsto \rho(\mathbf{x}) . \varphi] \\ & = (\mathcal{A} \llbracket e' \rrbracket_{\rho_{\Delta}}) [\mathbf{x} \mapsto \rho(\mathbf{x}) . \varphi] \end{array} \right) \\ \begin{array}{l} & (\mathcal{A} \llbracket e' \rrbracket_{\rho_{\Delta}}, \rho_{\Delta}(\mathbf{y})) [\mathbf{x} \mapsto \rho(\mathbf{x}) . \varphi] \\ & (\mathcal{A} \llbracket e' \rrbracket_{\rho_{\Delta}}) [\mathbf{x} \mapsto \rho(\mathbf{x}) . \varphi] \end{array} \right) \\ \end{array}$ $\mathcal{A}[\![e' y]\!]_{o}$ $= (\mathcal{A}\llbracket e' y \rrbracket_{\rho_{\Lambda}}) [\overline{\mathbf{x} \mapsto \rho(\mathbf{x}).\varphi}]$

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

Sebastian Graf, Simon Peyton Jones, and Sven Keidel

1520	$\mathbb{C}[-]: \mathbb{S} \to AbsTy$	
1521		
1522	$C\llbracket(\mathbf{e},\rho,\mu,\kappa)\rrbracket = apps_{\mu}(\kappa,\mathcal{A}\llbracket\mathbf{e}\rrbracket_{\alpha(\mu)\circ\rho})$	
1523	$\alpha(\mu) = lfp(\lambda \tilde{\mu}. \ [\mathbf{a} \mapsto \mathbf{x} \And \mathcal{A}[\![\mathbf{e}']\!]_{\tilde{\mu} \circ \rho'} \mid \mu(\mathbf{a}) = (\mathbf{x}, \mathbf{a})$	$\rho', \mathbf{e}')])$
1524 1525	$apps_{\mu}(\mathbf{stop},\theta) = \theta$	
1525	$apps_{\mu}(\mathbf{ap}(\mathbf{a}) \cdot \kappa, \theta) = apps_{\mu}(\kappa, app(\theta, \alpha(\mu)(\mathbf{a})))$	
1527	$apps_{\mu}(\mathbf{upd}(\mathbf{a})\cdot\boldsymbol{\kappa},\theta) = apps_{\mu}(\boldsymbol{\kappa},\theta)$	
1528		
1529	Fig. 14. Absence analysis extended to small-step configuration	15
1530		
1531	• Case $e = \overline{\lambda}y.e'$: Note that $x \neq y$ because y is not free in e.	
1532	$\mathcal{A}[\![\bar{\lambda}y.e']\!]_{ ho}$	
1533	$= lam_{\mathbf{y}}(\lambda \theta. \mathcal{A}[[\mathbf{e}']]_{\rho[\mathbf{y} \mapsto \theta]})$	$\int Unfold \mathcal{A}[-]$
1534) Property of lamy
1535 1536	$= lam_{y}(\lambda\theta. \ (\mathcal{A}\llbracket e' \rrbracket_{\rho[y \mapsto \forall [y \mapsto \forall U], Rep \ U \rangle]}))$	Induction hypothesis
1537	$= lam_{y}(\lambda\theta. \ (\mathcal{A}[[e']]_{\rho_{\Delta}[y\mapsto \langle [y\mapsto U], \operatorname{Rep } U\rangle]})[\overline{x \mapsto \rho(x).\varphi}, y \mapsto [y\mapsto U]])$	$ A[v \mapsto [v \mapsto v]] = A $
1538	$= lam_{y}(\lambda\theta. \ (\mathcal{A}\llbracket e' \rrbracket_{\rho_{\Delta}[y \mapsto \langle [y \mapsto \cup], \operatorname{Rep} \cup \rangle]})[\overline{x \mapsto \rho(x).\varphi}])$	$\int_{0}^{0} \theta[\mathbf{y} \mapsto [\mathbf{y} \mapsto 0]] = \theta$
1539	$= lam_{v}(\lambda\theta. \ (\mathcal{A}[\![e']\!]_{\rho\wedge[v\mapsto\theta]})[\overline{x\mapsto\rho(x).\varphi}])$	$ \begin{array}{l} Unfold \ \mathcal{A}[-]] \\ \hline Property \ of \ lam_{y} \\ \hline Induction \ hypothesis \\ \hline \theta[y \mapsto [y \mapsto U]] = \theta \\ \hline \theta[y \mapsto [y \mapsto U]] = \theta \\ \hline Property \ of \ lam_{y} \end{array} $
1540) Property of lam _y
1541	$= lam_{y}(\lambda\theta. \ \mathcal{A}\llbracket e' \rrbracket_{\rho_{\Delta}[y \mapsto \theta]}) [\mathbf{x} \models \rho(\mathbf{x}).\varphi]$	\mathcal{A} Refold $\mathcal{A}[-]$
1542	$= (\mathcal{A}[\![\bar{\lambda} y.e']\!]_{\rho_{\Delta}})[\overline{x \mapsto \rho(x).\varphi}]$	
1543 1544	• Case let $y = e_1$ in e_2 : Note that $x \neq y$ because y is not free in e.	
1545	$\mathcal{A}[[\mathbf{let y} = \mathbf{e}_1 \ \mathbf{in} \ \mathbf{e}_2]]_a$	Δ.
1546) Unfold A[[_]]) Induction hypothesis
1547	$= \mathcal{A}[\![\mathbf{e}_2]\!]_{\rho[\mathbf{y}\mapstolfp(\lambda\theta,\mathbf{y}\&\mathcal{A}[\![\mathbf{e}_1]\!]_{\rho[\mathbf{y}\mapsto\theta]})]$) Induction hypothesis
1548	$= \mathcal{A}[\![e_2]\!]_{\rho[y\mapstolfp(\lambda\theta.\ y\&(\mathcal{A}[\![e_1]\!]_{\rho_\Delta[y\mapsto\langle[y\mapstoU],\theta.\varsigma\rangle]})[\overline{x\mapsto\rho(x).\varphi},y\mapsto\theta.\varphi])]}$	Again, backwards
1549	$= \mathcal{A}[\![\mathbf{e}_2]\!]_{\rho[\mathbf{y}\mapstolfp(\lambda\theta,\mathbf{y}\&(\mathcal{A}[\![\mathbf{e}_1]\!]_{\rho\wedge[\mathbf{y}\mapsto\phi]})[\overline{\mathbf{x}\mapsto\rho(\mathbf{x}).\varphi}])]$	Again, buck warus
1550 1551	Similarly for e_2 , hand-waving to push out the subst as in Lemma 2	17
1552		17
1553	$= (\mathcal{A}[\![\mathbf{e}_2]\!]_{\rho_{\Delta}[y \mapsto lfp(\lambda\theta. \ y \& \mathcal{A}[\![\mathbf{e}_1]\!]_{\rho_{\Delta}[y \mapsto \theta]})]})[x \mapsto \rho(x).\varphi]$	\mathbb{R} Refold $\mathcal{A}[\![-]\!]$
1554	$= (\mathcal{A}\llbracket \text{let } y = e_1 \text{ in } e_2 \rrbracket_{\rho_{\Delta}}) [\overline{x \mapsto \rho(x).\varphi}]$	
1555	 с с	
1556		
1557	For the purposes of the preservation proof, we will write $\tilde{\rho}$ with a tilde to	
1558	environment of type Var \rightarrow AbsTy, to disambiguate it from a concrete environment	proment ρ from the LK

1559 machine.

1568

In Figure 14, we give the extension of C[-] to whole machine configurations σ . Although C[-]1560 looks like an entirely new definition, it is actually derivative of $\mathcal{A}[-]$ via a context lemma à la 1561 Moran and Sands [1999, Lemma 3.2]: The environments ρ simply govern the transition from 1562 syntax to operational representation in the heap. The bindings in the heap are to be treated as 1563 mutually recursive let bindings, hence a fixpoint is needed. For safety properties such as absence, 1564 a least fixpoint is appropriate. Apply frames on the stack correspond to the application case of 1565 $\mathcal{A}[-]$ and invoke the summary mechanism. Update frames are ignored because our analysis is not 1566 heap-sensitive. 1567

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:32

1569	Now we can prove that $C[[_]$ is preserved/improves during reduction:
1570 1571	Lemma 19 (Preservation of $C[[-]]$). If $\sigma_1 \hookrightarrow \sigma_2$, then $C[[\sigma_1]] \supseteq C[[\sigma_2]]$.
1572	PROOF. By cases on the transition.
1573 1574	• Case LET ₁ : Then $e = let y = e_1$ in e_2 and
1574	$(\mathbf{let } \mathbf{y} = \mathbf{e}_1 \mathbf{ in } \mathbf{e}_2, \rho, \mu, \kappa) \hookrightarrow (\mathbf{e}_2, \rho[\mathbf{y} \mapsto \mathbf{a}], \mu[\mathbf{a} \mapsto (\mathbf{y}, \rho[\mathbf{y} \mapsto \mathbf{a}], \mathbf{e}_1)], \kappa).$
1576	Abbreviating $\rho_1 \triangleq \rho[y \mapsto a], \mu_1 \triangleq \mu[a \mapsto (y, \rho_1, e_1)]$, we have
1577 1578	
1579	$C[[\sigma_{1}]] = apps_{\mu}(\kappa)(\mathcal{A}[[\text{let } y = e_{1} \text{ in } e_{2}]]_{\alpha(\mu)\circ\rho}) $ $= apps_{\mu}(\kappa)(\mathcal{A}[[e_{2}]]_{(\alpha(\mu)\circ\rho)[y\mapsto y\&lfp(\lambda\theta, \mathcal{A}[[e_{1}]]_{(\alpha(\mu)\circ\rho)[y\mapsto\theta]})]) $ $= apps_{\mu}(\kappa)(\mathcal{A}[[e_{2}]]_{\alpha(\mu)\circ\rho}) $ $(\kappa)(\mathcal{A}[[e_{2}]]_{\alpha(\mu)\circ\rho}) $ $(\kappa)(\mathcal{A}[$
1580 1581	$= apps_{\mu}(\kappa)(\mathcal{A}[[\text{let } y = e_1 \text{ in } e_2]]_{\alpha(\mu)\circ\rho})$ $= apps_{\mu}(\kappa)(\mathcal{A}[[\text{let } y = e_1 \text{ in } e_2]]_{\alpha(\mu)\circ\rho})$ $\bigcup Unfold \mathcal{A}[[\text{let } y = e_1 \text{ in } e_2]]$
1582	$= apps_{\mu}(\kappa)(\mathcal{A}[e_{2}](\alpha(\mu)\circ\rho)[\gamma\mapsto\gamma\&trp(\lambda\theta,\mathcal{A}[e_{1}](\alpha(\mu)\circ\rho)[\gamma\mapsto\theta])]))$ $= apps_{\mu_{1}}(\kappa)(\mathcal{A}[e_{2}](\alpha(\mu_{1})\circ\rho_{1})))$ $Move fixpoint outwards, refold \alpha$
1583	$= c \left[\left[\sigma_2 \right] \right] $ $= C \left[\left[\sigma_2 \right] \right] $ $= C \left[\left[\sigma_2 \right] \right] $ $\sum_{n=1}^{\infty} C \left[\left[\sigma_2 \right] \right] $
1584 1585	
1586	• Case App ₁ : Then $(e' y, \rho, \mu, \kappa) \hookrightarrow (e', \rho, \mu, ap(\rho(y)) \cdot \kappa)$.
1587	$C[[\sigma_{1}]] = apps_{\mu}(\kappa)(\mathcal{A}[[e' y]]_{\alpha(\mu)\circ\rho}) = apps_{\mu}(\kappa)(app(\mathcal{A}[[e']]_{\alpha(\mu)\circ\rho}, \alpha(\mu)(\rho(y)))) = apps_{\mu}(\kappa)(app(\mathcal{A}[[e']]_{\alpha(\mu)\circ\rho}, \alpha(\mu)(\rho(y)))) = C[[\sigma_{2}]] \qquad $
1588 1589	$= apps_{\mu}(\kappa)(\mathcal{A}\llbracket e' y \rrbracket_{\alpha(\mu) \circ \rho}) \qquad \qquad$
1590	$= apps_{\mu}(\kappa)(app(\mathcal{A}\llbracket e' \rrbracket_{\alpha(\mu) \circ \rho}, \alpha(\mu)(\rho(\mathbf{y}))))) \\ \land earrange$
1591	$= apps_{\mu}(\mathbf{ap}(\rho(\mathbf{y})) \cdot \kappa) (\mathcal{A}\llbracket \mathbf{e}' \rrbracket_{\alpha(\mu) \circ \rho}) $ $Pafold C\llbracket \mathbf{e}_{\mu} \rrbracket$
1592 1593	$= C \llbracket \sigma_2 \rrbracket \qquad $
1594	• Case App ₂ : Then $(\bar{\lambda}y.e', \rho, \mu, ap(a) \cdot \kappa) \hookrightarrow (e', \rho[y \mapsto a], \mu, \kappa)$.
1595 1596	$C[\sigma_1]$
1597	
1598	$= apps_{\mu}(\mathbf{ap}(\mathbf{a}) \cdot \kappa) (\mathcal{A}[[\bar{\lambda}\mathbf{y}, \mathbf{e}']]_{\alpha(\mu) \circ \rho})$ $= apps_{\mu}(\kappa) (app(\mathcal{A}[[\bar{\lambda}\mathbf{y}, \mathbf{e}']]_{\alpha(\mu) \circ \rho}, \alpha(\mu)(\mathbf{a})))$ $\supseteq apps_{\mu}(\kappa) (\mathcal{A}[[\mathbf{e}']]_{(\alpha(\mu) \circ \rho)}[\mathbf{y} \mapsto \alpha(\mu)(\mathbf{a})])$ $\supseteq apps_{\mu}(\kappa) (\mathcal{A}[[\mathbf{e}']]_{\alpha(\mu) \circ \rho}[\mathbf{y} \mapsto \alpha(\mu)(\mathbf{a})])$ $(J) Unfold apps)$ $(J) Unfold apps$ $(J) Unfold ap$
1599 1600	$= apps_{\mu}(\kappa)(app(\mathcal{A}[\kappa y, e]_{\alpha(\mu)\circ\rho}, \kappa(\mu)(\alpha))) $ $\supseteq apps_{\mu}(\kappa)(\mathcal{A}[e']_{\alpha(\mu)\circ\rho}(\mu), \kappa(\mu)(\alpha)) $ $\bigcup Unfold RHS of Lemma 3$
1601	$= apps_{\mu}(\kappa)(\mathcal{A}[[e']]_{(\alpha(\mu)\circ\rho[\gamma\mapsto a])})$ $= apps_{\mu}(\kappa)(\mathcal{A}[[e']]_{(\alpha(\mu)\circ\rho[\gamma\mapsto a])})$ $Rearrange$
1602	$= C \llbracket \sigma_2 \rrbracket \qquad $
1603 1604	
1605	• Case LOOK: Then $e = y$, $a \triangleq \rho(y)$, $(z, \rho', e') \triangleq \mu(a)$ and $(y, \rho, \mu, \kappa) \hookrightarrow (e', \rho', \mu, upd(a) \cdot \kappa)$.
1606	$C[\![\sigma_1]\!]$ $(O(\mathcal{A}^{[\![]}, \mathbb{I}))$ $(O(\mathcal{A}^{[\![]}, \mathbb{I})))$ $(O(\mathcal{A}^{[\![]}, \mathbb{I}))$ $(O($
1607 1608	$= apps_{\mu}(\kappa)(\mathcal{A}[[Y]]_{\alpha(\mu)\circ\rho}) \qquad \qquad$
1609	$= apps_{\mu}(\kappa)((\alpha(\mu) \circ \rho)(\mathbf{y})) \qquad $
1610	$= apps_{\mu}(\kappa)(z \& \mathcal{A}[[e']]_{\alpha(\mu) \circ \rho'}) \qquad) Drop [z \mapsto U]$
1611 1612	
1613	$- \mu \eta \eta s_{\mu} \eta \eta s_{\mu} \eta s_{\mu} \eta s_{\mu} \eta s_{\mu} \eta s_{\mu} s_$
1614	$= C \llbracket \sigma_2 \rrbracket \qquad $
1615 1616	• Case UPD: Then $(v, \rho, \mu[a \mapsto (y, \rho', e')], upd(a) \cdot \kappa) \hookrightarrow (v, \rho, \mu[a \mapsto (y, \rho, v)], \kappa)$.
1617	

This case is a bit hand-wavy and shows how heap update during by-need evaluation is dreadfully complicated to handle, even though $\mathcal{A}[-]$ is heap-less and otherwise correct wrt.

$$\mathcal{A}\llbracket \mathbf{v} \rrbracket_{\alpha(\mu) \circ \rho} \sqsubseteq \mathcal{A}\llbracket \mathbf{e}' \rrbracket_{\alpha(\mu') \circ \rho'}.$$
(1)

Intuitively, this is somewhat clear, because μ "evaluates to" μ' and v is the value of e', in the sense that there exists $\sigma' = (e', \rho', \mu', \kappa)$ such that $\sigma' \hookrightarrow^* \sigma_1 \hookrightarrow \sigma_2$.

by-name evaluation. The culprit is that in order to show $C[\sigma_2] \sqsubseteq C[\sigma_1]$, we have to show

Alas, who guarantees that such a σ' actually exists? We would need to rearrange the lemma for that and argue by step indexing (a.k.a. coinduction) over prefixes of *maximal traces* (to be rigorously defined later). That is, we presume that the statement

$$\forall n. \ \sigma_0 \hookrightarrow^n \sigma_2 \Longrightarrow C\llbracket \sigma_2 \rrbracket \sqsubseteq C\llbracket \sigma_0 \rrbracket$$

has been proved for all n < k and proceed to prove it for n = k. So we presume $\sigma_0 \hookrightarrow^{k-1} \sigma_1 \hookrightarrow \sigma_2$ and $C[[\sigma_1]] \sqsubseteq C[[\sigma_0]]$ to arrive at a similar setup as before, only with a stronger assumption about σ_1 . Specifically, due to the balanced stack discipline we know that $\sigma_0 \hookrightarrow^{k-1} \sigma_1$ factors over σ' above. We may proceed by induction over the balanced stack discipline (we will see in Section 5.1 that this amounts to induction over the big-step derivation) of the trace $\sigma' \hookrightarrow^* \sigma_1$ to show Equation (1).

This reasoning was not specific to $\mathcal{A}[-]$ at all. We will show a more general result in Lemma 53.(a) that can be reused across many more analyses.

Assuming Equation (1) has been proved, we proceed

$$C \llbracket \sigma_{1} \rrbracket$$

$$= apps_{\mu} (upd(a) \cdot \kappa) (\mathcal{A} \llbracket v \rrbracket_{\alpha(\mu) \circ \rho})$$

$$= apps_{\mu} (\kappa) (\mathcal{A} \llbracket v \rrbracket_{\alpha(\mu) \circ \rho})$$

$$\subseteq apps_{\mu[a \mapsto (y, \rho, v)]} (\kappa) (\mathcal{A} \llbracket v \rrbracket_{\alpha(\mu[a \mapsto (y, \rho, v)]) \circ \rho})$$

$$= C \llbracket \sigma_{2} \rrbracket$$

$$Unfold C \llbracket \sigma_{1} \rrbracket$$

$$Definition of apps_{\mu}$$

$$Above argument that \mathcal{A} \llbracket v \rrbracket_{\alpha(\mu) \circ \rho} \subseteq \mathcal{A} \llbracket e' \rrbracket_{\alpha(\mu') \circ \rho'}$$

$$Refold C \llbracket \sigma_{2} \rrbracket$$

We conclude with the proof for Theorem 1:

<u>о</u>п

PROOF. We show the contraposition, that is, if x is used in e, then $\varphi(x) = U$. Since x is used in e, there exists a trace

$$(\mathbf{let} \mathbf{x} = \mathbf{e}' \mathbf{in} \mathbf{e}, \rho, \mu, \kappa) \hookrightarrow (\mathbf{e}, \rho_1, \mu_1, \kappa) \hookrightarrow^* (\mathbf{y}, \rho' [\mathbf{y} \mapsto \mathbf{a}], \mu', \kappa') \xrightarrow{\mathrm{Look}(\mathbf{x})} ...,$$

where $\rho_1 \triangleq \rho[\mathbf{x} \mapsto \mathbf{a}], \mu_1 \triangleq \mu[\mathbf{a} \mapsto (\mathbf{x}, \rho[\mathbf{x} \mapsto \mathbf{a}], \mathbf{e}')]$. Without loss of generality, we assume the trace prefix ends at the first lookup at \mathbf{a} , so $\mu'(\mathbf{a}) = \mu_1(\mathbf{a}) = (\mathbf{x}, \rho_1, \mathbf{e}')$. If that was not the case, we could just find a smaller prefix with this property.

Let us abbreviate $\tilde{\rho} \triangleq (\alpha(\mu_1) \circ \rho_1)$. Under the above assumptions, $\tilde{\rho}(y).\varphi(x) = U$ implies x = y for all y, because $\mu_1(a)$ is the only heap entry in which x occurs by our shadowing assumptions on syntax. By unfolding C[-] and $\mathcal{R}[y]$ we can see that

$$[\mathsf{x} \mapsto \mathsf{U}] \sqsubseteq \alpha(\mu_1)(\mathsf{a}).\varphi = \alpha(\mu')(\mathsf{a}).\varphi = \mathcal{A}[\![\mathsf{y}]\!]_{\alpha(\mu') \circ \rho'[\mathsf{y} \mapsto \mathsf{a}]}.\varphi \sqsubseteq (C[\![(\mathsf{y}, \rho'[\mathsf{y} \mapsto \mathsf{a}], \mu', \kappa')]\!]).\varphi.$$

By Lemma 19, we also have

$$(C\llbracket(\mathsf{y},\rho'[\mathsf{y}\mapsto\mathsf{a}],\mu',\kappa')\rrbracket).\varphi\subseteq(C\llbracket(\mathsf{e},\rho_1,\mu_1,\kappa)\rrbracket).\varphi.$$

And with transitivity, we get $[\mathbf{x} \mapsto \mathbf{U}] \sqsubseteq (C[\![(\mathbf{e}, \rho_1, \mu_1, \kappa)]\!]).\varphi$. Since there was no other heap entry for x and a cannot occur in κ or ρ due to well-addressedness, we have $[\mathbf{x} \mapsto \mathbf{U}] \sqsubseteq (C[\![(\mathbf{e}, \rho_1, \mu_1, \kappa)]\!]).\varphi$ if and only if $[\mathbf{x} \mapsto \mathbf{U}] \sqsubseteq (\mathcal{A}[\![\mathbf{e}]\!]_{\tilde{\varrho}}).\varphi$. With Lemma 18, we can decompose

1670

1677

1680

1681

1682

1683 1684

1685 1686

1687

1688

1689

1690

1691

1692 1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

....

But since $\tilde{\rho}(\mathbf{y}).\varphi(\mathbf{x}) = U$ implies $\mathbf{x} = \mathbf{y}$ (refer to definition of $\tilde{\rho}$), we must have $(\mathcal{A}[\![\mathbf{e}]\!]_{\tilde{\rho}_{\mathbf{e}}}).\varphi(\mathbf{x}) = U$, as required.

B PROOFS FOR SECTION 5 (TOTALITY AND SEMANTIC ADEQUACY)

Theorem 4 (Strong Adequacy). Let e be a closed expression, $\tau \triangleq S_{need}[\![e]\!]_{\varepsilon}(\varepsilon)$ the denotational by-need trace and init(e) \hookrightarrow ... the maximal lazy Krivine trace. Then

- τ preserves the observable termination properties of init(e) \hookrightarrow ... in the above sense.
- τ preserves the length (i.e., number of Steps) of init(e) \hookrightarrow ... (i.e., number of transitions).
- every ev :: Event in $\tau = \overline{\text{Step } ev \dots}$ corresponds to the transition rule taken in init(e) $\hookrightarrow \dots$

PROOF. We formally define as $\alpha(init(e) \hookrightarrow ...) \triangleq \alpha_{\mathbb{S}^{\infty}}(init(e) \hookrightarrow ..., stop)$, where $\alpha_{\mathbb{S}^{\infty}}$ is defined in Figure 15.

Then $S_{need}[\![e]\!]_{\varepsilon}(\varepsilon) = \alpha(init(e) \hookrightarrow ...)$ follows directly from Theorem 27. The preservation results in are a consequence of Lemma 25 and theorem 28; function $\alpha_{\mathbb{E}_{v}}$ in Figure 15 encodes the intuition in which LK transitions abstract into Events.

We proceed from the bottom up, beginning with a definition of traces as mathematical sequences, then defining maximal traces, and then relating those maximal traces via Figure 15 to $S[-]_-$.

Formally, an LK trace is a trace in (\hookrightarrow) from Figure 2, i.e., a non-empty and potentially infinite sequence of LK states $(\sigma_i)_{i\in\overline{n}}$ (where $\overline{n} = \{m \in \mathbb{N} \mid m < n\}$ when $n \in \mathbb{N}$, $\overline{\omega} = \mathbb{N}$), such that $\sigma_i \hookrightarrow \sigma_{i+1}$ for $i, (i+1) \in \overline{n}$. The source state σ_0 exists for finite and infinite traces, while the *target* state σ_n is only defined when $n \neq \omega$ is finite. When the control expression of a state σ (selected via $ctrl(\sigma)$) is a value v, we call σ a *return* state and say that the continuation (selected via $cont(\sigma)$) drives evaluation. Otherwise, σ is an *evaluation* state and $ctrl(\sigma)$ drives evaluation.

An important kind of trace is one that never leaves the evaluation context of its source state:

Definition 20 (Deep, interior and balanced traces). An LK trace $(\sigma_i)_{i \in \overline{n}}$ is κ -deep if every intermediate continuation $\kappa_i \triangleq \operatorname{cont}(\sigma_i)$ extends κ (so $\kappa_i = \kappa$ or $\kappa_i = \dots \cdot \kappa$, abbreviated $\kappa_i = \dots \kappa$). A trace $(\sigma_i)_{i \in \overline{n}}$ is called interior if it is $\operatorname{cont}(\sigma_0)$ -deep. Furthermore, an interior trace $(\sigma_i)_{i \in \overline{n}}$ is balanced [Sestoft 1997] if the target state exists and is a return state with continuation $\operatorname{cont}(\sigma_0)$. We notate κ -deep and interior traces as κ deep $(\sigma_i)_{i \in \overline{n}}$ and $(\sigma_i)_{i \in \overline{n}}$ inter, respectively.

Here is an example for each of the three cases. We will omit the first component of heap entries in our examples because they bear no semantic significance apart from instrumenting LOOK transitions, and it is confusing when the heap-bound expression is a variable x, e.g., (y, ρ, x) .

Example 21. Let
$$\rho = [x \mapsto a_1], \mu = [a_1 \mapsto (\neg, [], \bar{\lambda}y.y)]$$
 and κ an arbitrary continuation. The trace
(x, ρ, μ, κ) $\hookrightarrow (\bar{\lambda}y.y, \rho, \mu, \mathbf{upd}(a_1) \cdot \kappa) \hookrightarrow (\bar{\lambda}y.y, \rho, \mu, \kappa)$
(1715)

is interior and balanced. Its proper prefixes are interior but not balanced. The trace suffix

$$\bar{\lambda}y.y, \rho, \mu, \mathbf{upd}(\mathbf{a}_1) \cdot \kappa) \hookrightarrow (\bar{\lambda}y.y, \rho, \mu, \kappa)$$

is neither interior nor balanced.

As shown by Sestoft [1997], a balanced trace starting at a control expression e and ending with v loosely corresponds to a derivation of e \Downarrow v in a natural big-step semantics or a non- \bot result in a Scott-style denotational semantics. It is when a derivation in a natural semantics does *not* exist that a small-step semantics shows finesse, in that it differentiates two different kinds of *maximally interior* (or, just *maximal*) traces:

Definition 22 (Maximal, diverging and stuck traces). An LK trace $(\sigma_i)_{i \in \overline{n}}$ is maximal if and only if it is interior and there is no σ_{n+1} such that $(\sigma_i)_{i \in \overline{n+1}}$ is interior. More formally,

 $(\sigma_i)_{i\in\overline{n}}\max\triangleq(\sigma_i)_{i\in\overline{n}}\operatorname{inter}\wedge(\nexists\sigma_{n+1}.\ \sigma_n\hookrightarrow\sigma_{n+1}\wedge\operatorname{cont}(\sigma_{n+1})=\ldots\operatorname{cont}(\sigma_0)).$

We notate maximal traces as $(\sigma_i)_{i \in \overline{n}}$ max. Infinite and interior traces are called diverging. A maximally finite, but unbalanced trace is called stuck.

Note that usually stuckness is associated with a state of a transition system rather than a trace. That is not possible in our framework; the following example clarifies.

Example 23 (Stuck and diverging traces). Consider the interior trace

 $(\mathsf{tt} x, [x \mapsto a_1], [a_1 \mapsto ...], \kappa) \hookrightarrow (\mathsf{tt}, [x \mapsto a_1], [a_1 \mapsto ...], \mathbf{ap}(a_1) \cdot \kappa),$

¹⁷³⁷ where tt is a data constructor. It is stuck, but its singleton suffix is balanced. An example for a diverging ¹⁷³⁸ trace, where $\rho = [x \mapsto a_1]$ and $\mu = [a_1 \mapsto (\neg \rho, x)]$, is

 $(\mathbf{let} \ x = x \ \mathbf{in} \ x, [], [], \kappa) \hookrightarrow (x, \rho, \mu, \kappa) \hookrightarrow (x, \rho, \mu, \mathbf{upd}(\mathbf{a}_1) \cdot \kappa) \hookrightarrow \dots$

Lemma 24 (Characterisation of maximal traces). An LK trace $(\sigma_i)_{i \in \overline{n}}$ is maximal if and only if it is 1742 balanced, diverging or stuck.

