
Institut für Programmstrukturen
und Datenorganisation (IPD)

Lehrstuhl Prof. Dr.-Ing. Snelting

Call Arity vs.
Demand Analysis

Masterarbeit von

Sebastian Graf

an der Fakultät für Informatik

Erstgutachter: Prof. Dr.-Ing. Gregor Snelting
Zweitgutachter: Prof. Dr. rer. nat. Bernhard Beckert
Betreuende Mitarbeiter: Dr. rer. nat. Joachim Breitner, Dipl.-Inform. Denis Lohner

Bearbeitungszeit: 6. März 2017 – 4. August 2017

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Zusammenfassung

Optimierungen in Compilern für funktionale Programmiersprachen verlassen sich
auf gute Schätzungen dafür, wie oft syntaktische Konstrukte relativ zum umgebenden
Kontext ausgewertet werden. Eine Kardinalitätsanalyse berechnet untere und obere
Schranken für diese Auswertungsmultiplizitäten. Während untere Schranken den
Ergebnissen einer Strictness Analyse entsprechen, berechnen Usage Analysen obere
Grenzen.
Der Glasgow Haskell Compiler (GHC) integriert zwei Analysen, Call Arity und

Demand Analysis, die beide unabhängig voneinander Usage Resultate berechnen.
Diese Arbeit stellt eine Usage Analyse vor, die ihr Gegenstück in beiden Analysen

verallgemeinert. Eine komplexe Analysereihenfolge hat zu einem neuartigen, graph-
basierten Ansatz zur Fixpunktiteration geführt, losgelöst vom Syntaxbaum. Saubere
Trennung von Analyselogik und Aufbau des Datenflussnetzwerks wird durch eine
eingebettete domänenspezifische Sprache gewährleistet.

Optimisation passes in compilers for functional languages rely on good estimates
for how often some syntactic construct is evaluated relative to its enclosing context.
A cardinality analysis computes lower and upper bounds to these relative evaluation
multiplicities. While the lower bounds correspond to the results of a strictness
analysis, the upper bounds are computed by usage analyses.

The Glasgow Haskell Compiler (GHC) integrates two analyses, Call Arity and
Demand Analysis, that compute usage results independently of another.
This thesis introduces a usage analysis that generalises its counterpart in both

analyses. Challenges in analysis order necessitated a novel graph-based approach to
fixed-point iteration, detached from the syntax tree. An embedded domain specific
language cleanly separates construction of the data-flow framework from analysis
logic.

Contents
1 Introduction 7

1.1 Contributions . 8

2 Preliminaries 11
2.1 Analysis Zoo . 11

2.1.1 Cardinality Analysis . 11
2.1.2 Strictness Analysis . 12
2.1.3 Usage Analysis . 13
2.1.4 Arity Analysis . 14

2.2 Worker/Wrapper Transformation . 15
2.3 Call Arity . 16
2.4 Demand Analyser . 18

2.4.1 Implementation . 18
2.4.2 Untangling Analyses . 21

3 Formal Specification 23
3.1 Object Language . 23
3.2 Analysis Domain . 24

3.2.1 Expression Use and Identifier Usage 24
3.2.2 Usage signatures . 28
3.2.3 Free-variable graph . 30
3.2.4 Free-variable use environment 30
3.2.5 Usage types and lookup of free-variable usage 31
3.2.6 Usage transformers . 32
3.2.7 Lattice Structure . 33
3.2.8 Sequential Composition . 33

3.3 Transfer Function . 36
3.3.1 Lambda Abstraction . 36
3.3.2 Application and Pairs . 37
3.3.3 case Expressions . 38
3.3.4 if Expressions . 39
3.3.5 Variables . 39
3.3.6 Non-recursive Let . 40
3.3.7 Recursive Let . 46

3.4 Relationship to Call Arity and Demand Analysis 49
3.4.1 Call Arity and η-Expansion 49
3.4.2 Recovering Demand Analysis 51

5

Contents

4 Implementation 53
4.1 Object Language . 53
4.2 Top-level Bindings . 54
4.3 On ‘Interesting’ Identifiers . 55
4.4 Graph Representation . 56
4.5 Bounding Product Uses . 57
4.6 Approximating Usage Transformers 57
4.7 Annotations . 59
4.8 Solving the Data-flow Problem . 61
4.9 Monotonicity . 69
4.10 Hacking on GHC . 69

5 Evaluation 71
5.1 Benchmarks . 71

5.1.1 Allocations . 73
5.1.2 Instructions Executed . 75
5.1.3 Compiler Performance . 76

6 Related and Future Work 79
6.1 Related Work . 79
6.2 Future Work . 81

7 Conclusion 83

6

1 Introduction
High-level programming languages abstract from operational details so that the
programmer can focus on solving problems instead of fighting with the concrete
hardware the solution is supposed to run on.

Haskell, being a non-strict purely functional programming language, is an extreme
example of this, going well beyond established language features such as garbage
collection. Rather than encoding a program as an imperative sequence of commands
to execute, programs are specified declaratively as a pure expression to evaluate.
While the programmer benefits from laziness and purity in various ways, the

compiler must be equipped to optimise away entire layers of abstraction to produce
programs with reasonable performance. On the other hand, high-level constructs
such as laziness and purity enable better reasoning about programs also for compilers,
which in turn can do a much better job at optimising.

The Glasgow Haskell Compiler (GHC) is a particularly miraculous implementation
of Haskell, producing artifacts which perform within the same order of magnitude as
hand-tuned C code.

As a compiler becomes more mature, it aggregates a growing number of complicated
analyses and transformations, some of which overlap and interact in non-trivial ways.
Although GHC started out as an academic project to push the boundaries of what
‘high-level’ means, after more than 25 years of development and more than 100.000
lines of code it has also become a challenge in terms of software engineering.

Hence, principles such as separation of concerns and ‘Don’t repeat yourself’ (DRY)
also apply to writing compilers. Also, as the number of users and language extensions
grows, compiler performance has been an increasing woe.

GHC, as of version 8.2, ships with two analyses that share interesting ideas: There’s
Call Arity [3], the result of Joachim Breitner’s dissertation, and a new Higher-order
Cardinality Analysis [17], which integrates with the existing Demand Analyser.
Call Arity tries to η-expand bindings based on usage information in order to make
foldl a good consumer for list fusion, whereas Cardinality Analysis (referring to the
contributions of Sergey et al. [17]) is concerned with identifying single-entry thunks
and one-shot lambdas.
It is not safe in general to η-expand thunks, as it possibly duplicates otherwise

shared work. All is not lost however: It is always safe to η-expand single-entry thunks
to the minimum arity of all possible calls. Thus, in order for Call Arity to justify
η-expansion of thunks, it has to interleave the arity analysis with its own sharing
analysis based on co-call graphs [3] to identify said single-entry thunks. Edges in
co-call graphs correspond to a ‘is possibly evaluated with’ relation between variables.
Therefore, absence of a self-edge implies that a variable is evaluated at most once,

7

1.1. CONTRIBUTIONS

e.g. is single-entry.
In a perfect world, we would just integrate Call Arity’s co-call graphs into Cardi-

nality Analysis and have Call Arity access the analysis results, even if it only was for
concentrating the analysis logic in one place (adhering to DRY). Yet there are quite
a number of problems that need to be solved over the course of this thesis before we
provide a unified analysis in Chapter 3:

Complexity Call Arity currently interleaves the co-call analysis with its own arity
analysis. Information flows both ways, so it seems that the Demand Analyser
will additionally have to integrate an arity analysis. Considering the complexity
of the current implementation at the time of this writing (GHC 8.2) this is
hardly possible. Needless to say that GHC already integrates an arity analysis
in the form of its CoreArity module.

Let bindings Cardinality Analysis employs different analysis orders for let bind-
ings, depending on whether the bound expression is a thunk (LetUp) or not
(LetDn). The arity analysis within Call Arity relies on the fact that all calls
to a binding are analysed before the bound expression is analysed to find the
minimum arity of all calls. This corresponds to the LetUp rule in Cardinality
Analysis and it is not immediate if at all and how these analysis orders can be
combined.

Data structures Although there is some overlap in language when talking about
η-expansion of single-entry thunks, it is not obvious how information from
Cardinality Analysis is to be translated into a format suitable for Call Arity
and vice versa.

1.1 Contributions
We present a usage analysis that generalises both Cardinality Analysis [17] and Call
Arity [3].

After giving a broad overview over the different analyses involved in Section 2.1,
specifically Call Arity (Section 2.3) and the Demand Analyser (Section 2.4), we make
our point for extracting the usage analysis from the Demand Analyser into a separate
analysis in 2.4.2.
A formal specification of the analysis in terms of a simplified language is given

in Chapter 3. The analysis works by abstract interpretation over a domain quite
similar to that of Sergey et al. [17], outlined in Section 3.2. In Section 3.3 follows
the definition of the transfer function, while we discuss how to recover Call Arity
(e.g. η-expansion based on usage) and Cardinality Analysis in Section 3.4.

Chapter 4 discusses challenges solved while implementing the analysis within GHC
8.2.1. Of special note are our insights on solving the graph-based data-flow problem
in Section 4.8 and our thoughts on approximating usage transformers in Section 4.6.

8

1.1. CONTRIBUTIONS

We discuss benchmark results in Chapter 5. As the goal of this thesis was to merge
both analyses, improvements in benchmarks are quite secondary and serve more
as a safety check for the analysis. More critical, we discuss regressions in compiler
performance and how to resolve them.
Chapter 6 discusses related and future work, focussing on how our approach

compares to papers on usage analyses published after Sergey et al. [17], who gave
a brilliant treatment. We also discuss our novel graph-based solver for data-flow
problems and advocate future work in the form of refactorings within GHC, just
before wrapping up in Chapter 7.
Regarding the aforementioned list of problems:

Complexity It turned out that through adopting the language of Cardinality Analysis
to describe analysis results of Call Arity (cf. Section 3.4), we could leverage
the pre-existing arity analysis to handle (the bulk of) η-expansion for us. We
also integrated co-call graphs into the analysis and measured their impact
on analysis results and performance in Chapter 5. Integrating the analysis
directly with the Demand Analyser was considered at first, but quickly rejected,
because of the far reaching consequences of what would have happened to be a
rewrite. We also advocate that this was for the better from a perspective of
separation of concerns as outlined in Section 2.4.2.

Let bindings Current analyses within GHC perform fixed-point iteration directly
along the syntactic structure of the expression to analyse. Effectively, every
analysis defines its own data-flow iteration algorithm, interleaved with actual
analysis logic. Driven by the problems described in Section 4.8 we propose
a novel, graph-based iteration method that separates denoting the transfer
function to syntactic elements from actually computing the fixed-point of the
modelled data-flow problem. In doing so, we can improve precision of analysis
information unleashed at call sites, approximating a polyvariadic analysis. We
also elaborate on the Pros and Cons of LetUp vs. LetDn in Sergey et al.
[17] and prove that, if it wasn’t for losing shared work, LetDn is strictly
more precise than LetUp even in the presence of co-call graphs at the end of
Section 3.3.6.

Data structures We realised that the analysis information Call Arity provides can
be recovered by doing arity expansion based on usage information as explained
in Section 3.4. This allowed us to get rid of the interleaving of arity und
sharing analysis within Call Arity, which finally led to full generalisation of
both analyses.

9

2 Preliminaries
This chapter will start out by laying out some ground work for later sections.

There seems to be no ubiquitous domain language on the various cardinality
analyses floating around in papers over the years [9, 20, 18, 7, 12, 3, 22, 14, 17], so
Section 2.1 will provide a glossary for that.
We’ll give abridgements of the two analyses we aim to generalise in Section 2.3

and Section 2.4.

2.1 Analysis Zoo
Prior work disagrees in what meaning they assign to different concepts related to
analyses that track evaluation counts in some way.
Just to name an example, the concept of demand within GHC refers to a pair

of strictness and usage information, while Wansbrough [22, Appendix C.2] defined
demand as evaluating a binding to weak head normal form (WHNF), as opposed to
applying the bound expression to one argument (use).

2.1.1 Cardinality Analysis
A cardinality analysis answers questions regarding how often some syntactic thing is
used with respect to a single evalutation of the outer context.
Let us understand this by examining the following example:

main = do
let a = ...

b = ...
c = ...
d = ...
e = ...

print (a + if b then a∗d else c∗c)

A sophisticated compiler for a lazy language can find out the following facts, always
assuming a single execution of main:

• The binding for a is evaluated at least once.

• The binding for b is evaluated exactly once.

• The binding for c is either evaluated twice or not at all.

11

2.1. ANALYSIS ZOO

• The binding for d is either evaluated once or not at all.

• The binding for e is absent, e.g. not used even once.
Based on these facts, the compiler can apply a number of optimisations:

Call-by-value Since a and b are evaluated at least once, the compiler is free to
apply a call-by-value evaluation strategy for them. Recovering strictness in
this way makes a huge difference, as subsequent transformations such as a
worker/wrapper transformation [5] may exploit this information to great effect.

Call-by-name Because b and d are evaluated at most once, the compiler can employ
a call-by-name strategy instead of call-by-need. Operationally, this omits
unnecessary thunk updates for these so-called single-entry thunks, because the
computed value doesn’t need to be memoised.

Absence The example doesn’t mention any use of e. Such absence can be exploited
by not generating code for the binding at all, or replace the binding by
an error message in case of analysis failure. Absence is also important for
the worker/wrapper transformation [5], in that it conjures custom calling
conventions that won’t need to mention (partially) absent arguments at all.

Of course, call-by-value and call-by-name are mutually exclusive, which means
that for b the compiler must choose between the two. In practice, that is an easy
choice: Call-by-value enables much more effective optimisations than call-by-name.
Nonetheless, the share of single-entry thunks is dominating (70% according to same
dated results of Marlow [12]) and deemed worth optimising.

Note that we only care for the three cardinalities {0, 1, ω} in our examples: Every-
thing beyond the second evaluation carries no usable information, thus we denote
the cases of ‘evaluated multiple times’ with ω.

As in the above example, possible cardinality may also depend on runtime informa-
tion, so that information is better reflected as a subset of {0, 1, ω}. Most interesting,
however, are the over-approximating (e.g. maximum) and under-approximating
(e.g. minimum) cardinalities, which act as proofs for the compiler to justify said
optimisations.

Thus, a cardinality analysis assigns each binding an interval of its maximum und
minimum evaluation cardinality, relative to a single evaluation of the binding site.
In the example above, a would be annotated with [1, ω] (evaluated at least once,

possibly many times), whereas the absent e would be annotated with [0, 0] (evaluated
at most never).
This is exactly the notion of usage-interval analysis in Sestoft [18, Chapter 5],

which defines ‘usage count’ as what we call cardinality.

2.1.2 Strictness Analysis
Analogous to the distinction of alias analyses between MayAlias and MustAlias in
typical imperative languages, cardinality analysis can be split in two separate passes,

12

2.1. ANALYSIS ZOO

MinCard and MaxCard. Looking at the MinCard problem, the only information that
is exploited by compilers so far is that of strictness.
An expression ... let x = e in body ... is strict in the binding x if the whole

expression diverges whenever e does. Put another way: If an expression is strict in
some binding x, the expression will certainly evaluate x on all code paths, e.g. x is
evaluated at least once.

Finding out whether or not a binding is evaluated at least once, relative to a single
evaluation of the binding expression, is the goal of strictness analysis. Strictness
analysis enables the call-by-value optimisations explained above and caters for the
worker/wrapper transformation [5], sketched out in Section 2.2.

Note that from a MinCard perspective, there is at least one more bit of information
that would also be of interest, namely if a binding is evaluated at least multiple
times (e.g. annotation [ω, ω]). There is no real gain for compilers in knowing that
information! This leads to delightful simplicity in the implementation of strictness
analysis compared to MinCard or MaxCard in the case of thunks (cf. Section 2.4.2).

2.1.3 Usage Analysis
Strictness analysis captures all necessary information on MinCard, e.g. if α in the
annotation [α, β] is 0 or 1.

We refer to the analogue of MaxCard as a usage analysis. A usage analysis provides
an over-estimate to cardinality. For a given binding, it finds out at most how often
the binding is evaluated in a single evaluation of the binding expression.
Both absence analysis (e.g., is β in the cardinality annotation [α, β] at most 0?)

and sharing analysis (e.g., is β in the cardinality annotation [α, β] at most 1?) are
generalised by usage analysis.

The results of a sharing analysis support the call-by-name optimisation from above,
while absence information is needed together with strictness information for the
worker/wrapper transform.

As Verstoep and Hage [21, Section 2.4] point out, a sharing analysis finds out
similar results as a static analysis based on uniqueness types. They serve different
purposes, however; Uniqueness information is propagated during type-checking and
may affect which programs are rejected, while sharing analysis is an enabling analysis
for other optimisations in the middleend.

That also means that the benefits of uniqueness types might carry over to thunks
that a sharing analysis finds to be single-entry, just by changing their type after it
passed type-checking. Hage et al. [7] give an overview over commonalities and differ-
ences of sharing analyses and uniqueness types and provide an analysis generalising
both.

Less far-fetched is the benefit of identifying one-shot lambdas. Roughly speaking,
a lambda is one-shot if a single evaluation of the expression that reduces to the
lambda leads to at most one call of the lambda.
This is best understood by an example.