PROOF. \Rightarrow : Let $(\sigma_i)_{i \in \overline{n}}$ be maximal. If $n = \omega$ is infinite, then it is diverging due to interiority, and if $(\sigma_i)_{i \in \overline{n}}$ is stuck, the goal follows immediately. So we assume that $(\sigma_i)_{i \in \overline{n}}$ is maximal, finite and not stuck, so it must be balanced by the definition of stuckness.

Interiority guarantees that the particular initial stack κ of a maximal trace is irrelevant to execution, so maximal traces that differ only in the initial stack are bisimilar. This is very much like the semantics of a called function (i.e., big-step evaluator) may not depend on the contents of the call stack.

One class of maximal traces is of particular interest: The maximal trace starting in *init*(e)! Whether it is infinite, stuck or balanced is the defining *termination observable* of e. If we can show that $S[[e]]_{\varepsilon}$ distinguishes these behaviors of *e*, we have proven it an adequate replacement for the LK transition system.

Figure 15 shows the correctness predicate *C* in our endeavour to prove S[-] adequate at D (ByNeed T). It encodes that an *abstraction* of every maximal LK trace can be recovered by running S[-] starting from the abstraction of an initial state.

The family of abstraction functions (they are really *representation functions*, in the sense of Section 7) makes precise the intuitive connection between the definable entities in S[-] and the syntactic objects in the transition system.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1789

1790

1791

1799

1800

1801

1802

1811

1812 1813

1765	$\alpha_{\mathbb{F}}(\mu, [\overline{\mathbf{x} \mapsto \mathbf{a}}])$	=	$[x \mapsto \text{Step (Lookup y) } (fetch a) \mid \mu(a) = (y, \neg, \neg)]$
1766			
1767			$[\overline{a \mapsto memo \ a \ (\mathcal{S}\llbracket e \rrbracket_{\alpha_{\mathbb{E}}(\mu,\rho)})}]$
1768			(Fun $(\lambda d \to \text{Step App}_2(\mathcal{S}[\![e]\!]_{(\alpha_{\mathbb{E}}(\mu,\rho))[x\mapsto d]})), \alpha_{\mathbb{H}}(\mu))$
1769	$\alpha_{\mathbb{S}}(K \overline{\mathbf{x}}, \rho, \mu, \kappa)$	=	(Con k (map ($\alpha_{\mathbb{E}}(\mu, \rho)$!) xs), $\alpha_{\mathbb{H}}(\mu)$)
1770			$(\text{Let}_1 \text{when } \sigma = (\text{let } x = _ \text{in } _, _, \mu, _), a_{x,i} \notin \text{dom}(\mu)$
1771			$\begin{cases} \text{Let}_1 & \text{when } \sigma = (\text{let } \mathbf{x} = _ \text{in } _, _, \mu, _), \mathbf{a}_{\mathbf{x},i} \notin \text{dom}(\mu) \\ \text{App}_1 & \text{when } \sigma = (_\mathbf{x}, _, _, _) \\ \text{Case}_1 & \text{when } \sigma = (\texttt{case } _ \texttt{of } _, _, _) \\ \text{Lookup } y & \text{when } \sigma = (\mathbf{x}, \rho, \mu, _), \mu(\rho(\mathbf{x})) = (\mathbf{y}, _, _) \\ \text{App}_2 & \text{when } \sigma = (\bar{\lambda}_{_}, _, _\texttt{apt}(_) \cdot _) \\ \text{Case}_2 & \text{when } \sigma = (K_{_}, _, \texttt{sel}(_, _) \cdot _) \\ \text{Update } & \text{when } \sigma = (\mathbf{v}, _, _, \texttt{upd}(_) \cdot _) \end{cases}$
1772			Case ₁ when $\sigma = (case _ of _, _, _)$
1773	$\alpha_{\mathbb{F}_{\mathbb{V}}}(\sigma)$	=	Lookup v when $\sigma = (\mathbf{x}, \rho, \mu, \rho), \mu(\rho(\mathbf{x})) = (\mathbf{y}, \rho, \rho)$
1774	2.000		
1775			App ₂ when $\sigma = (\Lambda_{-,-,-}, ap(-))$
1776			Case ₂ when $\sigma = (K_{\neg, \neg, \neg}, \operatorname{sel}(\neg, \neg) \cdot \neg)$
1777			Update when $\sigma = (v, \neg, \neg, upd(\neg) \cdot \neg)$
1778			$\{\text{Step} (\alpha_{\mathbb{E}^{v}}(\sigma_{0})) \ \ \alpha_{\mathbb{S}^{\infty}}((\sigma_{i+1})_{i \in \overline{n-1}}, \kappa)\} \text{ when } n > 0$
1779	$\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i\in\overline{n}},\kappa)$	=	$\begin{cases} \text{Step } (\alpha_{\mathbb{E}^{\vee}}(\sigma_0)) \ \ \alpha_{\mathbb{S}^{\infty}}((\sigma_{i+1})_{i\in\overline{n-1}},\kappa)\ & \text{when } n > 0 \\ \text{Ret } (\alpha_{\mathbb{S}}(\sigma_0)) & \text{when } ctrl(\sigma_0) \text{ value } \wedge cont(\sigma_0) = \kappa \\ \text{Ret Stuck} & \text{otherwise} \end{cases}$
1780			
1781			(Ret Stuck otherwise
	$C((\sigma_i)_{i \in \overline{n}})$	=	$(\sigma_i)_{i\in\overline{n}}\max \Longrightarrow \forall ((\mathbf{e},\rho,\mu,\kappa)=\sigma_0). \ \alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i\in\overline{n}},\kappa)=\mathcal{S}_{\mathbf{need}}[\![e]\!]_{\alpha_{\mathbb{F}}(\mu,\rho)}(\alpha_{\mathbb{H}}(\mu))$
1782			(-i)iensity = ((-i)iensity) = (-i)iensity
1783			Fig. 15. Correctness predicate for S

Fig. 15. Correctness predicate for S[-]

We will sometimes need to disambiguate the clashing definitions from Section 4 and Section 2. We do so by adorning semantic objects with a tilde, so $\tilde{\mu} \triangleq \alpha_{\mathbb{H}}(\mu) ::$ Heap (ByNeed τ) denotes a semantic heap which in this instance is defined to be the abstraction of a syntactic heap μ .

Note first that $\alpha_{\mathbb{S}^{\infty}}$ is defined by guarded recursion over the LK trace, in the following sense: We regard $(\sigma_i)_{i\in\overline{n}}$ as a Sigma type $\mathbb{S}^{\infty} \triangleq \exists n \in \mathbb{N}_{\omega}$. $\overline{n} \to \mathbb{S}$, where \mathbb{N}_{ω} is defined by guarded recursion as data $\mathbb{N}_{\omega} = \mathbb{Z} \mid \mathbb{S} (\bullet \mathbb{N}_{\omega})$. Now \mathbb{N}_{ω} contains all natural numbers (where *n* is encoded as $(\mathbb{S} \circ pure)^n \mathbb{Z}$) and the transfinite limit ordinal $\omega = \mathbb{S}$ (*pure* (\mathbb{S} (*pure*...))). We will assume that addition and subtraction are defined as on Peano numbers, and $\omega + _ = _ + \omega = \omega$. When $(\sigma_i)_{i\in\overline{n}} \in \mathbb{S}^{\infty}$ is an LK trace and n > 1, then $(\sigma_{i+1})_{i\in\overline{n-1}} \in \mathbb{S}^{\infty}$ is the guarded tail of the trace with an associated coinduction principle.

As such, the expression $\{\alpha_{\mathbb{S}^{\infty}}((\sigma_{i+1})_{i\in\overline{n-1}},\kappa)\}$ has type \blacktriangleright (T (Value (ByNeed T), Heap (ByNeed T))) (the \blacktriangleright in the type of $(\sigma_{i+1})_{i\in\overline{n-1}}$ maps through $\alpha_{\mathbb{S}^{\infty}}$ via the idiom brackets). Definitional equality = on T (Value (ByNeed T), Heap (ByNeed T)) is defined in the obvious structural way by guarded recursion (as it would be if it was a finite, inductive type).

The event abstraction function $\alpha_{\mathbb{E}_{v}}(\sigma)$ encodes how intensional information from small-step 1803 transitions is retained as Events. Its semantics is entirely inconsequential for the adequacy result 1804 and we imagine that this function is tweaked on an as-needed basis depending on the particular 1805 trace property one is interested in observing. In our example, we focus on Lookup y events that 1806 carry with them the y:: Name of the let binding that allocated the heap entry. This event corresponds 1807 precisely to a LOOK(y) transition, so $\alpha_{E_{Y}}(\sigma)$ maps σ to Lookup y when σ is about to make a LOOK(y) 1808 transition. In that case, the focus expression must be x and y is the first component of the heap 1809 entry $\mu(\rho(\mathbf{x}))$. The other cases are similar. 1810

Our first goal is to establish a few auxiliary lemmas showing what kind of properties of LK traces are preserved by $\alpha_{\mathbb{S}^{\infty}}$ and in which way. Let us warm up by defining a length function on traces:

len :: $T a \rightarrow \mathbb{N}_{\omega}$ 1814 *len* (Ret _) = Z1815 1816 $len (Step _ \tau^{\triangleright}) = S \{ len \tau^{\triangleright} \}$ 1817 1818 **Lemma 25** (Preservation of length). Let $(\sigma_i)_{i \in \overline{n}}$ be a trace. Then len $(\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, cont(\sigma_0))) = n$. 1819 PROOF. This is quite simple to see and hence a good opportunity to familiarise ourselves with 1820 the concept of Löb induction, the induction principle of guarded recursion. Löb induction arises 1821 simply from applying the guarded recursive fixpoint combinator to a proposition: 1822 1823 $l\ddot{o}b = fix : \forall P. (\blacktriangleright P \Longrightarrow P) \Longrightarrow P$ 1824 That is, we assume that our proposition holds *later*, e.g. 1825 1826 $IH \in (\mathbf{P} \triangleq \mathbf{P} \in \mathbb{N}_{\omega}, \forall (\sigma_i)_{i \in \overline{n}}, len \ (\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, cont(\sigma_0))) = n))$ 1827 and use *IH* to prove *P*. Let us assume *n* and $(\sigma_i)_{i \in \overline{n}}$ are given, define $\tau \triangleq \alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, cont(\sigma_0))$ 1828 and proceed by case analysis over *n*: 1829 1830 • **Case** Z: Then we have either $\tau = \text{Ret} (\alpha_{\mathbb{S}}(\sigma_0))$ or $\tau = \text{Ret}$ Stuck, both of which map to Z 1831 under *len*. • Case $\{m\}$: Then $\tau = \text{Step} - \{\alpha_{\mathbb{S}}^{\infty}((\sigma_{i+1})_{i \in \overline{m}}, cont(\sigma_0))\}$, where $(\sigma_{i+1})_{i \in \overline{m}} \in \mathbb{S}^{\infty}$ is the 1832 guarded tail of the LK trace $(\sigma_i)_{i \in \overline{n}}$. Now we apply the inductive hypothesis, as follows: 1833 1834 $(IH \circledast m \circledast (\sigma_{i+1})_{i \in \overline{m}}) \in \blacktriangleright (len \ (\alpha_{\mathbb{S}^{\infty}}((\sigma_{i+1})_{i \in \overline{m}}, cont(\sigma_0))) = m).$ 1835 We use this fact and congruence to prove 1837 $n = S \{ \{m\} \} = S (len (\alpha_{\mathbb{S}^{\infty}}((\sigma_{i+1})_{i \in \overline{m}}, cont(\sigma_0)))) = len (\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, cont(\sigma_0))).$ 1838 1839 1840 **Lemma 26** (Abstraction preserves termination observable). Let $(\sigma_i)_{i \in \overline{n}}$ be a maximal trace. Then 1841 $\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i\in\overline{n}}, cont(\sigma_0))$ is ... 1842 • ... ending with Ret (Fun _) or Ret (Con _ _) if and only if $(\sigma_i)_{i \in \overline{n}}$ is balanced. 1843 • ... infinite if and only if $(\sigma_i)_{i \in \overline{n}}$ is diverging. 1844 • ... ending with Ret Stuck if and only if $(\sigma_i)_{i \in \overline{n}}$ is stuck. 1845 1846 **PROOF.** The second point follows by a similar inductive argument as in Lemma 25. 1847 In the other cases, we may assume that n is finite. If $(\sigma_i)_{i \in \overline{n}}$ is balanced, then σ_n is a return 1848 state with continuation $cont(\sigma_0)$, so its control expression is a value. Then $\alpha_{\mathbb{S}^{\infty}}$ will conclude with 1849 Ret ($\alpha_{\rm S}(-)$), and the latter is never Ret Stuck. Conversely, if the trace ended with Ret (Fun _) or 1850 Ret (Con _ _), then $cont(\sigma_n) = cont(\sigma_0)$ and $ctrl(\sigma_n)$ is a value, so $(\sigma_i)_{i \in \overline{n}}$ forms a balanced trace. 1851 The stuck case is similar. 1852 1853 The previous lemma is interesting as it allows us to apply the classifying terminology of interior 1854 traces to a τ :: \top *a* that is an abstraction of a *maximal* LK trace. For such a maximal τ we will say that 1855 it is balanced when it ends with Ret v for a $v \neq$ Stuck, stuck if ending in Ret Stuck and diverging 1856 if infinite. 1857

We are now ready to prove the main soundness predicate, proving that $S_{need}[-]_{-}$ is an exact abstract interpretation of the LK machine:

Theorem 27 $(S_{need}[-]]_{-}$ abstracts LK machine). *C* from Figure 15 holds. That is, whenever $(\sigma_i)_{i \in \overline{n}}$ is a maximal LK trace with source state (e, ρ, μ, κ) , we have $\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, \kappa) = S_{need}[[e]]_{\alpha_{\mathbb{E}}(\mu,\rho)}(\alpha_{\mathbb{H}}(\mu))$.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:38

1858

1859

1860

1861 1862 1863

1880

1881

1882 1883 1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1899

1900

1901

1902

1903

1911

PROOF. By Löb induction, with $IH \in \mathbf{F}C$ as the hypothesis.

1864 We will say that an LK state σ is stuck if there is no applicable rule in the transition system (i.e., 1865 the singleton LK trace σ is maximal and stuck).

Now let $(\sigma_i)_{i \in \overline{n}}$ be a maximal LK trace with source state $\sigma_0 = (e, \rho, \mu, \kappa)$ and let $\tau = S_{need}[\![e]\!]_{\alpha_{\mathbb{E}}(\mu,\rho)}(\alpha_{\mathbb{H}}(\mu))$. Then the goal is to show $\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, \kappa) = \tau$. We do so by cases over e, abbreviating $\tilde{\mu} \triangleq \alpha_{\mathbb{H}}(\mu)$ and $\tilde{\rho} \triangleq \alpha_{\mathbb{F}}(\mu, \rho)$:

• **Case** x: Let us assume first that σ_0 is stuck. Then $x \notin \text{dom}(\rho)$ (because LOOK is the only transition that could apply), so $\tau = \text{Ret Stuck}$ and the goal follows from Lemma 26. Otherwise, $\sigma_1 \triangleq (e', \rho_1, \mu, \text{upd}(a) \cdot \kappa), \sigma_0 \hookrightarrow \sigma_1$ via LOOK(y), and $\rho(x) = a, \mu(a) = (y, \rho_1, e')$. This matches the head of the action of $\tilde{\rho} x$, which is of the form *step* (Lookup y) (*fetch a*). To show that the tails equate, it suffices to show that they equate *later*. We can infer that $\tilde{\mu} a = memo a (S_{need} [\![e']\!]_{\tilde{\rho}})$ from the definition of $\alpha_{\mathbb{H}}$, so

1876fetch
$$a \ \tilde{\mu} = \tilde{\mu} \ a \ \tilde{\mu} = S_{need} \llbracket e' \rrbracket_{\tilde{\rho}}(\tilde{\mu}) \gg \lambda case$$
1877(Stuck, $\tilde{\mu}$) \rightarrow Ret (Stuck, $\tilde{\mu}$)1878(val, $\tilde{\mu}$) \rightarrow Step Update (Ret (val, $\tilde{\mu}[a \mapsto memo \ a \ (return \ val)]))1879$

Let us define $\tau^{\blacktriangleright} \triangleq \{ S_{need} [\![e']\!]_{\tilde{\rho}}(\tilde{\mu}) \}$ and apply the induction hypothesis *IH* to the maximal trace starting at σ_1 . This yields an equality

$$IH \circledast (\sigma_{i+1})_{i \in \overline{m}} \in \{ \alpha_{\mathbb{S}^{\infty}}((\sigma_{i+1})_{i \in \overline{m}}, \mathbf{upd}(\mathbf{a}) \cdot \kappa) = \tau^{\blacktriangleright} \}$$

When $\tau^{\blacktriangleright}$ is infinite, we are done. Similarly, if $\tau^{\blacktriangleright}$ ends in Ret Stuck then the continuation of \succ will return Ret Stuck, indicating by Lemma 25 and Lemma 26 that $(\sigma_{i+1})_{i\in\overline{n-1}}$ is stuck and hence $(\sigma_i)_{i\in\overline{n}}$ is, too.

Otherwise $\tau^{\blacktriangleright}$ ends after m - 1 Steps with Ret $(val, \tilde{\mu}_m)$ and by Lemma 26 $(\sigma_{i+1})_{i \in \overline{m}}$ is balanced; hence $cont(\sigma_m) = upd(a) \cdot \kappa$ and $ctrl(\sigma_m)$ is a value. So $\sigma_m = (v, \rho_m, \mu_m, upd(a) \cdot \kappa)$ and the UPD transition fires, reaching $(v, \rho_m, \mu_m[a \mapsto (y, \rho_m, v)], \kappa)$ and this must be the target state σ_n (so m = n - 2), because it remains a return state and has continuation κ , so $(\sigma_i)_{i \in \overline{n}}$ is balanced. Likewise, the continuation argument of \gg does a Step Update on Ret $(val, \tilde{\mu}_m)$, updating the heap. By cases on v and the Domain (D (ByNeed T)) instance we can see that

Ret
$$(val, \tilde{\mu}_m[a \mapsto memo \ a \ (return \ val)])$$

= Ret $(val, \tilde{\mu}_m[a \mapsto memo \ a \ (S_{need}[v]_{\tilde{\rho}_m})])$
= $\alpha_{\mathbb{S}}(\sigma_n)$

and this equality concludes the proof.

• **Case** e x: The cases where τ gets stuck or diverges before finishing evaluation of e are similar to the variable case. So let us focus on the situation when $\tau^{\blacktriangleright} \triangleq \{S_{need}[\![e]]_{\tilde{\rho}}(\tilde{\mu})\}\$ returns and let σ_m be LK state at the end of the balanced trace $(\sigma_{i+1})_{i \in \overline{m-1}}$ through e starting in stack $ap(a) \cdot \kappa$.

1904 Now, either there exists a transition $\sigma_m \hookrightarrow \sigma_{m+1}$, or it does not. When the transition 1905 exists, it must must leave the stack $\mathbf{ap}(\mathbf{a}) \cdot \kappa$ due to maximality, necessarily by an APP₂ 1906 transition. That in turn means that the value in $ctrl(\sigma_m)$ must be a lambda $\bar{\lambda}y.e'$, and 1907 $\sigma_{m+1} = (\mathbf{e}', \rho_m[\mathbf{y} \mapsto \rho(\mathbf{x})], \mu_m, \kappa).$

1908 Likewise, $\tau^{\blacktriangleright}$ ends in $\alpha_{\mathbb{S}}(\sigma_m) = \text{Ret }(\text{Fun } (\lambda d \rightarrow step \text{ App}_2 (S_{\text{need}}[\![e']]_{\tilde{\rho}_m[y \mapsto d]})), \tilde{\mu}_m)$ 1909 (where $\tilde{\mu}_m$ corresponds to the heap in σ_m in the usual way). The *fun* implementation of 1910 Domain (D (ByNeed T)) applies the Fun value to the argument denotation $\tilde{\rho} x$, hence it

remains to show that $\tau_2^{\blacktriangleright} \triangleq S_{\text{need}}[\![e']\!]_{\tilde{\rho}_m[y\mapsto\tilde{\rho}|x]}(\tilde{\mu}_m)$ is equal to $\alpha_{\mathbb{S}^\infty}((\sigma_{i+m+1})_{i\in\overline{k}},\kappa)$ later, 1912 where $(\sigma_{i+m+1})_{i \in \overline{k}}$ is the maximal trace starting at σ_{m+1} . 1913 We can apply the induction hypothesis to this situation. From this and our earlier equalities, 1914 we get $\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, \kappa) = \tau$, concluding the proof of the case where there exists a transition 1915 $\sigma_m \hookrightarrow \sigma_{m+1}$. 1916 When $\sigma_m \not\leftarrow$, then $ctrl(\sigma_m)$ is not a lambda, otherwise APP₂ would apply. In this case, fun 1917 gets to see a Stuck or Con _ _ value, for which it is Stuck as well. 1918 • Case case e_s of $K \overline{x} \rightarrow e_r$: Similar to the application and lookup case. 1919 • **Cases** $\lambda x.e$, $K \overline{x}$: The length of both traces is n = 0 and the goal follows by simple calculation. 1920 • Case let $\mathbf{x} = \mathbf{e}_1$ in \mathbf{e}_2 : Let $\sigma_0 = (\text{let } \mathbf{x} = \mathbf{e}_1 \text{ in } \mathbf{e}_2, \rho, \mu, \kappa)$. Then $\sigma_1 = (\mathbf{e}_2, \rho_1, \mu', \kappa)$ by LET₁, 1921 1922 where $\rho_1 = \rho[\mathbf{x} \mapsto \mathbf{a}_{\mathbf{x},i}], \mu' = \mu[\mathbf{a}_{\mathbf{x},i} \mapsto (\mathbf{x}, \rho_1, \mathbf{e}_1)]$. Since the stack does not grow, maximality 1923 from the tail $(\sigma_{i+1})_{i \in \overline{n-1}}$ transfers to $(\sigma_i)_{i \in \overline{n}}$. Straightforward application of the induction 1924 hypothesis to $(\sigma_{i+1})_{i\in\overline{n-1}}$ yields the equality for the tail (after a bit of calculation for the 1925 updated environment and heap), which concludes the proof. 1926 1927 Theorem 27 and Lemma 26 are the key to proving the following theorem of adequacy, which 1928 1929 formalises the intuitive notion of adequacy from before. (A state σ is *final* when $ctrl(\sigma)$ is a value and $cont(\sigma) = stop$.) 1930 1931 **Theorem 28** (Adequacy of S_{need} [-]]. Let $\tau \triangleq S_{need}$ [[e]] $_{\varepsilon}(\varepsilon)$. 1932 • τ ends with Ret (Fun _, _) or Ret (Con _ _, _) (is balanced) iff there exists a final state σ 1933 such that $init(e) \hookrightarrow^* \sigma$. 1934 • τ ends with Ret (Stuck, _) (is stuck) iff there exists a non-final state σ such that init(e) $\hookrightarrow^* \sigma$ 1935 and there exists no σ' such that $\sigma \hookrightarrow \sigma'$. 1936 • τ is infinite Step _ (Step _ ...) (is diverging) iff for all σ with init(e) $\hookrightarrow^* \sigma$ there exists σ' 1937 with $\sigma \hookrightarrow \sigma'$. 1938 • The e:: Event in every Step e ... occurrence in τ corresponds in the intuitive way to the matching 1939 small-step transition rule that was taken. 1940 1941 **PROOF.** There exists a maximal trace $(\sigma_i)_{i \in \overline{n}}$ starting from $\sigma_0 = init(e)$, and by Theorem 27 we 1942 have $\alpha_{\mathbb{S}^{\infty}}((\sigma_i)_{i \in \overline{n}}, \text{stop}) = \tau$. The correctness of Events emitted follows directly from $\alpha_{\mathbb{E}^{\vee}}$. 1943 - If $(\sigma_i)_{i \in \overline{n}}$ is balanced, its target state σ_n is a return state that must also have the empty \Rightarrow 1944 continuation, hence it is a final state. 1945 - If $(\sigma_i)_{i \in \overline{n}}$ is stuck, it is finite and maximal, but not balanced, so its target state σ_n cannot 1946 be a return state; otherwise maximality implies σ_n has an (initial) empty continuation 1947 and the trace would be balanced. On the other hand, the only returning transitions apply 1948 to return states, so maximality implies there is no σ' such that $\sigma \hookrightarrow \sigma'$ whatsoever. 1949 - If $(\sigma_i)_{i \in \overline{n}}$ is diverging, $n = \omega$ and for every σ with $init(e) \hookrightarrow^* \sigma$ there exists an *i* such 1950 that $\sigma = \sigma_i$ by determinism. 1951 - If σ_n is a final state, it has $cont(\sigma) = cont(init(e)) = []$, so the trace is balanced. ⇐ 1952 - If σ is not a final state, τ' is not balanced. Since there is no σ' such that $\sigma \hookrightarrow^* \sigma'$, it is 1953 still maximal; hence it must be stuck. 1954 - Suppose that $n \in \mathbb{N}_{\omega}$ was finite. Then, if for every choice of σ there exists σ' such that 1955 $\sigma \hookrightarrow \sigma'$, then there must be σ_{n+1} with $\sigma_n \hookrightarrow \sigma_{n+1}$, violating maximality of the trace. 1956 Hence it must be infinite. It is also interior, because every stack extends the empty 1957 stack, hence it is diverging. 1958 1959 1960

Abstracting Denotational Interpreters

1961 B.1 Total Encoding in Guarded Cubical Agda

Whereas traditional theories of coinduction require syntactic productivity checks [Coquand 1994],
imposing tiresome constraints on the form of guarded recursive functions, the appeal of guarded
type theories is that productivity is instead proven semantically, in the type system. Compared
to the alternative of *sized types* [Hughes et al. 1996], guarded types don't require complicated
algebraic manipulations of size parameters; however perhaps sized types would work just as well.
Any fuel-based (or step-indexed) approach is equivalent to our use of guarded type theory, but we
find that the latter is a more direct (and thus preferable) encoding.

1969 The fundamental innovation of guarded recursive type theory is the integration of the "later" 1970 modality ► which allows to define coinductive data types with negative recursive occurrences such 1971 as in the data constructor Fun :: $(D \tau \to D \tau) \to Value \tau$ (recall that $D \tau = \tau$ (Value τ), as first 1972 realised by Nakano [2000]. The way that is achieved is roughly as follows: The type $\triangleright T$ represents 1973 data of type T that will become available after a finite amount of computation, such as unrolling one 1974 layer of a fixpoint definition. It comes with a general fixpoint combinator fix : $\forall A$. ($\triangleright A \rightarrow A$) $\rightarrow A$ 1975 that can be used to define both coinductive types (via guarded recursive functions on the universe 1976 of types [Birkedal and Mogelberg 2013]) as well as guarded recursive terms inhabiting said types. 1977 The classic example is that of infinite streams: 1978

$$Str = \mathbb{N} \times \bullet Str$$
 ones = fix $(r : \bullet Str)$. $(1, r)$,

where *ones* : *Str* is the constant stream of 1. In particular, *Str* is the fixpoint of a locally contractive functor $F(X) = \mathbb{N} \times \mathbf{i} X$. According to Birkedal and Mogelberg [2013], any type expression in simply typed lambda calculus defines a locally contractive functor as long as any occurrence of X is under a \mathbf{i} . The most exciting consequence is that changing the Fun data constructor to Fun :: ($\mathbf{i} (D \tau) \rightarrow D \tau$) \rightarrow Value τ makes Value τ a well-defined coinductive data type,³⁰ whereas syntactic approaches to coinduction reject any negative recursive occurrence.

As a type constructor, ► is an applicative functor [McBride and Paterson 2008] via functions

 $\operatorname{next} : \forall A. A \to \blacktriangleright A \qquad _ \circledast _ : \forall A, B. \blacktriangleright (A \to B) \to \blacktriangleright A \to \blacktriangleright B,$

allowing us to apply a familiar framework of reasoning around \blacktriangleright . In order not to obscure our work with pointless symbol pushing, we will often omit the idiom brackets [McBride and Paterson 2008] {-} to indicate where the \blacktriangleright "effects" happen.

We will now outline the changes necessary to encode $S[-]_{-}$ in Guarded Cubical Agda, a system implementing Ticked Cubical Type Theory [Møgelberg and Veltri 2019], as well as the concrete instances D (ByName T) and D (ByNeed T) from Figures 5b and 7. The full, type-checked development is available in the Supplement.

- We need to delay in *step*; thus its definition in Trace changes to *step* :: Event $\rightarrow \flat d \rightarrow d$.
- All Ds that will be passed to lambdas, put into the environment or stored in fields need to have the form *step* (Lookup *x*) *d* for some *x* :: Name and a delayed *d* :: ► (D *τ*). This is enforced as follows:
 - (1) The Domain type class gains an additional predicate parameter $p :: D \rightarrow$ Set that will be instantiated by the semantics to a predicate that checks that the D has the required form *step* (Lookup *x*) *d* for some *x* :: Name, $d :: \triangleright (D \tau)$.
 - (2) Then the method types of Domain use a Sigma type to encode conformance to p. For example, the type of Fun changes to $(\Sigma D p \rightarrow D) \rightarrow D$.

1979 1980

1981

1982

1983

1984

1985

1986

1987 1988

1989

1990

1991

1992

1997

1998 1999

2000

2001

2002

2003

2004

2005 2006

2007

³⁰The reason why the positive occurrence of D τ does not need to be guarded is that the type of Fun can more formally be encoded by a mixed inductive-coinductive type, e.g., Value $\tau = \text{fix } X$. If p Y. ... | Fun $(X \to Y)$ | ...

²⁰⁰⁸ 2009

1:42

2010	data Type = Type :→: Type TyConApp TyCon [Type] TyVar Name Wrong
2011	data PolyType = PT [Name] Type; data TyCon =
2012	type Constraint = (Type, Type); type Subst = Name :→ Type
2013	data Cts $a = Cts$ (StateT (Set Name, Subst) Maybe a)
2014	$emitCt$:: Constraint \rightarrow Cts (); $freshTyVar$:: Cts Type
2015	<i>instantiatePolyTy</i> :: PolyType \rightarrow Cts Type; <i>generaliseTy</i> :: Cts Type \rightarrow Cts PolyType
2016	$closedType :: Cts PolyType \rightarrow PolyType$
2017	
2018 2019	instance Trace (Cts v) where step $_ = id$
2019	<pre>instance Domain (Cts PolyType) where stuck = return (PT [] Wrong);</pre>
2021	instance HasBind (Cts PolyType) where
2022	bind rhs body = generaliseTy (do
2023	$rhs_ty \leftarrow freshTyVar$
2024	$rhs_ty' \leftarrow rhs (return (PT [] rhs_ty)) \gg instantiatePolyTy$
2025	emitCt (rhs_ty, rhs_ty')
2026	$return \ rhs_ty) \gg body \circ return$
2027	
2028	Fig. 16. Hindley-Milner-style type analysis with Let generalisation
2029	
2030	(3) The reason why we need to encode this fact is that the guarded recursive data type
2031	Value has a constructor the type of which amounts to Fun :: (Name $\times \rightarrow$ (D τ) \rightarrow
2032	$D \tau$ τ τ τ τ τ τ τ τ τ
2033	and expecting $x ::$ Name, $d :: \triangleright (D \tau)$ such that the original D τ can be recovered
2034	as step (Lookup x) d. This is in contrast to the original definition Fun :: (D $\tau \rightarrow$
2035	$D \tau$ τ τ τ τ τ τ τ τ τ
2036	the "closure" resulting from <i>defunctionalising</i> [Reynolds 1972] a Σ D p, and that this
2037	defunctionalisation is presently necessary in Agda to eliminate negative cycles.
2038	• Expectedly, HasBind becomes more complicated because it encodes the fixpoint combinator.
2039	We settled on <i>bind</i> :: \blacktriangleright (\blacktriangleright D \rightarrow D) \rightarrow (\blacktriangleright D \rightarrow D) \rightarrow D. We tried rolling up <i>step</i> (Lookup <i>x</i>) _
2040 2041	in the definition of $\mathcal{S}[-]$ to get a simpler type <i>bind</i> :: $(\Sigma \square p \to D) \to (\Sigma \square p \to D) \to D$,
2041	but then had trouble defining ByNeed heaps independently of the concrete predicate p .
2042	• Higher-order mutable state is among the classic motivating examples for guarded recur-
2044	sive types. As such it is no surprise that the state-passing of the mutable Heap in the
2045	implementation of ByNeed requires breaking of a recursive cycle by delaying heap entries,
2046	Heap $\tau = \text{Addr} :\rightarrow \bullet (D \tau)$.
2047	• We need to pass around Tick binders in $S[-]$ in a way that the type checker is satisfied; a
2048	simple exercise. We find it remarkable how non-invasive these adjustment are!
2049	Thus we have proven that $S[-]$ is a total, mathematical function, and fast and loose equational
2050	reasoning about $S[-]$ is not only morally correct [Danielsson et al. 2006], but simply correct.
2051	Furthermore, since evaluation order doesn't matter in Agda and hence for $S[-]$, we could have
2052	defined it in a strict language (lowering $\blacktriangleright a$ as () $\rightarrow a$) just as well.
2053	C PROOFS FOR SECTION 6 (STATIC ANALYSIS)
2054	C_1 Type Analysis

C.1 Type Analysis

2055

2056

2057 2058 To demonstrate the flexibility of our approach, we have implemented Hindley-Milner-style type analysis including Let generalisation as an instance of our abstract denotational interpreter. The

Table 1. Examples for type analysis.

#	е	closedType $(\mathcal{S}[\![e]\!]_{\varepsilon})$
	let $i = \bar{\lambda} x.x$ in $i i i i i i$	$\forall \alpha_{11}. \ \alpha_{11} \rightarrow \alpha_{11}$
(2)	$\bar{\lambda}x.$ let $y = x$ in $y x$	wrong
(3)	let $i = \overline{\lambda} x.x$ in let $o = Some(i)$ in o	$\forall \alpha_6. \text{ option } (\alpha_6 \rightarrow \alpha_6)$
(4)	let $x = x$ in x	$\forall \alpha_1. \ \alpha_1$

gist is given in Figure 16; we omit large parts of the implementation and the Domain instance for space reasons. While the full implementation can be found in the extract generated from this document, the HasBind instance is a sufficient exemplar of the approach.

The analysis infers most general PolyTypes of the form $\forall \overline{\alpha}. \theta$ for an expression, where θ ranges over a Type that can be either a type variable TyVar α , a function type $\theta_1: \rightarrow: \theta_2$, or a type constructor application TyConApp. The Wrong type is used to indicate a type error.

2075 Key to the analysis is maintenance of a consistent set of type constraints as a unifying Substitution. 2076 That is why the trace type Cts carries the current unifier as state, with the option of failure indicated 2077 by Maybe when the unifier does not exist. Additionally, Cts carries a set of used Names with it to 2078 satisfy freshness constraints in *freshTyVar* and *instantiatePolyTy*, as well as to construct a superset 2079 of $fv(\rho)$ in *generaliseTy*.

While the operational detail offered by Trace is ignored by Cts, all the pieces fall together in the 2080 2081 implementation of *bind*, where we see yet another domain-specific fixpoint strategy: The knot is tied by calling the iterate *rhs* with a fresh unification variable type *rhs_ty* of the shape α_1 . The 2082 result of this call in turn is instantiated to a non-PolyType *rhs_ty*', perhaps turning a type-scheme 2083 $\forall \alpha_2$. option $(\alpha_2 \rightarrow \alpha_2)$ into the shape option $(\alpha_3 \rightarrow \alpha_3)$ for fresh α_3 . Then a constraint is emitted 2084 2085 to unify α_1 with option $(\alpha_3 \rightarrow \alpha_3)$. Ultimately, the type *rhs_ty* is returned and generalised to $\forall \alpha_3$. option ($\alpha_3 \rightarrow \alpha_3$), because α_3 is not a Name in use before the call to generaliseTy, and thus it 2086 2087 couldn't have possibly leaked into the range of the ambient type context. The generalised PolyType 2088 is then used when analysing the *body*.

Examples. Let us again conclude with some examples in Table 1. Example (1) demonstrates repeated instantiation and generalisation. Example (2) shows that let generalisation does not accidentally generalise the type of *y*. Example (3) shows an example involving data types and the characteristic approximation to higher-rank types, and example (4) shows that type inference for diverging programs works as expected.

C.2 Control-flow Analysis

In our last example, we will discuss a classic benchmark of abstract higher-order interpreters: Control-flow analysis (CFA). CFA calculates an approximation of which values an expression might evaluate to, so as to narrow down the possible control-flow edges at application sites. The resulting control-flow graph conservatively approximates the control-flow of the whole program and can be used to apply classic intraprocedural analyses such as interval analysis in a higher-order setting.

To facilitate CFA, we have to revise the Domain class to pass down a *label* from allocation sites, which is to serve as the syntactic proxy of the value's control-flow node:

2105type Label = String2106class Domain d where

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

> 2067 2068

> 2069

2070 2071

2089

2095

2096

2104

2107

2059 2060 2108 data Pow a = P (Set a); type Value_C = Pow Label 2109 **type** ConCache = (Tag, [Value_C]); **data** FunCache = FC (Maybe (Value_C, Value_C)) ($D_C \rightarrow D_C$) 2110 **data** Cache = Cache (Label :-- ConCache) (Label :-- FunCache) 2111 data $T_C a = T_C$ (State Cache a); type $D_C = T_C$ Value_C; runCFA :: $D_C \rightarrow$ Value_C 2112 *updFunCache* :: Label \rightarrow (D_C \rightarrow D_C) \rightarrow T_C (); *cachedCall* :: Label \rightarrow Value_C \rightarrow D_C 2113 2114 **instance** HasBind D_C where ...; **instance** Trace (T_C ν) where step _ = id 2115 instance Domain D_C where 2116 $fun \ \ell f = do \ updFunCache \ \ell f; return (P (Set.singleton \ \ell))$ 2117 apply $dv \, da = dv \gg \lambda(P \, \overline{\ell}) \rightarrow da \gg \lambda a \rightarrow lub <$ traverse ($\lambda \ell \rightarrow cachedCall \, \ell a$) (Set.toList $\overline{\ell}$) 2118 ... 2119 Fig. 17. 0CFA 2120 2121 Table 2. Examples for control-flow analysis. 2122 2123 $runCFA (S[e]_{\varepsilon})$ # 2124 e 2125 let $i = \overline{\lambda}x \cdot x$ in let $j = \overline{\lambda}y \cdot y$ in i j(1) $\{\lambda y..\}$ 2126 let $i = \overline{\lambda}x \cdot x$ in let $j = \overline{\lambda}y \cdot y$ in $i \neq j$ (2) $\{\lambda x.., \lambda y..\}$ 2127 let $\omega = \overline{\lambda} x \cdot x \text{ in } \omega \omega$ (3){} 2128 let x =let y = S(x) in S(y) in x(4) $\{S(y)\}$ 2129 2130 2131

$$con :: \text{ Label } \to \text{ Tag } \to [d] \to d$$
$$fun :: \text{ Name } \to \text{ Label } \to (d \to d) \to d$$

We omit how to forward labels appropriately in $S[-]_$ and how to adjust Domain instances.

Figure 17 gives a rough outline of how we use this extension to define a 0CFA:³¹ An abstract Value_C is the usual set of Labels standing in for a syntactic value. The trace abstraction T_C maintains as state a Cache that approximates the shape of values at a particular Label, an abstraction of the heap. For constructor values, the shape is simply a pair of the Tag and Value_Cs for the fields. For a lambda value, the shape is its abstract control-flow transformer, of type $D_C \rightarrow D_C$ (populated by *updFunCache*), plus a single point (v_1, v_2) of its graph (*k*-CFA would have one point per contour), serving as the transformer's summary.

At call sites in *apply*, we will iterate over each function label and attempt a *cachedCall*. In doing 2142 2143 so, we look up the label's transformer and sees if the single point is applicable for the incoming 2144 value v, e.g., if $v \sqsubseteq v_1$, and if so return the cached result v_2 straight away. Otherwise, the transformer 2145 stored for the label is evaluated at v and the result is cached as the new summary. An allocation site 2146 might be re-analysed multiple times with monotonically increasing environment due to fixpoint 2147 iteration in *bind*. Whenever that happens, the point that has been cached for that allocation site is 2148 cleared, because the function might have increased its result. Then re-evaluating the function at 2149 the next *cachedCall* is mandatory.

Note that a D_C transitively (through Cache) recurses into $D_C \rightarrow D_C$, thus introducing vicious cycles in negative position, rendering the encoding non-inductive. This highlights a common challenge with instances of CFA: The obligation to prove that the analysis actually terminates on all inputs; an obligation that we will gloss over in this work.

2156

2154

2132

2133

2134

²¹⁵⁵ ³¹As before, the extract of this document contains the full, executable definition.

Abstracting Denotational Interpreters

Examples. The first two examples of Table 2 demonstrate a precise and an imprecise result, respectively. The latter is due to the fact that both i and j flow into x. Examples (3) and (4) show that the HasBind instance guarantees termination for diverging programs and cyclic data.

2160 2161

2165

2166

2167

2168

2176

2177

2183

2184

2185

2186

2194

2195

2197

2198

2199

2200

2201

D PROOFS FOR SECTION 7 (GENERIC BY-NAME AND BY-NEED SOUNDNESS)

Theorem 6 (Sound By-need Interpretation). Let \widehat{D} be a domain with instances for Trace, Domain, HasBind and Lat, and let abstract be the abstraction function described above. If the abstraction laws in Figure 13 hold, then $S_{\widehat{D}}[-]_{-}$ is an abstract interpreter that is sound wrt. abstract, that is,

abstract $(S_{need} \llbracket e \rrbracket_{\varepsilon}) \sqsubseteq S_{\widehat{D}} \llbracket e \rrbracket_{\varepsilon}$.

PROOF. The definition of *abstract* is in terms of the Galois connection *nameNeed* from Figure 18. Let α be the abstraction function from *nameNeed*; then we define

²¹⁶⁹ *abstract* $d = \alpha \{ d \in \}$

I.e., we simply run d in the initial empty heap. Do note that *abstract* does not work for open expressions because of this.

When we inline *abstract*, the goal is simply Theorem 56 for the special case where environment and heap are empty. \Box

Abbreviation 29 (Field access). $\langle \varphi', \nu' \rangle \circ \varphi \triangleq \varphi', \langle \varphi', \nu' \rangle \circ \nu = \nu'$.

For concise notation, we define the following abstract substitution operation:

²¹⁷⁸ **Definition 30** (Abstract substitution). We call $\varphi[x \mapsto \varphi'] \triangleq \varphi[x \mapsto \bigcup_0] + (\varphi \mid x) * \varphi'$ the abstract ²¹⁷⁹ substitution operation on \bigcup ses and overload this notation for \top_{\bigcup} , so that $\langle \varphi, \nu \rangle [x \mapsto \varphi'] \triangleq \langle \varphi[x \mapsto \varphi'], \nu \rangle$.

Lemma 31. \mathcal{S} [Lam $x \ e' \operatorname{App}' y$] $_{\rho} = (\mathcal{S}$ [e] $_{\rho[x \mapsto \langle [x \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle]})[x \mapsto (\rho ! y).\phi].$

The proof below needs to appeal to a couple of congruence lemmas about abstract substitution, the proofs of which would be tedious and hard to follow, hence they are omitted. These are very similar to lemmas we have proven for absence analysis (cf. Lemma 15).

Lemma 32. S_{usage} [Lam y (Lam x e 'App' z)] $_{\rho} = S_{usage}$ [Lam x (Lam y e) 'App' z] $_{\rho}$.

Lemma 33. S_{usage} [Lam $x \ e' \operatorname{App}' y \operatorname{App}' z$] $_{\rho} = S_{usage}$ [Lam $x \ (e' \operatorname{App}' z) \operatorname{App}' y$] $_{\rho}$.

Lemma 34. $S_{usage} \llbracket Case (Lam x e 'App' y) (alts (Lam x e_r 'App' y)) \rrbracket_{\rho[x \mapsto \rho! y]}$ $= S_{usage} \llbracket Lam x (Case e (alts e_r)) 'App' y \rrbracket_{\rho}.$

Lemma 35. S_{usage} [Let z (Lam $x e_1$ 'App' y) (Lam $x e_2$ 'App' y)] $_{\rho} = S_{usage}$ [Lam x (Let $z e_1 e_2$) 'App' y] $_{\rho}$.

Now we can finally prove the substitution lemma:

Lemma 7 (Substitution). $S_{usage}[\![e]\!]_{\rho[x\mapsto\rho!y]} \subseteq S_{usage}[\![Lam x e App'y]\!]_{\rho}$.

PROOF. We need to assume that x is absent in the range of ρ . This is a "freshness assumption" relating to the identify of x that in practice is always respected by $S_{usage}[-]_-$.

Now we proceed by induction on *e* and only consider non-*stuck* cases.

• **Case** Var z: When $x \neq z$, we have

2202
$$S_{\text{usage}} \| z \|_{\rho[x \mapsto \rho! y]}$$
2203
$$= \langle x \neq z \rangle$$
2204
$$\rho! z$$
2205

Sebastian Graf, Simon Peyton Jones, and Sven Keidel

? Refold S_{usage} 2206 2207 $S_{\text{usage}}[z]_{\rho[x \mapsto prx x]}$ $= \frac{1}{2} \left(\left(\rho ! z \right) \cdot \varphi \right) ! x = \bigcup_{0} \int_{0}^{\infty}$ 2208 2209 $(\mathcal{S}_{usage}[[z]]_{\rho[x\mapsto prx x]})[x \mapsto (\rho! y).\varphi]$ 2210 = $\langle \partial \mathcal{S}_{usage} \|_{-} \|_{-} \rangle$ 2211 S_{usage} [Lam x (Var z) 'App' y] 2212 Otherwise, we have x = z. 2213 2214 $S_{\text{usage}}[\![z]\!]_{\rho[x\mapsto\rho!y]}$ 2215 = i x = y, unfold i2216 $\rho! \gamma$ 2217 \sqsubseteq $\mathcal{i} \vee \sqsubseteq (\operatorname{Rep} U_{\omega}) \mathcal{i}$ 2218 $\langle (\rho ! y) . \varphi, \text{Rep } U_{\omega} \rangle$ 2219 ? Definition of abstract substitution \int = 2220 $(prx x)[x \mapsto (\rho! y).\phi]$ 2221 = $\langle \text{Refold } S_{\text{usage}} []_{-} \rangle$ 2222 2223 $(S_{usage}[[z]]_{\rho[x\mapsto\rho rx x]})[x \mapsto (\rho!y).\varphi]$ $\langle \text{ Definition of } S_{\text{usage}} \|_{-} \rangle$ 2224 = 2225 S_{usage} [Lam x (Var z) 'App' y] ρ 2226 • Case Lam z e: 2227 2228 S_{usage} [Lam z e] $\rho[x \mapsto \rho! y]$ 2229 = \mathcal{I} Unfold $\mathcal{S}_{usage}[-]_{-} \mathcal{I}$ 2230 fun z ($\lambda d \rightarrow step \operatorname{App}_2 \$ S_{usage}[\![e]\!]_{\rho[x \mapsto \rho! y][z \mapsto d]}$) 2231 = i Rearrange, $x \neq z$ § 2232 fun z ($\lambda d \rightarrow step \operatorname{App}_2 \$ S_{usage}[\![e]\!]_{\rho[z \mapsto d][x \mapsto \rho! y]}$) 2233 ? Induction hypothesis, $x \neq z$) 2234 fun z ($\lambda d \rightarrow step \operatorname{App}_2 \ S_{usage} [Lam x e \operatorname{App}' y]_{\rho[z \mapsto d]}$) 2235 ? Refold $S_{usage}[-]_{-}$ 2236 S_{usage} [Lam z (Lam x e 'App' y)]_{ρ} 2237 $= i x \neq z$, Lemma 32 § 2238 S_{usage} [Lam x (Lam z e) 'App' y] 2239 2240 • Case App *e z*: Consider first the case x = z. This case is exemplary of the tedious calculation 2241 required to bring the substitution outside. We abbreviate $prx \ x \triangleq \langle [x \mapsto \bigcup_1], \text{Rep } \bigcup_{\omega} \rangle$. 2242 2243 S_{usage} [App e z] $\rho[x \mapsto \rho! y]$ 2244 = $\langle \text{Unfold } S_{\text{usage}} \|_{-} \|_{-}, x = z \rangle$ 2245 apply $(S_{usage}[e]_{\rho[x \mapsto \rho! y]}) (\rho! y)$ 2246 ? Induction hypothesis § 2247 apply $(S_{usage} [\![Lam \ x \ e \ App \ y]\!]_{\rho}) (\rho \ y)$ 2248 ? Unfold *apply*, $S_{usage}[-]_{-}$ = 2249 let $\langle \varphi, v \rangle = (S_{usage}[e]_{\rho[x \mapsto prx x]})[x \mapsto (\rho! y).\varphi]$ in 2250 case peel v of $(u, v_2) \rightarrow \langle \varphi + u * ((\rho ! y).\varphi), v_2 \rangle$ 2251 = $\langle Unfold [] \mapsto] \rangle$ 2252 let $\langle \varphi, \nu \rangle = S_{usage} \llbracket e \rrbracket_{\rho [x \mapsto prx x]}$ in 2253 2254

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:46

0055	(a a) + (a a) + (a a a a a a a a a a
2255	case peel v of $(u, v_2) \rightarrow \langle \varphi[x \mapsto \bigcup_0] + (\varphi !? x) * ((\rho ! y).\varphi) + u * ((\rho ! y).\varphi), v_2 \rangle$
2256 2257	$= (\operatorname{Refold}_{-[- \mapsto -]})$
2258	let $\langle \varphi, v \rangle = S_{usage}[\![e]\!]_{\rho[x \mapsto prx x]}$ in
2258	case peel v of $(u, v_2) \rightarrow \langle \varphi + u * ((prx x).\varphi), v_2 \rangle [x \mapsto (\rho ! y).\varphi]$
2260	= $\langle \text{Move out } _[_ \Rightarrow _], \text{ refold } apply \rangle$
2261	$(apply (\mathcal{S}_{usage} \llbracket e \rrbracket_{\rho[x \mapsto prx \ x]}) (prx \ x)) [x \mapsto (\rho! \ y).\varphi]$
2262	= $\langle \operatorname{Refold} S_{\operatorname{usage}}[-]]_{-} \rangle$
2263	$\mathcal{S}_{usage} \llbracket \operatorname{Lam} x (\operatorname{App} e z) \operatorname{App}' y rbrace_{ ho}$
2264	Wilson as to re-
2265	When $x \neq z$:
2266	$S_{usage} [App \ e \ z]_{\rho[x \mapsto \rho! y]}$
2267	$= \left(\text{Unfold } S_{\text{usage}}[-], x \neq z \right)$
2268	$apply \left(S_{usage} \left[\left[e \right] \right]_{\rho[x \mapsto \rho! y]} \right) \left(\rho! z \right)$
2269	$\sqsubseteq i \text{ Induction hypothesis } $
2270	$ apply (S_{usage} [Lam x e 'App' y]_{\rho}) (\rho ! z) $
2271	$= \langle \operatorname{Refold} S_{\operatorname{usage}}[-]_{-} \rangle$
2272	$S_{\text{usage}} \begin{bmatrix} \text{Lam } x \ e^{} \text{App}^{'} \ y^{'} \text{App}^{'} z \end{bmatrix}_{\rho}$
2273	
2274	$= (\text{Lemma 33})$ $S_{\text{usage}}[\text{Lam } x (e'\text{App'} z) '\text{App'} y]_{\rho}$
2275	$\mathcal{S}_{usage} [Lam x (e App z) App y]_{\rho}$
2276	• Case ConApp k xs: Let us concentrate on the case of a unary constructor application
2277	xs = [z]; the multi arity case is not much different.
2278	
2279	$S_{usage} [ConApp k [z]]_{\rho[x \mapsto \rho! y]}$
2280	$= \langle \text{Unfold } S_{\text{usage}}[-]]_{-} \rangle$
2281	fold apply $\langle \varepsilon, \operatorname{Rep} \cup_{\omega} \rangle [\rho[x \mapsto \rho! y]! z]$
2282 2283	\sqsubseteq (Similar to Var case)
2283	fold apply $\langle \varepsilon, \operatorname{Rep} \cup_{\omega} \rangle [(\rho[x \mapsto prx \ x] ! z)[x \mapsto (\rho ! y).\phi]]$
2285	= $\langle x \text{ dead in } \langle \varepsilon, \text{Rep } \cup_{\omega} \rangle$, push out substitution \int
2286	(foldl apply $\langle \varepsilon, \operatorname{Rep} \cup_{\omega} \rangle$ $[\rho[x \mapsto prx \ x] ! z])[x \mapsto (\rho ! y).\phi]$
2287	$= \langle \operatorname{Refold} S_{\operatorname{usage}}[-]_{-} \rangle$
2288	$\mathcal{S}_{ ext{usage}} \llbracket ext{Lam } x ext{ (ConApp } k ext{ } [z] ext{ } `App` y rbrace_{ ho}$
2289	• Case Case <i>e</i> alts: We concentrate on the single alternative e_r , single field binder <i>z</i> case.
2290	• Case Case e and e concentrate on the single alternative e_r , single new binder z case.
2291	$\mathcal{S}_{usage} \llbracket Case \ e \ [k \mapsto [z], e_r] \rrbracket_{\rho[x \mapsto \rho! y]}$
2292	= $($ Unfold $S_{usage}[-]_, step Case_2 = id)$
2293	select $(\mathcal{S}_{usage}[\![e]\!]_{\rho[x\mapsto\rho!y]})$ $[k\mapsto\lambda[d]\to\mathcal{S}_{usage}[\![e_r]\!]_{\rho[x\mapsto\rho!y][z\mapsto d]}]$
2294	= $\langle \text{Unfold select } \rangle$
2295	$S_{\text{usage}}[\![e]\!]_{\rho[x \mapsto \rho! y]} \gg S_{\text{usage}}[\![e_r]\!]_{\rho[x \mapsto \rho! y][z \mapsto \langle \varepsilon, \text{Rep } \cup_{\omega} \rangle]}$
2296	$\sqsubseteq (\text{Induction hypothesis})$
2297	$S_{\text{usage}}[\text{Lam } x \ e' \text{App' } y]_{\rho} \gg S_{\text{usage}}[\text{Lam } x \ e_r \text{ 'App' } y]_{\rho[z \mapsto \langle \varepsilon, \text{Rep } \cup_{\omega} \rangle]}$
2298	$= \langle \text{Refold select, } S_{\text{usage}}[-]_{-} \rangle$
2299	$S_{\text{usage}} [\text{Case (Lam } x e \text{`App' } y) alts]_{\rho[x \mapsto \rho! y]}$
2300	$= \langle \text{Refold select, } S_{\text{usage}}[-]_{-} \rangle$
2301	$S_{\text{usage}} [\text{Case (Lam } x e^{\text{`App' } y)}] [k \mapsto [z], \text{Lam } x e_r \text{`App' } y]]_{\rho[x \mapsto \rho! y]}$
2302 2303	$\bigcup_{usage} [(x_{usage}) (x_{usage}) (x_{u$
2000	Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.
	1100. 100. 110 January 2024.

2304	$=$ \langle Lemma 34 \rangle
2304	$S_{\text{usage}} [\text{Lam } x \text{ (Case } e [k \mapsto [z], e_r]) \text{ 'App' } y]_{\rho}$
2306	
2307	• Case Let:
2308	S_{usage} [Let $z e_1 e_2$] $\rho[x \mapsto \rho! y]$
2309	$= (Unfold S_{usage}[-]]_{-})$
2310	bind $(\lambda d_1 \rightarrow S_{usage}[[e_1]]_{\rho[x \mapsto \rho! y][z \mapsto step} (Lookup z) d_1])$
2311	$(\lambda d_1 \rightarrow step \operatorname{Let}_1(S_{usage}[[e_2]]_{\rho[x \mapsto \rho!y][z \mapsto step}(\operatorname{Lookup} z) d_1]))$
2312	= \langle Induction hypothesis; note that x is absent in ρ and thus the fixpoint \int
2313	bind $(\lambda d_1 \rightarrow S_{usage} [Lam \ x \ e_1 \ App \ y]_{z[step (Lookup z) \ d_1 \mapsto -1})$
2314	$(\lambda d_1 \rightarrow step \text{ Let}_1 (S_{usage} [[\text{Lam} x e_2 'App' y]]_2[step (\text{Lookup } z) d_1 \rightarrow]))$
2315	$= \langle \operatorname{Refold} S_{\operatorname{usage}}[-]_{-} \rangle$
2316	$S_{usage} [Let z (Lam x e_1 'App' y) (Lam x e_1 'App' y)]_{\rho}$
2317	= (Lemma 35)
2318	$S_{\text{usage}} \begin{bmatrix} \text{Lemma 33.5} \\ S_{\text{usage}} \end{bmatrix}_{\rho}$
2319	$\mathcal{O}_{usage}[Lam x (Let 2 e_1 e_2) \land pp y]_{\rho}$
2320	
2321	Lemma 8 (Denotational absence). Variable x is used in e if and only if there exists a by-need
2322	evaluation context E and expression e' such that the trace $S_{need} [E[Let x e' e]]_{\varepsilon}(\varepsilon)$ contains a Lookup x
2323	event. (Otherwise, x is absent in e.)
2324 2325	
2325	PROOF. Since x is used in e , there exists a trace
2327	$(\mathbf{let} \mathbf{x} = \mathbf{e}' \mathbf{in} \mathbf{e}, \rho, \mu, \kappa) \hookrightarrow^* \dots \xrightarrow{\mathrm{Look}(\mathbf{x})} \dots$
2328	
2329	We proceed as follows:
2330	$(\text{let } \mathbf{x} = \mathbf{e}' \text{ in } \mathbf{e}, \rho, \mu, \kappa) \hookrightarrow^* \dots \xrightarrow{\text{Look}(\mathbf{x})} \dots $ (1)
2331	$E \triangleq trans(\Box, \rho, \mu, \kappa) \qquad (1)$
2332	$(\text{If } \mathbf{x} = \mathbf{e}^{-} \text{ in } \mathbf{e}, \rho, \mu, \kappa) \rightarrow \dots \rightarrow \dots \qquad (1)$ $\iff init(\text{E}[\text{let } \mathbf{x} = \mathbf{e}^{\prime} \text{ in } \mathbf{e}]) \rightarrow^{*} \dots \xrightarrow{\text{Look}(\mathbf{x})} \dots \qquad (2)$ $\iff \alpha_{\mathbb{S}^{\infty}}(init(\text{E}[\text{let } \mathbf{x} = \mathbf{e}^{\prime} \text{ in } \mathbf{e}]) \rightarrow^{*}, []) = \dots \text{Step } (\text{Lookup } \mathbf{x}) \dots \qquad (2)$ $\implies Apply \alpha_{\mathbb{S}^{\infty}} (Figure 15) \qquad (3)$ $\implies \text{Theorem 4} \qquad (4)$
2333	$\iff \alpha_{\mathbb{S}^{\infty}}(init(E[let x = e' in e]) \hookrightarrow^*, []) = \dots Step(Lookup x) \dots \bigvee_{\lambda}^{\mathcal{Apply}} \alpha_{\mathbb{S}^{\infty}}(Figure 15) $ (3)
2334	$\iff S_{need} \llbracket E[\text{Let } x \ e' \ e] \rrbracket_{\varepsilon}(\varepsilon) = \dots \text{Step (Lookup } x) \dots \qquad (4)$
2335	$ \qquad \qquad$
2336	Note that the trace we start with is not necessarily an maximal trace, so step (1) finds a prefix that
2337	makes the trace maximal. We do so by reconstructing the syntactic <i>evaluation context</i> E with <i>trans</i>
2338	(cf. Lemma 36) such that
2339	$init(E[let x = e' in e]) \hookrightarrow^* (let x = e' in e, \rho, \mu, \kappa)$
2340 2341	Then the trace above is contained in the maximal trace starting in $init(E[let x = e' in e])$ and it
2341	contains at least one $LOOK(x)$ transition.
2343	The next two steps apply adequacy of $S_{need}[-]_{-}(-)$ to the trace, making the shift from LK trace
2344	to denotational interpreter.
2345	Lemma $0/S$ [] shotwards S []) Let a be a closed subversion and obstruct the abstruction
2346	Lemma 9 ($S_{usage}[-]$ abstracts $S_{need}[-]$). Let <i>e</i> be a closed expression and abstract the abstraction function above. Then abstract ($S_{need}[[e]]_{\varepsilon}$) $\subseteq S_{usage}[[e]]_{\varepsilon}$.
2347	$\int unction \ ubove. \ Then \ ubstruct \ (O_{need}[[e]]_{\mathcal{E}}) \subseteq O_{usage}[[e]]_{\mathcal{E}}.$
2348	PROOF. By Theorem 6, it suffices to show the abstraction laws in Figure 13.
2349	• MONO: Always immediate, since \sqcup and + are the only functions matching on \cup , and these
2350	are monotonic.
2351	• UNWIND-STUCK, INTRO-STUCK: Trivial, since $stuck = \bot$.
2352	
	Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:48

2355

2356

2357

2358

2359

2360 2361

2362

2367

2368 2369

2370 2371

2372

2373 2374

2377 2378

2379

2383

2384

- STEP-APP, STEP-SEL, STEP-INC, UPDATE: Follows by unfolding *step*, *apply*, *select* and associativity of +.
 - BETA-APP: Follows from Lemma 7; see Equation (1).
 - BETA-SEL: Follows by unfolding *select* and *con* and applying a lemma very similar to Lemma 7 multiple times.
 - BIND-BYNAME: *kleeneFix* approximates the least fixpoint *lfp* since the iteratee *rhs* is monotone. We have said elsewhere that we omit a widening operator for *rhs* that guarantees that *kleeneFix* terminates.