13

2.1. ANALYSIS ZOO

Example. Consider the function f in the following expression:
let f x y = m∗x + y
in f 1 2 + f 3 4

The outer lambda, binding x, is not one-shot: As the work of evaluating the
expression bound to f to WHNF (which it trivially has) is shared between the two
calls to the lambda.
It is different for the inner lambda, binding y, however. In each of the two calls,

the result of applying f to one argument is immediately applied to another argument.
The redexes f 1 and f 2 represent the relative evaluations here and in each case the
resulting lambda is called once.
Thus, the lambda which binds y is one-shot.

Recognising one-shot lambdas opens up opportunities for a number of further
optimisations [22, Section 6.6.2]:

Floating Normally, floating a let binding inside a lambda risks duplicating shared
work. One-shot lambdas guarantee that the body will not be evaluated more
often than the containing expression, so floating bindings inside is safe.
Note that in the above example, m could not be floated inside the body of f.
Although the inner lambda (y) is one-shot, the outer isn’t.

η-expansion Instead of floating let bindings (and other syntactic things) inside a
one-shot lambda, we can go the other way and float inner one-shot lambdas
out. This process is called η-expansion, as opposed to η-reduction. η-expansion
is not generally safe for ordinary lambdas for the same reasons as floating let
bindings in is not, e.g. possible duplication of work.
η-expansion based on usage information is the key idea behind the efforts of
Breitner [3] of making foldl a good consumer for list fusion.

Inlining Inlining bindings under a lambda risks duplication of shared work, which is
why the inliner needs additional confirmation that the chain of lambdas under
which to inline is one-shot. There is large overlap with the float in case, but
remember that inlining may be beneficial in cases where a binding cannot be
floated in.

All these opportunities boil down to the compiler being cautious not to duplicate
work when shoving something under a lambda. It seems reasonable to annotate
one-shot lambdas while performing usage analysis as the information falls off as a
by-product anyway.

2.1.4 Arity Analysis
We close by characterising arity analyses, a concept unrelated to cardinality on first
sight.

14

2.2. WORKER/WRAPPER TRANSFORMATION

An arity analysis annotates bindings with the number of value arguments they
can be applied to before doing any non-negligible work.

The simplest possible arity analysis would just count the leading chain of lambdas
in the bound expression to ascribe bindings with this manifest arity.

let f b =
if b
then id
else (∗2)

in f True 2

Here, f has manifest arity 1. While this starts out as a rather manageable
analysis, GHC’s arity analysis is much more involved, having to deal with coercions,
instrumentation and cost models.
In the above example, GHC would consider the if expression matching on a

variable cheap to duplicate and thus expand f’s arity (by η-expanding its bound
expression) to two.

2.2 Worker/Wrapper Transformation
Discussing a transformation in a chapter that is all about analyses seems out of
place, but we refer to the worker/wrapper transformation quite often and this seems
like the best place to sketch out its idea. A detailed treatment can be found in Gill
and Hutton [5].
Consider the following function and its usage:

f (a, b) =
<large body mentioning b>

main = print (f (4, 5))

There is some pointless packing involved in calling f with the pair literal: After
all, f immediately unpacks the pair when called! Also, since a is not used by f in the
first place, it would be enough to pass b.
If f can be inlined, this packing/unpacking immediately gets optimised away by

the simplifier.
If f cannot be inlined (it may be recursive or its body too big), then the compiler

has to leave the call site untouched. That’s a shame, since the repeated boxing and
unboxing performs needless allocation, which especially hurts in hot loops.
The common solution to this problem is to apply a worker/wrapper split to the

function:
f (a, b) =
$wf b

$wf b =

15

2.3. CALL ARITY

<large body mentioning b>

main = print (f (4, 5))
This makes f only a thin wrapper over the actual worker function $wf, which only

takes those components of the pair it really uses (b, that is). Now, f is really cheap
and will always be inlined at call sites, so the needless boxing and unboxing vanishes.
Effectively, the inlinable wrapper exposes a specialised calling convention for the
worker function.

This works even in the face of recursion, where the wrapper can be inlined within
the body of the worker to reduce allocations.

The worker/wrapper transformation is paramount to performance in a non-strict
language like Haskell. In order to justify unboxing primitives like machine integers
(which can be treated like 1-tuples), a strictness analysis must approve the strictness
in the (generally lifted) argument to unbox. An absence analysis can identify which
parts of a record (like a above) are not used at all by the function, so that the number
of arguments passed to the worker is kept minimal. Without this transformation and
its interplay with strictness, GHC could never reach performance within the same
magnitude as C.

2.3 Call Arity
Call Arity [3] is a carefully crafted analysis within GHC, motivated by making foldl
take part in list fusion without compromising in terms of allocations.
It does so by η-expanding bindings based on usage information. This is best

demonstrated by an example:
let f x =

if expensive
then id
else (∗2)

in f 1 2 + f 4 5
Call Arity recognises f as always being called with two arguments and justifies

η-expansion of the expression bound to f to arity two. The justification for why
this doesn’t lose shared work of evaluating the arbitrarily expensive expression (cf.
Section 2.1.3) is that there is no call with arity less than two, so that the sharing
would never be observed.

This would be all there is to arity expansion (e.g. η-expansion of the bound
expression) based on usage, if it weren’t for thunks:

let f =
if expensive
then λx y → y
else λx y → y∗2

in f 1 2 + f 4 5

16

2.3. CALL ARITY

This computes the same expression as the previous example, but has different
operational behavior. Since f is now a thunk (e.g. binds an expression that is not in
WHNF), expanding f to call arity – the minimum arity of each call, as opposed to
Call Arity, the analysis – duplicates the work associated with evaluating expensive.
This work would otherwise be shared between the two calls and unsharing it may in
general degrade performance by an arbirary amount.
It is safe to η-expand thunks to call arity if they are called just once, though:

let f =
if expensive
then λx y → y
else λx y → y∗2

in if b then f 1 2 else f 4 5

This also demonstrates that f can’t be inlined due to imminent explosion in code
size.
Thus, Call Arity tracks in its abstract domain for each binder whether it was

called only once and the call arity (as in minimum arity of each call). The ‘called
once’ part is tracked by a sharing analysis, while call arity is computed by a simple
arity analysis.

As the examples demonstrate, the arity analysis leans on the sharing analysis. The
next example shows that information also flows in the reverse direction:

let f x = expensive
in f 1

A (rather simple) sharing analysis would analyse the binding of f and would have
to assume that expensive is evaluated possibly multiple times, because it is hidden
under a lambda. Under the assumption that f is only called once, with one argument
(!), the sharing analysis can conclude that expensive is only used once.

Thus, the interleaving of sharing and arity analysis within Call Arity makes sense,
although as we see later in Section 3.4, call arity is just the result of exploiting
one-shot and single-entry information.
In order for Call Arity to have available the minimum call arity of an identifier

when analysing its bound expression, it has to analyse let from the bottom up, e.g.
analyse the body before the bound expression.
This has limitations in cases like this:

let x = ...
in let y = 2∗x

in if b
then x
else y

Here, the bottom-up sharing analysis will not find out that x is only evaluated
once. At the point where y is analysed, it is already clear that x was evaluated,
and because y was also evaluated, it seems that x was evaluated twice. That is too

17

2.4. DEMAND ANALYSER

conservative, however: The bottom-up scheme forgot that y and x were evaluated on
different code paths.

Thus, Call Arity employs a novel sharing analysis based on co-call graphs instead.
Co-call graphs track which identifiers are possibly evaluated with each other by an
edge. The absence of a co-call edge proves that the unrelated identifiers are never
evaluated on the same code path.
For the if expression in the above example, the co-call graph looks like this:

b
x

y

It properly reflects that x is never called together with y. The analysis then makes
use of that information when handling the let expression binding y, by effectively
performing substitution of the co-call graph of its bound expression (which contains
the single node x without any edges) for y in the above co-call graph of the body.

After this substitution step, there will be no loop on x, because there was no edge
between y and x. This represents the fact that x is not called with itself, or only
called once, plainly speaking.

Co-call graphs and this rather involved substitution procedure are illuminated in
detail in Section 3.2.3 and Section 3.3.6. Section 5.1 discusses the impact of co-call
graphs on analysis precision and performance.

2.4 Demand Analyser
GHC’s approach to strictness and usage analysis is that of demand analysis.
It is what we referred to as a cardinality analysis (Section 2.1.1), integrating

both MinCard and MaxCard analyses. To make matters more confusing, the part
concerning usage analysis is introduced in Sergey et al. [17], titled ‘Modular, Higher-
order Cardinality Analysis in Theory and Practice’. Later chapters refer to the usage
analysis as implemented in GHC’s Demand Analyser as Cardinality Analysis, in title
case, to disambiguate it from the notion of cardinality anaysis in Section 2.1.1.
On top of producing cardinality results, the Demand Analyser also performs

constructed product result analysis (CPR) [1], the benefits of which are reaped in the
worker/wrapper transformation.

2.4.1 Implementation
Like Call Arity, the Demand Analyser works by abstract interpretation. The abstract
domain is however quite different from that of CallArity: It is a product lattice of
strictness and usage information (e.g. lower and upper bounds of cardinalities).

We focus on the usage analysis (Cardinality Analysis) here, which aims to identify
single-entry thunks, one-shot lambdas and absent bindings [17, Section 2] for the
reasons we explained in Section 2.1.1. They achieve remarkable precision by a number
of interesting features, which describe not only the maximum cardinality of a binding,

18

2.4. DEMAND ANALYSER

but also how a syntactic thing was used. We borrow the same language for our usage
analysis, so the curious reader can refer to Section 3.2 for a formal definition.

Call Uses

Identifying one-shot lambdas requires to know about how the expression containing
the lambda was used and to track that information somehow.

The analysis captures this information in call uses it tracks in addition to evaluation
cardinality.
Consider the following expression, similar to earlier examples:

let f x y = ...
in f 1 2 + f 1 3

Here, f is called twice and while the outer lambda (which binds x) is not one-
shot, the inner lambda is. Cardinality Analysis expresses that as a call usage of
ω ∗Cω(C1(U)) on f, where the outer ω is the evaluation cardinality and the ω in the
superscript of the first C indicates that the outer lambda is not one-shot. The inner
lambda is identified as one-shot, as evident by the superscript 1 on the inner C.
Call uses enable the analysis to differentiate the converse case, where the outer

lambda is one-shot, but the inner is not:

let f x y = ...
in let g = f 1

in g 2 + g 3

This results in a call usage of 1 ∗ C1(Cω(U)), reflecting that f was only evaluated
once, because the partial application bound to g was shared.

Product Uses

Call uses would be enough to identify one-shot lambdas. Inspired by the preceding
absence analysis, Sergey et al. [17] however also introduced product uses to track
absence of parts of a structure. This is so that the worker/wrapper transformation
can expose specialised calling conventions as an inlinable wrapper function (see
Section 2.2 for details), while the worker itself might not be inlinable for different
reasons.
Consider the following funny function:

funny p@(a, b) = sum [1..a]

Obviously, funny doesn’t use the second component of its pair argument when
called. In terms of the abstract domain, p is exposed to usage 1 ∗ U(1 ∗ U,A), e.g.
first evaluated to WHNF and then its first component is used once according to
1 ∗ U , but its second component is absent, A.

A neat side-effect of borrowing this from the prior absence analysis is that this is
able to capture call uses on type class methods.

19

2.4. DEMAND ANALYSER

Usage Signatures

There is another important ingredient to Cardinality Analysis.
Languages like Haskell make it easy to define many small functions, which effort-

lessly compose to model more complex logic. This becomes a burden for the compiler,
as every analysis heavily relies on the inliner for good interprocedural results. Even
if the inliner does a good job, there are cases where inlining isn’t possible for reasons
of code size or recursion.
In these cases, an analysis must provide its own interprocedural mechanism to

achieve good results. Cardinality Analysis is no different, so it approximates usage
behavior of functions through usage signatures.
As always, an example helps to get the point:

let const a b = a
in const True (fac 1000)

In this snippet, const has a usage signature of 1 ∗U → A→ •, meaning that when
called with two arguments, const will use its first argument once, but its second
argument not at all.

This is valuable information at the call site of const, where the expression fac 1000
can be regarded as absent.

In order to have the usage signature for functions available at call sites, Cardinality
Analysis analyses the function bound to const before it analyses the body of the let.
This LetDn rule [17] is in contrast to Call Arity, where arity information dictates
an information flow from the bottom up.

Thunks

The LetDn approach works quite well for functions. Things look different for thunks,
though:

let x = ...
in let y = 2∗x

in y + y

Unleashing y’s usage type, comprised of free variable usages and usage signature,
at the evalation sites LetDn-style suggests that x is evaluated twice. That is not
the case, because the reduction to WHNF of y’s bound expression will be shared,
thus x is actually single-entry.

In order not to lose precision, thunks are analysed after the usage they are exposed
to is collected from analysing the body of the binding let expression. This bottom-up
approach is backwards compared to how functions are treated (e.g. bound expression
before body) and is embodied in the LetUp rule. Call Arity uses a LetUp-style
approach for all bindings, because it isn’t concerned with unleashing usage signatures
at call sites.

20

2.4. DEMAND ANALYSER

2.4.2 Untangling Analyses
Demand Analysis, as implemented in GHC, integrates three interdependent analyses.
We will attempt to provide insight into how information flows between strictness,
usage and constructed product result analysis, as well as which other parts of the
compiler depend on the produced information.

Usage Strictness CPR

Worker/Wrapper

SimplifierCorePrep

absence

one-shotsingle-entry

Figure 2.1: Information flow between usage, strictness and constructed product result
analysis and how their results are used by different transformations within
GHC.

Figure 2.1 references the three analyses in question, as well as the transformations
which access the analysis results.

Usage analysis, as this thesis will prove, is pretty much a stand-alone analysis; we
only rely on arity results from a prior arity analysis (part of GHC’s simplifier) to be
present to distinguish thunks (which have arity zero) from functions.

The dashed line between usage analysis and strictness analysis indicates that there
probably is some kind of information flow, like in the form of absence information.
It is hard to tell, because the interactions between usage and strictness lattice in the
Demand module are quite convoluted.

Other than that, constructed product result analysis relies on strictness results to
be present, as can be reproduced by following the GHC Note1 ‘CPR Example’ in the
DmdAnal module.

Absence, strictness and constructed product results are the key ingredients for the
worker/wrapper transformation [5]. GHC’s simplifier uses one-shot annotations on
lambdas for a multitude of optimisations outlined earlier in Section 2.1.3. Single-entry
annotations are only exploited by the backend, after the Core-to-Core-pipeline, which
is represented by the CorePrep pass in Figure 2.1.

We initially tried to integrate Call Arity into the Demand Analyser, but quickly gave
up on the endeavor. Changing the Demand Analyser has far-reaching consequences
through the whole compiler and we were afraid to spend more time fixing regressions
than to actually solve the core problems of this thesis outlined in the introduction.

1Notes are a documentation idiom in widespread use within GHC, to be able to refer to explanations
by a title and reduce duplicate inline documentation.

21

2.4. DEMAND ANALYSER

In fact, we advocate splitting up the Demand Analyser in its three sub-analyses
for the following reasons:

Complexity Stricter separation of concerns would definitely get rid of some of the
complexity in demand analysis. Over the years, many hacks accumulated
within the implementation and the intertwining means that it is not always
obvious which sub-analysis is affected by them. The constant context switching
is also very distracting. Also, the Demand, which models the analysis domain,
has grown quite big and complex over time.

Incompatibilities There are a number of hacks to make the analyses work together.
For example, there is an extra ‘virgin’ iteration only to have stable strictness
results available to do CPR analysis (For further details see the Note ‘Optimistic
CPR in the "virgin" case’ in the DmdAnal module).
Also the LetUp rule is a misfit for strictness analysis. Strictness does not try
to separate ‘evaluated at least once’ from ‘evaluated multiple times‘ (e.g. [1, ω]
vs. [ω, ω]), hence accounting for thunk sharing is not needed. As we will see
later in Section 3.3.6, LetDn provides strictly better precision in some cases
(Note ‘Aggregated demand for cardinality’), so this is unfortunate.

There’s also the issue of perfomance: The Demand Analyser always computes all
analysis results, even if only results of one sub-analysis might be needed. On the
other hand, the repeated AST traversals if the analysis would be split up probably
incur a greater performance hit than what can be gained by being able to analyse
more fine-grained. Of course, this is all just hand-waving as long as there are no
measurements.

The combination of these problems led us to carve out a stand-alone usage analysis
that also generalises the results of Call Arity.

22

3 Formal Specification
As we are heading towards implementation considerations in Chapter 4, we provide
a formal specification of the usage analysis in this section.

Despite being massively more simple than Haskells surface syntax, GHC Core still
captures many details inessential to the analysis. In order to keep the mathematical
formulation as concise as possible, we define the transfer function in terms of a
simplified language in Section 3.1.
Section 3.2 introduces the lattice of usage transformers the analysis will operate

upon.
Finally, in Section 3.3 we will see how each language construct can be denoted by

a usage transformer through a transfer function.

3.1 Object Language

x, y, z, (,),True,False ∈ Var
e ∈ Exp ::= x

| (x1, x2)
| λx. e
| e x
| if es then et else ef
| case es of (x1, x2)→ er

| let x1 = e1 in e
| letrec xi = ei in e

Figure 3.1: A simple untyped lambda calculus

The formalization of the usage analysis operates on a simply untyped lambda
calculus, defined in Figure 3.1.
We extend it in interesting ways to carve out particular details of our analysis.

There are (possibly recursive) let bindings to illustrate sharing of values. We
provide pair constructors, complemented with case expressions to destruct them.