(7)

Theorem 10 ($S_{usage}[-]_{-}$ infers absence). Let $\rho_e \triangleq [\overline{y \mapsto \langle [y \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle}]$ be the initial environment with an entry for every free variable y of an expression e. If $S_{usage}[[e]]_{\rho_e} = \langle \varphi, v \rangle$ and φ !? $x = \bigcup_0$, then x is absent in e.

PROOF. We show the contraposition, that is, if *x* is used in *e*, then $\varphi !? x \neq \bigcup_0$. By Lemma 8, there exists *E*, *e'* such that

 $S_{\text{need}}[\![E[\text{Let } x \ e' \ e]]\!]_{\varepsilon}(\varepsilon) = \dots \text{Step (Lookup } x) \dots$

This is the big picture of how we prove φ !? $x \neq \bigcup_0$ from this fact:

 $S_{\text{need}} \llbracket E[\text{Let } x \ e' \ e] \rrbracket_{\varepsilon}(\varepsilon) = \dots \text{Step (Lookup } x) \dots$ (5) Usage instrumentation

$$\underset{2376}{\overset{2375}{\longrightarrow}} \implies (\mathcal{S}_{usage}\llbracket E[\operatorname{Let} x \ e' \ e] \rrbracket_{\varepsilon}). \varphi \sqsupseteq [x \mapsto \bigcup_{1}]$$

$$\implies \bigcup_{\alpha} * (S_{\text{nearge}}[e]_{\alpha}), \varphi = \bigcup_{\alpha} * \varphi \supseteq [x \mapsto \bigcup_{1}] \qquad (8)$$

2380 Step (5) instruments the trace by applying the usage abstraction function $\alpha \rightleftharpoons _ \triangleq$ *nameNeed*. 2381 This function will replace every Step constructor with the *step* implementation of T_{\cup} ; The Lookup *x* 2382 event on the right-hand side implies that its image under α is at least $[x \mapsto \cup_1]$.

Step (6) applies the central soundness Lemma 9 that is the main topic of this section, abstracting the dynamic trace property in terms of the static semantics.

Finally, step (7) applies Lemma 38, which proves that absence information doesn't change when an expression is put in an arbitrary evaluation context. The final step is just algebra. □

In the proof for Theorem 10 we exploit that usage analysis is somewhat invariant under wrapping of *by-need evaluation contexts*, roughly $\bigcup_{\omega} * S_{usage}[\![e]]_{\rho_e} = S_{usage}[\![E[e]]]_{\varepsilon}$. To prove that, we first need to define what the by-need evaluation contexts of our language are.

Moran and Sands [1999, Lemma 4.1] describe a principled way to derive the call-by-need evaluation contexts E from machine contexts (\Box , μ , κ) of the Sestoft Mark I machine; a variant of Figure 2 that uses syntactic substitution of variables instead of delayed substitution and addresses, so $\mu \in$ Var \rightarrow Exp and no closures are needed.

We follow their approach, but inline applicative contexts,³² thus defining the by-need evaluation contexts with hole \Box for our language as

2396 2397 2398

2399

2395

 $E \in \mathbb{EC}$::= $\Box \mid E \mid x \mid case \mid E \mid f \mid x = e \text{ in } E \mid e \mid x = E \text{ in } E[x]$

³²The result is that of Ariola et al. [1995, Figure 3] in A-normal form and extended with data types.

2400 2401

The correspondence to Mark I machine contexts (\Box, μ, κ) is encoded by the following translation function *trans* that translates from mark I machine contexts (\Box, μ, κ) to evaluation contexts E.

2404	trans	:	$\mathbb{EC} \times \mathbb{H} \times \mathbb{K} \to \mathbb{EC}$
2405			
2406	$trans(E, [\overline{x \mapsto e}], \kappa)$	=	let $\mathbf{x} = \mathbf{e}$ in $trans(E, [], \kappa)$
	$trans(E, [], ap(x) \cdot \kappa)$	=	$trans(E x, [], \kappa)$
2407	$trans(E, [], sel(\overline{K \overline{x} \to e}) \cdot \kappa)$	_	<i>trans</i> (case E of $\overline{K \overline{x} \to e}$, [], κ)
2408			
2409	$trans(E, [], upd(x) \cdot \kappa)$	=	let $\mathbf{x} = E$ in $trans(\Box, [], \kappa)[\mathbf{x}]$
2410	<i>trans</i> (E, [], stop)	=	E
2410	······(·)[])····[)		

Certainly the most interesting case is that of upd frames, encoding by-need memoisation. This
 translation function has the following property:

Lemma 36 (Translation, without proof). *init*(*trans*(\Box, μ, κ)[e]) \hookrightarrow^* (e, μ, κ), and all transitions in this trace are search transitions (*App*₁, *CASE*₁, *LET*₁, *LOOK*).

²⁴¹⁶ In other words: every machine configuration σ corresponds to an evaluation context E and a focus expression e such that there exists a trace *init*(E[e]) $\hookrightarrow^* \sigma$ consisting purely of search transitions, which is equivalent to all states in the trace except possibly the last being evaluation states.

We encode evaluation contexts in Haskell as follows, overloading hole filling notation _[_]:

```
2422data ECtxt = Hole | Apply ECtxt Name | Select ECtxt Alts2423| ExtendHeap Name Expr ECtxt | UpdateHeap Name ECtxt Expr
```

 $[_]$:: ECtxt \rightarrow Expr \rightarrow Expr 2424 Hole [e] 2425 $= \rho$ 2426 (Apply E x)[e]= App E[e] x2427 = Case E[e] alts (Select *E alts*)[*e*] 2428 $(ExtendHeap \ x \ e_1 \ E)[e_2] = Let \ x \ e_1 \ E[e_2]$ 2429 $(UpdateHeap \ x \ E \ e_1)[e_2] = Let \ x \ E[e_1] \ e_2$ 2430

Lemma 37 (Used variables are free). If x does not occur in e and in ρ (that is, $\forall y. (\rho ! y).\phi !? x = \cup_0$), then $(S_{usage}[[e]]_{\rho}).\phi !? x = \cup_0$.

PROOF. By induction on *e*.

Lemma 38 (Context closure). Let *e* be an expression and *E* be a by-need evaluation context in which *x* does not occur. Then $(S_{usage} \llbracket E[e] \rrbracket_{\rho_E}) . \varphi$?! $x \sqsubseteq \bigcup_{\omega} * ((S_{usage} \llbracket e] \rrbracket_{\rho_e}) . \varphi$?? *x*), where ρ_E and ρ_e are the initial environments that map free variables *z* to their proxy $\langle [z \mapsto \bigcup_1], \text{Rep } \bigcup_{\omega} \rangle$.

PROOF. We will sometimes need that if y does not occur free in e_1 , we have By induction on the size of E and cases on E:

• Case Hole:

2443 2443 2444 2444 2445 2445 2446 2447 2446 2447 2448 2449 By reflexivity. 2450 $(S_{usage}[[Hole[e]]]_{\rho_E}).\varphi !? x$ $[\int G_{usage}[[e]]_{\rho_E}).\varphi !? x$ $\cup_{\omega} * (S_{usage}[[e]]_{\rho_E}).\varphi !? x$

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

2404

2421

2434

2435

2439

2440

2441

2442

2451	• Case Apply <i>E y</i> : Since <i>y</i> occurs in <i>E</i> , it must be different to <i>x</i> .
2452	$(\mathcal{S}_{usage} \llbracket (Apply \ E \ y) \llbracket e \rrbracket \rrbracket_{\rho_E}). \varphi ? x$
2453	$= \frac{1}{2} \text{ Definition of } \left[- \right] $
2454	$(S_{usage} [App E[e] y]_{\rho_F}). \varphi !? x$
2455	$= \begin{pmatrix} 0 \text{ usge}_{1} & \gamma & \gamma & \gamma & \gamma & \gamma \\ 0 \text{ Definition of } S_{\text{usage}}[-]_{-} \end{pmatrix}$
2456	$(apply (S_{usage} [E[e]]_{\rho_E}) (\rho_E !? y)).\varphi !? x$
2457	= i Definition of apply
2458 2459	let $\langle \varphi, \nu \rangle = S_{\text{usage}} \llbracket E[e] \rrbracket_{\rho_E}$ in
2459	case peel v of $(u, v_2) \rightarrow (\langle \varphi + u * ((\rho_E !? y).\varphi), v_2 \rangle.\varphi !? x)$
2461	$= \int \text{Unfold} \langle \varphi, \nu \rangle \cdot \varphi = \varphi, x \text{ absent in } \rho_E !? y \rangle$
2462	$let \langle \varphi, \nu \rangle = S_{usage} [\![E[e]]\!]_{\rho_F} in$
2463	case peel v of $(u, v_2) \rightarrow \varphi$!? x
2464	$= \frac{1}{2} \operatorname{Refold} \langle \varphi, \nu \rangle \cdot \varphi = \varphi $
2465	$(S_{\text{usage}} [[E[e]]]_{\rho_F}) \cdot \varphi ?$
2466	$\sqsubseteq (\text{Ussage}_{E}) \land \varphi \land \land \varphi \\ \sqsubseteq (\text{Induction hypothesis })$
2467	$\bigcup_{\omega} * (S_{\text{usage}}[e]]_{\rho_{\omega}}) \cdot \varphi !? x$
2468	
2469	• Case Select <i>E alts</i> : Since <i>x</i> does not occur in <i>alts</i> , it is absent in <i>alts</i> as well by Lemma 37.
2470	(Recall that <i>select</i> analyses <i>alts</i> with $\langle \varepsilon, \text{Rep } \cup_{\omega} \rangle$ as field proxies.)
2471	$(\mathcal{S}_{usage} \llbracket (\text{Select } E \ alts) \llbracket e bracket \llbracket ho_E) . \varphi \mathrel{!\!?} x$
2472 2473	= $\langle \text{Definition of } [-] \rangle$
2475	$(\mathcal{S}_{usage} \llbracket Case E[e] alts \rrbracket_{\rho_E}). \varphi !? x$
2475	= $\langle \text{ Definition of } S_{\text{usage}}[-]]_{-} \rangle$
2476	$(select \ (S_{usage} \llbracket E[e] \rrbracket_{\rho_E}) \ (cont \triangleleft alts)). \varphi ? x$
2477	= (Definition of select)
2478	$(\mathcal{S}_{usage}\llbracket E[e] \rrbracket_{\rho_E} \gg lub (alts)).\varphi !? x$
2479	= (x absent in lub (alts))
2480	$(\mathcal{S}_{usage}\llbracket E[e] rbracket_{ ho_E}). \varphi !? x$
2481	\sqsubseteq (Induction hypothesis)
2482	$\cup_{\omega} * (\mathcal{S}_{usage}\llbracket e \rrbracket_{\rho_e}).\varphi ? x$
2483	• Case ExtendHeap $y e_1 E$: Since x does not occur in e_1 , and the initial environment is absent
2484	in x as well, we have $(S_{usage}[[e_1]]_{\rho_E}).\varphi$!? $x = \bigcup_0$ by Lemma 37.
2485 2486	$(\mathcal{S}_{usage} \llbracket (ExtendHeap \ y \ e_1 \ E) [e] \rrbracket_{\rho_E}). \varphi \ !? x$
2487	$= \begin{pmatrix} 2 \text{ Definition of } -[-] \end{pmatrix}$
2488	$(S_{\text{usage}}[\text{Let } y e_1 E[e]]_{\rho_E}).\varphi !? x$
2489	$= \begin{pmatrix} O_{\text{usage}} \ - V \ _{P_{e}} \\ O_{\text{usage}} \ - V \ _{P_{e}} \end{pmatrix}$
2490	
2491	$(\mathcal{S}_{usage}\llbracket E[e] \rrbracket_{\rho_E[y \mapsto step} (Lookup y) (kleeneFix (\lambda d \rightarrow \mathcal{S}_{usage}\llbracket e_1 \rrbracket_{\rho_E[y \mapsto step (Lookup y) d]}))]).\varphi !? x$ $\sqsubseteq \langle Abstract substitution; Lemma 7 \rangle$
2492	
2493	$(S_{\text{usage}}[[E[e]]]_{\rho_E[y\mapsto\langle[y\mapsto\cup_1],\text{Rep }\cup_{\omega}\rangle]})[y\mapsto step$
2494	(Lookup y) (kleeneFix $(\lambda d \to S_{usage}[[e_1]]_{\rho_E[y \mapsto step (Lookup y) d]}))].\varphi !? x$
2495	$= (Unfold _[_ \mapsto _], \langle \varphi, \nu \rangle. \varphi = \varphi)$
2496	$ \det \langle \varphi, _\rangle = S_{usage} \llbracket E[e] \rrbracket_{\rho_E[y \mapsto \langle [y \mapsto \cup_1], \text{Rep } \cup_{\omega} \rangle]} \text{ in } $
2497	let $\langle \varphi_2, _ \rangle = step$ (Lookup y) (kleeneFix ($\lambda d \to S_{usage}[[e_1]]_{\rho_E[y \mapsto step (Lookup y) d]})$) in ($\varphi[y \mapsto \bigcup_0] + (\varphi ?? y) * \varphi_2$) ?? x
2498 2499	$(\psi[y \mapsto \bigcup_0] + (\psi::y) * \psi_2) :: x$
111/J	

0500	= $(x \text{ absent in } \varphi_2, \text{ see above })$
2500	
2501	let $\langle \varphi, _ \rangle = S_{usage} \llbracket E[e] \rrbracket_{\rho_E[y \mapsto \langle [y \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle]}$ in
2502	φ!? x
2503	\sqsubseteq (Induction hypothesis)
2504	$\cup_{\omega} * (\mathcal{S}_{usage}\llbracket e \rrbracket_{\rho_e}).\varphi !? x$
2505	
2506	• Case UpdateHeap $y E e_1$: Since x does not occur in e_1 , and the initial environment is absent
2507	in x as well, we have $(S_{usage} \llbracket e_1 \rrbracket_{\rho \in [y \mapsto \langle [y \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle]}). \varphi \mathrel{!}? x = \bigcup_0$ by Lemma 37.
2508 2509	
2509 2510	$(\mathcal{S}_{usage} \llbracket (Update Heap \ y \ E \ e_1) \llbracket e bracket \rrbracket_{ ho_F}). \varphi ? x$
2510	$= \begin{pmatrix} 2 & \text{Insige}_{II}(0) & \text{particular} & y & D & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & y \\ 0 & 1 $
2512	
2512	$(\mathcal{S}_{usage}[[Let \ y \ E[e] \ e_1]]_{\rho_E}) \cdot \varphi : ? x$
2513	$= (Definition of S_{usage}[-])_{-})$
2514	$(\mathcal{S}_{usage}\llbracket e_1 \rrbracket_{\rho_E[y \mapsto step} (Lookup y) (kleeneFix (\lambda d \rightarrow \mathcal{S}_{usage}\llbracket E[e] \rrbracket_{\rho_E[y \mapsto step} (Lookup y) d]))]). \varphi ? x$
2515	\sqsubseteq (Abstract substitution; Lemma 7)
2510	$(\mathcal{S}_{usage}\llbracket e_1 \rrbracket_{\rho_E[y \mapsto \langle [y \mapsto \cup_1], \text{Rep } \cup_{\omega} \rangle]})[y \mapsto step$
2517	(Lookup y) (kleeneFix $(\lambda d \rightarrow S_{usage} \llbracket E[e] \rrbracket_{\rho_E[y \mapsto step (Lookup y) d]})]. \varphi !? x$
2519	$= (Unfold _[_ \Longrightarrow _], \langle \varphi, \nu \rangle. \varphi = \varphi)$
2520	let $\langle \varphi, - \rangle = S_{usage}[[e_1]]_{\rho_E[v \mapsto \langle [v \mapsto \cup_1], \operatorname{Rep} \cup_{\omega} \rangle]}$ in
2521	let $\langle \varphi_2, _ \rangle = step$ (Lookup y) (kleeneFix $(\lambda d \to S_{usage} \llbracket E[e] \rrbracket_{\rho \in [y \mapsto step (Lookup y) d]})) in$
2522	$(\varphi[y \mapsto \bigcup_0] + (\varphi !? y) * \varphi_2) !? x$
2523	$= (\varphi ? y \sqsubseteq \cup_{\omega}, x \text{ absent in } \varphi, \text{ see above })$
2524	let $\langle \varphi_2, - \rangle = step$ (Lookup y) (kleeneFix $(\lambda d \to S_{usage} \llbracket E[e] \rrbracket_{\rho E[y \mapsto step (Lookup y) d]})) in$
2525	$\bigcup_{\omega} * \varphi_2 !? x$
2526	$= \frac{2}{\sqrt{2}} \operatorname{Refold} \langle \varphi, \nu \rangle \cdot \varphi $
2527	
2528	$\bigcup_{\omega} * (step (Lookup y) (kleeneFix (\lambda d \to S_{usage} \llbracket E[e] \rrbracket_{\rho E[y \mapsto step (Lookup y) d]}))).\varphi ? x$
2529	$= \left(x \neq y \right)$
2530	$\bigcup_{\omega} * (kleeneFix (\lambda d \to S_{usage} \llbracket E[e] \rrbracket_{\rho_E[y \mapsto d]})).\varphi !? x$
2531	= (Argument below)
2532	$\bigcup_{\omega} * (\mathcal{S}_{usage}\llbracket E[e] \rrbracket_{\rho_E[y \mapsto \langle [y \mapsto \bigcup_1], \operatorname{Rep} \bigcup_{\omega} \rangle]}).\varphi ! ? x$
2533	\sqsubseteq (Induction hypothesis, $\bigcup_{\omega} * \bigcup_{\omega} = \bigcup_{\omega}$)
2534	$\cup_{\omega} * (\mathcal{S}_{usage}\llbracket e \rrbracket_{\rho_e}).\varphi !? x$
2535	
2536	The rationale for removing the <i>kleeneFix</i> is that under the assumption that x is absent in d
2537	(such as is the case for $d \triangleq \langle [y \mapsto \bigcup_1], \text{Rep } \bigcup_{\omega} \rangle$), then it is also absent in $E[e] \rho_E[y \mapsto d]$
2538	per Lemma 37. Otherwise, we go to \cup_{ω} anyway.
2539	UpdateHeap is why it is necessary to multiply with \bigcup_{ω} above; in the context let $x = \Box$ in $x x$,
2540	a variable y put in the hole would really be evaluated twice under call-by-name (where
2541	let $x = \Box$ in x x is <i>not</i> an evaluation context).
2542	This unfortunately means that the used-once results do not generalise to arbitrary by-need
2543	evaluation contexts and it would be unsound to elide update frames for y based on the
2544	inferred use of y in let $y = \dots$ in e; for $e \triangleq y$ we would infer that y is used at most once, but
2545	that is wrong in context let $x = \Box$ in $x x$.
2546	_
2547	
2548	
	Proc. ACM Program Lang. Vol. 1. No. ICEP. Article 1. Publication date: January 2024

Abstract Interpretation and Denotational Interpreters D.1 2549

2550 So far, we have seen how to use the abstraction Theorem 6, but its proof merely points to its 2551 generalisation for open terms, Theorem 56. Proving this theorem correct is the goal of this subsection 2552 and the following, where we approach the problem from the bottom up.

2553 We begin by describing how we intend to apply abstract interpretation to our denotational 2554 interpreter, considering open expressions as well, which necessitate abstraction of environments. 2555

Given a "concrete" (but perhaps undecidable, infinite or coinductive) semantics and a more 2556 "abstract" (but perhaps decidable, finite and inductive) semantics, when does the latter *soundly* 2557 approximate properties of the former? This question is a prominent one in program analysis, and 2558 Abstract Interpretation Cousot [2021] provides a generic framework to formalise this question. 2559

Sound approximation is encoded by a Galois connection $(D, \leq) \xrightarrow{\gamma} (\widehat{D}, \sqsubseteq)$ between concrete and abstract semantic domains D and \widehat{D} equipped with a partial order. An element $\widehat{d} \in \widehat{D}$ soundly approximates $d \in D$ iff $d \leq \gamma \hat{d}$, iff $\alpha d \subseteq \hat{d}$. This theory bears semantic significance when (D, \leq) is instantiated to the complete lattice of trace properties ($\wp(\mathbb{T}), \subseteq$), where \mathbb{T} is the set of program traces. Then the *collecting semantics* relative to a concrete, trace-generating semantics $S_{\mathbb{T}}[-]_{-}$, defined as $S_{\mathbb{C}}[\![e]\!]_{\rho} \triangleq \{S_{\mathbb{T}}[\![e]\!]_{\rho}\}$, provides the strongest trace property that a given program (e, ρ) satisfies. In this setting, we extend the original Galois connection to the signature of $S_{\mathbb{T}}[e]$ parametrically,³³ to

$$((\operatorname{Name} :\to \wp(\mathbb{T})) \to \wp(\mathbb{T}), \underline{\dot{\subseteq}}) \xleftarrow{\lambda \widehat{f} \to \gamma \circ \widehat{f} \circ (\alpha \triangleleft)}{\lambda f \to \alpha \circ f \circ (\gamma \triangleleft)} ((\operatorname{Name} :\to \widehat{D}) \to \widehat{D}, \underline{\dot{\sqsubseteq}}),$$

and state soundness of the abstract semantics $S_{\widehat{D}}[-]_{-}$ as

$$\mathcal{S}_{\mathbb{C}}\llbracket e \rrbracket_{\rho} \subseteq \gamma \; (\mathcal{S}_{\widehat{\mathbb{D}}}\llbracket e \rrbracket_{\alpha \triangleleft \{ - \} \triangleleft \rho}) \Longleftrightarrow \alpha \; \{ \mathcal{S}_{\mathbb{T}}\llbracket e \rrbracket_{\rho} \} \sqsubseteq \mathcal{S}_{\widehat{\mathbb{D}}}\llbracket e \rrbracket_{\alpha \triangleleft \{ - \} \triangleleft \rho}.$$

The statement should be read as "The concrete semantics implies the abstract semantics up to 2574 concretisation" Cousot [2021, p. 26]. It looks a bit different to what we exemplified in Theorem 6 for 2575 the following reasons: (1) $\mathcal{S}_{\mathbb{T}}[-]_{-}$ and $\mathcal{S}_{\widehat{\mathbb{T}}}[-]_{-}$ are in fact different type class instantiations of the same 2576 denotational interpreter $S[-]_{-}$ from Section 4, thus both functions share a lot of common structure. (2) The Galois connections *byName* and *nameNeed* defined below are completely determined by 2578 type class instances, even for infinite traces. (3) It turns out that we need to syntactically restrict 2579 the kind of D that occurs in an environment ρ due to the full abstraction problem [Plotkin 1977], so 2580 that the Galois connection byName looks a bit different. (4) By-need semantics is stateful whereas analyses such as usage analysis are rarely so; this again leads to a slightly different use of the final 2582 Galois connection *nameNeed* as exemplified in Theorem 6. 2583

Guarded Fixpoints, Safety Properties and Safety Extension of a Galois Connection D.2

We like to describe a semantic trace property as a "fold", in terms of a Trace instance. For example, we collect a trace into a Uses in Section 6.1 and Lemma 9. Of course such a fold (an inductive elimination procedure) has no meaning when the trace is infinite! Yet it is always clear what we mean: when the trace is infinite, we consider the meaning of the fold as the limit (i.e., least fixpoint) of its finite prefixes. In this subsection, we discuss when and why this meaning is correct.

Suppose for a second that we were only interested in the trace component of our semantic domain, thus effectively restricting ourselves to $\mathbb{T} \triangleq \top$ (), and that we were to approximate properties $P \in$ $\wp(\mathbb{T})$ about such traces by a Galois connection $(\wp(\mathbb{T}), \subseteq) \xrightarrow{\gamma} (\widehat{\mathbb{D}}, \sqsubseteq)$. Alas, although the abstraction

2597

2560

2561

2562

2563

2564

2565

2566 2567

2568 2569 2570

2571 2572 2573

2577

2581

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593 2594

³³*Parametrically" in the sense of Backhouse and Backhouse [2004], i.e., the structural properties of a Galois connection 2595 follow as a free theorem. 2596

function α is well-defined as a mathematical function, it most certainly is *not* computable at infinite inputs (in \mathbb{T}^{∞}), for example at *fix* (Step (Lookup *x*)) = Step (Lookup *x*) (Step (Lookup *x*)...)!

Computing with such an α is of course inacceptable for a *static* analysis. Usually this is resolved by approximating the fixpoint by the least fixpoint of the abstracted iteratee, e.g., *lfp* ($\alpha \circ$ Step (Lookup x) $\circ \gamma$). It is however not the case that this yields a sound approximation of infinite traces for *arbitrary* trace properties. A classic counterexample is the property $P \triangleq \{\tau \mid \tau \text{ terminates}\}$; if P is restricted to finite traces \mathbb{T}^* , the analysis that constantly says "terminates" is correct; however this result doesn't carry over "to the limit", when τ may also range over infinite traces in \mathbb{T}^{∞} . Hence it is impossible to soundly approximate P with a least fixpoint in the abstract.

Rather than making the common assumption that infinite traces are soundly approximated by \perp (such as in strictness analysis [Mycroft 1980; Wadler and Hughes 1987]), thus effectively assuming that all executions are finite, our framework assumes that the properties of interest are *safety properties* [Lamport 1977]:

Definition 39 (Safety property). A trace property $P \subseteq \mathbb{T}$ is a safety property iff, whenever $\tau_1 \in \mathbb{T}^{\infty}$ violates P (so $\tau_1 \notin P$), then there exists some proper prefix $\tau_2 \in \mathbb{T}^*$ (written $\tau_2 \lessdot \tau_1$) such that $\tau_2 \notin P$.

Note that both well-typedness (" τ does not go wrong") and usage cardinality abstract safety properties. Conveniently, guarded recursive predicates (on traces) always describe safety properties [Birkedal and Bizjak 2023; Spies et al. 2021]. The contraposition of the above definition is

$$\forall \tau_1 \in \mathbb{T}^{\infty}. \ (\forall \tau_2 \in \mathbb{T}^*. \ \tau_2 \lessdot \tau_1 \Longrightarrow \tau_2 \in P) \Longrightarrow \tau_1 \in P$$

and we can exploit safety to extend a finitary Galois connection to infinite inputs:

Lemma 40 (Safety extension). Let \widehat{D} be a domain with instances for Trace and Lat, $(\wp(\mathbb{T}^*), \subseteq) \xleftarrow{r}{\alpha}$ $(\widehat{D}, \sqsubseteq)$ a Galois connection and $P \in \wp(\mathbb{T})$ a safety property. Then any domain element \widehat{d} that soundly approximates P via γ on finite traces soundly approximates P on infinite traces as well:

$$\forall \widehat{d}. \ P \cap \mathbb{T}^* \subseteq \gamma(\widehat{d}) \Longrightarrow P \cap \mathbb{T}^\infty \subseteq \gamma^\infty(\widehat{d})$$

where the extension $(\wp(\mathbb{T}^*), \subseteq) \xrightarrow{\gamma^{\infty}}_{\alpha^{\infty}} (\widehat{D}, \sqsubseteq)$ of $\xrightarrow{\gamma}_{\alpha}$ is defined by the following abstraction function: 2628

 $\alpha^{\infty}(P) \triangleq \alpha(\{\tau_2 \mid \exists \tau_1 \in P. \ \tau_2 \lessdot \tau_1\})$

PROOF. First note that α^{∞} uniquely determines the Galois connection by the representation function [Nielson et al. 1999, Section 4.3]

$$\beta^{\infty}(\tau_1) \triangleq \alpha(\bigcup \{\tau_2 \mid \tau_2 \lessdot \tau_1\})$$

Now let $\tau \in P \cap \mathbb{T}^{\infty}$. The goal is to show that $\tau \in \gamma^{\infty}(\widehat{d})$, which we rewrite as follows:

2635 $\tau \in \gamma^{\infty} \widehat{d}$ 2636 \iff \langle Galois \rangle 2637 $\overset{\beta^{\infty}}{\longleftrightarrow} \tau \sqsubseteq \widehat{d}$ $\overset{f}{\longleftrightarrow} 0$ Definition of β^{∞} 2638 2639 $\alpha \bigcup \{\tau_2 \mid \tau_2 \lessdot \tau_1\} \sqsubseteq \hat{d}$ $\longleftrightarrow \quad (\text{ Galois })$ 2640 2641 2642 $\bigcup \{ \tau_2 \mid \tau_2 \lessdot \tau_1 \} \subseteq \gamma \ \widehat{d}$ 2643 \iff (Definition of Union) 2644 $\forall \tau_2. \ \tau_2 \lessdot \tau \Longrightarrow \tau_2 \in \gamma \ \widehat{d}$ 2645

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

2611

2614 2615

2616

2617

2618 2619

2620

2621 2622

2623

2624 2625

2629 2630

2631

2632

2634

2646

7 On the other hand, *P* is a safety property and $\tau \in P$, so for any prefix τ_2 of τ we have $\tau_2 \in P \cap \mathbb{T}^*$. 8 Hence the goal follows by assumption that $P \cap \mathbb{T}^* \subseteq \gamma(\widehat{d})$.

From now on, we tacitly assume that all trace properties of interest are safety properties, and that any Galois connection defined in Haskell has been extended to infinite traces via Lemma 40. Any such Galois connection can be used to approximate guarded fixpoints via least fixpoints:

Lemma 41 (Guarded fixpoint abstraction for safety extensions). Let \widehat{D} be a domain with instances for Trace and Lat, and let $(\wp(\mathbb{T}), \subseteq) \xrightarrow{\gamma} (\widehat{D}, \sqsubseteq)$ a Galois connection extended to infinite traces via Lemma 40. Then, for any guarded iterates $f :: \triangleright \mathbb{T} \to \mathbb{T}$,

$$\alpha(\{fix f\}) \sqsubseteq lfp \ (\alpha \circ f^* \circ \gamma),$$

where $lfp \ \widehat{f}$ denotes the least fixpoint of \widehat{f} and $f^* :: \wp(\triangleright \mathbb{T}) \to \wp(\mathbb{T})$ is the lifting of f to powersets.

PROOF. We should note that the proposition is sloppy in the treatment of \blacktriangleright and should rather have been

 $\alpha(\{fix f\}) \sqsubseteq lfp \ (\alpha \circ f \circ next^* \circ \gamma),$

where *next* :: $\triangleright T \rightarrow T$. Since we have proven totality in Section 5.2, the utility of being explicit in *next* is rather low (much more so since a pen and paper proof is not type checked) and we will admit ourselves this kind of sloppiness from now on.

Let us assume that $\tau = fix f$ is finite and proceed by Löb induction.

 $\alpha \{ fix f \} \subseteq lfp (\alpha \circ f^* \circ \gamma)$ $= \langle fix f = f (fix f) \rangle$ $= \langle Commute f and \{ - \} \rangle$ $\alpha (f^* \{ fix f \})$ $\subseteq \langle id \subseteq \gamma \circ \alpha \rangle$ $\alpha (f^* (\gamma (\alpha \{ fix f \})))$ $\subseteq \langle Induction hypothesis \rangle$ $\alpha (f^* (\gamma (lfp (\alpha \circ f^* \circ \gamma))))$ $\subseteq \langle lfp \widehat{f} = \widehat{f} (lfp \widehat{f}) \rangle$ $lfp (\alpha \circ f^* \circ \gamma)$

When τ is infinite, the result follows by Lemma 40 and the fact that all properties of interest are safety properties.

D.3 Abstract By-name Soundness, in Detail

We will now see how the by-name abstraction laws in Figure 13 induce an abstract interpretation of by-name evaluation. The corresponding proofs are somewhat simpler than for by-need because no heap update is involved.

As we are getting closer to the point where we reason about idealised, total Haskell code, it is important to nail down how Galois connections are represented in Haskell, and how we construct them. Following Nielson et al. [1999, Section 4.3], every *representation function* $\beta :: a \to b$ into a partial order (b, \sqsubseteq) yields a Galois connection between Powersets of *a* and (b, \sqsubseteq) :

data GC $a \ b = (a \rightarrow b) \rightleftharpoons (b \rightarrow a)$ repr :: Lat $b \Rightarrow (a \rightarrow b) \rightarrow$ GC (Pow a) brepr $\beta = \alpha \rightleftharpoons \gamma$ where α (P as) = $\bigsqcup \{\beta \ a \mid a \leftarrow as\}; \gamma \ b = P \{a \mid \beta \ a \sqsubseteq b\}$

While the γ exists as a mathematical function, it is in general impossible to compute even for finitary 2696 inputs. Every domain \widehat{D} with instances (Trace \widehat{D} , Domain \widehat{D} , Lat \widehat{D}) induces a *trace abstraction* via 2697 the following representation function, writing f^* to map f over Pow³⁴ 2698 2699 type $(d \vdash_{\mathbb{D}}^{\operatorname{na}}) = d$ -- exact meaning defined below 2700 *trace* :: (Trace \hat{d} , Domain \hat{d} , Lat \hat{d}) 2701 $\Rightarrow \operatorname{GC}(\operatorname{Pow}(\operatorname{D} r)) \ \widehat{d} \rightarrow \operatorname{GC}(\operatorname{Pow}(\operatorname{D} r \vdash_{\operatorname{D}}^{\operatorname{na}} \cdot)) \ (\widehat{d} \vdash_{\operatorname{D}}^{\operatorname{na}} \cdot) \rightarrow \operatorname{GC}(\operatorname{Pow}(\operatorname{T}(\operatorname{Value} r))) \ \widehat{d}$ 2702 2703 trace $(\alpha_{\mathbb{T}} \rightleftharpoons \gamma_{\mathbb{T}})$ $(\alpha_{\mathbb{F}} \rightleftharpoons \gamma_{\mathbb{F}}) = repr \ \beta$ where 2704 β (Ret Stuck) = stuck 2705 β (Ret (Fun f)) $= fun \ (\alpha_{\mathbb{T}} \circ f^* \circ \gamma_{\mathbb{E}})$ 2706 β (Ret (Con k ds)) = con k (map ($\alpha_{\mathbb{F}} \circ \{ -\} \})$ ds) 2707 β (Step *e d*) = step $e(\beta \hat{d})$ 2708 Note how trace expects two Galois connections: The first one is applicable in the "recursive case" 2709 and the second one applies to (the powerset over) D (ByName T) $\vdash_{\mathbb{D}}^{na}$, a subtype of D (ByName T). 2710 Every d:: (ByName T $\vdash_{\mathbb{D}}^{na}$ -) is of the form Step (Lookup x) ($S[[e]]_{\rho}$) for some x, e, ρ , characterising 2711 domain elements that end up in an environment or are passed around as arguments or in fields. We 2712 2713 have seen a similar characterisation in the Agda encoding of Section 5.1. The distinction between $\alpha_{\mathbb{T}}$ and $\alpha_{\mathbb{E}}$ will be important for proving that evaluation preserves trace abstraction (comparable to 2714 2715 Lemma 19 for a big-step-style semantics), a necessary auxiliary lemma for Theorem 44. 2716 We utilise the *trace* combinator to define *byName* abstraction as its (guarded) fixpoint: 2717 *env* :: (Trace \hat{d} , Domain \hat{d} , Lat \hat{d}) \Rightarrow GC (Pow (D (ByName T) $\vdash_{\mathbb{D}}^{na}$ _)) ($\hat{d} \vdash_{\mathbb{D}}^{na}$ _) *env* = *repr* β where β (Step (Lookup x) ($\mathcal{S}[\![e]\!]_{\rho}$)) = *step* (Lookup x) ($\mathcal{S}[\![e]\!]_{\beta < \rho}$) 2718 2719 *byName* :: (Trace \hat{d} , Domain \hat{d} , Lat \hat{d}) \Rightarrow GC (Pow (D (ByName T))) \hat{d} 2720 2721 byName = $(\alpha_{\mathbb{T}} \circ unByName^*) \rightleftharpoons (ByName^* \circ \gamma_{\mathbb{T}})$ where $\alpha_{\mathbb{T}} \rightleftharpoons \gamma_{\mathbb{T}} = trace byName env$ 2722 There is a need to clear up the domain and range of *env*. Since its domain is sets of elements from 2723 D (ByName T) $\vdash_{\mathbb{D}}^{na}$, its range $d \vdash_{\mathbb{D}}^{na}$ is the (possibly infinite) join over abstracted elements that 2724 look like step (Lookup x) ($\mathcal{S}[\![e]\!]_{\beta \triangleleft \rho}$) for some "closure" x, e, ρ . Although we have "sworn off" 2725 operational semantics for abstraction, we defunctionalise environments into syntax to structure 2726 the vast semantic domain in this way, thus working around the full abstraction problem [Plotkin 2727 1977]. More formally, 2728 2729 **Definition 42** (Syntactic by-name environments). Let \widehat{D} be a domain satisfying Trace, Domain and 2730 Lat. We write $\widehat{D} \vdash_{\mathbb{D}}^{na} d$ (resp. $\widehat{D} \vdash_{\mathbb{E}}^{na} \rho$) to say that the denotation d (resp. environment ρ) is syntactic, 2731 which we define by mutual guarded recursion as 2732 • $\widehat{D} \vdash_{\mathbb{D}}^{\operatorname{na}} d$ iff there exists a set Clo of syntactic closures such that 2733 $d = \bigsqcup\{ step (Lookup x) (S[[e]]_{\rho_1} :: \widehat{D}) \mid (x, e, \rho_1) \in Clo \land \blacktriangleright (\widehat{D} \vdash_{\mathbb{F}}^{na} \rho_1) \}, and$ 2734 • $\widehat{D} \vdash_{\mathbb{F}}^{\operatorname{na}} \rho$ iff for all x, $\widehat{D} \vdash_{\mathbb{D}}^{\operatorname{na}} (\rho ! x)$. 2735 2736 For the remainder of this subsection, we assume a refined definition of Domain and HasBind 2737 that expects $\widehat{D} \vdash_{\mathbb{D}}^{na}$ (denoting the set of $\widehat{d} :: \widehat{D}$ such that $\widehat{D} \vdash_{\mathbb{D}}^{na} \widehat{d}$) where we pass around denotations 2738 that end up in an environment. It is then easy to see that $S[\![e]\!]_{\rho}$ preserves $\widehat{D} \vdash_{\mathbb{F}}^{\operatorname{na}}$ in recursive 2739 invocations, and trace does so as well. 2740 2741 ³⁴Recall that *fun* actually takes *x* :: Name as the first argument as a cheap De Bruijn level. Every call to *fun* would need to 2742 chose a fresh x. We omit the bookkeeping here; an alternative would be to require the implementation of usage analysis/ D_{U} to track their own De Bruijn levels. 2743

2744

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

[git] • Branch: main @ 5d26cc9 • Release: (2024-03-05)

Lemma 43 (By-name evaluation preserves trace abstraction). Let \widehat{D} be a domain with instances for 2745 Trace, Domain, HasBind and Lat, satisfying the soundness properties STEP-APP, STEP-SEL, BETA-APP, 2746 2747 BETA-SEL, BIND-BYNAME in Figure 13. $If S_{name}[\![e]\!]_{\rho_1} = \overline{\text{Step } ev} (S_{name}[\![v]\!]_{\rho_2}) \text{ in the concrete, then } \overline{\text{step } ev} (S[\![v]\!]_{\alpha_{\mathbb{F}} \triangleleft \{_-\} \triangleleft \rho_2}) \sqsubseteq S[\![e]\!]_{\alpha_{\mathbb{F}} \triangleleft \{_-\} \triangleleft \rho_1}$ 2748 in the abstract, where $\alpha_{\mathbb{F}} \rightleftharpoons \gamma_{\mathbb{F}} = env$. 2749 2750 PROOF. By Löb induction and cases on *e*, using the representation function $\beta_{\mathbb{E}} \triangleq \alpha_{\mathbb{E}} \circ \{ . \}$. 2751 • **Case** Var *x*: By assumption, we know that $S_{name}[[x]]_{\rho_1} = \text{Step}(\text{Lookup } y)(S_{name}[[e']]_{\rho_3}) =$ 2752 Step $ev (S_{name}[v]_{\rho_2})$ for some y, e', ρ_3 , so that $\overline{ev} = Lookup \ y : \overline{ev_1}$ for some ev_1 by 2753 determinism. 2754 2755 step ev $(S[v]_{\beta_{\mathbb{F}} \triangleleft \rho_2})$ 2756 = $i \overline{ev} = \text{Lookup } y : \overline{ev_1}$ 2757 step (Lookup y) ($\overline{step \ ev_1} \ (S[v]]_{\beta_{\mathbb{F}} \triangleleft \rho_2})$) 2758 ? Induction hypothesis at ev_1 , ρ_3 as above \int 2759 step (Lookup y) ($\mathcal{S}[\![e']\!]_{\beta_{\mathbb{F}} \triangleleft \rho_3}$) 2760 = $\langle \text{Refold } \beta_{\mathbb{E}}, \rho_3 \mid x \rangle$ 2761 $\beta_{\mathbb{F}}(\rho_1 \mid x)$ 2762 = $\langle \operatorname{Refold} \mathcal{S}[[x]]_{\beta_{\mathbb{F}} \triangleleft \rho_1} \rangle$ 2763 $\mathcal{S}[x]_{\beta_{\mathbb{E}} \triangleleft \rho_1}$ 2764 2765 • **Case** Lam, ConApp: By reflexivity of \sqsubseteq . 2766 • Case App e x: Then $S_{name}[\![e]\!]_{\rho_1} = \overline{\text{Step } ev_1} (S_{name}[\![Lam \ y \ body]\!]_{\rho_3}), S_{name}[\![body]\!]_{\rho_3}[y \mapsto \rho_1! x] =$ 2767 Step ev_2 ($S_{name} [v]_{\rho_2}$). 2768 step ev $(S[v]_{\beta_{\mathbb{F}} \triangleleft \rho_2})$ 2769 $\langle \overline{ev} = [App_1] + \overline{ev_1} + [App_2] + \overline{ev_2}$, IH at ev_2 2770 2771 step App₁ (step ev₁ (step App₂ ($\mathcal{S}[body]_{(\beta_{\mathbb{F}} \triangleleft \rho_3)[\nu \mapsto \beta_{\mathbb{F}} \triangleleft \rho_1!x]}))$) 2772 l Assumption Вета-Арр \ 2773 step App₁ (step ev_1 (apply (S[Lam $y \ body$]_{$\beta_{\mathbb{F}} \triangleleft \rho_3$}) ($\beta_{\mathbb{E}} \triangleleft \rho_1 ! x$))) 2774 l Assumption Step-App 2775 step App₁ (apply (step ev_1 (S[Lam y body]_{$\beta_{\mathbb{F}} \triangleleft \rho_3$})) ($\beta_{\mathbb{E}} \triangleleft \rho_1 ! x$)) 2776 ? Induction hypothesis at ev_1 2777 step App₁ (apply $(S[e]_{\beta_{\mathbb{E}} \triangleleft \rho_1})$ $(\beta_{\mathbb{E}} \triangleleft \rho_1 ! x))$ 2778 = $\langle \operatorname{Refold} S [\operatorname{App} e x]_{\beta_{\mathbb{F}} \triangleleft \rho_1} \rangle$ 2779 $\mathcal{S}[[App \ e \ x]]_{\beta_{\mathbb{E}} \triangleleft \rho_1}$ 2780 2781 • Case Case *e alts*: Then $S_{name}[\![e]\!]_{\rho_1} = \overline{\text{Step } ev_1} (S_{name}[\![ConApp k ys]\!]_{\rho_3}), S_{name}[\![e_r]\!]_{\rho_1}[\overline{xs \rightarrow map} (\rho_3!) ys] =$ 2782 Step ev_2 ($S_{name}[[v]]_{\rho_2}$), where *alts* ! $k = (xs, e_r)$ is the matching RHS. 2783 2784 step ev $(\mathcal{S}\llbracket v \rrbracket_{\beta_{\mathbb{F}} \triangleleft \rho_2})$ 2785 \sqsubseteq $(\overline{ev} = [Case_1] + \overline{ev_1} + [Case_2] + ev_2$, IH at ev_2 (2786 step Case₁ (step ev₁ (step Case₂ ($\mathcal{S}[[e_r]]_{\beta_{\mathbb{F}} \triangleleft \rho_1}[\overline{x_{\mathbb{F}} \mapsto map(\widehat{\rho_2}!) | y_2}])))$ 2787 l Assumption Beta-Sel 2788 step Case₁ (step ev_1 (select (S[ConApp k ys]]_{$\beta_F \triangleleft \rho_3$}) (cont $\triangleleft alts$))) 2789 i Assumption STEP-SEL i2790 step Case₁ (select (step ev_1 (S[ConApp k ys]_{$\beta_{\mathbb{F}} \triangleleft \rho_3$})) (cont $\triangleleft alts$)) 2791 ? Induction hypothesis at ev_1 § 2792 2793

0704	(a + b)
2794	step Case ₁ (select ($S[e]_{\beta_{\mathbb{F}} \lhd \rho_1}$) (cont $\lhd alts$))
2795 2796	$= \underbrace{\left(\operatorname{Refold} \mathcal{S} \llbracket \operatorname{Case} \ e \ alts \rrbracket_{\beta_{\mathbb{E}} \triangleleft \rho_1} \right)}_{\mathbb{S}^{\mathbb{E}}}$
2797	$\mathcal{S}[[Case \ e \ alts]]_{\beta_{\mathbb{E}} \lhd ho_1}$
2798	• Case Let $x e_1 e_2$: We make good use of Lemma 41 below:
2799	step ev $(S[v]_{\beta_{\mathbb{F}} \triangleleft \rho_2})$
2800	$= \frac{1}{i} \overline{ev} = \operatorname{Let}_1 : \overline{ev_1}$
2801	step Let ₁ ($\overline{step \ ev_1}$ ($S[v]_{\beta_F \lhd \rho_2}$))
2802	\sqsubseteq (Induction hypothesis at ev_1)
2803	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket (\beta_{\mathbb{E}} \triangleleft \rho_1) [x \mapsto \beta_{\mathbb{E}} (\operatorname{Step} (\operatorname{Lookup} x) (fix (\lambda d_1 \to \mathcal{S}_{\operatorname{name}}\llbracket e_1 \rrbracket _{\rho_1 [x \mapsto \operatorname{Step} (\operatorname{Lookup} x) d_1]})))] \right)$
2804	$= \langle \text{Partially roll } fix \rangle$
2805	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho_1)[x \mapsto \beta_{\mathbb{E}} (fix (\lambda d_1 \rightarrow \operatorname{Step} (\operatorname{Lookup} x) (\mathcal{S}_{\operatorname{name}}\llbracket e_1 \rrbracket_{\rho_1[x \mapsto d_1]})))] \right)$
2806	$\sqsubseteq \qquad (\text{Lemma 41})$
2807	
2808	$step \operatorname{Let}_{1} \left(\mathcal{S}\llbracket e_{2} \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho_{1})} [x \mapsto lfp \ (\lambda \widehat{d_{1}} \rightarrow step \ (\operatorname{Lookup} x) \ (\mathcal{S}\llbracket e_{1} \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho_{1})} [x \mapsto \alpha_{\mathbb{E}} \ (y_{\mathbb{E}} \ \widehat{d_{1}})]))] \right)$
2809	$\sqsubseteq (\alpha_{\mathbb{E}} \circ \gamma_{\mathbb{E}} \sqsubseteq id)$
2810 2811	$step \ Let_1 \ (\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho_1)[x \mapsto lfp} \ (\lambda \widehat{d_1} \rightarrow step \ (Lookup \ x) \ (\mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho_1)[x \mapsto \widehat{d_1}]}))])$
2812	= $\langle Partially unroll lfp \rangle$
2813	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{K}} \lhd \rho_1) [x \mapsto step (\operatorname{Lookup} x) (lfp (\lambda \widehat{d}_1 \rightarrow \mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{K}} \lhd \rho_1) [x \mapsto step (\operatorname{Lookup} x) \widehat{d}_1]}))]} \right)$
2814	$\sqsubseteq (Assumption BIND-BYNAME)$
2815	
2816	$bind \ (\lambda \widehat{d}_1 \to \mathcal{S}\llbracket e_1 \rrbracket_{((\beta_{\mathbb{E}} \triangleleft \rho_1))[x \mapsto step \ (\text{Lookup} \ x) \ \widehat{d}_1]})$
2817	$(\lambda \widehat{d}_1 \to step \operatorname{Let}_1 (S[\![e_2]\!]_{((\beta_{\mathbb{E}} \triangleleft \rho_1))[x \mapsto step (\operatorname{Lookup} x) \widehat{d}_1]}))$
2818	$= \langle \operatorname{Refold} S[[\operatorname{Let} x e_1 e_2]]_{\beta_{\mathbb{E}} \triangleleft \rho_1} \rangle$
2819	$\mathcal{S}\llbracket ext{Let } x \ e_1 \ e_2 rbracket_{eta_{\mathbb{E}} \lhd ho_1}$
2820	
2821 2822	
2823	We can now prove the by-name abstraction theorem:
2824	Theorem 44 (Sound By-name Interpretation). Let \widehat{D} be a domain with instances for Trace, Domain,
2825	HasBind and Lat, and let $\alpha_{\mathbb{T}} \rightleftharpoons \gamma_{\mathbb{T}} \triangleq byName$, $\alpha_{\mathbb{E}} \rightleftharpoons \gamma_{\mathbb{E}} \triangleq env$. If the by-name abstraction laws in
2826	Figure 13 hold, then $S[-]$ instantiates to an abstract interpreter that is sound wrt. $\gamma_{\mathbb{E}} \to \alpha_{\mathbb{T}}$, that is,
2827	$\alpha_{\mathbb{T}}$ ({ $S_{name}[\![e]\!]_{\rho}$ } :: Pow (D (ByName T))) $\sqsubseteq S_{\widehat{D}}[\![e]\!]_{\alpha_{\mathbb{F}} \triangleleft \{-\} \triangleleft \rho}$.
2828	PROOF We first restate the real in terms of the retresentation functions $\ell \stackrel{\Delta}{\longrightarrow} \sigma = c$ () and
2829	PROOF. We first restate the goal in terms of the <i>repr</i> esentation functions $\beta_{\mathbb{T}} \triangleq \alpha_{\mathbb{T}} \circ \{ . \}$ and $\beta_{\mathbb{E}} \triangleq \alpha_{\mathbb{E}} \circ \{ . \}$:
2830	$ p_{\mathbb{E}} = \alpha_{\mathbb{E}} \circ \{ -\}. $ $ \forall \rho. \ \beta_{\mathbb{T}} \ (S_{\text{name}}[\![e]\!]_{\rho}) \sqsubseteq (S_{\widehat{\sqcap}}[\![e]\!]_{\beta_{\mathbb{E}}} \triangleleft_{\rho}). $
2831	We will prove this goal by Löb induction and cases on <i>e</i> .
2832 2833	
2834	• Case Var <i>x</i> : The stuck case follows by unfolding $\alpha_{\mathbb{T}}$. Otherwise,
2835	$\beta_{\mathbb{T}}(\rho \mid x)$
2836	= $\langle \text{Pow} (D (ByName T)) \vdash_{\mathbb{E}}^{\text{na}} \{ . \} \triangleleft \rho, \text{Unfold } \beta_{\mathbb{T}} \rangle$
2837	step (Lookup y) $(\beta_{\mathbb{T}} (S_{name} \llbracket e' \rrbracket_{\rho'}))$
2838	\sqsubseteq (Induction hypothesis)
2839	step (Lookup y) $(\mathcal{S}[\![e']\!]_{\beta_{\mathbb{E}} \lhd \rho'})$
2840	$= \langle \operatorname{Refold} \beta_{\mathbb{E}} \rangle$
2841	$\beta_{\mathbb{E}} \ (ho ! x)$
2842	

2843	• Case Lam x body:
2844	$\beta_{\mathbb{T}} (S_{\text{name}} \ \text{Lam } x \text{ body} \ _{\rho})$
2845	$= \langle \text{Unfold } \mathcal{S}[-], \beta_{\mathbb{T}} \rangle$
2846	$fun \ (\lambda \widehat{d} \to \bigsqcup\{step \ App_2 \ (\beta_{\mathbb{T}} \ (\mathcal{S}_{name}\llbracket body \rrbracket_{\rho[x \mapsto d]})) \mid \beta_{\mathbb{E}} \ d \sqsubseteq \widehat{d}\})$
2847	= (Induction hypothesis)
2848	
2849	$fun \ (\lambda \widehat{d} \to \bigsqcup\{ step \ App_2 \ (\mathcal{S}\llbracket body \rrbracket_{\beta_{\mathbb{E}} \lhd \rho}[x \mapsto d]) \mid \beta_{\mathbb{E}} \ d \sqsubseteq \widehat{d} \})$
2850	$\sqsubseteq \text{(Least upper bound / } \alpha_{\mathbb{E}} \circ \gamma_{\mathbb{E}} \sqsubseteq id \text{)}$
2851	$fun \ (\lambda \widehat{d} \to step \ App_2 \ (\mathcal{S}\llbracket body \rrbracket_{((\beta_{\mathbb{F}} \triangleleft \rho))[x \mapsto \widehat{d}]}))$
2852	= $\langle \operatorname{Refold} \mathcal{S}[-]]_{\mathcal{S}}$
2853	S Lam $x body \ _{\beta_{\mathbb{F}} \triangleleft \rho}$
2854	
2855	• Case ConApp k ds:
2856	$\beta_{\mathbb{T}} (S_{\text{name}} \llbracket \text{ConApp } k xs \rrbracket_{\rho})$
2857	= $(\text{Unfold } S[-]]_, \beta_T)$
2858 2859	$con \ k \ (map \ ((\beta_{\mathbb{E}} \triangleleft \rho) !) \ xs)$
2860	= $\langle \operatorname{Refold} S[-]] \rangle$
2861	S Lam $x body \ _{\beta_{\mathbb{F}} \leq \rho}$
2862	
2863	• Case App <i>e x</i> : The stuck case follows by unfolding $\beta_{\mathbb{T}}$.
2864	Our proof obligation can be simplified as follows
2865	$\beta_{\mathbb{T}} (S_{\text{name}} \llbracket \operatorname{App} e x \rrbracket_{\rho})$
2866	$= (\text{Unfold } \mathcal{S}[-]]_{-}, \beta_{\mathbb{T}})$
2867	step App ₁ ($\beta_{\mathbb{T}}$ (apply ($S_{name}[\![e]\!]_{\rho}$) (ρ ! x)))
2868	= $\langle \text{Unfold } apply \rangle$
2869	step App ₁ ($\beta_{\mathbb{T}}$ ($\mathcal{S}_{name}[\![e]\!]_{\rho} \gg \lambda case$ Fun $f \to f$ ($\rho ! x$); $_ \to stuck$))
2870	\sqsubseteq ? By cases, see below ?
2871	step App ₁ (apply $(S[[e]]_{\beta_{\mathbb{F}} \lhd \rho})$ ($(\beta_{\mathbb{E}} \lhd \rho) ! x$))
2872	$= \frac{1}{2} \operatorname{Refold} S[-]_{2}$
2873	$S[App e x]_{\beta_F \triangleleft \rho}$
2874	
2875	When $S_{name} \llbracket e \rrbracket_{\rho}$ diverges, we have
2876	= $\langle S_{name}[[e]]_{\rho}$ diverges, unfold β_{T}
2877	step ev_1 (step ev_2 ())
2878	\sqsubseteq (Assumption Step-App)
2879	apply (step ev_1 (step ev_2 ())) (($\beta_{\mathbb{E}} \triangleleft \rho$)!x)
2880	= $\langle \operatorname{Refold} \beta_{\mathbb{T}}, S_{\operatorname{name}}[\![e]\!]_{\rho} \rangle$
2881	$apply \left(\beta_{\mathbb{T}} \left(\mathcal{S}_{name}\left[\!\left[e\right]\!\right]_{\rho}\right)\right) \left(\left(\beta_{\mathbb{E}} \triangleleft \rho\right) \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
2882	\sqsubseteq (Induction hypothesis)
2883	$apply \left(\mathcal{S}[\![e]\!]_{\beta_{\mathbb{F}} \lhd \rho} \right) \left(\left(\beta_{\mathbb{E}} \lhd \rho \right) ! x \right)$
2884	, _ ,
2885	Otherwise, $S_{name}[\![e]\!]_{\rho}$ must produce a value v . If $v = $ Stuck or $v = $ Con $k ds$, we set
2886 2887	$d \triangleq stuck \text{ (resp. } d \triangleq con \ k \ (map \ \beta_{\mathbb{E}} \ ds) \text{) and have}$
2888	$\beta_{\mathbb{T}} (S_{\text{name}}[\![e]\!]_{\rho} \gg \lambda \text{case Fun } f \to f (\rho ! x); _ \to \text{stuck})$
2889	$= \langle S_{name} [[e]]_{\rho} = \overline{\text{Step } ev} \ (return \ v), \text{ unfold } \beta_{\mathbb{T}} \rangle$
2890	$\frac{\langle e anne e^{-y} \rangle}{\text{step ev}} (\beta_{\mathbb{T}} (\text{return } v \gg \lambda \text{case Fun } f \to f(\rho ! x); _ \to \text{stuck}))$
2891	$\cdots_{r} \cdots (r \circ (\cdots \circ r) \circ (\cdots \circ r) \circ (\cdots \circ r) \circ (r \circ (\cdots \circ r) \circ (\cdots \circ r) \circ (\cdots \circ r)))$