23

3.2. ANALYSIS DOMAIN

An if/then/else construct will highlight how the analysis will cope with alternative
branches of execution.

We draw variable names from an abstract set Var. Of particular note is the identifier
(,), which always refers to the pair constructor as a function of two arguments and
may not be rebound by a let expression. For the sake of simplicity, we mention
boolean literals True and False as variables. The transfer function is unconcerned
with them and can handle them like any other imported identifier.

As is customary in both Sergey et al. [17] and Breitner [3], we assume A-normal
form [16], so that arguments to applications can only mention identifiers. Applications
to non-trivial arguments like e1 e2 must be rewritten as let x2 = e2 in e1 x2, hence
issues concerning sharing only surface while handling let-expressions.
Most code examples will be written in a Haskell-like language anyway, rather

than in this stripped-down language. If there are code samples in object language
(distinguishable by the typesetting of binders, e.g. x vs. x), they should implicitly
assumed to be rewritten according to these rules.

3.2 Analysis Domain
The analysis, defined by the transfer function in Section 3.3, will denote each syntactic
expression with a usage transformer. This section introduces them from the ground
up by defining the relevant concepts.

3.2.1 Expression Use and Identifier Usage
A usage analysis (in the sense of Section 2.1.3) approximates how a use of an
expression translates into a use of its subexpressions. Important analysis information
includes [17]:

1. How many times is the body of a lambda expression evaluated, with respect to
its defining scope?

2. How many times is a particular thunk evaluated, with respect to its defining
scope?

3. Which components of a syntactic expression are never used, that is, absent?

As we saw in Section 2.1.1, a usage analysis computes upper bounds on these
cardinality questions. The answer to the first question above then consists of
identification of one-shot lambdas, e.g. the cases where the body of the lambda
expression is called at most once, relative to its defining scope. Similarly, the second
question is answered by marking thunks which have the single-entry property, e.g.
thunks that are evaluated at most once relative to an evaluation of its binding
expression. Absence is a matter of answering the question if a binding is used at all,
e.g. at most zero times.

24

3.2. ANALYSIS DOMAIN

Cardinality Analysis [17] – the usage analysis that GHC’s Demand Analyser
integrates – provides answers to these questions. Our analysis builds on this ap-
proach in that the central lattices have been borrowed, but have been enriched and
distinguished with further semantic meaning.
Figure 3.2 depicts the Use and the Usage lattice, giving the language we used in

Section 2.4 proper meaning. Typical for a sharing analysis, Multi captures usage
multiplicity, of which the only interesting values in our setting are at most once (1)
or possibly multiple times (ω).

Semantically, a Use describes how the value of an expression is used, after evaluating
it to weak head normal form (WHNF) exactly once.

• The pair use U(u∗1, u∗2) captures the Usage of pair components when the expres-
sion evaluates to a pair.

• A call use Cn(u) suggests that the expression evaluates to a lambda expression.
Additionally, the resulting value was called at most n times relative to the
single reduction to WHNF and the use on the result of each call was not worse
than u.

• If the value of an expression wasn’t used beyond reduction to WHNF, we can
attest the expression a head-use HU , the bottom of the lattice defined by t.
Through the first non-syntactic equality in Figure 3.2, HU is identical to a
pair use of U(A,A).
This arises naturally when, beyond reduction to the pair constructor, no
components of the value were used. Other than that, HU can only be unleashed
on the first argument of a call to the binary primitive seq. Since seq can be
applied to arguments of any type, expressions of function type can also be
head-used.
When a function expression is in head-use, evaluation will stop immediately
after uncovering the outer lambda, the body will not be used. This corresponds
to a hypothetical ill-typed use C0(), meaning the lambda is called 0 times
relative to the single reduction of the function expression to WHNF.

• The most conservative analysis result would be the top of the lattice U , repre-
senting an unknown use beyond reduction to WHNF. Where this differs from
head-use is best understood in terms of the attached equalities in Figure 3.2.
For an expression that evaluates to a pair, unknown use would correspond to
the pair use U(ω ∗ U, ω ∗ U), e.g. the pair components have the worst possible
usage. An unknown use on a function expression can be interpreted as a use of
Cω(U) by the last equality: We don’t know how the resulting function will be
used, so we have to assume multiple calls, each with unknown use.

The syntax for call uses Cn(u) allows to modelmultiple calls of a function expression
relative to a single reduction to WHNF. Yet it is still unclear how expressions can

25

3.2. ANALYSIS DOMAIN

u ∈ Use ::= HU | U | Cn(u) | U(u∗1, u∗2)
u∗ ∈ Usage ::= A | n ∗ u
n ∈ Multi ::= 1 | ω

U(A,A) ≡ HU

U(ω ∗ U, ω ∗ U) ≡ U

Cω(U) ≡ U

u1 t u2 = u3

U t u = U

u t U = U

HU t u = u

u tHU = u

Cn1(u1) t Cn2(u2) = Cn1tn2(u1 t u2)
U(u∗1, u∗2) t U(u∗3, u∗4) = U(u∗1 t u∗3, u∗2 t u∗4)

u∗1 t u∗2 = u∗3

A t u∗ = u∗

u∗ t A = u∗

n1 ∗ u∗1 t n2 ∗ u∗2 = (n1 t n2) ∗ (u∗1 t u∗2)

n1 t n2 = n3

ω t n = ω

n t ω = ω

1 t 1 = 1

Figure 3.2: Syntax of expression Use and identifier Usage with non-syntactic equalities
and the definition of the least upper bound operator t.

26

3.2. ANALYSIS DOMAIN

be used in such a way – we would need to share the work done by reducing the
a function expression to WHNF, so that we can call the resulting value at least
twice. Such sharing can be introduced by binding an expression to an identifier.
By referring to the bound expression through the identifier, we can call the same
expression multiple times, while the reduction of the bound expression to WHNF
only happens (at most) once. Generally, there are various ways to bind an expression
to an identifier. However, our simple object language was carefully crafted so that
sharing is always introduced through let bindings. Other binding mechanisms like
lambdas and case just alias another binding.
It is inappropriate to model usage of an identifier with Use, as identifiers can

syntactically occur more than once, or even be absent. Yet every use site, or usage,
puts the identifier’s bound expression under a Use. Thus, every identifier has an
associated Usage, which describes how often and how, if at all, the identifier was
used.
An identifier Usage of A represents absence of any usage. Right-hand sides of

absent bindings are dead code and never used. A Usage of n ∗ u represents that the
associated identifier was used at most n times, putting its bound expression under
combined use u.
A few examples are instructive in understanding the definitions so far.

Example. Consider the following Haskell expression:
let a = f 0
in let b = f 1

in case (a, b) of
(x, y) → y

If we put the expression under some use U , we find out the following facts by
backtracing evaluation:

• The pattern match variable y has usage 1 ∗ U , x is absent (A).

• The usage on pattern match variables translate to a pair use on (a,b) of
U(A, 1 ∗ U).

• The pair constructor forwards its component usages to identifier usages for a
(A) and b (1 ∗ U).

• Since we recorded a usage of 1 ∗ U for b, we put the right-hand side of the
binding under use U . One call with a single argument results in a usage of
1 ∗ C1(U) on f.

• We recognize that the binding for a is dead, so we don’t need to look at its
right-hand side at all.

We just saw a single call usage 1 ∗ C1(U) on a free variable f. The following
expressions hint at the fact that, in general, right-hand sides of bindings can be

27

3.2. ANALYSIS DOMAIN

put under call uses Cn1(Cn2(. . . Cnk(U) . . .)) for any ni ∈ Multi. This is through
exploiting currying and sharing through bindings.

Example. Consider the multi-call case first:

f 0 0 + f 1 1

This demonstrates how multi-call uses can be introduced. A use of U on the
expression manifests in two sequential usages 1 ∗C1(C1(U)) of f, each corresponding
to a single call with two arguments. These combine to an identifier usage of
ω ∗ Cω(C1(U)): After all, the lambda expression, which the function bound to
f reduces to, is called twice, resulting in two (non-shared!) values. In each case,
these function values are immediately called with one argument.
The following snippet illustrates how multi-calls can be shifted further down the

chain of call uses:

let g = f 0
in g 0 0 + g 1 0

When this expression is put under use U , the subexpression g 1 0 + g 1 0 will
expose g to a usage of ω∗Cω(C1(U)), similar to the previous situation. The expression
bound to g is thus used with Cω(C1(U)). Itself being a partial application, the
bound right-hand side will subject f to a usage of 1 ∗ C1(Cω(C1(U))).

The Usage multiplicity n ∗ represents how often a given thunk is evaluated. Of
course, since thunks promise that the bound expression will be reduced to WHNF at
most once, after the first evaluation the value will be memoised and returned for
each subsequent evaluation of the thunk. As Sergey et al. [17, Section 2.4] points out,
the ritual around memoisation is superfluous if the thunk is not evaluated more than
once anyway! In these cases of single-entry thunks, GHC exploits that call-by-need
coincides with a leaner call-by-name evaluation strategy.

As the remarks in Sergey et al. [17, Section 2.5] point out, in a non-strict language
with the seq primitive, it is even possible for functions to be evaluated multiple
times, yet called only once. If an expression like seq f (f 3) is put under use U ,
this exposes f to a usage of ω ∗ C1(U): f is evaluated multiple times, yet called only
once. This is the same argument that Wansbrough [22, Appendix C.2] makes with
his language of use vs. demand.

3.2.2 Usage signatures
In the last section we developed vocabulary for describing how an expression is used
and to which usage a used expression exposes its free variables. Things don’t look so
well across function boundaries, though:

let f k = 2 ∗ k 5
in let g x = x + 3

in f g

28

3.2. ANALYSIS DOMAIN

If this is put under the typical use U , closer look reveals that k is used as a
continuation inside f, e.g. has the one-shot usage 1 ∗ C1(U). By beta reduction, this
is also the usage that f g exposes g to. How do we digest that information in a way
that it is available at the call site of f?
We follow the approach from Sergey et al. [17] and ascribe usage signatures to

function expressions. Their definition is as follows:

σ ∈ Sig ::= ⊥ | > | u∗ → σ

Equipped with the right language, we would assign the following usage signatures
to f and g:

f :: 1 ∗ C1(U)→ >
g :: 1 ∗ U → >

Usage signatures also come with two non-syntactic identities:

ω ∗ U → > ≡ >
A→ ⊥ ≡ ⊥

These hint at the fact that usage signatures can be expanded to include arbitrary
many arguments (although these are usually prohibited through the type system).
This is helpful in situations where we only have a usage signature to a call with less
arguments available.

The usage signatures > and ⊥ hint at the fact that there is some lattice structure,
so here comes the definition for t:

σ1 t σ2 = σ3

> t σ = >
σ t > = >
⊥ t σ = σ

σ t ⊥ = σ

(u∗1 → σ1) t (u∗2 → σ2) = u∗1 t u∗2 → σ1 t σ2

In any case, > as a usage signature is always a safe conservative approximation.
The opposite applies to ⊥, which expands to an infinite sequence of absent usages.
Where is ⊥ useful? Apart from giving the lattice a least element and thus an identity
to t, it arises in error conditions and non-termination. Specifically, GHC’s primitive
raise# has the usage signature ω ∗ U → ⊥.
Similary, usage signatures elegantly abstract from the myriad of primitive operators

in GHC. For another noteworthy example, the seq operator would have a usage
signature of 1 ∗HU → 1 ∗ U → >.

29

3.2. ANALYSIS DOMAIN

3.2.3 Free-variable graph
We saw in Section 2.3 that central to GHC’s Call Arity analysis [3] is an undirected,
non-transitive, graph datastructure, representing a called-with relationship between
free variables. Such a co-call graph would contain an edge between two free variables,
if it is at all possible that the variables could be evaluated simultaneously, in the
same evaluation of their containing expression, that is. Self-edges in co-call graphs
correspond to a usage multiplicity of ω, e.g. multiple evaluations.
We define co-call graphs as a symmetric binary relation on Var and syntax for

talking about edges within them:

γ ∈ Graph = {γ ⊆ Var × Var | (x, y) ∈ γ ⇔ (y, x) ∈ γ}

x1—x2 ∈ γ⇔ (x1, x2) ∈ γ

Nx(γ) = {y | x—y ∈ γ}

We also use the notation γ\x to mean the graph γ purged by any edges to x.
As teased in 2.3, the cases where co-call graphs yield better results than the usual

usage analyses can be boiled down to the following example:

let x = ...
in let y = 2∗x

in if b
then x
else y

The co-call graph for the if expression crucially does not contain an edge x—y,
since usages of both variables can never happen in the same evaluation of the
expression. Knowing that x is not forced together with y1, we avoid a self-edge on x
after analysing the right-hand side of y.

Consequently, x is recognized of only being evaluated once. Other usage analyses
like that of GHC’s Cardinality Analysis [17] only model self-loops in the underlying
co-call structure (e.g. usage multiplicity), so they would fail to recognize the absent
edge between x and y and conservatively assume x to be called more than once2.

We enrich the usage types of GHC’s Cardinality Analysis [17] with co-call graphs
in order to generalise both (c.f. Section 3.4).

3.2.4 Free-variable use environment
Another key ingredient of the analysis domain is an environment in which we track
usages of free variables. While Sergey et al. [17] encode these directly with a mapping

1Prior to looking at the right-hand side of y is, of course.
2It is worth pointing out that this is only the case when y is a thunk (e.g. not in WHNF), as this
imprecision pertains to the LetUp rule of Sergey et al. [17]. We discuss this in more detail in
Section 3.3.6.

30

3.2. ANALYSIS DOMAIN

from free variables to usages (multi-demands in their language), we track usage
multiplicity separately in a co-call graph (Section 3.2.3).
Thus, we define use environments as partial functions3 with finite domain from

free variables Var to the Use their bound expression is put under:

ϕ ∈ UseEnv = Var ⇀ Use

We write domϕ for the domain of the use environment (or any partial function for
that matter). As with graphs, we also use the notation ϕ\x to mean ϕ where the
domain no longer contains x. Similarly, ϕ �V is the restriction of ϕ to the domain
V ⊆ Var.

To see how we can recover free-variable Usage from a combination of co-call graph
and use environment, see Section 3.2.5.

3.2.5 Usage types and lookup of free-variable usage
The usage signature mechanism captures all relevant argument usage information for
imported global functions. For local identifiers, there’s more relevant information,
however. Consider the following expression:

let f x = x + y
in f y

If put under use U , this evaluates y twice, e.g. exposes it to usage ω ∗ U . That is
because y also has a use site within the function expression bound to f.

So, in addition to a usage signature, a usage type should also include what usage a
function exposes its free variables to4. We’re quite lucky, just having developed the
appropriate structures to capture this!
We define usage types as triples of a co-call graph γ (Section 3.2.3) and use

environment ϕ (Section 3.2.4) for free variables, as well as a usage signature σ to
capture usage of possible arguments:

θ ∈ UType ::= 〈γ, ϕ, σ〉

Additionally, with the overloaded notation θ\x we mean θ, purged by any mentions
of x in its co-call graph and use environment.

As hinted at in Section 3.2.4, we can recover free variable usage in the interplay of
co-call graph and use environment, denoted by the following lookup syntax:

〈γ, ϕ, 〉 (x) =

A, when x /∈ domϕ

1 ∗ ϕ(x), when x—x /∈ γ
ω ∗ ϕ(x), otherwise

3Indicated by ⇀, following wide-spread syntax
4We diverge a little from Sergey et al. [17] here, which define usage types as synonymous to a
usage signature.

31

3.2. ANALYSIS DOMAIN

In our above example, f has the usage type 〈∅, [y 7→ U] , 1 ∗ U → >〉 . Notably, the
co-call graph is empty, while the use environment attests y a use of U . By the rules
of usage lookup, this corresponds to usage of 1 ∗ U exposed on y.
In fact, a usage type describes how a use on an expression translates into usages

on arguments and free variables. So while it is convenient to think of identifiers like
f having a usage type, it neglects that work is shared between multiple usages:

let x = 5∗y
in x + x

If put under use U , this expression exposes x to usage ω ∗ U . The usage type of
x (or, rather its bound expression) exposes y to usage 1 ∗ U . This suggests that y
will be exposed to usage ω ∗ U in the whole expression because of the two uses of x,
which is too conservative: The binding of x will share the reduction to WHNF of its
right-hand side, exposing y to a single usage of 1 ∗ U .
We will revisit this when discussing analysis of let bindings.

3.2.6 Usage transformers
Talking about how an expression uses its free variables makes only sense when
presuming a certain use the expression is put under.
To understand why, the following example is instructive:

let x = expensive 0
in let y = expensive 1

in (x, y)

If put under head use HU , this would not expose x or y to any usage, thus there
are no calls to expensive. When put under use U however, both x and y are exposed
to usage ω ∗ U , in turn calling expensive twice. That can make a huge difference in
computational work, so it is important to always include the use which an expression
is put under.
So, the appropriate way to denote a syntactic expression in terms of usage infor-

mation is in the form of usage transformers5:

τ ∈ UTrans = Use→ UType

When denoting expressions, usage transformers map a Use the expression is put
under to a usage type that describes how the expression uses its arguments and free
variables.

Usage transformers of expressions are monotone maps, in line with the intuition
that the stronger the use you put an expression under, the stronger is the usage it
exposes arguments and free variables to.