2892	= $i v \text{ not Fun, unfold } \beta_{\mathbb{T}}$
2893	step ev stuck
2894	\sqsubseteq \langle Assumptions Unwind-Stuck, Intro-Stuck where $d \triangleq stuck$ or $d \triangleq con k (map \beta_{\mathbb{T}} ds) \rangle$
2895	$\frac{1}{\text{step ev}} (\text{apply } d a)$
2896	$\sqsubseteq (Assumption STEP-APP)$
2897	= (Insomption of it inf) apply (step ev d) (($\beta_{\mathbb{E}} \triangleleft \rho$)!x)
2898	$= \langle \operatorname{Refold} \beta_{\mathbb{T}}, S_{\operatorname{name}}[[e]]_{\rho} \rangle$
2899	$= (\operatorname{Reform} p_{\mathbb{F}}, \operatorname{Sname} [[e]]_{\rho})$ $= apply \left(\beta_{\mathbb{F}} \left(S_{\operatorname{name}} [[e]]_{\rho} \right) \right) \left(\left(\beta_{\mathbb{E}} \triangleleft \rho\right) ! x \right)$
2900	$ = \frac{2}{1 \text{ Induction hypothesis }} $
2901	
2902	$apply \left(\mathcal{S}\llbracket e \rrbracket_{\beta_{\mathbb{E}} \lhd \rho} \right) \left(\left(\beta_{\mathbb{E}} \lhd \rho \right) ! x \right)$
2903	In the final case, we have $v = \operatorname{Fun} f$, which must be the result of some call $S_{\operatorname{name}}[\operatorname{Lam} y \ body]_{\rho_1}$;
2904 2905	hence $f \triangleq \lambda d \to \text{Step App}_2 (S_{\text{name}}[body]_{\rho_1[y \mapsto d]}).$
2905	$\beta_{\mathbb{T}} (S_{\text{name}}[e]_{\rho} > \lambda case \text{ Fun } f \to f(\rho ! x); _ \to stuck)$
2900	
2908	$= \underbrace{\langle S_{\text{name}}[\![e]\!]_{\rho}}_{\text{step ev}} = \overline{\text{Step ev}} (return v), \text{ unfold } \beta_{\mathbb{T}} \underbrace{\langle c_1 v \rangle}_{\text{step ev}} = \underbrace{\langle c_2 v \rangle}_{\text{step ev}} (\beta_{\mathbb{T}} (c_1 v)), \dots \underbrace{\langle c_1 v \rangle}_{\text{step ev}} = \underbrace{\langle c_2 v \rangle}_{\text{step ev}} (\beta_{\mathbb{T}} (c_1 v)), \dots \underbrace{\langle c_2 v \rangle}_{\text{step ev}} = \langle c_2 $
2909	$\overline{step \ ev} \ (\beta_{\mathbb{T}} \ (return \ v > \lambda case \ Fun \ f \to f \ (\rho \ ! \ x); _ \to stuck))$
2910	$= \underbrace{\langle v = \operatorname{Fun} f, \text{ with } f \text{ as above; unfold } \beta_{\mathbb{T}} }_{atom are (atom Ann (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)$
2911	$\overline{step \ ev} \ (step \ App_2 \ (\beta_{\mathbb{T}} \ (\mathcal{S}_{name} \llbracket body \rrbracket_{\rho_1[y \mapsto \rho!x]})))$
2912	
2913	$\overline{step \ ev} \ (step \ App_2 \ (\mathcal{S}[body]]_{\beta_{\mathbb{E}} \triangleleft \rho_1[y \mapsto \rho!x]}))$
2914	$= \frac{2}{100} \text{ (Rearrange)}$
2915	$\overline{step \ ev} \ (step \ App_2 \ (\mathcal{S}\llbracket body \rrbracket_{(\beta_{\mathbb{E}} \triangleleft \rho_1)[y \mapsto (\beta_{\mathbb{E}} \triangleleft \rho)!x]}))$
2916	$ \sqsubseteq (Assumption BETA-APP) $
2917	$\overline{step \ ev} \ (apply \ (\mathcal{S}[[Lam \ y \ body]]_{\beta_{\mathbb{E}} \lhd \rho_1}) \ ((\beta_{\mathbb{E}} \lhd \rho) \ ! \ x))$
2918	$\sqsubseteq (Assumption STEP-APP)$
2919 2920	$apply (step ev (S[[Lam y body]]_{\beta_{\mathbb{E}} \triangleleft \rho_1})) ((\beta_{\mathbb{E}} \triangleleft \rho)! x)$
2920 2921	$\sqsubseteq (\text{Lemma 43 applied to } \overline{ev})$
2921	$apply \left(\mathcal{S}\llbracket e \rrbracket_{\beta_{\mathbb{E}} \lhd \rho} \right) \left(\left(\beta_{\mathbb{E}} \lhd \rho \right) ! x \right)$
	• Case Case <i>e alts</i> : The stuck case follows by unfolding $\beta_{\mathbb{T}}$. When $S_{name}[\![e]\!]_{\rho}$ diverges or
2924	does not evaluate to $S_{name} [[ConApp k ys]]_{\rho_1}$, the reasoning is similar to App $e x$, but in a
2925	select context. So assume that $S_{name}[\![e]\!]_{\rho} = \overline{\text{Step } ev} (S_{name}[\![ConApp k ys]\!]_{\rho_1})$ and that there
2926	exists $((cont \triangleleft alts)!k) ds = \text{Step Case}_2(S_{name}[[e_r]]_{\rho[xs \mapsto ds]}).$
2927	
2928	$\beta_{\mathbb{T}} \left(S_{\text{name}} \begin{bmatrix} \text{Case } e \ alts \end{bmatrix}_{\rho} \right)$
2929	$= (\operatorname{Unfold} \mathcal{S}[-], \beta_{\mathbb{T}})$
2930	step Case ₁ ($\beta_{\mathbb{T}}$ (select ($\mathcal{S}_{name}[\![e]\!]_{\rho}$) (cont \triangleleft alts))
2931	$= \langle \text{Unfold select } \rangle$
2932	$step \operatorname{Case}_1(\beta_{\mathbb{T}} (S_{\operatorname{name}}[\![e]\!]_{\rho} \gg \lambda \operatorname{case} \operatorname{Con} k ds \mid k \in dom alts \rightarrow ((cont \triangleleft alts) ! k) ds))$
2933 2934	$= \langle S_{name} [\![e]\!]_{\rho} = \overline{\text{Step } ev} (S_{name} [\![ConApp k ys]\!]_{\rho_1}), \text{ unfold } \beta_{\mathbb{T}} \rangle$
2934 2935	$step \operatorname{Case}_1(\overline{step \ ev} \ (\beta_{\mathbb{T}} \ (S_{\operatorname{name}}[\operatorname{ConApp} \ k \ ys]]_{\rho_1}) \simeq \lambda case \operatorname{Con} k \ ds \mid k \in dom \ (cont \triangleleft alts) \rightarrow ((cont \triangleleft alts)) \rightarrow ((cont \triangleleft alts)))$
2935 2936	= $($ Simplify return (Con k ds) $\gg f = f$ (Con k ds), (cont \triangleleft alts)! k as above $($
2930	step Case ₁ (step ev ($\beta_{\mathbb{T}}$ (Step Case ₂ ($\mathcal{S}_{name}[\![e_r]\!]_{\rho[xs\mapsto map(\rho_1!)ys]}))))$
2938	= $\langle \text{Unfold } \beta_{\mathbb{T}} \rangle$
2939	step Case ₁ (step ev (step Case ₂ ($\beta_{\mathbb{T}}$ ($\mathcal{S}_{name}[\![e_r]\!]_{\rho[xs\mapsto map(\rho_1!) ys]}))))$
2940	

1:60

2941	\sqsubseteq (Induction hypothesis)
2942	$step \operatorname{Case}_1(\overline{step \ ev} \ (step \operatorname{Case}_2 \ (\mathcal{S}\llbracket e_r \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho)}[\overline{xs \mapsto map \ ((\beta_{\mathbb{E}} \lhd \rho_1)!) \ ys}])))$
2943	$= \langle \text{Refold cont} \rangle$
2944	step Case ₁ (cont (alts! k) (map (($\beta_{\mathbb{E}} \triangleleft \rho_1$)!) xs))
2945	\sqsubseteq (Assumption Beta-Sel)
2946	step Case ₁ (step ev (select (S [ConApp k ys]] _{$\beta_E \triangleleft \rho_1$}) (cont \triangleleft alts)))
2947	$\sqsubseteq (\text{Assumption Step-Sel })$
2948	step Case ₁ (select (step ev (S [ConApp k ys]] _{$\beta_F \triangleleft \rho_1$})) (cont \triangleleft alts))
2949	$\sqsubseteq \text{(Seter (step ev (S [Contop v ys]]_{\beta_{\mathbb{E}}} < \rho_1)) (cont < uns))}$
2950	
2951	step Case ₁ (select ($S[[e]]_{\beta_{\mathbb{E}} \triangleleft \rho}$) (cont \triangleleft alts))
2952	$= (\operatorname{Refold} \mathcal{S}[-]_{-})$
2953	$\mathcal{S}[[Case \ e \ alts]]_{\beta_{\mathbb{E}} \lhd \rho}$
2954	• Case Let <i>x e</i> ₁ <i>e</i> ₂ :
2955	
2956	$\beta_{\mathbb{T}} \left(S_{\text{name}} \begin{bmatrix} \text{Let } x e_1 e_2 \end{bmatrix}_{\rho} \right)$
2957	$= \langle \text{Unfold } \mathcal{S}[-]]_{\mathcal{S}}$
2958	$\beta_{\mathbb{T}} (bind \ (\lambda d_1 \to \mathcal{S}_{name} \llbracket e_1 \rrbracket_{\rho[x \mapsto \text{Step (Lookup } x) \ d_1]})$
2959	$(\lambda d_1 \rightarrow \text{Step Let}_1 \ (S_{\text{name}}[e_2]]_{\rho[x \mapsto \text{Step (Lookup } x) \ d_1]})))$
2960	$= (Unfold bind, \beta_{\mathbb{T}})$
2961	$step \operatorname{Let}_1(\beta_{\mathbb{T}}(\mathcal{S}_{\operatorname{name}}\llbracket e_2 \rrbracket_{\rho[x \mapsto \operatorname{Step}(\operatorname{Lookup} x)(\operatorname{fix}(\lambda d_1 \to \mathcal{S}_{\operatorname{name}}\llbracket e_1 \rrbracket_{\rho[x \mapsto \operatorname{Step}(\operatorname{Lookup} x)d_1]}))]))$
2962	\sqsubseteq (Induction hypothesis)
2963	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho)[x \mapsto \beta_{\mathbb{E}} (\operatorname{Step} (\operatorname{Lookup} x) (fix (\lambda d_1 \rightarrow \mathcal{S}_{\operatorname{name}}\llbracket e_1 \rrbracket_{\rho[x \mapsto \operatorname{Step} (\operatorname{Lookup} x) d_1]})))] \right)$
2964	
2965	And from hereon, the proof is identical to the Let case of Lemma 43:
2966	\sqsubseteq (By Lemma 41, as in the proof for Lemma 43)
2967	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho)[x \mapsto step (\operatorname{Lookup} x) (lfp (\lambda \widehat{d}_1 \rightarrow \mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \lhd \rho)[x \mapsto step (\operatorname{Lookup} x) \widehat{d}_1]}))] \right)$
2968 2969	$\sqsubseteq (\text{Assumption Bind-ByName, with } \widehat{\rho} = \beta_{\mathbb{E}} \triangleleft \rho $
2909	$ = (\lambda d_1 \to S[[e_1]]_{(\beta_{\mathbb{R}} \triangleleft \rho)[x \mapsto step (Lookup x) d_1]}) $
2971	
2972	$(\lambda d_1 \to step \operatorname{Let}_1 (S\llbracket e_2 \rrbracket (\beta_{\mathbb{E}} \triangleleft \rho) [x \mapsto step (\operatorname{Lookup} x) d_1])) = \langle \operatorname{Refold} S\llbracket \operatorname{Let} x e_1 e_2 \rrbracket \beta_{\mathbb{E}} \triangleleft \rho \rangle$
2973	
2974	$\mathcal{S}[[\operatorname{Let} x \ e_1 \ e_2]]_{eta_{\mathbb{F}} \lhd ho}$
2975	
2976	

We can now show a generalisation to open expressions of the by-name version of Lemma 9:

Lemma 45 ($S_{usage}[-]]_$ abstracts $S_{name}[-]]_$, open). Usage analysis $S_{usage}[-]]_$ is sound wrt. $S_{name}[-]]_$, that is,

$$\alpha_{\mathbb{T}} \{ S_{\text{name}} \| e \|_{\rho} \} \subseteq (S_{\text{usage}} \| e \|_{\alpha_{\mathbb{E}} \triangleleft \{ - \} \triangleleft \rho} :: D_{\cup}) \text{ where } \alpha_{\mathbb{T}} \rightleftharpoons = by Name; \alpha_{\mathbb{E}} \rightleftharpoons = env$$

PROOF. By Theorem 44, it suffices to show the abstraction laws in Figure 13 as done in the proof for Lemma 9.

The following example shows why we need syntactic premises in Figure 13. It defines a monotone, but non-syntactic $f :: D_{\cup} \to D_{\cup}$ for which $f a \not\subseteq apply$ (fun x f) a. So if we did not have the syntactic premises, we would not be able to prove usage analysis correct.

Example 46. Let $z \neq x \neq y$. The monotone function f defined as follows

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

 $\begin{array}{ll} \begin{array}{l} \begin{array}{l} 2990\\ 2991\\ 2992\\ 2992\\ 2992\\ 2993\\ 2993\\ 2994\\ \end{array} & freezeHeap \ \mu = repr \ \beta \ \text{where} \ \beta \ (\text{Step (Lookup } x) \ (fetch \ a)) \ | \ memo \ a \ (\mathcal{S}_{need} \llbracket e \rrbracket_{\rho}) \leftarrow \mu \,! \ a \\ & = step \ (\text{Lookup } x) \ (\mathcal{S} \llbracket e \rrbracket_{\beta \lhd \rho}) \\ nameNeed :: \ (\text{Trace } \ \widehat{d}, \text{Domain } \ \widehat{d}, \text{Lat } \ \widehat{d}) \Rightarrow \text{GC } (\text{Pow } (\text{T (Value (ByNeed T), } \mathbb{F}_{\mathbb{H}}^{ne} \ -))) \ \widehat{d} \end{array}$

2994 *nameNeed* :: (Trace *d*, Domain *d*, Lat *d*) \Rightarrow GC (Pow (T (Value (ByNeed T), $F_{\mathbb{H}}^{\text{ne}}$ -))) *d* 2995 *nameNeed* = *repr* β where

²⁹⁹⁶ β (Step *e d*) = *step e* (β *d*)

²⁹⁹⁷ β (Ret (Stuck, μ)) = stuck

 $\beta (\text{Ret } (\text{Fun } f, \mu)) = fun (\lambda \widehat{d} \to \bigsqcup \{\beta (f \ d \ \mu) \mid d \in \gamma_{\mathbb{E}} \widehat{d}\}) \text{ where } _ \rightleftharpoons \gamma_{\mathbb{E}} = freezeHeap \ \mu$ $\beta (\text{Ret } (\text{Con } k \ ds, \mu)) = con \ k \ (map \ (\alpha_{\mathbb{E}} \circ \{ _ \}) \ ds) \qquad \text{ where } \alpha_{\mathbb{E}} \rightleftharpoons _ = freezeHeap \ \mu$

Fig. 18. Galois connection for sound by-name and by-need abstraction

 $\begin{aligned} f :: \mathsf{D}_{\mathsf{U}} \to \mathsf{D}_{\mathsf{U}} \\ f \langle \varphi, _ \rangle &= \mathbf{if} \ \varphi \ !? \ y \sqsubseteq \mathsf{U}_0 \ \mathbf{then} \ \langle \varepsilon, \mathsf{Rep} \ \mathsf{U}_\omega \rangle \ \mathbf{else} \ \langle [z \mapsto \mathsf{U}_1], \mathsf{Rep} \ \mathsf{U}_\omega \rangle \end{aligned}$

violates $f \ a \sqsubseteq apply$ (fun x f) a. To see that, let $a \triangleq \langle [y \mapsto \bigcup_1], \text{Rep } \bigcup_{\omega} \rangle :: \bigcup_{\cup}$ and consider f $a = \langle [z \mapsto \bigcup_1], \text{Rep } \bigcup_{\omega} \rangle \not\subseteq \langle \varepsilon, \text{Rep } \bigcup_{\omega} \rangle = apply$ (fun x f) a.

D.4 Abstract By-need Soundness, in Detail

Now that we have gained some familiarity with the proof framework while proving Theorem 44 correct, we will tackle the proof for Theorem 56, which is applicable for analyses that are sound both wrt. to by-name as well as by-need, such as usage analysis or perhaps type analysis in Appendix C.1 (we have however not proven it so).

A sound by-name analysis must only satisfy the two additional abstraction laws STEP-INC and UPDATE in Figure 13 to yield sound results for by-need as well. These laws make intuitive sense, because Update events cannot be observed in a by-name trace and hence must be ignored. Other than Update steps, by-need evaluation makes fewer steps than by-name evaluation, so STEP-INC asserts that dropping steps never invalidates the result.

In order to formalise this intuition, we must find a Galois connection that does so, starting with its domain. Although in Section 4.3 we considered a d :: D (ByNeed T) as an atomic denotation, such a denotation actually only makes sense when it travels together with an environment ρ that ties free variables to their addresses in the heap that d expects.

For our purposes, the key is that a by-need environment ρ and a heap μ can be "frozen" into a corresponding by-name environment. This operation forms a Galois connection *freezeHeap* in Figure 18, where $\vdash_{\mathbb{D}}^{ne}$ - serves a similar purpose as $\widehat{d} \vdash_{\mathbb{D}}^{na}$ - from Definition 42, restricting environment entries to the syntactic by-need form Step (Lookup x) (*fetch* a) and heap entries in $\vdash_{\mathbb{H}}^{ne}$ - to *memo* a ($S[[e]]_{\rho}$).

Definition 47 (Syntactic by-need heaps and environments, address domain). We write $\vdash_{\mathbb{E}}^{ne} \rho$ (resp. $\vdash_{\mathbb{H}}^{ne} \mu$) to say that the by-need environment ρ :: Name :-> Pow (D (ByNeed T)) (resp. by-need heap μ) is syntactic, defined by mutual guarded recursion as

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

2999

3000 3001

3002 3003 3004

3005

3006

3010

3011

3030

Abstracting Denotational Interpreters

∽-Мемо

- $adom \rho \triangleq \bigcup \{adom (\rho \mid x) \mid x \in dom \rho\}.$
- $\vdash_{\mathbb{H}}^{ne} \mu$ iff for all *a*, there is a set Clo of syntactic closures such that
- $\mu ! a = \bigcup \{ memo \ a \ (S_{need}[[e]]_{\rho}) \mid \blacktriangleright ((e, \rho) \in Clo \land \vdash_{\mathbb{E}}^{ne} \rho \land adom \ \rho \subseteq dom \ \mu) \}.$

We refer to adom d (resp. adom ρ) as the address domain of d (resp. ρ).

We assume that all concrete environments Name: \rightarrow D (ByNeed T) and heaps Heap (ByNeed T) satisfy $\vdash_{\mathbb{E}}^{\text{ne}}$ - resp. $\vdash_{\mathbb{H}}^{\text{ne}}$. It is easy to see that syntacticness is preserved by $S_{\text{need}}[-]_{-}(-)$ whenever the environment or heap is extended, assuming that Domain and HasBind are adjusted accordingly.

 $\mu_1 \rightsquigarrow \mu_2$

 $\mu_1 ! a = memo \ a \ (\mathcal{S}_{\mathbf{need}}[\![e]\!]_{\rho_1}) \quad \blacktriangleright \ (\mathcal{S}_{\mathbf{need}}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\mathrm{Step} \ ev} \ (\mathcal{S}_{\mathbf{need}}[\![v]\!]_{\rho_2}(\mu_2)))$

 $\mu_1 \rightsquigarrow \mu_2[a \mapsto memo \ a \ (S_{need}[v]_{\rho_2})]$

Fig. 19. Heap progression relation

The environment abstraction $\alpha_{\mathbb{E}} \mu \rightleftharpoons _ = freezeHeap \mu$ improves the more "evaluated" μ is. E.g., when μ_1 progresses into μ_2 during evaluation, written $\mu_1 \rightsquigarrow \mu_2$, it is $\alpha_{\mathbb{E}} \mu_2 \ d \sqsubseteq \alpha_{\mathbb{E}} \mu_1 \ d$ for all d. The heap progression relation is formally defined (on syntactic heaps $\vdash_{\mathbb{H}}^{ne}$.) in Figure 19, and we will now work toward a proof for the approximation statement about $\alpha_{\mathbb{E}}$ in Lemma 54.

Transitivity and reflexivity of (\rightsquigarrow) are definitional by rules \rightsquigarrow -REFL and \rightsquigarrow -TRANS; antisymmetry is not so simple to show for a lack of full abstraction.

Corollary 48. (\rightsquigarrow) is a preorder.

The remaining two rules express how a heap can be modified during by-need evaluation: Evaluation of a Let extends the heap via \rightsquigarrow -Ext and evaluation of a Var will memoise the evaluated heap entry, progressing it along \rightsquigarrow -MEMO.

Lemma 49 (Evaluation progresses the heap). If $S_{need} \llbracket e \rrbracket_{\rho_1}(\mu_1) = \overline{\text{Step } ev} (S_{need} \llbracket v \rrbracket_{\rho_2}(\mu_2))$, then $\mu_1 \rightsquigarrow \mu_2$.

PROOF. By Löb induction and cases on *e*. Since there is no approximation yet, all occurring closure sets in $\vdash_{\mathbb{F}}^{\text{ne}}$ are singletons.

5074	
3075	• Case Var <i>x</i> : Let $\overline{ev_1} \triangleq tail (init (\overline{ev}))$.
3076	$(\rho_1 \mid x) \mu_1$
3077	$= \left(\vdash_{\mathbb{F}}^{ne} \rho_1, \text{ some } y, a \right)$
3078	Step (Lookup y) (<i>fetch a</i> μ_1)
3079	= $\langle \text{Unfold } fetch \rangle$
3080	Step (Lookup <i>y</i>) ((μ ₁ ! <i>a</i>) μ ₁)
3081 3082	$= \left(\vdash_{\mathbb{H}}^{\mathrm{ne}} \mu, \mathrm{some} e, \rho_3 \right)$
3083	Step (Lookup y) (memo a ($S_{need}[\![e]\!]_{\rho_3}(\mu_1)$))
3084	= $\langle \text{Unfold } memo \rangle$
3085	Step (Lookup y) $(S_{need}[\![e]\!]_{\rho_3}(\mu_1) \gg upd)$
3086	= $(\mathcal{S}_{need}[\![e]\!]_{\rho_3}(\mu_1) = \overline{\text{Step } ev_1} (\mathcal{S}_{need}[\![v]\!]_{\rho_2}(\mu_3)) \text{ for some } \mu_3, \text{ unfold } \gg, upd)$
3087	

3088	Step (Lookup y) ($\overline{\text{Step }ev_1}$ ($\mathcal{S}_{need} \llbracket v \rrbracket_{\rho_2}(\mu_3) \gg \lambda v \ \mu_3 \rightarrow$
3089	Step Update (Ret $(v, \mu_3[a \mapsto memo \ a \ (return \ v)])))$
3090 3091	Now let <i>sv</i> ::Value (ByNeed T) be the semantic value such that $S_{need}[v]_{\rho_2}(\mu_3) = \text{Ret}(sv, \mu_3)$.
3092	
3093	$= \langle S_{\text{need}} \llbracket v \rrbracket_{\rho_2}(\mu_3) = \text{Ret}(sv, \mu_3) \rangle$
3094	Step (Lookup y) (Step ev_1 (Step Update (Ret $(sv, \mu_3[a \mapsto memo \ a \ (return \ sv)]))))$
3095	$= \underline{\langle \operatorname{Refold} S_{\operatorname{need}}[\![v]\!]_{\rho_2}(.), \overline{ev} = [\operatorname{Lookup} y] + \overline{ev_1} + [\operatorname{Update}] }$
3096	$\overline{\text{Step } ev} \left(S_{\text{need}}\llbracket v \rrbracket_{\rho_2}(\mu_3[a \mapsto memo \ a \ (S_{\text{need}}\llbracket v \rrbracket_{\rho_2})]) \right)$
3097	= $\langle \text{Determinism of } S_{\text{need}}[-]_{-}(-), \text{ assumption } \rangle$
3098	$\overline{\text{Step } ev} \left(S_{\text{need}} \llbracket v \rrbracket_{\rho_2}(\mu_2) \right)$
3099	We have
3100	we have
3101	$\mu_1 ! a = memo a (\mathcal{S}_{need} \llbracket e \rrbracket_{\rho_3}) \tag{10}$
3102	$\blacktriangleright \left(\mathcal{S}_{\mathbf{need}} \llbracket \boldsymbol{e} \rrbracket_{\rho_3}(\mu_1) = \overline{\mathrm{Step} \ \boldsymbol{ev}_1} \left(\mathcal{S}_{\mathbf{need}} \llbracket \boldsymbol{v} \rrbracket_{\rho_2}(\mu_3) \right) \right) $ (11)
3103	$\mu_2 = \mu_3[a \mapsto memo \ a \ (\mathcal{S}_{need} \llbracket v \rrbracket_{\rho_2})] \tag{12}$
3104	
3105	We can apply rule \rightsquigarrow -MEMO to Equation (10) and Equation (11) to get $\mu_1 \rightsquigarrow \mu_3[a \mapsto \mu$
3106 3107	<i>memo a</i> $(S_{need}[v]_{\rho_2})]$, and rewriting along Equation (12) proves the goal.
3107	• Case Lam <i>x</i> body, ConApp <i>k</i> xs: Then $\mu_1 = \mu_2$ and the goal follows by \rightarrow -REFL.
3109	• Case App e_1 x: Let us assume that $S_{need}[[e_1]]_{\rho_1}(\mu_1) = \text{Step } ev_1 (S_{need}[[Lam y e_2]]_{\rho_3}(\mu_3))$
3110	and $S_{\text{need}}[\![e_2]\!]_{\rho_3[y \mapsto \rho!x]}(\mu_3) = \overline{\text{Step } ev_2} \ (S_{\text{need}}[\![v]\!]_{\rho_2}(\mu_2))$, so that $\mu_1 \rightsquigarrow \mu_3, \mu_3 \rightsquigarrow \mu_2$ by the
3111	induction hypothesis. The goal follows by \rightsquigarrow -TRANS, because $\overline{ev} = [App_1] + \overline{ev_1} + [App_2] + \overline{ev_1}$
3112	$\overline{ev_2}$.
3113	 Case Case e₁ alts: Similar to App e₁ x. Case Let x e₁ e₂:
3114	
3115	$\mathcal{S}_{\mathbf{need}}\llbracket \operatorname{Let} x \ e_1 \ e_2 rbracket_{ ho_1}(\mu_1)$
3116	$= \langle \text{Unfold } S_{\text{need}}[-]_{-} \rangle \rangle$
3117	$bind \ (\lambda d_1 \to \mathcal{S}_{\mathbf{need}}\llbracket e_1 \rrbracket_{\rho_1[x \mapsto step \ (Lookup \ x) \ d_1]}(_))$
3118	$(\lambda d_1 \rightarrow step \operatorname{Let}_1 (\mathcal{S}_{\operatorname{need}} \llbracket e_2 \rrbracket_{\rho_1[x \mapsto step (\operatorname{Lookup} x) d_1]}(-)))$
3119	μ_1
3120	= $\langle Unfold bind, a \triangleq nextFree \mu with a \notin dom \mu \rangle$
3121	step Let ₁ $(S_{need} \llbracket e_2 \rrbracket_{\rho_1[x \mapsto step (Lookup x) (fetch a)]})$
3122	$\mu_1[a \mapsto memo \ a \ (S_{need}[[e_1]]_{\rho_1[x \mapsto step \ (Lookup \ x) \ (fetch \ a)]})]))$
3123	
3124	At this point, we can apply the induction hypothesis to $S_{need}[\![e_2]\!]_{\rho_1[x \mapsto step (Lookup x) (fetch a)]}(-)$ to conclude that $\mu_1[a \mapsto memo \ a \ (S_{need}[\![e_1]\!]_{\rho_1[x \mapsto step (Lookup x) (fetch a)]})] \rightsquigarrow \mu_2$.
3125 3126	On the other hand, we have $\mu_1 \rightsquigarrow \mu_1[a \mapsto memo\ a\ (S_{need}[[e_1]]\rho_1[x \mapsto step\ (Lookup\ x)\ (fetch\ a)])] \rightsquigarrow \mu_2.$
3127	by rule \rightsquigarrow -Ext (note that $a \notin dom \mu$), so the goal follows by \rightsquigarrow -TRANS.
3128	
3129	
3130	Lemma 49 exposes nested structure in \rightsquigarrow -Мемо. For example, if $\mu_1 \rightsquigarrow \mu_2[a \mapsto memo \ a \ (S_{need}[v]_{\rho_2})]$
3131	is the result of applying rule \sim -MEMO, then we obtain a proof that the memoised expression
3132	$S_{\text{need}}[\![e]\!]_{\rho_1} \mu_1 = \overline{\text{Step } ev} (S_{\text{need}}[\![v]\!]_{\rho_2} \mu_2)$, and this evaluation in turn implies that $\mu_1 \rightsquigarrow \mu_2$.
3133	Heap progression is useful to state a number of semantic properties, for example the "update
3134	once" property of memoisation and that a heap binding is semantically irrelevant when it is never
3135	updated:
3136	

3137 3138

3139

3140

3141

3142

3143 3144

3145

3146 3147

3148

3149

3150

3151

3152 3153

3154 3155

3156

3157

3158

3159 3160

3161

3162

3163

3164

3165

3166

3167

3168

3179

3185

PROOF. Simple proof by induction on $\mu_1 \rightsquigarrow \mu_2$. The only case updating a heap entry is \rightsquigarrow -MEMO, and there we can see that $\mu_2 ! a = memo (S_{need} \llbracket v \rrbracket_{\rho})$ because evaluating $v \text{ in } \mu_1$ does not make a step. **Lemma 51** (No update implies semantic irrelevance). If $S_{need} \llbracket e \rrbracket_{\rho_1}(\mu_1) = \text{Step } ev (S_{need} \llbracket v \rrbracket_{\rho_2}(\mu_2))$ and $\mu_1 ! a = \mu_2 ! a = memo \ a \ (S_{need} \llbracket e_1 \rrbracket_{\rho_3}), e_1 \ not \ a \ value, then$ $\forall d. \ \mathcal{S}_{need}\llbracket e \rrbracket_{\rho_1}(\mu_1[a \mapsto d]) = \overline{\text{Step } ev} \ (\mathcal{S}_{need}\llbracket v \rrbracket_{\rho_2}(\mu_2[a \mapsto d]))$ as well. PROOF. By Löb induction and cases on *e*. • Case Var x: It is $S_{need}[x]_{\rho_1}(\mu_1) = \text{Step (Lookup y) } (memo a_1 (S_{need}[e_1]_{\rho_3}(\mu_1)))$ for the suitable a_1, y . Furthermore, it must be $a \neq a_1$, because otherwise, memo a would have updated *a* with $S_{need}[\![v]\!]_{\rho_2}$. Then we also have $\mathcal{S}_{\mathbf{need}}[\![x]\!]_{\rho_1}(\mu_1[a \mapsto d]) = \text{Step (Lookup y) } (\textit{memo } a_1 (\mathcal{S}_{\mathbf{need}}[\![e_1]\!]_{\rho_3}(\mu_1[a \mapsto d]))).$ The goal follows from applying the induction hypothesis and realising that $\mu_2 \mid a_1$ has been updated consistently with *memo* a_1 ($S_{need} [v]_{\rho_2}$). • **Case** Lam *x e*, ConApp *k xs*: Easy to see for $\mu_1 = \mu_2$. • Case App *e x*: We can apply the induction hypothesis twice, to both of $S_{\text{need}}[e]_{\rho_1}(\mu_1) = \overline{step \ ev_1} \ (S_{\text{need}}[Lam \ y \ body]_{\rho_3}(\mu_3))$ $S_{\mathbf{need}}\llbracket body \rrbracket_{\rho_3}[v \mapsto \rho_1 ! x](\mu_3) = \overline{step \ ev_2} \ (S_{\mathbf{need}}\llbracket v \rrbracket_{\rho_2}(\mu_2))$ to show the goal. Case Case e alts: Similar to App. • Case Let $x e_1 e_2$: We have S_{need} [Let $x e_1 e_2$] $_{\rho_1}(\mu_1) = step$ Let $(S_{need} [e_2]]_{\rho'_1}(\mu'_1))$, where

Lemma 50 (Update once). If $\mu_1 \rightsquigarrow \mu_2$ and $\mu_1 ! a = memo \ a \ (S_{need} \llbracket v \rrbracket_{\rho})$, then $\mu_2 ! a = memo \ a \ (S_{need} \llbracket v \rrbracket_{\rho})$.