5Sergey et al. [17] define these as generalised demand transformers, while their notion of ordinary
demand transformers best corresponds to an approximation of our usage transformers

32

3.2. ANALYSIS DOMAIN

3.2.7 Lattice Structure
Previously, we introduced constructs to which we loosely attributed the properties
of a lattice, specifying how to build least upper bounds in some cases. This section
is dedicated to (re-)defining join operators, so that the join-semilattice structure
we rely upon in Section 3.3 is made explicit. Also, all structures are equipped with
a least element referred to by the overloaded notation ⊥. Readers familiar with
Sergey et al. [17] may skip this section and Section 3.2.8 after having understood the
interplay of co-call graphs and use environment for these operations.
The principal example where joins occur in real languages are when combining

the analysis results of alternatives of a case-expression. However, since our object
language from Section 3.1 only supports very simple case expressions with the sole
purpose of deconstructing pairs, we won’t see joins just there. Instead, we introduced
if expressions for exactly that purpose: Analysis of ifs needs to join the results of
the then and else branches, so that examples can introduce joins for interesting (e.g.
non-complete) co-call graphs.

Figure 3.3 lists all definitions of t for the various algebras involved. The overloaded
least upper bound operators t for Use, Usage, Multi and Sig are mentioned again for
completeness.
Definitions for bottom elements are not explicitly given, but should be obvious

given the definition of t. For UType in particular, it is ⊥ = 〈⊥,⊥,⊥〉 = 〈∅, [],⊥〉 .
We ommitted how UseEnv, TransEnv and UTrans are join-semilattices for brevity.

The first two are partial functions ranging over join-semilattices, giving rise to a
join-semilattice with ⊥ = [] themselves. For usage transformers, the join-semilattice
structure is the pointwise lattice on UType, with the bottom element 7→ ⊥.

The notation a v b is short for a t b = b and induces the typical partial order on
the join-semilattices.
Of special interest in Section 3.3 are monotone usage transformers, e.g. where a

stronger incoming Use maps to a stronger resulting UType, and the approximations
thereof.

3.2.8 Sequential Composition
Until now, we treated sequential composition rather informally. For cases like
x + x it is simple enough to see that x is exposed to usage ω ∗ U . That’s less
obvious for function calls: For example, the usage f is exposed to in f 0 0 + f 0 0 is
ω ∗ Cω(C1(U)).

How can we formalize the process that combines single usages in such a manner?
The answer to that question bears & (pronounced ’both’) in Figure 3.4.

Both calls to f in f 0 0 + f 0 0, for example, would result in a usage type of
〈∅, [f 7→ C1(C1(U))] ,>〉 . Sequential composition with itself would then yield the
expected 〈 {(f, f)} , [f 7→ Cω(C1(U))] ,>〉 .
Sequential composition of usage types deserves special mention with respect to

co-call graphs. The sequential composition of co-call graphs is basically the union

33

3.2. ANALYSIS DOMAIN

u1 t u2 = u3

U t u = U

u t U = U

HU t u = u

u tHU = u

Cn1(u1) t Cn2(u2) = Cn1tn2(u1 t u2)
U(u∗1, u∗2) t U(u∗3, u∗4) = U(u∗1 t u∗3, u∗2 t u∗4)

u∗1 t u∗2 = u∗3

A t u∗ = u∗

u∗ t A = u∗

n1 ∗ u∗1 t n2 ∗ u∗2 = (n1 t n2) ∗ (u∗1 t u∗2)

n1 t n2 = n3

ω t n = ω

n t ω = ω

1 t 1 = 1

σ1 t σ2 = σ3

> t σ = >
σ t > = >
⊥ t σ = σ

σ t ⊥ = σ

(u∗1 → σ1) t (u∗2 → σ2) = u∗1 t u∗2 → σ1 t σ2

γ1 t γ2 = γ3

γ1 t γ2 = γ1 ∪ γ2

θ1 t θ2 = θ3

〈γ1, ϕ1, σ1〉 t 〈γ2, ϕ2, σ2〉 = 〈γ1 t γ2, ϕ1 t ϕ2, σ1 t σ2〉

Figure 3.3: Least upper bound definitions

34

3.2. ANALYSIS DOMAIN

u1 &u2 = u3

U &u = U

u&U = U

HU &u = u

u&HU = u

Cn1(u1) &Cn2(u2) = Cω(u1 t u2)
U(u∗1, u∗2) &U(u∗3, u∗4) = U(u∗1 &u∗3, u

∗
2 &u∗4)

u∗1 &u∗2 = u∗3

A&u∗ = u∗

u∗&A = u∗

n1 ∗ u∗1 &n2 ∗ u∗2 = ω ∗ (u∗1 &u∗2)

ϕ1 &ϕ2 = ϕ3

(ϕ1 &ϕ2)x =

ϕ1(x) &ϕ2(x), when x ∈ domϕ1 ∩ domϕ2

ϕ1(x), when x ∈ domϕ1

ϕ2(x), otherwise

θ1 & θ2 = θ3

〈γ1, ϕ1, σ1〉 & 〈γ2, ϕ2, σ2〉 = 〈γ1 t γ2 t (domϕ1 × domϕ2), ϕ1 &ϕ2, σ1〉

Figure 3.4: Sequential composition operator &

35

3.3. TRANSFER FUNCTION

of both graphs, plus the complete bipartite graph between their domains. Using
proper graph theoretic language, this is exactly the graph join of the two graphs,
but we will refrain from calling it that way in order not to confuse it with the order
theoretic least upper bound operator t from Section 3.2.7 which corresponds to the
graph union.

We also extend the multiplicity notation of usages to usage types to mean exactly
this notion of sequential composition with itself:

1 ∗ θ = θ

ω ∗ θ = θ& θ

We don’t mention usage transformers in Figure 3.4, but assume sequential compo-
sition on them to be pointwise.

It is worth pointing out that it makes only sense to talk about sequential composi-
tion with respect to free variable usage.

When combining usage types, this means we have to decide which usage signature
to return, as combining them has no justifiable meaning. We arbitrarily bias the left
argument in this regard, which is important to keep in mind for the analysis.

3.3 Transfer Function
Equipped with the proper language to talk about usage, in this section we associate
a denoting usage transformer to a syntactic expression of our object language Exp.

The typical way to do so is via a transfer function from expressions to the abstract
domain the analysis operates on. Abstract interpretation is the underlying scheme
here: We interpret an expression in the approximate semantics of usage transformers.
Usage analysis has also been approached via type inference in the past [22], [21].

The following subsections will introduce the different cases of the central transfer
function

T J K : Exp→ TransEnv→ UTrans

Where TransEnv is an environment mapping local let binders to their denoting
usage transformer to be unleashed on use sites:

ρ ∈ TransEnv = Var ⇀ UTrans

3.3.1 Lambda Abstraction
Let’s start by discussing analysis of lambda expressions:

T Jλx. eKρ u =

〈∅, [],⊥〉 , when u = HU

n ∗ 〈γ\x, ϕ\x, θ(x)→ σ〉 , where u v Cn(ub),
〈γ, ϕ, σ〉 = θ = T JeKρ ub

36

3.3. TRANSFER FUNCTION

If the expression is only put under head use, no call happens and there is no need
to analyze the lambda body. Consequently, in that case we can return the ⊥ element
of the UType lattice, reflecting no free variable usage and no use of arguments. Note
this only happens in the wild in conjunction with the seq primitive. For example in
seq (λx → y) 3, the lambda will be exposed to a head use, while 3 will be fully used.

In the other case, we try to approximate the incoming use u by a call use Cn(ub).
We’d like that u is some kind of call use, but if you give a programmer enough rope
to hang himself (e.g. unsafeCoerce) to bypass the type system, it is possible for u to
be incomparable to a call use, i.e. U(1 ∗ U). In this case, the pattern match in the
definition would be incomplete. Thus the slightly less precise, yet still sound notation
using v: In these cases, u always compares to the bottom element U = Cω(U). With
some more notation we could have made clear that we want the least upper bound
of u that is a call use.
Having figured out ub, the use the body is put under, we can transform this use

by analysing the lambda body. The resulting usage type θ = 〈γ, ϕ, σ〉 needs to be
post-processed. For one, we need to remove the free variable x from the type, that
is captured by lambda binder. We also need to prepend the usage on the captured
identifier to the usage signature which we forward from the body. At this point, an
implementation of the analysis would want to annotate the lambda binder with its
usage θ(x). Finally, we have to multiply the usage type by the relative body usage n.

3.3.2 Application and Pairs
The application case e x will have to handle the called expression e first to find out
the usage signature and then expose x to the argument usage:

T Je xKρ u = 〈γe, ϕe, σ〉 & [T JxKρ]∗ u∗

where 〈γe, ϕe, u∗ → σ〉 = T JeKρC1(u)

For an incoming use u we put e under a single call use of C1(u). In the resulting
usage type, we match on the usage signature to get out the argument usage u∗ we
expose x to. Since the domain of usage transformers is concerned with expression
Use, we have to provide a function lifting the domain of usage transformers to Usages.
This is done by []∗ :

[]∗ A = 〈∅, [],⊥〉
[τ]∗ (n ∗ u) = n ∗ (τ u)

The syntax here is reminiscent of the Kleene star, multiplying the result of τ by
the usage multiplicity. Notably, if e doesn’t use its argument, then u∗ = A and x
will be exposed to no usage at all.

37

3.3. TRANSFER FUNCTION

Finally, we sequentially compose the result of using e with the usage type that
the lifted usage transformer of x yielded for an exposure to u∗. After all, both usage
types are unleashed in order to satisfy the use on e x. Note that & is left-biased
with respect to the usage signature. Therefore the signature of the whole application
expression is that of e, relieved by the usage of x.
The seemingly unrelated case of pair literals is handled by the same application

mechanism:
T J(x1, x2)Kρ = T J(,)x1 x2Kρ

Representative for any product type, we handle pairs as applications to a special
identifier for the pair constructor, (,). As mentioned in Section 3.1, (,) is special in
that it cannot be rebound (e.g. shadowed) by let bindings.

Although desugaring pairs in such a way is a nice way to keep the definition short,
it is worth pointing out that the complexity is just delegated to the usage transformer
for the (,) identifier, which will have to provide an appropriate usage signature. We
will handle this in the variable case.

3.3.3 case Expressions

The limited case-expressions of our object language serve the sole purpose of desc-
tructuring pairs.
We denote it with a usage transformer that makes it evident that we are dealing

with a backwards analysis:

T Jcase es of (x, y)→ erKρ u = θr \x,y & T JesKρ U(θr(x), θr(y))
where

θr = T JerKρ u

Observe from the flow of information that in order to analyze the scrutinee es,
we first have to analyze the (in general: every) case branch er. Case statements are
Haskell’s basic construct to specify evaluation order: A typical operational semantics
would first analyze the scrutinee, then choose the appropriate case branch.

The denoting usage transformer will apply the incoming use to the case branch.
In the resulting usage type θr we can look up the usage the pair component binders
x and y are exposed to. Based on that, we can formulate the use on the scrutinee as
U(θr(x), θr(y)).

Finally, we sequentially compose the usage type of the case alternative (purged of
the case binders) with the usage type of the scrutinee under the calculated use. The
left argument to & is θr since the resulting usage signature should be that of the
case alternative, rather than that of the scrutinee.

38

3.3. TRANSFER FUNCTION

3.3.4 if Expressions
In a more elaborate core language like that of GHC, there would be a single case
expression handling algebraic data types with any number of cases.
However, to keep the transfer function simple and concerns orthogonal, it is

favorable to separate out case statements with multiple branches into an if/then/else
construct.

T Jif es then et else efKρ u = (T JetKρ u t T JefKρ u) & T JesKρU

This looks like a simpler version of the transfer function on case expressions. Yet
the usage type of then and else branches are joined together before sequentially
combining with the usage type of the scrutinee. For a general case expression, we
would join analysis results of all branches together in much the same way.

We primarily need if expressions for the sake of illustrative examples, with non-
complete co-call graphs introduced by joining the two branches. For instance, in
the object language expression if b then t else f there will be no edge t—f in the
co-call graph.

3.3.5 Variables
For the variable case, we want the following things to happen:

• Note the single evaluation of x. We need this information for annotating
identifiers, as well as analysing bound expressions later on.

• For any free variables, track to what usage the use on x exposes them to. This
is important for let-bound identifiers.

• Tack a proper usage signature onto the usage type in the case of call uses.

We begin with an auxiliary transformer that captures the first point. This is the
definition for τ 1

x , the transformer putting the variable x once under the incoming use
u:

τ 1
x u = 〈∅, [x 7→ u] ,>〉

Co-call graph and use environment convey that x is exposed to usage 1 ∗ u, while
> is always a sound approximation to argument usage without knowing more about
x.
With that in mind, we can have a look at the transfer function for variables:

T JxKρ =

τ(,), when x = (,)
ρ(x) & τ 1

x , when x ∈ dom ρ

τ 1
x , otherwise

39

3.3. TRANSFER FUNCTION

Ignoring the first two cases for a moment, the default case denotes the single use
of x with τ 1

x .
However for let-bound identifiers, which are handled by the second case, we can

do better than that.
For every let binder, we have a usage transformer denoting its bound expression

available in ρ. The (potential) call to x is approximated by unleashing that usage
transformer at the call site. This is analogous to the LetDn rule in Sergey et al.
[17] and comes with the same trade-off, discussed in Section 3.3.6. We still have to
remember the call to x and do so by sequentially composing with τ 1

x . Recall that the
sequential composition operator & is left-biased with respect to the usage signature,
so the result will have the signature of ρ(x) instead of >.

The remaining first case handles calls to the pair constructor (,) by delegating to
another auxiliary usage transformer τ(,):

τ(,) u =

〈∅, [],⊥〉 , when u @ C1(C1())
〈∅, [], u∗1 → u∗2 → >〉 , when u = C1(C1(U(u∗1, u∗2)))
〈∅, [],>〉 , otherwise

As mentioned in Section 3.3.2, we desugar pair literals as binary applications to
the pair constructor (,).

Information on free variable usage is uninteresting for constructors, in contrast to
their usage signatures.
When the incoming use is less than C1(C1(U)) (e.g. C1(HU)), we are dealing

with a partial constructor application. In that case, the components of the pair are
unused and we propagate back a usage signature of ⊥.

For the second case it is illustrative to consider an application to the pair constructor
like (,)x y.
If put under use U(1 ∗ U,A), we want the component usages to propagate to

x and y through a usage signature announced by (,). What is the use that (,) is
put under? The use on the whole application, wrapped in two single shot calls,
C1(C1(U(1∗U,A))! For this specific incoming use, we want the transformer denoting
(,) to have a usage signature of 1 ∗U → A→ ⊥. In general, for saturated single calls
with arity at least as high as the data constructor’s (that of pairs is two), we can
propagate the usage of the pair components in the usage signature.

The last case handles all other incoming uses with a conservative usage signature
of >.

3.3.6 Non-recursive Let
Resolution of let bindings often bears interesting design decisions of an analysis.

This analysis is no exception to that rule: It combines the ideas from co-call graphs
[3] with the general approach of Sergey et al. [17].

As pointed out in Sergey et al. [17, Section 3.5], on one hand, we want to unleash
calls right at their use site, as if it were inlined, to have a usage signature available:

40

3.3. TRANSFER FUNCTION

let b t f = t
in b 0 (expensive 0)

The usage signature for b would reveal that the expensive computation is never
needed. Thus, we ideally want to analyse let bindings in a downward manner,
analyzing bound expressions before let-bodies. In Sergey et al. [17] this is accounted
for by the LetDn rule.
As they suggest in section 3.6 and we alluded to in Section 3.2.5 however, this

approach loses the shared work of bringing the bound expression to WHNF:

let x = 5∗y
in x + x

Unleashing the usage type of x at each use site would cause the analysis to report
y to be exposed to usage ω ∗ U , where in reality evaluation of the right hand side of
x is shared, hence y is only exposed to usage 1 ∗ U .

In these cases analysis should proceed in an upward manner: Knowing that the
let-body exposes x to usage ω ∗ U , we can analyze the bound expression once in use
U . Remarkably, this means just one evalution to WHNF, exposing y to usage 1 ∗ U .
This is embodied in the LetUp rule of Sergey et al. [17].
At the point where upward analysis unleashes usage types of the bound expression,

precise co-call information is no longer available. As discussed in Section 3.2.3, that
is why co-call graphs are valuable. Recall the example from Section 3.2.3:

let x = expensive 0
in let y = 2∗x

in if b
then x
else y

The LetUp rule would assign x a usage of ω ∗ U . A co-call graph captures the
mutual exclusive call relationship between x and y, so evaluation of y does not need
to be sequentially composed with the other usage of x, resulting in x being exposed
to the expected usage 1 ∗ U .
Note that the LetDn approach would not suffer from this imprecision: If the

usage type of x’s bound expression’s evaluation was immediately unleashed at its use
sites, usages would be on different branches and analysis results would be fine.
As a result, analysis of thunks (e.g. bindings which are not in WHNF) should

respect sharing in a similar way to LetUp, while function calls should be treated in
LetDn-style, as if calls where inlined. Therefore, we flavor the approach of Sergey
et al. [17] with co-call graphs from Breitner [3] to mitigate the discussed imprecision
of LetUp.

41

3.3. TRANSFER FUNCTION

That said, here is the transfer function on non-recursive let bindings:

T Jlet x1 = e1 in eKρ u = (θ n [x1 7→ θ1])\x1

where
τ1 = T Je1Kρ
ρ′ = [x1 7→ τ1 ↓e1] ρ
θ = T JeKρ′ u

θ1 = [τ1 ↑e1]?θ(x1)

Let us start by understanding the auxiliary definitions.
The usage transformer τ1 is the denotation of the bound expression e1. We add

this new usage transformer to the transformer environment ρ under the identifier x1,
yielding a new environment ρ′ which we need to analyse e.

There is a small catch though: Actually we don’t extend ρ with τ1 directly, but a
version modified by the LetDn operator ↓ : UTrans→ Exp→ UTrans, which we
define shortly. This makes sense: The way the transformers in ρ are unleashed in the
variable case (cf. Section 3.3.5) corresponds to the LetDn rule in Sergey et al. [17].

Equipped with the extended transformer environment ρ′, we can proceed to analyse
the body e. We put its denotation under the incoming use u and observe a usage
type θ.
This usage type has information about which usage x1 was exposed to in the

body, expressed as θ(x1). Broadly speaking, θ1 is the result of putting the bound
expression, denoted by τ1, under this usage for a LetUp-like treatment.
For this, τ1 is again modified, this time by the LetUp operator ↑ : UTrans →

Exp→ UTrans.
The resulting usage transformer is then lifted to the domain of Usages with []? .

We already saw a similar operator, []∗ in Section 3.3.2. This one lifts with a question
mark, reminiscent of ‘zero or one times’.

[]? A = 〈∅, [],⊥〉
[τ]? (∗ u) = τ u

Now is a good time to introduce the LetDn and LetUp operators:

zap : UType→ UType
zap 〈 , , σ〉 = 〈∅, [], σ〉

42

3.3. TRANSFER FUNCTION

↑ : UTrans→ Exp→ UTrans

τ ↑e =

zap ◦ τ, when e is in WHNF
τ, otherwise

↓ : UTrans→ Exp→ UTrans

τ ↓e =

zap, when e is in WHNF
zap ◦ τ, otherwise

The zap function deletes any information about free variables from a usage type.
The LetDn operator zaps free variable information exactly when the LetUp operator
does not, so we can be sure that for every let-bound identifier, we either unleash
free variable information in LetUp or LetDn fashion, but never both.

When do we unleash LetUp-style? For those identifiers whose bound expression
e is not a value. Conversely, if the bound expression e is already a value, usage
information on free variables will be unleashed at use sites, LetDn-style.

With the ancillary definitions explained, we visit the final expression defining the
denoting transformer. The expression θ n [x1 7→ θ1] sequentially composes θ with
θ1. However it relates only a subset of the free variables of θ to those of θ1 with
co-call edges. This composition step is critical to the precision of Call Arity [3],
where resolution with co-call graphs is first described. Only the neighbors of x1 in
θ can be co-called with everything from θ1, other co-call edges are ommitted. The
n operator can be thought of as a substitution operator for variable graphs. In
θn [x1 7→ θ1], the operator will substitute every mention of x1 by its associated usage
type θ1 and inherit all relevant co-call edges in the process.
We see in a minute an example that clears things up, but let us first have a look

at the definition of this substitution operator:

n : UType→ (Var ⇀ UType)→ UType
θ n [] = θ

θ n [xi 7→ 〈γi, ϕi, 〉]µ = 〈γ, ϕ, σ〉
where

〈γ′, ϕ′, σ〉 = θ n µ

N = Nxi
(γ′)

γ = γ′ t γi t (N × domϕi)
ϕ = ϕ′ t ϕi t (ϕ′ �N &ϕi)

Apart from recursing over the entire finite map in the second parameter (which
makes it a well-defined function), it works very much like the sequential composition
operator & on usage types from Section 3.2.8.
The substitution operator is more precise than plain sequential composition by

selecting only a subset N of variables from domϕ′ which are to be sequentially
composed with domϕi.

43

3.3. TRANSFER FUNCTION

As Breitner [3] proves, it is safe to choose only the neighbors of xi in the co-call
graph for this: All other variables are not actually evaluated together with xi, so we
should not need to sequentially compose them.
Mind that the substitution operator will not actually delete xi from the usage

type, so the transfer function must do so after substitution. The reason for this is
anticipation of recursive binding groups, where the fixed-point iteration relies on
binder usage from the last iteration.

The substitution operator is strongly related to composition graphs G0[G1, . . . , Gn]
as introduced in Golumbic [6, pp. 109], where the n vertices in the outer factor G0
are substituted by the inner factors G1, . . . , Gn.
To wrap this up, we visit some examples contrasting LetUp style analysis with

LetDn, discussing strengths and weaknesses.

Example. Consider the following non-closed Haskell expression:
let x = 5∗a + 3∗b
in if z

then x
else y

We focus on how the let binding will be resolved. For the sake of the example
we can assume that all mentioned identifiers have bound non-function expressions
which are not in WHNF, thus usage types are unleashed LetUp style.

For an incoming use of U , all particular uses in this example are U and all usage
signatures are >. Only the co-call graphs are interesting.

Analysis of the if expressions yields the usage type θ. It reveals that x is exposed
to usage 1 ∗ U , so its bound expression is put under use U . This results in a usage
type θ1 for the bound expression. The associated co-call graphs γ and γ1 are the
following:

γ = z
x

y
γ1 =a b

The substitution step will substitute γ1 into x and immediately flatten the resulting
hypergraph:

z
x

y

a b

Finally, the transfer function will delete all mentions of x from the usage type,
resulting in the final co-call graph

z
y

a

b

Note that a and b are not co-called with y, as expected.

44

3.3. TRANSFER FUNCTION

Example. For another example that focuses on the LetDn rule instead of the
LetUp rule, consider the following slightly modified variant from a moment ago:

let f x = 5∗a + 3∗b
in if z

then f y
else y

This is the nearly same example as before, only the work of the bound expression is
now hidden behind a lambda. So the expression is in WHNF and f will be unleashed
according to LetDn.
When analysing that let binding, we extend the transformer environment with

the usage transformer τ1, denoting the expression bound to f, to yield ρ′.
Analysis proceeds with the let body. The call site of f entails a lookup in ρ′ and

will unleash the usage type (cf. the variable case in Section 3.3.5)

ρ′(f)C1(U) & τ 1
f C

1(U) =
〈
f

a

b
,
[
f 7→ C1(U), a 7→ U, b 7→ U

]
, A→ >

〉

The usage signature conveys that f does not use its argument, so the call does not
use y at all.
That means the whole if expression will have the co-call graph

z
f

y

a b

This differs from the prior example’s graph only in that there are co-call edges
between f and the free variables of its bound expression. These are irrelevant,
however, as for non-recursive let these can never introduce loops on f. After all, how
would f’s bound expression call itself?

The final co-call graph after deleting f is exactly the same as in the preceding
example:

z
y

a

b

This exemplifies that in the case of functions, LetDn is as precise as LetUp with
co-call graphs.

Example. We even found a minimal counter-example where LetUp with co-call
graphs yields worse results than an approach based on LetDn.
Let’s investigate the following definitions:

let f =
if expensive

45

3.3. TRANSFER FUNCTION

then id
else (∗2)

in let x = f 0
in if b

then f ‘seq‘ x
else f 0

The expression bound to x is a thunk, so the binding is unleashed LetUp-style.
Knowing that the usage signature of seq is 1 ∗HU → 1 ∗ U → >, the usage type

of the inner-most if expression is〈
f—x,

[
f 7→ C1(U), x 7→ U

]
,>

〉
Notice how there is a co-call edge from f to x due to the then branch, but also

that f exposed to usage 1 ∗C1(U) because of the else branch. Substituting the usage
type of its bound expression for x will then expose f to usage ω ∗ Cω(U) = ω ∗ U
because of the existing co-call edge.

That’s clearly imprecise: f is only ever called once, even if in the then branch it is
brought to WHNF (e.g. put under head use HU) and then called by evaluation of x,
resulting in a usage of ω ∗ C1(U).

Indeed, that is what we would find out if we unleashed x LetDn-style. As should
be clear by now, we don’t do this because in general there might be multiple calls to
x and the work of bringing down its bound expression to WHNF is shared.

A similar scenario can be elicited by using pair uses instead of call uses.

3.3.7 Recursive Let
Section 3.3.6 was dedicated to explaining analysis of let bindings in great detail. In
particular, the distinction between functions and thunks and how substitution in
co-call graphs works are delicate technicalities.
This section discusses how to extend the analysis to recursive let bindings.
As usual, this will involve fixed-point iteration over the analysis lattice of usage

transformers. However, showing that a fixed-point exists is not trivial, as the domain
formed by usage transformers has infinite height.

Repressing all thoughts on the termination problem ahead, we postulate existence
of a fixed-point combinator fix, satisfying the following typical equation for all f we
possibly pass to it:

fixf = f(fixf)

Where exactly do we need to apply fixed-point iteration?
For one, in order to recurse, the bound expression must have access to its own usage

transformer τ1 through the transformer environment ρ′, so some mutual entanglement
caused by LetDn-style analysis can be expected.
Moreover, the usage type θ from Section 3.3.6, which is used to look up usage of

the bound identifiers within their scope for LetUp-style resolution, only captures

46

3.3. TRANSFER FUNCTION

usage from the body. That was fine as long as only the body represented the entire
scope for the newly bound identifiers, but now that bound expressions may refer
to their own binding group. That’s why the substitution operator does not delete
substituted identifiers from usage types: The iterated usage type will represent the
usage in the scope of the binding group.
Without further ado, the transfer function on recursive bindings is defined as

T Jlet xi = ei in eKρ u = (fix up)\xi

where
up θ = (T JeKρ′ u t θ) n

[
xi 7→ θi

]
θi = [T JeiKρ′ ↑ei

]?(θ(xi) & θ(xi))
ρ′ = fix down

down ρ′ =
[
xi 7→ T JeiKρtρ′ ↓ei

]
ρ

Where the dependency chain of auxiliary definitions flows upwards, e.g. down can
be defined without looking at any other auxiliary definition.
Let’s comprehend it in exactly that order.
We perform the fixed-point iteration that yields the extended transformer environ-

ment ρ′ first, by iterating with down. Note that compared to Section 3.3.6, we had
to abandon τ1 (τi, hypothetically), the transformer denoting the bound expression.
Instead, the definition of τ1 was unfolded at its two use sites within down and θi.
Also, since fixed-point iteration potentially begins with ⊥, we have to make sure to
pass the least upper bound ρ t ρ′ to the bound expression’s transfer function within
down.

Given a stable transformer environment ρ′, we can compute the outer fixed-point
of the up function.
Actual LetUp-style substitution is done in up. The substitution step changed

only in that we substitute into the usage type of the last iteration θ, joined with the
usage type of the body for the first iteration.

As mentioned above, θ represents the usage type of the entire scope of the binding
group. Thus, the bound expressions can be analysed according to the usage θ reports.
Looking at the definitions for θi, identifier usage of xi within its scope is sequentially
composed (&) with itself immediately.

That is a conservative approximation, but a tractable one: As Breitner [3, pp. 102–
104] points out, one-shot recursive bindings are rare enough to neglect this case and
co-call information for the recursive thunk case is flawed anyway.
When iteration of up finally reached a fixed-point, all that remains is to strip off

the identifiers from the resulting usage type.

47

3.3. TRANSFER FUNCTION

Existence of the Fixed-point

As noted at the begin of Section 3.3.7, proofs for the existence of fixed-points in
the two occurences of fix are non-trivial. At the same time, a rigorous proof is out
of scope for this thesis (with respect to both extent and time), so this section will
just provide a sketch. This is so that we motivate and foreshadow implementation
challenges in Chapter 4.

As the Kleene fixed-point theorem states, iterating a Scott-continuous function
f : D → D over a directed-complete partial order (D,v) starting at a bottom element
⊥ always converges towards the least fixed-point:

µ f =
⊔
{fn⊥ | n ∈ N}

By giving usage transformers the structure of a directed-complete partial order
and proving the iterated functions up and down Scott-continuous, we can identify fix
with µ and recover well-definedness.

As noted in Section 3.2.7, usage transformers form a join-semilattice with least
element 7→ 〈∅, [],⊥〉 . For usage transformers to form a directed-complete partial
order, it is enough to show completeness of the semilattice, which transitively reduces
to completeness of the UType join-semilattice and all other mentioned substructures.
However, pair uses don’t even form a directed-complete partial order, as the

following arbitrarily ascending chain proves:

A @ 1 ∗ U(1 ∗ U,A) @ 1 ∗ U(1 ∗ U, 1 ∗ (1 ∗ U,A)) @ . . . @ (1 ∗ U(1 ∗ U,))nA

In practice, and that’s also what the implementation of Sergey et al. [17] within
GHC does, we have to artificially bound the depth of pair uses to reach a fixed-point.

We will revisit this in Section 4.5, where we discuss implementation details regarding
efficient approximation of usage transformers.
Postulating a directed-complete partial order on usage transformers (e.g. by

bounding the depth of pair uses), what remains to be proven is the Scott-continuity
of the iterated functions up and down. Scott-continuity implies monotonicity, but it
is not obvious how up and down are monotone.

Because the up function looks up identifier usage from the usage type, monotonicity
requires that a stronger usage leads to a stronger usage type unleashed by the bound
expression.

In other words: Monotonicity of up requires that the transfer function ranges only
over monotone usage transformers. In fact, termination bugs regarding monotonicity
actually occured while realising the implementation due to the chosen data structures
(cf. Section 4.9).

The proof for Scott-continuity of up would follow a similar argument, so we also
need to prove continuity of all usage transformers in the image of the transfer
function.

48

3.4. RELATIONSHIP TO CALL ARITY AND DEMAND ANALYSIS

Of course, just showing existence of the fixed-point does not imply termination,
let alone any guarantees with respect to runtime complexity. Section 4.6 discusses
efficient approximation of usage transformers in more detail.

Instead of a proper proof of safety in the style of Sergey et al. [17] or even Breitner
[3], we trust in benchmark results (cf. Chapter 5) to have uncovered possible problems.

3.4 Relationship to Call Arity and Demand Analysis

As we jumped through quite some hoops in this chapter to incorporate co-call graphs
into an approach resembling usage analysis in GHC’s Demand Analyser, we now
look at how the combined usage analysis in Section 3.3 relates to Call Arity and the
Demand Analyser.
We will begin by looking at how call arity (the analysis result of the Call Arity

analysis) can be recovered by a combination of arity analysis and η-expansion based
on Use. Subsequently, we show how Call Arity arises as a special case of our usage
analysis.

For the part of GHC’s Demand Analyser that is concerned with usage information
[17] the connection is more obvious, since there is no need to translate between
analysis domains.

3.4.1 Call Arity and η-Expansion

Call Arity [3] presents itself as an arity analysis interleaved with a sharing analysis
based on co-call graphs.

Per-identifier information is a pair of an approximation of the number of calls (e.g.
at most one vs. many) and the minimum arity of any such calls. For single-entry
identifiers, it is always safe to η-expand bound expressions, until their arity matches
the number of arguments of the call. In the case of multiple calls, η-expansion might
hide the otherwise shared evaluation of the bound expression behind a lambda. Hence,
the conservative assumption in the thunk case is to discard all analysis information
and assume arity 0.
Call Arity annotates every let-binder with this call arity, the arity to which the

bound expression can be η-expanded without losing any sharing.
A pair (n, α) of call multiplicity n and minimum arity α is accurately represented

as a Usage of n ∗ Cn(C1(. . . C1(U) . . .)︸ ︷︷ ︸
α−1 times

).

Call arity – or, expanded arity based on usage – can be recovered from identifier
usage and the results of an arity analysis via the following pair of mutual recursive

49

3.4. RELATIONSHIP TO CALL ARITY AND DEMAND ANALYSIS

functions:

expandUsage : Usage→ N→ N
expandUsage Aα = α
expandUsage (ω ∗) 0 = 0
expandUsage (∗ u)α = expandUse uα

expandUse : Use→ N→ N
expandUse HU α = α
expandUse C

ω(u) 0 = 0
expandUse C (u)α = 1 + expandUsage u (max 0 (α− 1))
expandUse α = α

In a nutshell, we can expand beyond arity α as long as the remaining call uses are
still one-shot.
Absent identifiers could be expanded to arbitrary arity (e.g. the bottom of the

lattice), but there is no reason to do so. For identifier usage, we have to take care
of the case where there are multiple use sites and the bound expression is not in
WHNF (implied by an arity of 0). As stated above, expanding thunks with multiple
uses loses sharing, so we don’t do that. In the remaining cases, the bound expression
is a function or with a single-entry thunk, which we can expand based on call use.
A head use can be treated similarly to the absent case, with the exception that

for zero arity we should not expand at all, to avoid surprising interplay with seq. In
case of a multi call on an expression of zero arity, arity expansion must stop in order
not to lose sharing. In the remaining cases of call uses, the bound expression is a
function (hence non-zero arity) or the call use is one-shot. Either way, we won’t lose
shared work by lifting one more lambda to the top-level, so we assume just that and
arity expand the hypothetical lambda body with the peeled call use u.

Knowing how to derive call arity from a combination of the results of usage and
arity analysis, it stands to reason that Call Arity is generalised by our usage analysis.

However, it is not immediately obvious how the analysis strategy for let bindings
is subsumed. Because Call Arity does arity expansion based on use sites, it employs
a LetUp strategy for all bindings. We talked about the trade-offs of LetUp vs.
LetDn in Section 3.2.3 and Section 3.3.6, which are adequately summarised by
saying that our analysis never yields worse results than always analysing LetUp-style
would.

Other than that, we improve on Call Arity in a number of ways:

Usage signatures The mixed LetDn/LetUp style allows us to unleash usage
signatures at call sites for higher-order information, where Call Arity effectively
assumes a usage signature of >.