 $\rho_1' \triangleq \rho_1[x \mapsto step (\text{Lookup } x) (fetch a_1)], a_1 \triangleq nextFree \mu_1, \mu_1' \triangleq \mu_1[a_1 \mapsto memo a_1 (S_{need}[[e_1]]_{\rho_1'})].$ We have $a \neq a_1$ by a property of *nextFree*, and applying the induction hypothesis yields $step \text{Let}_1 (S_{need}[[e_2]]_{\rho_1'}(\mu_1'[a \mapsto d])) = \overline{\text{Step } ev} (S_{need}[[v]]_{\rho_2}(\mu_2))$ as required.

Now we move on to proving auxiliary lemmas about *freezeHeap*.

Lemma 52 (Heap extension preserves frozen entries). Let $\alpha_{\mathbb{E}} \ \mu \rightleftharpoons \gamma_{\mathbb{E}} \ \mu = freezeHeap \ \mu$. If adom $d \subseteq dom \ \mu$ and $a \notin dom \ \mu$, then $\alpha_{\mathbb{E}} \ \mu \ d = \alpha_{\mathbb{E}} \ \mu[a \mapsto d_2] \ d$.

PROOF. By Löb induction. Since $\vdash_{\mathbb{D}}^{\text{ne}} d$, we have $d = \bigcup \{\text{step } (\text{Lookup } y) \ (\text{fetch } a_1)\}$ and $a_1 \in dom \mu$. Let *memo* $a_1 \ (S_{\text{need}}[\![e]\!]_{\rho}) \triangleq \mu ! a_1 = \mu[a \mapsto d_2] ! a$. Then *adom* $\rho \subseteq dom \mu$ due to $\vdash_{\mathbb{H}}^{\text{ne}} \mu$ and the goal follows by the induction hypothesis:

$$\alpha_{\mathbb{E}} \ \mu \ d = \bigsqcup \{ step \ (Lookup \ y) \ (\mathcal{S}\llbracket e \rrbracket_{\alpha_{\mathbb{E}} \ \mu \lhd \rho}) \}$$
$$= \bigsqcup \{ step \ (Lookup \ y) \ (\mathcal{S}\llbracket e \rrbracket_{\alpha_{\mathbb{E}} \ \mu [a \mapsto d_2] \lhd \rho}) \} = \alpha_{\mathbb{E}} \ \mu[a \mapsto d_2] \ d$$

An by-name analysis that is sound wrt. by-need must improve when an expression reduces to a value, which in particular will happen after the heap update during memoisation.

The following pair of lemmas corresponds to the UPD step of the preservation Lemma 19 where we (and Sergey et al. [2017]) resorted to hand-waving. Its proof is suprisingly tricky, but it will pay off; in a moment, we will hand-wave no more!

Lemma 53 (Preservation of heap update). Let \widehat{D} be a domain with instances for Trace, Domain, 3186 HasBind and Lat, satisfying the abstraction laws BETA-APP, BETA-SEL, BIND-BYNAME and STEP-INC 3187 from Figure 13. Furthermore, let $\alpha_{\mathbb{E}} \mu \rightleftharpoons \gamma_{\mathbb{E}} \mu =$ freezeHeap μ for all μ and $\beta_{\mathbb{E}} \mu \triangleq \alpha_{\mathbb{E}} \mu \circ \{-\}$ the 3188 representation function. 3189 3190 (a) If $S_{need}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\text{Step }ev} \left(S_{need}[\![v]\!]_{\rho_2}(\mu_2) \right)$ and $\mu_1 ! a = memo \ a \left(S_{need}[\![e]\!]_{\rho_1} \right)$, 3191 then $S[\![v]\!]_{\beta_{\mathbb{E}}} \mu_2[a \mapsto memo \ a \ (S_{need}[\![v]\!]_{\rho_2})] \triangleleft \rho_2 \sqsubseteq S[\![e]\!]_{\beta_{\mathbb{E}}} \mu_2 \triangleleft \rho_1.$ 3192 (b) If $S_{need}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\text{Step } ev} \left(S_{need}[\![v]\!]_{\rho_2}(\mu_2) \right)$ and $\mu_2 \rightsquigarrow \mu_3$, then $S[\![v]\!]_{\beta_E \mid \mu_3 \triangleleft \rho_2} \sqsubseteq S[\![e]\!]_{\beta_F \mid \mu_3 \triangleleft \rho_1}$. 3193 3194 3195 PROOF. By Löb induction, we assume that both properties hold *later*. 3196 • 53.(a): We assume that $S_{need}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\text{Step }ev} (S_{need}[\![v]\!]_{\rho_2}(\mu_2)) \text{ and } \mu_1 ! a = memo \ a (S_{need}[\![e]\!]_{\rho_1})$ 3197 to show $S[v]_{\beta_{\mathbb{E}}} \mu_2[a \mapsto memo \ a \ (S_{need}[v]_{\rho_2})] \triangleleft \rho_2 \subseteq S[[e]]_{\beta_{\mathbb{E}}} \mu_2 \triangleleft \rho_1.$ 3198 We can use the IH 53.(a) to prove that $\beta_{\mathbb{E}} \mu_2[a \mapsto memo \ a \ (S_{need} \llbracket v \rrbracket_{\rho_2})] \ d \sqsubseteq \beta_{\mathbb{E}} \mu_2 \ d$ for all 3199 *d* such that *adom* $d \subseteq adom \mu_2$. This is simple to see unless d = Step (Lookup *y*) (*fetch a*), 3200 in which case we have: 3201 3202 $\beta_{\mathbb{E}} \mu_2[a \mapsto memo \ a \ (S_{need}[v]_{\rho_2})] \ (Step \ (Lookup \ y) \ (fetch \ a))$ 3203 = $\langle Unfold \beta_{\mathbb{F}} \rangle$ 3204 step (Lookup y) $(\mathcal{S}[v]_{\beta_{\mathbb{E}} \mu_{2}[a \mapsto memo \ a \ (\mathcal{S}_{need}[v]_{\rho_{2}})] \triangleleft \rho_{2}})$ 3205 \square 7 IH 53.(a) \subseteq 3206 step (Lookup y) $(\mathcal{S}[\![e]\!]_{\mathcal{B}_{\mathbb{F}}}|_{\mu_2 \triangleleft \rho_1})$ 3207 = $\langle \text{Refold } \beta_{\mathbb{F}} \rangle$ 3208 $\beta_{\mathbb{E}} \mu_2$ (step (Lookup y) (fetch a)) 3209 3210 This is enough to show the goal: 3211 3212 $S[v]_{\beta_{\mathbb{F}} \mu_2[a \mapsto memo \ a \ (S_{need}[v]_{\rho_2})] \triangleleft \rho_2}$ 3213 3214 $S[v]_{\beta_{\mathbb{F}}} \mu_2 \triangleleft \rho_2$ 3215 $\sqsubseteq \quad (\text{IH 53.(b) applied to } S_{\text{need}}[e]_{\rho_1}(\mu_1) = \overline{\text{Step } ev} (S_{\text{need}}[v]_{\rho_2}(\mu_2))$ 3216 $S[e]_{\beta_{\mathbb{F}} \mid \mu_2 \triangleleft \rho_1}$ 3217 3218 • 53.(b) $S_{\text{need}}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\text{Step }ev} \left(S_{\text{need}}[\![v]\!]_{\rho_2}(\mu_2) \right) \land \mu_2 \rightsquigarrow \mu_3 \Longrightarrow S[\![v]\!]_{\beta_{\mathbb{F}}} \mu_{3 \triangleleft \rho_2} \sqsubseteq S[\![e]\!]_{\beta_{\mathbb{F}}} \mu_{3 \triangleleft \rho_2}$ 3219 By Löb induction and cases on e. 3220 - Case Var x: Let a be the address such that $\rho_1 ! x = \text{Step (Lookup y) (fetch a)}$. Note 3221 that $\mu_1 ! a = memo a_{-}$, so the result has been memoised in μ_2 , and by Lemma 50 in μ_3 3222 as well. Hence the entry in μ_3 must be of the form $\mu_3 ! a = memo \ a \ (S_{need} \llbracket v \rrbracket_{\rho_2})$. 3223 3224 $\mathcal{S}[\![v]\!]_{\beta_{\mathbb{E}}\,\mu_3 \triangleleft \rho_2}$ 3225 \subseteq (Assumption Step-Inc) 3226 step (Lookup y) $(\mathcal{S}\llbracket v \rrbracket_{\beta_{\mathbb{E}} \mu_3 \triangleleft \rho_2})$ 3227 = i Refold $\beta_{\mathbb{E}}$ for the appropriate y) 3228 $(\beta_{\mathbb{F}} \mu_3 \triangleleft \rho_1) ! x$ 3229 = $\langle \operatorname{Refold} S[[_]]_{\mathcal{S}}$ 3230 3231 $S[x]_{\beta \in \mu_3 \triangleleft \rho_1}$ 3232 - Case Lam x body, ConApp k xs: Follows by reflexivity. 3233 3234

2025	- Case App <i>e x</i> : Then $S_{need}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\text{Step } ev_1} (S_{need}[\![\text{Lam } y \ body]\!]_{\rho_3}(\mu_4))$
3235 3236	
3237	and $S_{\text{need}}[body]_{\rho_3[y\mapsto\rho_1!x]}(\mu_4) = \overline{\text{Step }ev_2} \ (S_{\text{need}}[v]_{\rho_2}(\mu_2))$. Note that $\mu_4 \rightsquigarrow \mu_2$ by
3238	Lemma 49, hence $\mu_4 \rightsquigarrow \mu_3$ by \rightsquigarrow -TRANS.
3239	$\mathcal{S}[\![v]\!]_{eta_{\mathbb{E}} \mu_{3} \lhd ho_{2}}$
3239	\sqsubseteq (IH 53.(b) at <i>body</i> and $\mu_2 \rightsquigarrow \mu_3$)
3240	$S[body]_{\beta_{\mathbb{F}} \mu_{3} \triangleleft \rho_{3}[\nu \mapsto \rho_{1} ! x]}$
3242	
3243	$step \operatorname{App}_{2} (S[body]_{\beta_{\mathbb{F}} \mu_{3} \triangleleft \rho_{3}}[y \mapsto \rho_{1} ! x])$
3243	$\sqsubseteq (Assumption Beta-App, refold Lam case)$
3245	$= apply (S[[Lam y body]]_{\beta_{\mathbb{F}} \mu_3 < \rho_3}) (\beta_{\mathbb{E}} \mu_3 (\rho_1 ! x))$
3246	$\sqsubseteq (\text{IH 53.(b) at } e \text{ and } \mu_4 \rightsquigarrow \mu_3)$
3247	
3248	$apply \left(\mathcal{S}\llbracket e \rrbracket_{\beta_{\mathbb{E}} \mu_{3} \triangleleft \rho_{1}} \right) \left(\beta_{\mathbb{E}} \mu_{3} \left(\rho_{1} ! x \right) \right)$
3249	$\sqsubseteq \langle \text{Assumption Step-Inc} \rangle$
3250	step App ₁ (apply ($\mathcal{S}\llbracket e \rrbracket_{\beta_{\mathbb{E}} \mu_3 \triangleleft \rho_1}$) ($\beta_{\mathbb{E}} \mu_3$ ($\rho_1 ! x$)))
3251	$= \langle \operatorname{Refold} S [[\operatorname{App} e x]]_{\beta_{\mathbb{E}} \mu_{3} \triangleleft \rho_{1}} \rangle$
3252	$\mathcal{S}\llbracket \text{App } e \ x rbracket_{eta_{\mathbb{F}} \ \mu_{3} \lhd ho_{1}}$
3253	- Case Case <i>e alts</i> : Similar to App.
3254	- Case Let $x e_1 e_2$: Then $S_{need}[[Let x e_1 e_2]]_{\rho_1}(\mu_1) = \text{Step Let}_1(S_{need}[[e_2]]_{\rho_4}(\mu_4)),$
3255	where $a \triangleq nextFree \ \mu_1, \ \rho_4 \triangleq \rho_1[x \mapsto \text{Step} (\text{Lookup } x) (fetch a)], \ \mu_4 \triangleq \mu_1[a \mapsto \text{Step} (\text{Lookup } x) (fetch a)]$
3256	<i>memo a</i> $(S_{\text{need}}[e_1]_{\rho_4})]$. Observe that $\mu_4 \rightsquigarrow \mu_2 \rightsquigarrow \mu_3$.
3257	The first first half of the proof is simple enough:
3258	
3259	$\mathcal{S}[\![v]\!]_{\beta_{\mathbb{F}}\mu_{3}\triangleleft\rho_{2}}$
3260	$\sqsubseteq (\text{IH 53.(b) at } e_2 \text{ and } \mu_2 \rightsquigarrow \mu_3)$
3261	$\mathcal{S}\llbracket e_2 bracket_{eta_{\mathbb{F}}} \mu_3 \triangleleft ho_4$
3262	\sqsubseteq (Assumption Step-Inc)
3263	$step \ Let_1 \ (\mathcal{S}\llbracket e_2 bracket_{eta arphi arphi_{arksymp}} \mu_{arphi arphi_{arksymp}})$
3264	= $\langle \text{Unfold } \rho_4 \rangle$
3265	$step \operatorname{Let}_1(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_3 \triangleleft \rho_1)[x \mapsto \beta_{\mathbb{E}} \mid \mu_3 \mid (\rho_4 \mid x)]})$
3266	We proceed by case analysis on whether $\mu_4 ! a = \mu_3 ! a$.
3267	If that is the case, we get
3268	-
3269	$= \langle \text{Unfold } \beta_{\mathbb{E}} \mu_3 (\rho_4 ! x), \mu_3 ! a = \mu_4 ! a \rangle$
3270	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \ \mu_3 \lhd \rho_1)[x \mapsto lfp \ (\lambda \widehat{d}_1 \rightarrow step \ (\operatorname{Lookup} x) \ (\mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \ \mu_3 \lhd \rho_1)[x \mapsto \widehat{d}_1]}))] \right)$
3271	\subseteq (Assumption BIND-BYNAME)
3272	bind $(\lambda \widehat{d_1} \to \mathcal{S}\llbracket e_1 \rrbracket_{((\beta_{\mathbb{E}} \ \mu_3 \triangleleft \rho_1))[x \mapsto step (Lookup x) \ \widehat{d_1}]})$
3273	$(\lambda \widehat{\mu}_{1} + \beta \widehat{\mu}_{2}) = (\beta_{\mathbb{F}} \mu_{3} \triangleleft \rho_{1}) [x \mapsto step (\text{Lookup } x) d_{1}]^{\prime}$
3274	$(\lambda \widehat{d}_1 \to step \operatorname{Let}_1 (\mathcal{S}\llbracket e_2 \rrbracket_{((\beta_{\mathbb{E}} \ \mu_3 \triangleleft \rho_1))[x \mapsto step (\operatorname{Lookup} x) \ \widehat{d}_1]}))$
3275	$= \langle \operatorname{Refold} \mathcal{S}[-]_{-} \rangle$
3276	$\mathcal{S}\llbracket \text{Let } x \ e_1 \ e_2 rbracket_{eta_{\mathbb{F}} \ \mu_3 \lhd ho_1}$
3277	Otherwise, we have $\mu_3 ! a \neq \mu_4 ! a$, implying that $\mu_4 \rightsquigarrow \mu_3$ contains an application of
3278 3279	\sim -Мемо updating μ_3 ! <i>a</i> .
3280	By rule inversion, $\mu_3 ! a$ is the result of updating it to the form <i>memo a</i> $(S_{\text{need}}[v_1]_{\rho_3})$,
3281	where $S_{\text{need}}[[e_1]]_{\rho_4}(\mu'_4) = \overline{\text{Step }ev_1} \ (S_{\text{need}}[[v_1]]_{\rho_3}(\mu'_3))$ such that $\mu_4 \rightsquigarrow \mu'_4 \rightsquigarrow \mu'_3[a \mapsto$
3282	$memo \ a \ (S_{need}[[v_1]]_{\rho_3})] \rightsquigarrow \mu_3 \ and \ \mu_4! \ a = \mu'_4! \ a = \mu'_3! \ a \neq \mu_3! \ a. \text{ (NB: if there are}$
3283	$\mu_{1} = \mu_{1} = \mu_{1$
2200	

3284	multiple such occurrences of \rightsquigarrow -MEMO in $\mu_4 \rightsquigarrow \mu_3$, this must be the first one, because
3285	afterwards it is $\mu_4 ! a \neq \mu'_4 ! a$.)
3286	It is not useful to apply the IH 53.(a) to this situation directly, because $\mu'_3 \rightsquigarrow \mu_3$ does not
3287	hold. However, note that \rightsquigarrow -MEMO contains proof that evaluation of $S_{need}[\![e_1]\!]_{\rho_4}(\mu'_4)$
3288	succeeded, and it must have done so without looking at μ'_4 ! <i>a</i> (because that would have
3289	led to an infinite loop). Furthermore, e_1 cannot be a value; otherwise, $\mu_4 ! a = \mu_3 ! a$, a
3290	contradiction. Since e_1 is not a value and $\mu'_4 ! a = \mu'_3 ! a$, we can apply Lemma 51 to get
3291	the useful reduction
3292 3293	$S_{\mathbf{need}}\llbracket e_1 \rrbracket_{\rho_4}(\mu'_4[a \mapsto memo \; a \; (S_{\mathbf{need}}\llbracket v_1 \rrbracket_{\rho_3})])$
3294	$= \overline{\text{Step } ev_1} \ (S_{\text{need}}[v_1]_{\rho_3}(\mu'_3[a \mapsto memo \ a \ (S_{\text{need}}[v_1]_{\rho_3})])).$
3295	This reduction is so useful because we know something about $\mu'_3[a \mapsto memo \ a \ (S_{need}[v_1]_{\rho_3})];$
3296	namely that $\mu'_3[a \mapsto memo \ a \ (S_{need}[[\nu_1]]\rho_3)] \rightsquigarrow \mu_3$. This allows us to apply the induc-
3297	tion hypothesis 53.(a) to the reduction, which yields
3298	$\mathcal{S}\llbracket v_1 \rrbracket_{\beta_{\mathbb{F}}} {}_{\mu_3 \lhd \rho_3} \sqsubseteq \mathcal{S}\llbracket e_1 \rrbracket_{\beta_{\mathbb{F}}} {}_{\mu_3 \lhd \rho_4}$
3299	
3300	We this identity below:
3301 3302	= $\langle \text{Unfold } \beta_{\mathbb{E}} \mu_3 \ (\rho_4 \mid x), \mu_3 \mid a = memo \ a \ (S_{\text{need}} \llbracket v_1 \rrbracket_{\rho_3}) \rangle$
3303	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_3 \triangleleft \rho_1)[x \mapsto lfp(\lambda \widehat{d}_1 \rightarrow step(\operatorname{Lookup} x)(\mathcal{S}\llbracket v_1 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_3 \triangleleft \rho_3)[x \mapsto \widehat{d}_1]}))] \right)$
3304	$ = \left\{ S[[v_1]]_{\beta_{\mathbb{E}}, \mu_3 \triangleleft \rho_3} \subseteq S[[e_1]]_{\beta_{\mathbb{E}}, \mu_3 \triangleleft \rho_4}, \text{ unfold } \beta_{\mathbb{E}}, \mu_3 (\rho_4 ! x) \right\} $
3305	
3306	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \ \mu_3 \triangleleft \rho_1)[x \mapsto lfp(\lambda \widehat{d}_1 \to step(\operatorname{Lookup} x)(\mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \ \mu_3 \triangleleft \rho_1)[x \mapsto \widehat{d}_1]}))] \right)$
3307	\sqsubseteq $\langle \dots$ as above $\dots \rangle$
3308	$\mathcal{S}\llbracket \text{Let } x \ e_1 \ e_2 rbracket_{eta_{\mathbb{F}} \ \mu_3 \lhd ho_1}$
3309	
3310	
3311	With that, we can finally prove that heap progression preserves environment abstraction:
3312 3313	Lemma 54 (Heap progression preserves abstraction). Let \widehat{D} be a domain with instances for Trace,
3314	Domain, HasBind and Lat, satisfying the abstraction laws BETA-APP, BETA-SEL, BIND-BYNAME and
3315	STEP-INC in Figure 13. Furthermore, let $\alpha_{\mathbb{E}} \ \mu \rightleftharpoons \gamma_{\mathbb{E}} \ \mu = freezeHeap \ \mu$ for all μ .
3316	If $\mu_1 \rightsquigarrow \mu_2$ and adom $d \subseteq dom \mu_1$, then $\alpha_{\mathbb{E}} \mu_2 \ d \sqsubseteq \alpha_{\mathbb{E}} \mu_1 \ d$.
3317	PROOF. By Löb induction. Let us assume that $\mu_1 \rightsquigarrow \mu_2$ and <i>adom</i> $d \subseteq dom \ \mu_1$. Since $\vdash_{\mathbb{D}}^{ne} d$, we have
3318	$d = \bigcup \{\text{Step (Lookup y) (fetch a)}\}$. Similar to Theorem 44, it suffices to show the goal for a single
3319	$d = \text{Step}(\text{Lookup } y)$ (<i>fetch a</i>) for some y, a and the representation function $\beta_{\mathbb{F}} \mu \triangleq \alpha_{\mathbb{F}} \mu \triangleleft \{ . \}$.
3320	Furthermore, let us abbreviate <i>memo a</i> $(S_{need}[[e_i]]_{\rho_i}) \triangleq \mu_i ! a$. The goal is to show
3321	step (Lookup y) $(\mathcal{S}\llbracket e_2 \rrbracket_{\beta_{\mathbb{E}} \mid \mu_2 \triangleleft \rho_2}) \sqsubseteq$ step (Lookup y) $(\mathcal{S}\llbracket e_1 \rrbracket_{\beta_{\mathbb{E}} \mid \mu_1 \triangleleft \rho_1}),$
3322	
3323	Monotonicity allows us to drop the <i>step</i> (Lookup x) context
3324	$\blacktriangleright (\mathcal{S}\llbracket e_2 \rrbracket_{\beta_{\mathbb{E}} \ \mu_2 \triangleleft \rho_2} \sqsubseteq \mathcal{S}\llbracket e_1 \rrbracket_{\beta_{\mathbb{E}} \ \mu_1 \triangleleft \rho_1}).$
3325	Now we proceed by induction on $\mu_1 \sim \mu_2$, which we only use to prove correct the reflexive and
3326 3327	transitive closure in \sim -ReFL and \sim -TRANS. By contrast, the \sim -MEMO and \sim -EXT cases make use
3328	of the Löb induction hypothesis, which is freely applicable under the ambient \blacktriangleright .
3329	• Case \rightarrow -REFL: Then $\mu_1 = \mu_2$ and hence $\alpha_{\mathbb{E}} \mu_1 = \alpha_{\mathbb{E}} \mu_2$.
3330	 Case → TRANS: Apply the induction hypothesis to the sub-derivations and apply transitivity
3331	of \sqsubseteq .
3332	