Pair uses Propagating pair use allows better usage information for functions wrapped
in the pair constructor. This is a common scenario for type class dictionaries.

50

3.4. RELATIONSHIP TO CALL ARITY AND DEMAND ANALYSIS

Call uses Call uses capture more precisely the analysis information of Call Arity
without having to interleave an arity analysis with co-call analysis. Also, there
is less of a split between handling thunks and functions.

As witnessed by the benchmark results in Chapter 5, our usage analysis yields no
results worse than Call Arity, which is rather the point of this thesis.

3.4.2 Recovering Demand Analysis
Our usage analysis bears quite some resemblance to that described in Sergey et al.
[17] (henceforth ‘Cardinality Analysis’), currently implemented in GHC’s Demand
Analyser.

Since, at the core, we employ the same analysis lattice, comparing the two is much
easier than it was for Call Arity. In a way, we generalised Cardinality Analysis as
much as needed to derive the information produced by Call Arity. When we realised
that further generalisation would make for a more uniform formulation, we arrived
at the transfer function in Section 3.3.
This results in an analysis that is strictly more precise than both Call Arity and

Cardinality Analysis and that precision can be traded for compiler performance on a
broad spectrum (cf. Chapter 4).
That said, we generalise Cardinality Analysis in several aspects:

Unified LetUp/LetDn The strictly separated LetUp and LetDn rules have been
superseded by an approach that always unleashes usage signatures at call
sites LetDn-style (also for thunks). Also, in the LetDn case we put the
bound expression under the precise incoming use instead of digesting the bound
expression for the case of a single call with manifest arity (the number of
leading lambdas, that is).

Co-call graphs We gain precision for the LetUp case by tracking the co-call rela-
tionship (cf. Section 3.2.3 and Section 3.3.6).

Use vs. Usage We treat the usage an identifier is exposed to separate from the use
an expression is put under. This results in a better understanding of what a
one-shot lambda is and when to utilise which domain in general.

Ideal specification The transfer function serving as a specification captures the
essence of the analysis without leaking any implementation details, such as
how approximate the usage transformers unleashed through LetDn are.

We will revisit the issues of how approximate we want usage transformers to be in
Section 4.6.
Specifically, we recover Cardinality Analysis by forgetting information and being

more approximate in the LetDn case, so that a single analysis pass over the bound
expression is enough.
In short, we would need to

51

3.4. RELATIONSHIP TO CALL ARITY AND DEMAND ANALYSIS

• Modify the ↓ combinator (cf. Section 3.3.6) to replace usage signatures by ⊥
for thunks and to distinguish only the three cases of
1. No call having happened (u @ C1(C1(. . . C1() . . .))︸ ︷︷ ︸

n times

for manifest arity n),

in which case a usage type of ⊥ is unleashed.
2. A single call with arity higher than manifest arity n has happened (u v
C1(C1(. . . C1() . . .))︸ ︷︷ ︸

n times

). Actually analyse the bound expression through τ

in that case.
3. Something stronger than a single call happened. Multiply the extracted

usage type by ω in that case.

• Track only self-edges in the co-call graph and conservatively assume all other
edges exist. This corresponds to tracking per-identifier usage multiplicity
separately instead of in a co-call graph, see Section 3.2.3.

52

4 Implementation
This chapter is concerned with the implementation of a usage analysis as specified
in Chapter 3 within the Glasgow Haskell Compiler (GHC). Changes are scattered
over a huge number of files, so the implementation is only available online at
https://github.com/sgraf812/ghc under the branch cocall-full1. The main
analysis file can be found in compiler/simplCore/UsageAnal/Analysis.hs, which
is a fork of the subsumed Call Arity analysis.
A detailed walkthrough of the Haskell code is out of scope and would not be

particularly interesting, so we will instead discuss design decisions and interesting
problems we encountered.

4.1 Object Language
After a Haskell program passes through GHC’s frontend, it is compiled down to an
explicitly typed core calculus called GHC Core. Core is the first of a number of
intermediate languages the program is translated to before an executable artifact is
produced. Already being vastly simpler than Haskell’s huge surface syntax, as can
be seen in Figure 4.1, Core is still quite complex compared to the object language
introduced in Section 3.1.

While Core is still unconcerned with operational details, most optimisations within
GHC are realised as Core-to-Core passes. A non-strict, high-level language like
Haskell provides ample opportunities for optimisation even in this macroscopic
context. The representation as a lambda calculus allows simplification based on term
rewriting, which GHC makes great use of in its simplifier. Functional languages
encourage composition of concise definitions, so GHC supports its optimisations with
an aggressive inliner.
Apart from the simplifier, GHC employs other transformations which rely on

precise information made available by analyses like GHC’s Demand Analyser and
Call Arity. While the Demand Analyser combines strictness analysis [14] with a
usage analysis [17] and constructed product result analysis [1], Call Arity is an arity
analysis interleaved with a sharing analysis based on co-call graphs, to find out which
bindings can be η-expanded without losing any shared work.

As is the case for Demand Analysis and Call Arity, our usage analysis will operate
on and annotate GHC Core expressions.

1And of course in the eventual submission.

53

https://github.com/sgraf812/ghc

4.2. TOP-LEVEL BINDINGS

data Expr b
= Var Id
| Lit Literal
| App (Expr b) (Expr b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion

type Alt b = (AltCon, [b], Expr b)

data AltCon
= DataAlt DataCon
| LitAlt Literal
| DEFAULT

data Bind b
= NonRec b (Expr b)
| Rec [(b, Expr b)]

Figure 4.1: Part of the data types representing the syntax of GHC Core

4.2 Top-level Bindings
The code of a module in GHC Core is represented as a list of top-level definitions,
some of which are exported.
To avoid duplication with the treatment of let bindings, we translate the list of

definitions into an expression of nested lets before the analysis and back after the
analysis.
Which usage are top-level bindings exposed to? For exported bindings, we don’t

oversee all potential use sites, so we have to be conservative and assume ω ∗ U .
Exported bindings are similar to garbage collection roots: All non-absent bindings
must be reachable through an exported binding. This is because the whole scope of
non-exported top-level bindings is statically known.

Based on this observation, it is also clear what the expression within the innermost
let should be: A tuple of the exported identifiers. This encoding of modules is
common-place in languages like JavaScript (by the name of Revealing module pattern)
that lack(-ed) a proper module system.
Considering exported identifiers as roots is necessary, but, as it turned out, not

sufficient. GHC’s rewrite rules and vectorisation declarations possibly mention

54

4.3. ON ‘INTERESTING’ IDENTIFIERS

identifiers which are neither exported, nor otherwise reachable. These must be
included in the root set!

A similar problem occurs for unfoldings. Unfoldings enable inlining across module
boundaries by serialising the unoptimised bound expression into the module’s interface
file, a Haskell-specific compilation artifact like object files. These unfoldings play a
crucial role in revealing opportunities for custom rewrite rules.

Because unfoldings consist of the unoptimized bound expressions, they potentially
reference bindings which are already optimised away or replaced by an optimised
variant in the actual object code. As for rewrite rules and vectorisation declarations,
ignoring unfoldings can result in surprising behavior and unforeseen crashes due to
execution of supposedly absent code.
Correct handling of unfoldings would require to treat them as alternative right-

hand sides of the binding they decorate. Experimental support for unfoldings in the
style of if True then rhs else unfolding resulted in scoping issues of inner bindings,
as well as distortions of analysis results. As we didn’t observe any crashes related to
unfoldings when compiling and running the entire compiler, test suite and benchmark
suite, we postponed proper handling of the problem.

Of course, the simplest sufficient root set would be to include all top-level definitions,
regardless if exported or not. However, that leads to severe performance regressions,
as GHC aggressively floats out local bindings to the top-level if possible. Call Arity,
in particular, relies on the assumption that only exported identifiers are externally
visible to achieve its good results. The Demand Analyser, in contrast, goes with the
conservative assumption that all top-level bindings are used.
The problems we faced are closely related to the problem GHC’s Occurence

Analyser tries to solve, but we refrained from mirroring even more unrelated logic
into an already quite complex usage analysis.

4.3 On ‘Interesting’ Identifiers
Call Arity utilises co-call graphs for its sharing analysis, which can be quite expensive,
because of the inherent quadratic complexity. Although the graph data structure
used for co-call graphs allows for efficient insertion, constructing the adjacency set of
a node is quite costly.
That is why Call Arity tracks only ‘interesting’ identifiers in its data structures,

assuming conservative results for all other identifiers [3]. Identifiers which are deemed
interesting have a function type and are locally let-bound. This is good enough
for the very specific purpose that Call Arity set out to optimize: Formulating the
commonly used foldl as a right fold without causing unnecessary allocation.

Except, we can’t make the same assumptions when we also want to generalise the
usage analysis within the Demand Analyser. From a usage perspective, all bindings
carry important usage information.
Because of the same challenges regarding huge constructor applications outlined

in Breitner [3, Section 3.4.1], co-call graphs are the time and space bottleneck of our

55

4.4. GRAPH REPRESENTATION

analysis.
While the previous co-call graph data structure is well-suited for small graphs,

the representation as an unreduced union of complete and complete-bipartite graphs
makes edge tests require time linear in the size of the union in the worst case. Let
alone the unpredictable space usage, possibly exceeding quadratic complexity for
the same reason. Paired with the requirement imposed by fixed-point iteration
to efficiently check co-call graphs for equality, we chose to revise the graph data
structure to be represented in a more predictable reduced form, as explained in
Section 4.4.

4.4 Graph Representation
Section 4.3 brought up performance issues regarding the data structure used to model
graphs.
Call Arity necessitated an efficient way to handle either sparse or dense graphs.

Breitner [3] chose to represent graphs as a simple, unreduced union of complete and
complete bipartite graphs, simply because it provided the right tradeoffs for small-
to medium-sized graphs.

However, since we got rid of the notion ‘interesting’ variables (cf. Section 4.3), the
performance issues resurfaced.
The unreduced union representation has problems when the union consists of

many, small graphs: Computing the adjacency set of a node, or even simply testing
for an edge in a graph of constant size, may take time linear in the length of the
union. Space complexity is unpredictable in the same way: Even for represented
graphs of constant size, the size of the representation scales linearly in the length
of the union. Uniting a graph itself results in a graph of twice the size. Such an
operation is quite common in fixpointing, so exponential blowup is imminent.

More concretely, at one point through development, space usage exceeded sixteen
gigabytes for some input files, bogging down the whole development system.
Hence, in order to have better guarantees about space and runtime complexity,

we took inspiration in representing the common cases of sparse and dense graphs
efficiently. We made sure that edge tests were still efficient by storing the represented
graph’s node-indexed adjacency sets (witnessed by an isomorphism Graph ' Var→
P(Var) modulo symmetry) directly in a newtype over an IntMap IntSet, leaning on
unique integer keys GHC assigns to variables.
The representation either stores the edge set of the complement graph or the

graph’s edge set directly, depending on the number of edges in the graph. Obviously,
the former exhibits better performance characteristics for dense graphs, while the
latter should be favored for sparse graphs.
When to flip the representation is determined based on the density of the graph:

If the number of edges in representation exceeds a constant threshold greater than
1/2 times the number of potential edges, the graph representation is to be flipped.

Edge tests have become very cheap in the new data structure, while the complexity

56

4.5. BOUNDING PRODUCT USES

hides in implementing the t and & operators, which will need to flip between
representations as appropriate.

While this doesn’t get rid of the potential quadratic space complexity, this tremen-
dously helped in bringing down memory usage to more predictable figures.

4.5 Bounding Product Uses
As pointed out in Section 3.3.7, we need to make sure to bound the depth of product
uses in order for the domain of monotone usage transformers to satisfy the ascending
chain condition, giving some guarantee of termination.

Otherwise, the mentioned infinitely ascending chain actually occurs for usage sig-
natures of coinductive definitions. Such definitions are permitted in a lazy functional
language like Haskell and can also be emulated in strict languages through explicitly
delayed computations. Consider this snippet on lazy streams:

data IntStream = MkStream Int IntStream

triple :: IntStream → IntStream
triple (MkStream x xs) = MkStream (3 ∗ x) (triple xs)

Approximation of the usage transformer of triple will begin with ⊥. If put under
use U , the usage on the first argument will ascend to 1 ∗ U(1 ∗ U,A), then to
1 ∗ U(1 ∗ U, 1 ∗ U(1 ∗ U,A)) and so on.

We currently bound the depth of product uses to 10, which is quite arbitrary.
Termination time, however, is affected exponentially by the cut-off depth.

Foreshadowing the graph-based data-flow iteration approach in Section 4.8, another
approach worth considering would be a cut-off based on iteration state. Instead of
bounding product uses, we could track the number of different uses under which
the same expression was analysed (e.g. the number of stable points in which we
already approximate the usage transformer) and return conservative results for when
a threshold is exceeded.

4.6 Approximating Usage Transformers
As we saw in Section 3.3.7, all denoting usage transformers are monotone, which is a
necessary condition for termination of the analysis.

However, we can’t just naively approximate a function. At least we would need an
appropriate data structure for monotone maps between lattices. Then, we would also
need some way of predicting the points where actual steps in the ascending chain
happen, otherwise we would still need to compute every point.
However, we don’t need to approximate every point of a usage transformer. We

can do much better by recognising that only ever finitely many (most of the time
only one) points of a transformer are accessed!

57

4.6. APPROXIMATING USAGE TRANSFORMERS

After all, for the outermost let expression representing the module, the only usage
type that we are interested in is that under use U . To compute that usage type, we
only ever access single points of a usage transformer, etc.

So, instead of approximating usage transformers at every possible point, we employ
a more demand-driven approach and approximate only those points we transitively
access from the root expression under use U .

C1(HU) C1(U) U

θ

Figure 4.2: Sketch of a monotone usage transformer and a monotone approximation
in four points. Maps a chain in Use to one in UType.

Figure 4.2 shows a (for illustrative purposes continuous) usage transformer that is
approximated in finitely many points. Note that the approximation is stable only in
four points, but possibly unstable in all others. That doesn’t matter much, assuming
that only the four stable points are ever accessed.

This argument is comparable to the difference in evaluation order between dynamic
programming and memoisation: Memoisation follows a demand-driven top-down
scheme, whereas dynamic programming computes the solution from the bottom up.
When the solutions to all subproblems are really needed, both approaches perform
the same work.

However consider the following artificial recurrence of a function for fixed naturals
c and p:

f(n, i) =

n+ i, when n = 0
i ∗ f(n− 1, i ∗ c (mod p)), otherwise

Aside from solving this recurrence in some smart way, let’s compare how the
different approaches would calculate an arbitrary point f(n, i).

A reasonably efficient dynamic programming strategy would need to fill a tableau
with p ∗ n entries, starting with the column f(0, i) for all i. In contrast, memoisation
will just need to follow a single thread of n points through the recurrence to compute

58

4.7. ANNOTATIONS

f(n, i)2.
To make matters worse, if we removed the modulo operator, we could not solve f

with a tableau at all! This is the same situation with monotone usage transformers:
Without knowing at which points the steps in the strictly ascending chain are made,
we cannot compute the monotone map in finite time. Also, a memoisation-based (or
demand-driven, lazy, top-down, . . .) approach computes only those points we are
interested in.

Of course, a recurrence like that of Section 3.3 generalises on problems suited to be
solved by dynamic programming and memoisation, in that the definition of a point
may directly or indirectly refer to itself (e.g., introducing cycles to the dependency
graphs we solve). In terms of a solution strategy, for a typical memoisation problem,
it is sufficient to memoise already computed results in some kind of map. For a
recurrence however, we need to propagate updates of unstable points, leading to the
usual data-flow frameworks solved through fixed-point iteration.

4.7 Annotations
The abstract specification in Section 3.3 leaves out many details a real implementation
must account for.

The most glaring simplification is that of returning analysis results. The specifica-
tion describes how to interpret an expression abstractly with respect to usage, but
forgets to actually announce its findings!

A real implementation would thus thread annotations as an additional output. In
GHC it is common to thread the annotated expressions directly, without collecting
analysis results in some kind of map first. This is a little unfortunate, as a map
would allow to efficiently check for changed annotations. However, intermediate
passes within GHC guarantee only that the unique keys of identifiers are unique
within their scope, so there might be clashes when merging the results of two different
closed expressions.

Thus, our usage analysis annotates expressions directly (this has impliciations on
change detection in Section 4.8) and in fact we annotate the same information as
Sergey et al. [17] does:

1. When analysing lambda expressions, we mark the lambda as one-shot if the
incoming use is of the form C1().

2. We annotate any binder with the usage recorded in the usage type relative
to incoming use. This applies to lambda binders (after we multiply body
usage, but before we delete the binder from the usage type), case binders, data
constructor fields and of course let binders (looked up after the fixed-point of
up is reached, before we delete the binders of the group).

2Granted, there are no overlapping sub-problems, so no caching is needed at all, but that could be
changed by just adding one additional case to the recurrence.

59

4.7. ANNOTATIONS

Note that the annotations depend on the incoming use. This means annotations
only make sense when the use is a conservative approximation to every possible use.
We see in Section 4.8 an example where use on a call site produces too optimistic
annotations, which of course may not be used.

If at one point an expression is absent (which happens only for let bound expression
or arguments), we mark all binders in that expression as absent.
In order to enable more precise results across module boundaries, Peyton Jones

et al. [14] provided demand signatures for each exported function in the module’s
interface file. This was extended by Sergey et al. [17] to usage signatures, and as
such we also annotate each exported function with its usage signature.

Note that by the time we import a function, its free variable usage is uninteresting:
The environments would only mention free variables which were already compiled
and whose usage was conservatively approximated because of unforeseeable use sites.
Hence the usage signature captures all important information.

Now, the usage signature of an expression alone has no semantic meaning without
the use it was produced under. The annotated usage signature is actually a digest of
the full usage transformer, approximated at three prominent points. From a usage
signature for an incoming call use corresponding to the arity α (as computed by an
arity analysis) of the expression, we can derive the following usage transformer:

τx u =

⊥, when u @ C1(C1(. . . C1() . . .))︸ ︷︷ ︸
α times

〈∅, [], σ〉 , when u v C1(C1(. . . C1(U) . . .))︸ ︷︷ ︸
α times

〈∅, [], ω ∗ σ〉 , otherwise

This is really similar to the treatment of product constructors (cf. τ(,) in Sec-
tion 3.3.5), except that there is no polymorphism in regard to the product use of the
call.
Figure 4.3 shows a sketch mapping a chain in Use to one in UType in the spirit

of Figure 4.2. In contrast to the situation for fixed-point iteration, where we start
with optimistic approximations, the digested usage transformer is conservative, e.g.
approximates from above.

It also shows how our usage analysis generalises on the LetDn rule in Sergey et al.
[17]: Their approach is to always interpolate the usage transformer in those three
points, even for local bindings. This guarantees at most one pass over an expression,
disregarding fixed-point iteration. We can recover the same results by modifying the
↓ combinator to simplify all incoming call uses to one of the three cases.
Since we wanted to generalise on Call Arity, at least arbitrary call demands should

be permitted (e.g. truncating products mentioned in incoming call uses to U). We
will see the implications on compiler performance and performance of the produced
artifact in Chapter 5.

60

4.8. SOLVING THE DATA-FLOW PROBLEM

HU u U

θ

Figure 4.3: Sketch of a usage transformer derived from a usage signature for a single
incoming call use u.

4.8 Solving the Data-flow Problem
Analyses within GHC are commonly guided by the structure of the syntax tree. This
is attractive from the point of view of simplicity: An analysis is just a fold over the
expression, returning the annotated expression.

However, for our analysis and with the approach from the last section, we encounter
a problem at bindings like let f x = x in e: How can we know at which uses we
need to calculate the usage transformer of f without looking at e? We know for sure
at the call sites of f, so we can just approximate its usage transformer on demand
while analysing e and memoise it through laziness.

This gets complicated really quickly if we add recursive binding groups:

let fac n =
if n == 1
then 1
else n ∗ fac (n−1)

in fac 12

When we hit the call to fac in the body, we have to query the approximated usage
transformer for a stable value at the incoming call use. For this, we have to perform
fixed-point iteration, assuming a very optimistic ⊥ usage transformer (or a prior
approximation) for fac and iterate until the usage type for the requested use doesn’t
change any more. This means we have to flag any reference to unstable points of the
usage transformer.
Hinting at mutual recursion and recursive calls in different uses, it should have

become clear that going down this route quickly becomes too complex to follow and
implement. That is why analyses like the Demand Analyser deliberately settled
for analysing bound expressions before the body and vice versa, embodied in the

61

4.8. SOLVING THE DATA-FLOW PROBLEM

LetDn and LetUp rules, respectively. These were discussed in Sergey et al. [17,
Section 3.5–3.6] and Section 3.3.6.
Another drawback is that techniques which are concerned with computing fixed-

points, but are otherwise orthogonal to the analysis implemented, are intertwined
with the analysis logic. Analysis order depending on the syntactic structure is just a
minor example of this. A less simple technique is that of caching of analysis results
described in Peyton Jones et al. [14, Section 9.2].
All these approaches are present in every analysis within GHC (or they would

benefit from them, at least) and every analysis for itself may get it wrong in a
particular way, let alone the increase in cognitive complexity.
Looking at compilers for imperative programming languages, data-flow problems

are solved by fixed-point iteration over the control flow graph (or over a graph-based
intermediate representation [2], [11]) and is broken down into two parts.
An iteration strategy determines which nodes in the data-flow graph are still

unstable and need to be recomputed, and the order in which to do so. The chosen
strategy is completely opaque to the data-flow framework to solve, but severely
impacts the time it takes to arrive at a stable solution. Commonly, the nodes which
need to be updated are tracked within a worklist in order not to update currently
stable nodes. The order in which the worklist processes unstable nodes also affects
performance [4]. The caching of analysis results between iterations [14] is a nice
side-effect of the explicit graph abstraction.

Additionally, associated with each node is a transfer function which has the single
responsibility of recomputing analysis information in terms of the current state of its
dependencies.

Driven by the looming complexity in analysis order, we decided to break down our
analysis in a similar manner. In an effort to specify transfer functions separate from
the iteration strategy, we arrived at the (slightly simplified) interface in Figure 4.4.
A DataFlowFramework assigns to each abstract node a TransferFunction and a

ChangeDetector that compares the old value with the updated value to detect when
the node has become stable. For reasons becoming clear later on, the ChangeDetector
is also supplied the set of referenced nodes that changed since the last iteration.

Although we purposefully named the type variable denoting the analysis domain
lattice , we don’t actually require it to model any kind of algebraic structure. This
is something we come back to in Section 4.9.

The first two type parameters of TransferFunction specify in what kind of data-flow
framework the function operates, while the last parameter corresponds to the return
value of that TransferFunction . Talking about what a transfer function ‘returns’ might
not make much sense just yet, but the derived Monad instance hints at how this will
turn out. As always, a Monad instance is useful to weave effects into otherwise pure
computations. We can see that TransferFunction is just an opaque wrapper around
a stateful computation, but have no way of conjuring such a side-effect apart from
cheating our way in with pure.
The single means for introducing a ‘side-effect’ is through dependOn, which an-

nounces an edge in the data-flow graph by referencing the value of another node.

62

4.8. SOLVING THE DATA-FLOW PROBLEM

runFramework
:: Ord node
→ DataFlowFramework node lattice
→ Set node
→ Map node lattice

runFramework = ...

data DataFlowFramework node lattice = DFF
(node → TransferFunction node lattice lattice)
(node → ChangeDetector node lattice)

type ChangeDetector node lattice
= Set node → lattice → lattice → Bool

data TransferFunction node lattice a
= TFM (State (WorklistState node lattice) a) −− not exported!
deriving (Functor, Applicative , Monad)

dependOn
:: Ord node
⇒ node
→ TransferFunction node lattice (Maybe lattice)

dependOn

Figure 4.4: The essence of the Worklist module.

Depending on whether the iteration strategy can provide a value (at least cycles in the
graph have to be broken at some point), it may or may not return a value, in which
case the TransferFunction is obliged to continue with an optimistic approximation
(e.g. ⊥).

Note that just by executing the TransferFunction in another WorklistState , we can
iterate a transfer function in a completely isolated manner. The iteration strategy
decides if the value of a node is immediately to be recomputed in a call to dependOn,
or if a value from a prior iteration is to be returned, or none at all.
The Ord instance on node, apart from being necessary for use as key in a Map,

serves as a priority on the nodes in the worklist. By choosing a total order that
mirrors how an analysis would proceed along the syntax tree, we are promised fast
convergence by GHC’s Occurence Analyser which arranged bindings in a suitable
order.

In practice, we modeled each single point of a usage transformer as a separate node.
This resulted in a specialisation of node to (FrameworkNode, Use)3, where the total or-

3Of course, the total order on Use is not actually compatible with the join-semilattice we usually

63

4.8. SOLVING THE DATA-FLOW PROBLEM

der on FrameworkNode mirrors the syntax tree, and lattice to (UsageType, CoreExpr),
where the returned CoreExpr is annotated with the findings of the analysis. As it
turned out, we lost important structure in forgetting about monotonicity (cf. Sec-
tion 4.9).
Allocating FrameworkNodes for every syntactic element enables caching of inter-

mediate results and avoids whole chains of nodes to be recomputed when no change
is detected. On the other hand, the bookkeeping in the iteration algorithm might
outweigh any performance benefits of caching. Also, memory usage becomes an issue
for big graphs. This is why we decided to only allocate FrameworkNodes where we
had to break cycles in the data-flow graph. Cycles arise exactly where we used the
fix operator to tie knots in Section 3.3.7, thus at least we need to allocate nodes
for the right-hand sides of bindings (referred to as LetDn nodes) and for whole let
bindings (LetUp nodes).

Of course, just by allocating nodes the feedback cycles aren’t broken yet: We need
to detect when an iteration of a node does not change anymore. For usage types,
detecting change is pretty standard by delegating to the derived Eq and can be sped
up considerably by exploiting monotonicity. As an example, we can avoid potentially
quadratic time comparison of co-call graphs by just checking if the number of total
edges changed.

Detecting changes in the annotated syntax tree isn’t so cheap. In fact, traversing
entire expressions is infeasible for huge modules from a performance perspective. We
can rely on another convenient fact, though: Annotated expressions only depend on
subexpressions and themselves don’t introduce dependency cycles. This means that
when the only referenced node that changed was the current node itself, there was
no change to the annotated expression.
That is why ChangeDetectors are supplied the set of changed references: Apart

from checking usage types for changes, it checks if the only reference that changed
was the node itself.

Other than that, we have to allocate a node (root in the example that follows) for
the module expression to have a way to refer to it and then kick off iteration with a
call to runFramework like the following:

result :: Map (FrameworkNode, Use) (UsageType, CoreExpr)
result = runFramework framework (Set.singleton (root , U))

By passing the singleton set as the second argument, we express that the module
expression is put under top use U . From there, the iteration algorithm begins to
explore the data-flow graph in a depth-first fashion. As we already pointed out at
the begin of this section, this is crucial for termination: The graph itself is infinite,
while the set of nodes reachable from (root, U) is finite.

This is best understood by a simple example which already exhibits quite a complex
iteration order.

Example. Consider the following example program, printing the factorial of 12:

refer to and doesn’t have any semantic meaning.

64

4.8. SOLVING THE DATA-FLOW PROBLEM

module Main (main) where

fac n =
if n == 0
then 1
else n ∗ fac (n − 1)

main = print (fac 12)

This will be translated to the following module expression:

let fac n =
if n == 0
then 1
else n ∗ fac (n − 1)

in let main = print (fac 12)
in (main) −− This is a 1-tuple, e.g. introduces a box

Figure 4.5 depicts the resulting data-flow framework, or rather the finite part
reachable from node (root, U) (again, root represents the usage transformer denoting
the module expression).
During the depth-first discovery of nodes, forward edge labels correspond to

discovering (‘calling’) a node and backward edge labels go in the reverse direction
of the edge, e.g. finishing the target node. After the initial depth-first phase, the
worklist algorithm takes over, iterating unstable nodes and propagating changes in
reverse direction of data dependencies, thus after step 12 there are only backward
labels.

The iteration algorithm will start with iterating the TransferFunction of the module
expression, represented by the red node, under use U and then proceed in the following
order:4

1. The transfer function associated with (root, U) forwards to the LetUp node
of the let expression binding fac in the same use, (let1, U) in blue.

2. The depth-first strategy immediately descends into said LetUp node. Since
the binding for fac is recursive, the LetUp node dependsOn itself, for usage
of fac in the last iteration. This is the first iteration, so dependOn returns
Nothing and the usage in the body serves as a first approximation.

3. The body of the outer let is the inner let binding for main, represented by
another blue node (let2, U). Since main is non-recursive, looking at usages in
the body is sufficient.

4Note that we effectively uncurry our transfer function from Section 3.3, turning something of
type Exp→ Use→ UType into something of type Exp× Use→ UType. Thus, TransferFunction
transfers expressions into the domain of usage types instead of usage transformers (see Section 4.9
on impliciations for monotonicity).

65

4.8. SOLVING THE DATA-FLOW PROBLEM

(root, U) (let1, U) (let2, U)

(main, U)

(fac, C1(U))

(fac, U)

−→1 ,←−12,←−20

−→2 ,←−2 ,←−19

−→3 ,←−9

−→9 ,←−11,←−18 −→4 ,←−8

−→5 ,←−7 ,←−17

−→10,←−10,←−16

−→6 ,←−6 ,←−14,←−15

Figure 4.5: Relevant part of the data-flow framework for the fac example. The
module node is drawn in red, LetUp nodes are blue and LetDn nodes
are green. Edge labels correpond to which step in the list below the edge
is traversed during analysis.

66

4.8. SOLVING THE DATA-FLOW PROBLEM

4. The incoming use U translates into a use of U ≡ U(ω ∗ U) on the implied
1-tuple main, which causes a dependency on the LetDn node of main in use U
(LetDn nodes are green).

5. We immediately descend into said LetDn node, where the use U , through
print , puts fac under a call use C1(U).

6. After descending into (‘calling’) the LetDn node fac, the analysis tries to
recurse into (fac, C1(U)). This cycle is broken by returning Nothing from
dependOn; the analysis will compensate for that by unleashing a usage type
of ⊥ at the call site. The result is a (first, approximate) usage type of
〈∅, [fac 7→ C1(U)] , 1 ∗ U → >〉 for (fac, C1(U)). (An irrelevant fact, because
we don’t use the annotated expression: The argument to the bound expression is
annotated too optimistically as being single-entry and the lambda as one-shot.)

7. Analysis of the expression bound to main continues. The call use on fac gets
sequentially combined with the call use from the unleashed LetDn node, for a
total call use of Cω(U) ≡ U . Nothing interesting happens to the literal 12, thus
the usage type of the LetDn node for (main, U) is 〈{(fac, fac)}, [fac 7→ U] ,>〉 .
However, because main’s bound expression is not in WHNF, only the uninter-
esting usage signature is propagated to the call site within (let2, U). Note that
the annotated expression would be calculated at this point, too. We don’t need
it at the call site, but when we handle the let binding in the next step.

8. Unwinding the call stack once more, the inner let binding for main is now
resolved as part of the LetUp node (let2, U). Within the body, main is exposed
to usage ω ∗ U . Thus, there is a dependency on the LetDn node (main, U), at
least for the annotated expression. The algorithm just iterated that node in
the last step, so its result is reused. Since the expression bound to main is not
in WHNF, we also unleash the associated usage type, resulting in a usage type
of 〈{(fac, fac)}, [fac 7→ U] ,>〉 for the whole inner let expression.

9. Another unwind resumes analysis in the LetUp node (let1, U), the binding
for fac. The body exposes fac to a usage of ω ∗ U , even before sequentially
composition with itself induced by the recursive let case. Although the right-
hand side of fac is in WHNF (so usage types have been unleashed at call
sites), we still need the annotated expression under use U . This introduces
a dependency on the LetDn node (fac, U) for which there is no value yet,
causing the algorithm to do a ‘call’.

10. Analysis of fac under use U yields the same usage type as under use C1(U),
but that is quite irrelevant. More important, the lambda is not one-shot
and the argument binder for n is not single-entry, contrary to the optimistic
situation under use C1(U). Also, (fac, U) is not ‘recursive’, rather it depends
on (fac, C1(U)).

67

4.8. SOLVING THE DATA-FLOW PROBLEM

11. Unwinding to (let1, U) again, this results in an uninteresting usage type
〈∅, [],>〉 for the annotated expression.

12. Finally, analysis proceeds in the top-level (root, U) node, which just forwards
the results from (let1, U).

13. Now the actual worklist algorithm takes over: While computing the current
approximation, we were using unstable results (e.g. where dependOn returned
Nothing) for (fac, C1(U)) and (let1, U).

14. (fac, C1(U)) has the higher priority, so it is iterated first. This results in a
more precise usage type of 〈{fac, fac}, [fac 7→ U] ,>〉 . The change marks the
referrers (fac, C1(U)), (fac, U) and (main, U) unstable.

15. After one more iteration, (fac, C1(U)) is deemed stable. Although irrelevant,
the annotated expression stayed the same.

16. Next highest priority node is (fac, U), where the change on (fac, C1(U)) yields
the same usage type (which was not used) and the same annotations. The
change in usage type marks its referrer (let1, U) as unstable once more.

17. In (main, U), the changes in (fac, C1(U)) did not make a difference at all, so
the node is still stable. Hence, no need to reiterate (let2, U).

18. The only unstable node left is (let1, U). The usage type from the last iteration
is unchanged, but the annotations in fac changed. So its referrers (let1, U) and
(root, U) are marked as unstable.

19. Another iteration on (let1, U) reveals no further change.

20. Finally, the (root, U) node is iterated and marked as changed because of
annotations in sub-expressions. That however does not mark any referrer as
unstable, since there are none.

21. The algorithm returns the current stable graph as a map from nodes to results.

The infiniteness of the graph surfaces at the two different nodes for fac: Actually,
there are many more of these nodes, but only the two points for C1(U) and U are
reachable from (root, U).

Breitner [3, Section 3.6.6] anticipates the connection of the ad-hoc analyses in
GHC to data-flow problems and the possibility of a uniform solution procedure
through iterating data-flow frameworks. This work, in particular the Worklist
module, solidifies these findings and provides a rather elegant embedded domain-
specific language for constructing such frameworks. Eventually, we plan to release
this module as a separate package on Hackage, after it has gone through some
polishing.

68

4.9. MONOTONICITY

We could see this kind of graph-based data-flow iteration becoming more feasible
by associating a FrameworkNode with each CoreExpr constructor (or rather each
subexpression). This would get rid of the extra book-keeping required to assign good
priorities to nodes through the FrameworkBuilder code, which is actually inessential
to the analysis and mostly contained in buildAnalFramework in UsageAnal.Analysis.