1:68

Abstracting Denotational Interpreters

3333	• Case \rightsquigarrow -Exr $\frac{a_1 \notin dom \ \mu_1 adom \ \rho \subseteq dom \ \mu_1 \cup \{a_1\}}{\mu \rightsquigarrow \mu_1[a_1 \mapsto memo \ a_1 \ (S_{need}[[e]]_{\rho})]}$:
3334	$\mu \rightsquigarrow \mu_1[a_1 \mapsto memo \ a_1 \ (S_{need}[\![e]\!]_{\rho})]$
3335	We get to refine $\mu_2 = \mu_1[a_1 \mapsto memo \ a_1 \ (S_{need}[e]_{\rho})]$. Since $a \in dom \ \mu_1$, we have $a_1 \neq a$
3336	and thus $\mu_1 ! a = \mu_2 ! a$, thus $e_1 = e_2$, $\rho_1 = \rho_2$. The goal can be simplified to $\blacktriangleright (S[[e_1]]_{\beta_{\mathbb{E}}, \mu_2 \triangleleft \rho_1} \sqsubseteq$
3337	$S[[e_1]]_{\beta_{\mathbb{E}} \mu_1 \triangleleft \rho_1})$. We can apply the induction hypothesis to get \blacktriangleright ($\beta_{\mathbb{E}} \mu_2 \sqsubseteq \beta_{\mathbb{E}} \mu_1)$, and the
3338	goal follows by monotonicity.
3339	$\mu_1! a_1 = memo \ a_1 \ (S_{need} \llbracket e \rrbracket_{\rho_3}) \blacktriangleright \ (S_{need} \llbracket e \rrbracket_{\rho_3} (\mu_1) = \overline{\text{Step } ev} \ (S_{need} \llbracket v \rrbracket_{\rho_2} (\mu_3)))$
3340	• Case \rightsquigarrow -Memo $\frac{\mu_1 ! a_1 = memo \ a_1 \ (S_{\text{need}} \llbracket e \rrbracket_{\rho_3})}{\mu_1 \rightsquigarrow \mu_3 [a_1 \mapsto memo \ a_1 \ (S_{\text{need}} \llbracket v \rrbracket_{\rho_2})]} \in (S_{\text{need}} \llbracket v \rrbracket_{\rho_2})$:
3341	We get to refine $\mu_2 = \mu_3[a_1 \mapsto memo a_1 (S_{need} [v]]_{\rho_2})]$. When $a_1 \neq a$, we have $\mu_1 ! a = \mu_2 ! a$
3342	and the goal follows as in the \rightsquigarrow -Ext case. Otherwise, $a = a_1$, $e_1 = e$, $\rho_3 = \rho_1$, $e_2 = v$.
3343	We can use Lemma 53.(a) to prove that $\beta_{\mathbb{E}} \mu_2 \ d \subseteq \beta_{\mathbb{E}} \mu_3 \ d$ for all d such that adom $d \subseteq adom \mu_2$.
3344	This is simple to see unless $d = \text{Step} (\text{Lookup } y)$ (<i>fetch a</i>), in which case we have:
3345	
3346	$\beta_{\mathbb{E}} \mu_2$ (Step (Lookup y) (<i>fetch a</i>))
3347	$= \langle \text{Unfold } \beta_{\mathbb{E}} \rangle$
3348	step (Lookup y) $(\mathcal{S}[v]_{\beta_{\mathbb{E}} \mu_2 \triangleleft \rho_2})$
3349	\sqsubseteq (Lemma 53.(a))
3350	step (Lookup y) $(\mathcal{S}[\![e]\!]_{\beta_{\mathbb{F}}} _{\mu_3 \triangleleft \rho_1})$
3351	= $\langle \text{Refold } \beta_{\mathbb{E}} \rangle$
3352	$\beta_{\mathbb{E}} \mu_3 (step (Lookup y) (fetch a))$
3353	
3354	We can finally show the goal $\beta_{\mathbb{E}} \mu_2 \ d \sqsubseteq \beta_{\mathbb{E}} \mu_1 \ d$ for all d such that <i>adom</i> $d \subseteq dom \mu_1$:
3355	$\beta_{\mathbb{E}} \mu_2 d$
3356	$\sqsubseteq \left(\begin{array}{c} \beta_{\mathbb{E}} \\ \mu_2 \\ \sqsubseteq \\ \beta_{\mathbb{E}} \end{array} \right)$
3357	$\beta_{\mathbb{E}} \mu_3 d$
3358	\sqsubseteq (Löb induction hypothesis at $\mu_1 \rightsquigarrow \mu_3$ by Lemma 49 (
3359	$\beta_{\mathbb{E}} \mu_1 d$
3360	
3361 3362	
3363	Lemma 55 (By-need evaluation preserves by-name trace abstraction). Let \widehat{D} be a domain with
3364	instances for Trace, Domain, HasBind and Lat, satisfying the abstraction laws STEP-APP, STEP-SEL,
3365	BETA-APP, BETA-SEL, BIND-BYNAME, STEP-INC and UPDATE in Figure 13. Furthermore, let $\alpha_{\mathbb{E}} \ \mu \rightleftharpoons$
3366	$\gamma_{\mathbb{E}} \mu = freezeHeap \mu$ for all μ .
3367	$If \mathcal{S}_{\mathbf{need}}\llbracket e \rrbracket_{\rho_1}(\mu_1) = \overline{\operatorname{Step} ev} \ (\mathcal{S}_{\mathbf{need}}\llbracket v \rrbracket_{\rho_2}(\mu_2)), \ then \ \overline{step ev} \ (\mathcal{S}\llbracket v \rrbracket_{\alpha_{\mathbb{E}} \mid \mu_2 \triangleleft \{-\} \triangleleft \rho_2}) \sqsubseteq \mathcal{S}\llbracket e \rrbracket_{\alpha_{\mathbb{E}} \mid \mu_1 \triangleleft \{-\} \triangleleft \rho_1}.$
3368	
3369	PROOF. By Löb induction and cases on <i>e</i> , using the representation function $\beta_{\mathbb{E}} \triangleq \alpha_{\mathbb{E}} \circ \{ -\}$.
3370	• Case Var <i>x</i> : By assumption, we know that
3371	$\mathcal{S}_{need}[\![x]\!]_{\rho_1}(\mu_1) = \text{Step (Lookup y) (memo a (}\mathcal{S}_{need}[\![e_1]\!]_{\rho_3}(\mu_1))) = \overline{\text{Step }ev} (\mathcal{S}_{need}[\![v]\!]_{\rho_2}(\mu_2))$
3372	for some y, a, e_1 , ρ_3 , such that $\rho_1 = step$ (Lookup y) (fetch a), $\mu_1 ! a = memo \ a (S_{need} \llbracket e_1 \rrbracket_{\rho_3})$
3373	
3374	and $\overline{ev} = [\text{Lookup } y] + \overline{ev_1} + [\text{Update}]$ for some ev_1 by determinism. The step below that uses Item 53 (b) does so at e_1 and u_2 as u_1 to get $S[u]$.
3375	The step below that uses Item 53.(b) does so at e_1 and $\mu_2 \rightsquigarrow \mu_2$ to get $S[v]_{\beta_E \mu_2 \triangleleft \rho_2} \sqsubseteq S[e_1]_{\rho_2}$ in order to prove that $(\beta_E \mu_2 \triangleleft \rho_2) \sqsubset (\beta_E \mu_2 \mid \rho_2 \triangleleft \rho_2) \sqsubset (\beta_E \mu_2 \mid \rho_2 \mid$
3376	$\mathcal{S}\llbracket e_1 \rrbracket_{\beta_{\mathbb{E}}} \mu_2 \triangleleft \rho_3, \text{ in order to prove that } (\beta_{\mathbb{E}} \mu_2 \triangleleft \rho_2) \sqsubseteq (\beta_{\mathbb{E}} \mu_2 [a \mapsto memo \ a \ (\mathcal{S}_{need}\llbracket e_1 \rrbracket_{\rho_3})] \triangleleft \rho_2).$
3377	$\overline{step \ ev} \ (\mathcal{S}[\![v]\!]_{\beta_{\mathbb{E}} \ \mu_2 \triangleleft \rho_2})$
3378	= $(\overline{ev} = [Lookup y] + \overline{ev_1} + [Update])$
3379	step (Lookup y) ($\overline{step \ ev_1}$ (step Update ($S[v]_{\beta_{\mathbb{E}} \mu_2 \triangleleft \rho_2})$))
3380	= $(Assumption UPDATE)$
3381	

3382	step (Lookup y) ($\overline{step \ ev_1} \ (S[v]]_{\beta_{\mathbb{F}} \ \mu_2 \triangleleft \rho_2})$)
3383	$\sqsubseteq (\text{Item 53.(b) at } e_1 \text{ implies } (\beta_{\mathbb{E}} \ \mu_2 \triangleleft \rho_2) \sqsubseteq (\beta_{\mathbb{E}} \ \mu_2[a \mapsto memo \ a \ (\mathcal{S}_{need}[\![e_1]\!]_{\rho_3})] \triangleleft \rho_2))$
3384	$= (\text{recm} \text{ so}_{(0)} \text{ at } e_1 \text{ implies} (p_{\mathbb{E}} \mu_2 \langle p_2 \rangle) = (p_{\mathbb{E}} \mu_2 [a \mapsto \text{memo a } (\mathbb{O}_{\text{need}} [e_1] \rho_3)] \langle p_2 \rangle)$ step (Lookup y) (step ev ₁ (S[[v]] _{\$\$\varepsilon\$ \nu\$ memo a (S_{need} [[e_1]]_{\$\$\varepsilon\$ \nu\$ of (\$\varepsilon\$ need [[e_1]] \$}}
3385	$ = \left(\text{Lemma 55} \right) $
3386	
3387	step (Lookup y) $(\mathcal{S}[[e_1]]_{\beta_E \mu_1 \triangleleft \rho_3})$
3388	$= \langle \operatorname{Refold} \beta_{\mathbb{E}}, \rho_3 ! x \rangle$
3389	$\beta_{\mathbb{E}}(\rho_1 \mid x)$
3390	$= \underbrace{\langle \operatorname{Refold} \mathcal{S}[[x]]_{\beta_{\mathbb{E}} \mu_1 \triangleleft \rho_1} \rangle}_{\mathcal{S}[[x]]_{\beta_{\mathbb{E}} \mu_1 \triangleleft \rho_1}} $
3391	$\mathcal{S}[\![x]\!]_{eta_{\mathbb{E}}} \mu_1 \triangleleft ho_1$
3392	• Case Let $x e_1 e_2$: We can make one step to see
3393 3394	$\mathcal{S}_{\mathbf{need}}\llbracket \text{Let } x \ e_1 \ e_2 \rrbracket_{\rho_1}(\mu_1) = \text{Step Let}_1 \ (\mathcal{S}_{\mathbf{need}}\llbracket e_2 \rrbracket_{\rho_3}(\mu_3)) = \text{Step Let}_1 \ (\overline{\text{Step } ev_1} \ (\mathcal{S}_{\mathbf{need}}\llbracket v \rrbracket_{\rho_2}(\mu_2))),$
3395	
3396	where $\rho_3 \triangleq \rho_1[x \mapsto step$ (Lookup x) (fetch a)], $a \triangleq nextFree \ \mu_1, \ \mu_3 \triangleq \mu_1[a \mapsto memo \ a \ (S_{need}[[e_1]]_{\rho_3})].$
3397	Then $(\beta_{\mathbb{E}} \ \mu_3 \triangleleft \rho_3)! y = (\beta_{\mathbb{E}} \ \mu_1 \triangleleft \rho_1)! y$ whenever $x \neq y$ by Lemma 52, and $(\beta_{\mathbb{E}} \ \mu_3 \triangleleft \rho_3)! x =$
3398	step (Lookup x) $(\mathcal{S}[[e_1]]_{\beta_F \ \mu_3 \triangleleft \rho_3})$.
3399	We prove the goal, thus
3400	
3401	$\overline{step \ ev} \ (\mathcal{S}[v]_{\beta_{\mathbb{E}} \ \mu_2 \triangleleft \rho_2})$
3402	$= \langle \overline{ev} = \text{Let}_1 : \overline{ev_1} \rangle$
3403	step Let ₁ ($\overline{step \ ev_1}$ ($\mathcal{S}[v]_{\beta_{\mathbb{E}} \ \mu_2 \triangleleft \rho_2}$))
3404	\sqsubseteq (Induction hypothesis at ev_1)
3405	step Let ₁ $(\mathcal{S}\llbracket e_2 \rrbracket_{\beta_E \mu_3 \lhd \rho_3})$
3406	= $\langle \text{Rearrange } \beta_{\mathbb{E}} \mu_3 \text{ by above reasoning } \rangle$
3407	$step \operatorname{Let}_1 (\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \ \mu_1 \triangleleft \rho_1)[x \mapsto \beta_{\mathbb{E}} \ \mu_3 \ (\rho_3! x)]} \ \mu_3)$
3408	= $\langle \langle \text{Expose fixpoint, rewriting } \beta_{\mathbb{E}} \mu_3 \triangleleft \rho_3 \text{ to } (\beta_{\mathbb{E}} \mu_1 \triangleleft \rho_1) [x \mapsto \beta_{\mathbb{E}} \mu_3 (\rho_3 ! x)] \rangle$
3409 3410	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_1 \triangleleft \rho_1)[x \mapsto lfp(\lambda \widehat{d}_1 \rightarrow step(\operatorname{Lookup} x)(\mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_1 \triangleleft \rho_1)[x \mapsto \widehat{d}_1]}))] \right)$
3411	= $\langle Partially unroll lfp \rangle$
3412	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_1 \triangleleft \rho_1)[x \mapsto step (\operatorname{Lookup} x) (lfp (\lambda \widehat{d}_1 \rightarrow \mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_1 \triangleleft \rho_1)[x \mapsto step (\operatorname{Lookup} x) \widehat{d}_1]}))] \right)$
3413	$\sqsubseteq (Assumption BIND-BYNAME)$
3414 3415	bind $(\lambda \widehat{d_1} \to \mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \mid \mu_1 \triangleleft \rho_1))[x \mapsto step (\text{Lookup } x) \mid \widehat{d_1}]})$
3416	$(\lambda \widehat{d_1} \to step \operatorname{Let}_1 (S[[e_2]]_{((\beta_{\mathbb{E}} \ \mu_1 \triangleleft \rho_1))[x \mapsto step} (\operatorname{Lookup} x) \widehat{d_1}]))$
3417	$= \langle \operatorname{Refold} \mathcal{S}[\operatorname{Let} x \ e_1 \ e_2] _{\beta_F \ \mu_1 < \rho_1} \rangle $
3418	/ = / = / =
3419	$\mathcal{S}\llbracket ext{Let } x \ e_1 \ e_2 rbracket_{eta_{\mathbb{E}}} \mu_1 \sphericalangle ho_1$
3420	Case Lam, ConApp: By reflexivity.
3421	• Case App <i>e x</i> : Very similar to Lemma 43, since the heap is never updated or extended.
3422	There is one exception: We must apply Lemma 54 to argument denotations.
3423	We have $S_{\text{need}}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\text{Step } ev_1} (S_{\text{need}}[\![\text{Lam } y \ body]\!]_{\rho_3}(\mu_3)) \text{ and } S_{\text{need}}[\![body]\!]_{\rho_3[y\mapsto\rho_1!x]}(\mu_3) =$
3424	Step ev_2 ($S_{need}[[v]]_{\rho_2}(\mu_2)$). We have $\mu_1 \rightsquigarrow \mu_3$ by Lemma 49.
3425	step App ₁ (Step ev_1 (step App ₂ (Step ev_2 ($\mathcal{S}[v]_{\beta_{\mathbb{E}} \mu_2 \triangleleft \rho_2}$))))
3426	$= \left(\text{Induction hypothesis at } \overline{ev_2} \right)$
3427	$step App_1 (step ev_1 (step App_2 (S[body]]_{\beta_E \mu_3 \triangleleft \rho_3}[y \mapsto \rho_1!x])))$
3428 3429	$\sqsubseteq (\text{Assumption Beta-App, refold Lam case })$
3429 3430	= (155 umption DETA-AFF, reford Lam (asc)
3430	

3431	step App ₁ (step ev ₁ (apply ($\mathcal{S}[[Lam y body]]_{\beta_{\mathbb{E}} \mu_3 \lhd \rho_3}$) (($\beta_{\mathbb{E}} \mu_3 \lhd \rho_1$)!x)))
3432	\sqsubseteq (Assumption Step-App)
3433	step App ₁ (apply (step ev ₁ (\mathcal{S} [Lam y body]] $_{\beta_{\mathbb{E}} \mu_3 \triangleleft \rho_3}$)) (($\beta_{\mathbb{E}} \mu_3 \triangleleft \rho_1$)! x))
3434	\sqsubseteq (Induction hypothesis at $\overline{ev_1}$)
3435	step App ₁ (apply $(S[e]_{\beta_{\mathbb{F}}} \mu_1 \triangleleft \rho_1)$ ($(\beta_{\mathbb{E}} \mu_3 \triangleleft \rho_1)$! x))
3436	$\sqsubseteq 2 \text{ Lemma 54 } $
3437	$step \operatorname{App}_{1} (apply (S[e]]_{\beta_{\mathbb{F}} \mu_{1} \triangleleft \rho_{1}}) ((\beta_{\mathbb{E}} \mu_{1} \triangleleft \rho_{1})!x))$
3438	$= \left(\operatorname{Refold} \mathcal{S}[-]_{-} \right)$
3439	
3440	$\mathcal{S}\llbracket App \ e \ x rbracket_{eta_{\mathbb{F}}} \mu_1 \triangleleft_{ ho_1}$
3441	• Case Case <i>e alts</i> : The same as in Lemma 43.
3442	We have $S_{\text{need}}[\![e]\!]_{\rho_1}(\mu_1) = \overline{\text{Step } ev_1} (S_{\text{need}}[\![\text{ConApp } k \ ys]\!]_{\rho_3}(\mu_3)), S_{\text{need}}[\![e_r]\!]_{\rho_1}[\overline{x \mapsto map \ (\rho_3 \ !) \ ys}](\mu_3) =$
3443	Step ev_2 ($S_{need}[v]_{\rho_2}(\mu_2)$), where <i>alts</i> ! $k = (xs, e_r)$ is the matching RHS.
3444	
3445	$\overline{step \ ev} \ (\mathcal{S}[\![v]\!]_{\beta_{\mathbb{E}} \lhd \rho_2} \ m^2)$
3446	$\sqsubseteq (\overline{ev} = [Case_1] + \overline{ev_1} + [Case_2] + ev_2, \text{ IH at } ev_2)$
3447	$step \operatorname{Case}_1(\overline{step \ ev_1} \ (step \ \operatorname{Case}_2 \ (\mathcal{S}[\![e_r]\!]_{\beta_{\mathbb{E}} \ \mu_3 \triangleleft \rho_1[\overline{xs \mapsto map \ (\widehat{\rho_3} \ !) \ ys}]})))$
3448	\sqsubseteq (Assumption Beta-Sel)
3449	step Case ₁ (step ev ₁ (select (S [ConApp k ys] _{β_{F}} $\mu_{3} < \rho_{3}$) (cont $< alts$)))
3450	\sqsubseteq (Assumption STEP-SeL)
3451	step Case ₁ (select (step ev ₁ (S [ConApp k ys] $_{\beta_{E} \mu_{3} \triangleleft \rho_{3}}$)) (cont \triangleleft alts))
3452	\sqsubseteq (Induction hypothesis at ev_1)
3453	$step Case_1 (select (S[[e]]_{\beta_{\mathbb{E}} \mu_1 < \rho_1}) (cont < alts))$
3454	$= \left(\operatorname{Refold} \mathcal{S} \left[\operatorname{Case} e \ alts \right]_{\beta_{\mathbb{F}} \mu_{1} \triangleleft \rho_{1}} \right) \left(\operatorname{cont} \triangleleft u_{1} \operatorname{sy} \right)$
3455	
3456	$\mathcal{S}[[Case \ e \ alts]]_{\beta_{\mathbb{E}} \ \mu_1 < \rho_1}$
3457	

Using *freezeHeap*, we can give a Galois connection expressing correctness of a by-name analysis wrt. by-need semantics:

Theorem 56 (Sound By-need Interpretation). Let \widehat{D} be a domain with instances for Trace, Domain, HasBind and Lat, and let $\alpha_{\mathbb{T}} \rightleftharpoons \gamma_{\mathbb{T}} = nameNeed$, as well as $\alpha_{\mathbb{E}} \ \mu \rightleftharpoons \gamma_{\mathbb{E}} \ \mu = freezeHeap \ \mu$ from Figure 18. If the abstraction laws in Figure 13 hold, then $S[[-]]_{-}$ instantiates at \widehat{D} to an abstract interpreter that is sound wrt. $\gamma_{\mathbb{E}} \rightarrow \alpha_{\mathbb{T}}$, that is,

$$\alpha_{\mathbb{T}} \{ \mathcal{S}_{\text{need}} \llbracket e \rrbracket_{\rho}(\mu) \} \sqsubseteq (\mathcal{S}_{\widehat{D}} \llbracket e \rrbracket_{\alpha_{\mathbb{E}}} \mu \triangleleft_{\{-\}} \triangleleft_{\rho})$$

PROOF. As in Theorem 44, we simplify our proof obligation to the single-trace case:

 $\forall \rho. \ \beta_{\mathbb{T}} \ (\mathcal{S}_{\mathbf{need}}\llbracket e \rrbracket_{\rho}(\mu)) \sqsubseteq (\mathcal{S}_{\widehat{\mathsf{D}}}\llbracket e \rrbracket_{\beta_{\mathbb{E}} \ \mu \lhd \rho}),$

where $\beta_{\mathbb{T}} \triangleq \alpha_{\mathbb{T}} \circ \{ . \}$ and $\beta_{\mathbb{E}} \mu \triangleq \alpha_{\mathbb{E}} \mu \circ \{ . \}$ are the representation functions corresponding to $\alpha_{\mathbb{T}}$ and $\alpha_{\mathbb{E}}$. We proceed by Löb induction.

Whenever $S_{need}[\![e]\!]_{\rho}(\mu) = \overline{\text{Step }ev} (S_{need}[\![v]\!]_{\rho_2}(\mu_2))$ yields a balanced trace and makes at least one step, we can reuse the proof for Lemma 55 as follows:

$$\beta_{\mathbb{T}} \quad (\mathcal{S}_{need} \llbracket e \rrbracket_{\rho}(\mu))$$

$$= \frac{\langle \mathcal{S}_{need} \llbracket e \rrbracket_{\rho}(\mu) = \overline{\text{Step } ev} (\mathcal{S}_{need} \llbracket v \rrbracket_{\rho_2}(\mu_2)), \text{ unfold } \beta_{\mathbb{T}} \\ \frac{\langle \mathcal{S}_{need} \llbracket e \rrbracket_{\rho}(\mu) = \overline{\text{Step } ev} (\mathcal{S}_{need} \llbracket v \rrbracket_{\rho_2}(\mu_2)), \text{ unfold } \beta_{\mathbb{T}} \\ \frac{\langle \mathcal{S}_{need} \llbracket v \rrbracket_{\rho_2}(\mu_2) \rangle}{|\mathcal{S}_{need} \llbracket v \rrbracket_{\rho_2}(\mu_2) \rangle|} \\ \leq \langle \text{ Induction hypothesis (needs non-empty } \overline{ev}) \rangle$$

3479

3458

3466 3467

3468

3469

3470 3471

3472

3473

3474

Sebastian Graf, Simon Peyton Jones, and Sven Keidel

step ev $(\mathcal{S}\llbracket v \rrbracket_{\beta_{\mathbb{F}} \mid \mu_2 \triangleleft \rho_2})$ 3480 lemma 55 § 3481 3482 $\mathcal{S}[\![e]\!]_{\beta_{\mathbb{F}}} \mu \triangleleft \rho$ 3483 Thus, without loss of generality, we may assume that if e is not a value, then either the trace 3484 diverges or is stuck. We proceed by cases over *e*. 3485 • **Case** Var *x*: The stuck case follows by unfolding $\beta_{\mathbb{T}}$. 3486 3487 $\beta_{\mathbb{T}} ((\rho \mid x) \mu)$ $\langle \vdash_{\mathbb{F}}^{\text{ne}} \rho, \text{Unfold } \beta_{\mathbb{T}} \rangle$ 3488 = 3489 step (Lookup y) ($\beta_{\mathbb{T}}$ (fetch $a \mu$)) 3490 $= (\vdash_{\mathbb{H}}^{\text{ne}} \mu)$ 3491 step (Lookup y) ($\beta_{\mathbb{T}}$ (memo a ($\mathcal{S}_{need}[\![e_1]\!]_{\rho_1}(\mu)$))) 3492 By assumption, *memo a* $(S_{need}[e_1]_{\rho_1}(\mu))$ diverges or gets stuck and the result is equivalent 3493 to $\mathcal{S}_{need}[\![e_1]\!]_{\rho_1}(\mu)$. 3494 3495 = ? Diverging or stuck § 3496 step (Lookup y) ($\beta_{\mathbb{T}}$ ($\mathcal{S}_{need}[\![e_1]\!]_{\rho_2}(\mu)$)) 3497 ? Induction hypothesis 3498 step (Lookup y) ($\mathcal{S}[\![e_1]\!]_{\beta_{\mathbb{F}}} \mu \triangleleft \rho_1$) 3499 ? Refold $\beta_{\mathbb{F}}$ § = 3500 $\beta_{\mathbb{F}} \mu (\rho ! x)$ 3501 3502 Case Lam x body: 3503 $\beta_{\mathbb{T}} (\mathcal{S}_{need} \llbracket \text{Lam } x \ body \rrbracket_{\rho}(\mu))$ 3504 = $\langle \text{Unfold } S_{\text{need}} \|_{-} \|_{-} \langle -\rangle, \beta_{\mathbb{T}} \rangle$ 3505 $fun \ (\lambda \widehat{d} \to \bigsqcup \{ step \ \mathsf{App}_2 \ (\beta_{\mathbb{T}} \ (\mathcal{S}_{\mathsf{need}} \llbracket body \rrbracket_{\rho[x \mapsto d]}(\mu))) \mid \beta_{\mathbb{E}} \ \mu \ d \sqsubseteq \widehat{d} \})$ 3506 ? Induction hypothesis S3507 $fun \ (\lambda \widehat{d} \to \bigsqcup \{ step \ \mathsf{App}_2 \ (\mathcal{S}\llbracket body \rrbracket_{\beta_{\mathbb{F}} \ \mu \lhd \rho[x \mapsto d]}) \mid \beta_{\mathbb{E}} \ \mu \ d \sqsubseteq \widehat{d} \})$ 3508 ? Least upper bound / $\alpha_{\mathbb{E}} \circ \gamma_{\mathbb{E}} \sqsubseteq id$ 3509 $fun \ (\lambda \widehat{d} \to step \ \mathsf{App}_2 \ (\mathcal{S}\llbracket body \rrbracket_{((\beta_{\mathbb{F}} \ \mu \lhd \rho))[x \mapsto \widehat{d}]}))$ 3510 3511 = $\langle \operatorname{Refold} S[[_]]_{\mathcal{S}}$ 3512 \mathcal{S} Lam $x \ body$ $\beta_{\mathbb{F}} \ \mu \triangleleft \rho$ 3513 • Case ConApp k xs: 3514 3515 $\beta_{\mathbb{T}}$ (S_{need} [ConApp k xs]_o(μ)) 3516 = $\langle \text{Unfold } S_{\text{need}} [] (), \beta_{\mathbb{T}} \rangle$ 3517 con k (map (($\beta_{\mathbb{E}} \mu \triangleleft \rho$)!) xs) 3518 = $\langle \operatorname{Refold} S[[_]]_{\mathcal{S}}$ 3519 \mathcal{S} Lam $x \ body$ $_{\beta_{\mathbb{F}} \mu \triangleleft \rho}$ 3520 3521 • Case App *e x*, Case *e alts*: The same steps as in Theorem 44. 3522 Case Let x e₁ e₂: We can make one step to see 3523 S_{need} [Let $x \ e_1 \ e_2$] $_{\rho}(\mu) = \text{Step Let}_1 \ (S_{need} [e_2]]_{\rho_1}(\mu_1)),$ 3524 where $\rho_1 \triangleq \rho[x \mapsto step (\text{Lookup } x) (fetch a)], a \triangleq nextFree \mu, \mu_1 \triangleq \mu[a \mapsto memo a (S_{need}[e_1]]_{\rho_1})].$ 3525 Then $(\beta_{\mathbb{E}} \mu_1 \triangleleft \rho_1) ! y = (\beta_{\mathbb{E}} \mu \triangleleft \rho) ! y$ whenever $x \neq y$ by Lemma 52, and $(\beta_{\mathbb{E}} \mu_1 \triangleleft \rho_1) ! x =$ 3526 step (Lookup x) ($\mathcal{S}[\![e_1]\!]_{\beta_{\mathbb{F}}} \mu_1 \triangleleft \rho_1$). 3527 3528

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2024.

1:72

3529	$\beta_{\mathbb{T}} (\mathcal{S}_{\text{need}}\llbracket \text{Let } x \ e_1 \ e_2 \rrbracket_{\rho}(\mu))$
3530	= $\langle \text{Unfold } S_{\text{need}} \ _{-} \ _{-} \langle - \rangle \rangle$
3531	$\beta_{\mathbb{T}}$ (bind $(\lambda d_1 \to \mathcal{S}_{need}\llbracket e_1 \rrbracket_{\rho_1})$ $(\lambda d_1 \to \text{Step Let}_1 (\mathcal{S}_{need}\llbracket e_2 \rrbracket_{\rho_1})) \mu$)
3532	= $\langle Unfold bind, a \notin dom \mu, unfold \beta_T \rangle$
3533	step Let ₁ ($\beta_{\mathbb{T}}$ (\mathcal{S}_{need} [[e_2]] $_{\rho_1}(\mu_1)$))
3534	$\sqsubseteq \qquad (Induction hypothesis, unfolding \rho_1)$
3535	$= (\operatorname{Induction} H) \operatorname{points}, \operatorname{unif} p_1)$ step Let ₁ ($\mathcal{S}[\![e_2]\!](\beta_{\mathbb{F}} \mu_1 \triangleleft \rho)[x \mapsto \beta_{\mathbb{F}} \mu_1(\rho_1 \mid x)])$
3536	$= \int \text{Expose fixpoint, rewriting } \beta_{\mathbb{E}} \mu_1(\rho_1!x) \text{ to } (\beta_{\mathbb{E}} \mu \triangleleft \rho)[x \mapsto \beta_{\mathbb{E}} \mu_1(\rho_1!x)] \text{ using Lemma 52 } \int$
3537	
3538	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \ \mu \triangleleft \rho) \llbracket x \mapsto lfp} \left(\lambda \widehat{d}_1 \rightarrow step \left(\operatorname{Lookup} x \right) \left(\mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \ \mu \triangleleft \rho) \llbracket x \mapsto \widehat{d}_1 \rrbracket} \right) \right) \right)$
3539	= $\langle Partially unroll fixpoint \rangle$
3540	$step \operatorname{Let}_1 \left(\mathcal{S}\llbracket e_2 \rrbracket_{(\beta_{\mathbb{E}} \ \mu \triangleleft \rho) [x \mapsto step \ (\operatorname{Lookup} x) \ (lfp \ (\lambda \widehat{d}_1 \rightarrow \mathcal{S}\llbracket e_1 \rrbracket_{(\beta_{\mathbb{E}} \ \mu \triangleleft \rho) [x \mapsto step \ (\operatorname{Lookup} x) \ \widehat{d}_1]}))] \right)$
3541	$\sqsubseteq (Assumption BIND-BYNAME, with \widehat{\rho} = \beta_{\mathbb{E}} \mu \triangleleft \rho) \xrightarrow{[x \to step (Lookup x) d_1]}$
3542	$ = (\text{Assumption Diversity, with } p = p_{\mathbb{E}} \ \mu bind \ (\lambda d_1 \to S[[e_1]]_{(\beta_{\mathbb{E}} \ \mu < \rho)[x \mapsto step \ (\text{Lookup } x) \ d_1]}) $
3543	
3544	$(\lambda d_1 \to step \operatorname{Let}_1 (S[[e_2]](\beta_{\mathbb{E}} \mu \triangleleft \rho)[x \mapsto step (\operatorname{Lookup} x) d_1])) = \langle \operatorname{Refold} S[[\operatorname{Let} x e_1 e_2]]_{\beta_{\mathbb{E}}} \mu \triangleleft \rho \rangle$
3545	
3546	\mathcal{S} [[Let $x \ e_1 \ e_2$]] $_{eta_{\mathbb{E}}} \ \mu ext{ } \circ ho$
3547 3548	
3549	We can apply this by-need abstraction theorem to usage analysis on open expressions, just as
3550	before:
3551	
3552	Lemma 57 ($S_{usage}[-]$ abstracts $S_{need}-$, open). Usage analysis $S_{usage}[-]$ is sound wrt. $S_{need}-$,
3553	that is,
3554	$\alpha_{\mathbb{T}} \{ \mathcal{S}_{need} \llbracket e \rrbracket_{\rho}(\mu) \} \sqsubseteq \mathcal{S}_{usage} \llbracket e \rrbracket_{\alpha_{\mathbb{E}} \lhd \{_\} \lhd \rho} \text{ where } \alpha_{\mathbb{T}} \rightleftharpoons _ = nameNeed; \alpha_{\mathbb{E}} \mu \rightleftharpoons _ = freezeHeap \mu$
3555	PROOF. By Theorem 56, it suffices to show the abstraction laws in Figure 13 as done in the proof
3556	for Lemma 9.
3557	
3558 3559	
3560	
3561	
3562	
3563	
3564	
3565	
3566	
3567	
3568	
3569	
3570	
3571	
3572	
3573	

- 3574 3575
- 3576 3577