An optimisation worth implementing would be to take advantage of the bounded-
ness of allocated FrameworkNodes, through which the graph data-structure admits a
mapping to a plain STVector. Using lazy functional state threads [10], this would
achieve constant time lookup and update at least for whole usage transformers.

4.9 Monotonicity
As we outlined in Section 3.3.7, monotonicity of all involved usage transformers
is essential in proving existence of the fixed-point. Section 4.6 pointed out that
approximating usage transformers in finite time is still impossible without restricting
interest to a finite set of points.

This led to a data-flow framework in Section 4.8 where we modeled each single point
of a usage transformer as a separate node. We argued that this is similar to uncurrying
the transfer function in Section 3.3 from Exp → UTrans ≡ Exp → Use → UType
to Exp× Use→ UType. The problem with doing so is that it doesn’t preserve the
monotonicity of denoting usage transformers.

To be more precise, the transfer function is more accurately described by the type
Exp→ (Use→+ UTrans), where →+ denotes a monotone map.

Where does this bite? Well, we relied on monotonicity in our argument for proving
existence of the fixed-point. Of course, uncurrying didn’t change the actual semantics,
but modeling each point separately means that prior to reaching the fixed-point,
there are unstable intermediate approximations which might not be monotone. It
turns out that convergence depends even on these unstable approximations to be
monotone.

This is easy to reproduce by removing all mentions of the monotonize function from
the main analysis module and then running the test joao-circular with a devel2
flavored build of the compiler. The file Visfun_Lazy.hs will violate a monotonicity
check while updating the value of a framework node. Unfortunately, that file is
rather huge and convoluted, so a detailed analysis is out of question.

4.10 Hacking on GHC
Working on a central part of a ‘real-world’ compiler such as GHC was challenging in
ways beyond thinking about combining two analyses on a drawing table.

Usage information is critical to many other Core-to-Core passes within GHC.
More subtle bugs require entire days of tracing through tests and thinking hard for
minimal reproductions in order to better understand the problem.

69

4.10. HACKING ON GHC

Many bugs hid behind module boundaries, because the code concerned with
serialising usage signatures is quite scattered. Some identifiers, such as dictionary
selectors, primitive operators and runtime errors, get special treatment by GHC, the
places at which this happens were discovered in a number of successive debugging
sessions.
Not-so-absent thunks which the analysis identified as absent led to crashes at

runtime, only more informative than a segmentation fault in that the message
mentions absence as a reason.
So it came that the most gnarly class of bugs manifested themselves as absent

errors which only popped up across module boundaries, involving type class instances
referencing absent thunks. It took quite some time and head-scratching to nail
down rewrite rules as the culprit, which had to be regarded as reachability roots as
explained in Section 4.2.
GHC’s build system was another thing that took some time to get accustomed

to. Especially figuring out which things needed to be rebuilt after some change and
what various build settings did, took a lot of trial and error. Sometimes even a
make clean wouldn’t get rid of some clearly build system-related issues, leaving no
choice but to do a complete fresh checkout. Experiences like the latter don’t exactly
strengthen confidence in the build system, so we look forward to seeing hadrian5

succeed.
Lastly, the test and benchmark suites of GHC are quite essential in crushing

occasional hopes after having fixed a complicated bug, by immediately confronting
the developer with another regression. Of course, this is a good thing for both the
maturity of GHC as well as a humbling experience for the soul.

5https://github.com/snowleopard/hadrian

70

https://github.com/snowleopard/hadrian

5 Evaluation
With implementation considerations sorted out in Chapter 4, we turn to assessing
the analysis by means of the performance of the generated code in Section 5.1. We
also discuss compiler performance in Section 5.1.3 and see ways to trade artifact
performance for analysis performance.

5.1 Benchmarks
Enough with the mathy chit chat, give me numbers!
In this section we will look at how the analysis influences benchmark results in

GHC’s nofib [13] benchmark suite.
The (at the time of writing most recent) GHC 8.2.1 release – revision 0cee252,

tagged as ghc-8.2.1-release – serves as a baseline. We compare to three variants
of our fork1:

(1) The most precise form of our analysis. Replaces Call Arity entirely and
is run two additional times, immediately after the Demand Analyser. The
usage information the Demand Analyser produces is only accessed to check for
regressions.

(2) This variant discards any product use at call sites. E.g., C1(U(1 ∗ U,A)) will
be truncated to C1(U) in a call like let f x = ... in fst (f 42). This is so
that less nodes in the data-flow framework are accessed, to save space and time.
Results should still show an improvement compared to the baseline.

(3) In addition to the changes of (2), remove the co-call graph from the usage
type. This is equivalent to a co-call graph that only tracks self-edges and
conservatively assumes the existence of all other co-call edges. The intention is
to measure if the space and time impact of co-call graphs matters in practice.
Note that regressions in some cases are expected, as the baseline employs
Call Arity with accurate modelling of edges in co-call graphs at least between
‘interesting’ variables [3, Section 3.4.1].

Table 5.1 shows the interesting results of running nofib. We will break them down
by discussing allocations and instructions executed separately.

1Available at https://github.com/sgraf812/ghc under the branches cocall-full,
cocall-approximate-calls and cocall-complete-graphs.

71

5.1. BENCHMARKS

Bytes allocated Instructions executed
Program (1) (2) (3) (1) (2) (3)
ansi -0.0% -0.0% -0.0% -0.4% -0.4% -0.4%
awards -0.0% -0.0% -0.0% -0.5% -0.5% -0.5%
cryptarithm2 0.0% 0.0% 0.0% -0.9% -0.9% -0.9%
eliza 0.0% 0.0% 0.0% +0.1% +0.1% +0.1%
expert -0.0% -0.0% -0.0% +0.1% +0.1% +0.1%
fannkuch-redux -0.0% -0.0% -0.0% +11.4% +11.4% +11.4%
fft2 -0.9% -0.9% -0.9% -0.7% -0.7% -0.7%
fish 0.0% 0.0% 0.0% -0.5% -0.5% -0.5%
fluid -1.5% -1.5% -1.5% -1.4% -1.4% -1.4%
gen_regexps 0.0% 0.0% 0.0% -28.1% -28.1% -28.1%
hidden -0.0% -0.0% -0.0% -1.1% -1.1% -1.1%
infer +0.0% +0.0% +0.0% -0.2% -0.2% -0.2%
last-piece 0.0% 0.0% 0.0% -0.9% -0.9% -0.9%
listcompr 0.0% 0.0% 0.0% -0.7% -0.7% -0.7%
listcopy 0.0% 0.0% 0.0% -0.7% -0.7% -0.7%
maillist -0.0% +0.0% -0.0% -0.2% +2.1% +3.4%
mandel -0.0% -0.0% -0.0% -1.0% -1.0% -1.0%
mkhprog 0.0% 0.0% 0.0% -0.8% -0.8% -0.8%
paraffins -0.0% -0.0% -0.0% -3.4% -3.4% -3.4%
parstof -0.0% -0.0% -0.0% -0.5% -0.5% -0.5%
prolog -0.0% -0.0% -0.0% -0.6% -0.6% -0.6%
puzzle 0.0% 0.0% 0.0% -15.4% -15.4% -15.4%
queens -0.0% -0.0% -0.0% -1.2% -1.2% -1.2%
reptile -0.1% -0.1% -0.1% -0.5% -0.5% -0.5%
sphere -0.0% -0.0% -0.0% -4.5% -4.4% -4.4%
tak -0.4% -0.4% -0.4% -0.0% -0.0% -0.0%
... and 77 more
Min -1.5% -1.5% -1.5% -28.1% -28.1% -28.1%
Max +0.0% +0.0% +0.0% +11.4% +11.4% +11.4%
Geometric Mean -0.0% -0.0% -0.0% -0.6% -0.6% -0.6%

Table 5.1: Benchmark results of running nofib where the number improved by more
than 0.3% or regressed by more than 0.0%. The GHC 8.2.1 release on
which all work is based was used as a baseline. Variants (1) to (3)
are increasingly approximate, but theoretically speaking, only (3) may
possibly yield worse results than the baseline’s combination of Call Arity
and Demand Analysis.

72

5.1. BENCHMARKS

Bytes allocated
Program (1) (2) (3)
fft2 -0.9% -0.9% -0.9%
fluid -1.5% -1.5% -1.5%
infer +0.0% +0.0% +0.0%
n-body -0.2% -0.2% -0.2%
reptile -0.1% -0.1% -0.1%
rfib -0.1% -0.1% -0.1%
spectral-norm -0.1% -0.1% -0.1%
tak -0.4% -0.4% -0.4%
... and 95 more
Min -1.5% -1.5% -1.5%
Max +0.0% +0.0% +0.0%
Geometric Mean -0.0% -0.0% -0.0%

Table 5.2: Interesting allocation results from the same run as Table 5.1. The only
runs that were excluded were those with improvements of less than 0.1%.

5.1.1 Allocations
The total impact on allocations of our rather complex analysis is rather meager, with
a reduction that doesn’t even exceed the 0.1% margin in the geometric mean over all
benchmarks. But recalling the goals of this thesis, namely unifying both Call Arity
[3] and the work of Sergey et al. [17] into a single analysis, this is good news and
asserts our claims in Section 3.4!
Allocation results are summarised in Table 5.2. There is one tiny regression to

allocations due to heuristics: A partial application in infer is regarded cheap to
duplicate by GHC. Therefore, our analysis spots a new opportunity for η-expansion
and the binding gets inlined subsequently. Although the resulting program allocates
more than before, the number of executed instructions (cf. Table 5.1) went slightly
down over all.
The most significant improvement happened to the allocations of fluid, with a

1.5% reduction due to arity expansion of some parsing function.
It is more instructive to look at fft2. The 0.9% improvement in allocations comes

from an expression within dfth similar to the following program:

module Main (main) where

fac :: Int → Int
fac n =
if n == 0
then 1
else n ∗ fac (n−1)

73

5.1. BENCHMARKS

double :: [Int] → ([Int] → [Int]) → [Int] → [Int]
double xs k =
case xs of
[] → k
x:xs ’ → λys → x∗2 : double xs ’ k ys

f :: Int → [Int] → [Int]
f n =
if fac n < 10
then λxs → 10:xs
else λxs → double xs (f (n−1)) xs

main =
print (f 1 [2])

Our analysis finds out that f can be η-expanded to arity 2. Neither Call Arity nor
the Demand Analyser recognises this.

Call Arity doesn’t have any mechanism similar to usage signatures, so it assumes
a conservative call arity of 1 for f because of the call double xs (f (n−1)) xs.

The Demand Analyser, on the other hand, has available only the usage signature
of double for manifest arity 2, which is too conservative and unleashes a usage of
1 ∗ U on f (n−1) instead of 1 ∗ C1(U).

Our analysis infers from the call to double with incoming arity 3 a call use of C1(U)
for f (n−1), exposing f to a total usage of Cω(C1(U)), which we can leverage by
expanding the arity to 2.

In expanding the analogue of f within dfth, the analysis enables additional inlining
and other transformations.
Apart from the very modest extreme cases, it is worth pointing out that alloca-

tion remained the same throughout all variants! This is extremely important for
practicality of the analysis, as we will see in Section 5.1.3.

Although the implementation of foldl contains a oneShot annotation as a hint for
the compiler, the same example motivating Call Arity in Breitner [3, Section 3.5.1]
is still η-expanded based on the results of variant (3):

let go x =
let r =

if x == 2016
then id
else go (x + 1)

in if f x
then λa → r (a + x)
else r

in go 42 0

74

5.1. BENCHMARKS

GHC produces this code when compiling the expression sum (filter f [42..2016]) ,
where sum = foldl (+) 0 and foldl is implemented in terms of foldr . For reasons
outlined by Breitner [3], it is crucial for performance to η-expand go, so that no
closure is allocated for r.

Analysing the above expression under use U with our variant (3) will proceed in
the following order:

1. Since go is exposed to an optimistic usage of 1 ∗C1(C1(U)), it will analyse go’s
bound expression under use C1(C1(U)).

2. This translates into usage of 1∗C1(U) on r, in both branches of the if expression.
Notably, the then branch will first peel off one layer of the one-shot call use,
then analyse r (a + x) under use U to find out the usage of 1 ∗ C1(U) on r.
This alone would be enough evidence to η-expand r.

3. Analysing the bound expression of r in use C1(U) will expose go to a usage of
1 ∗ C1(C1(U)).

4. After some fixpointing, r gets its single-entry 1 ∗C1(U) annotation and go will
have an annotation of ω ∗ Cω(C1(U)).

According to our definition of expandUsage in Section 3.4, go’s bound expression
can be η-expanded, enabling vital further optimisations.

5.1.2 Instructions Executed
Regarding instructions executed (measured with cachegrind), there are more signif-
icant improvements, although that might not reflect in performance on an actual
machine. In the geometric mean we achieve a total improvement of 0.6%, which still
is rather modest, but as said earlier not the primary goal of this thesis.
Let’s focus instead on the most significant outliers in Table 5.3. With 11.4%

more instructions executed, fannkuch-redux from the benchmarks game regresses
significantly.
Looking at the Core output, it is not obvious to see where that regression comes

from. There were no subsequent transformations kicked off by the added anno-
tations, and the annotations seem to be correct, judging from sprinkling a few
Debug.Trace.trace calls. However when considering the decrease in allocations, it
seems that GHC’s heuristic cost model could be responsible for this, if not in some
imported base module.

Conversely, the cases where performance improves are more frequent. The largest
boost receives gen_regexps, with 28.1% less executed instructions. Yet again, it is
not appearent where those improvements come from. All annotations in the Core
output seem proper and beyond that no further transformation happened. This
suggests that either the backend (the implementation of which the author is blissfully
unaware) or some optimisation within referenced base modules is responsible.

75

5.1. BENCHMARKS

Instructions executed
Program (1) (2) (3)
fannkuch-redux +11.4% +11.4% +11.4%
gen_regexps -28.1% -28.1% -28.1%
maillist -0.2% +2.1% +3.4%
paraffins -3.4% -3.4% -3.4%
puzzle -15.4% -15.4% -15.4%
sphere -4.5% -4.4% -4.4%
... and 97 more
Min -28.1% -28.1% -28.1%
Max +11.4% +11.4% +11.4%
Geometric Mean -0.6% -0.6% -0.6%

Table 5.3: Interesting programs with respect to instructions executed, from the same
run as Table 5.1. Excluded were those runs with improvements of less
than 3% and regressions of less than 1%.

The same arguments apply to the 15.4% improvement in puzzle: A number of new
annotations that didn’t enable any further Core-to-Core transformation. The set of
functions referenced from base is quite minimal, so it is unlikely that optimisations
hide there.

5.1.3 Compiler Performance
The graph data structure necessary for modelling co-call graphs is quite complicated,
optimised for sparse and dense graphs to offer even remotely manageable compiler
performance.
Yet for some input files, time and – worse – space complexity goes through

the roof: The space needed to compile some innocent file like GHC/Types.hs from
ghc-prim goes up from a few hundred megabytes to multiple gigabytes. Clearly, this
is unacceptable for a mature and widely used compiler like GHC.

Just before finalising this thesis, we also realised that variant (1) is not even able to
compile an optimised version of the stage 2 compiler! Memory usage while compiling
the LlvmCodeGen module exceeded the 32 GB of our build machine, probably because
of the involvement of DynFlags, a huge tuple. That is why we use GHC’s bench build
flavour for our benchmarks, which still generate completely optimised artifacts with
an unoptimised stage 2 compiler.

Heap profiling revealed that the explosion is indeed related to co-call graphs, peaks
in memory needed to store IntMaps, in particular. Practically all of the overhead
is attributed to UsageAnal.Types.bothUsageType, which computes the union of three
graphs on each invocation. It is being used quite often, for example as part of the
expensive graph substitution procedure.

76

5.1. BENCHMARKS

Bytes allocated Instructions executed
Program (1) (2) (3) (1) (2) (3)
nofib +29.8% +26.8% +10.9% +27.1% +24.6% +11.1%
ghc +2.4% +2.3% +1.5% +2.6% +2.0% +2.3%

Table 5.4: Performance figures recorded while compiling stage 2 GHC (unoptimised,
but with optimised libraries) and nofib (completely optimised) with the
three variants, relative to GHC 8.2.1. Resource usage of (1) and (2) grows
beyond limits in specific cases, accounting for a major blowup overall. The
most approximate variant, (3), shows an acceptable increase, knowing
that there are opportunities left for making it more efficient.

Even in a version of (3) where the co-call graphs still were present in a dumb
fashion (e.g. just tracking self-edges), UnVarGraph.completeBipartiteGraph seemed to
be responsible for the major blowup, even though the quadratic space complexity
should have been eliminated.
With that out of the way, we may risk a look at Table 5.4, which shows the

performance figures recorded while compiling itself and nofib.
Compiling and optimising nofib seems to have caused a greater regression (between

10 to 20 percent) than compiling the stage 2 compiler (only 1.5 to 2.6 percent).
That is likely the case because we used the bench build flavour, which optimises the
dependent libraries but not the stage 2 compiler. This means our optimisations are
not run on GHC itself, which is entirely due to the above mentioned space explosion
in variant (1); the other variants compiled just fine. Again, the performance figures
regarding nofib are unaffected by this.
Other than that, every variant consumes more resources than the baseline. That

is not surprising: We replaced a single run of Call Arity by three runs of our analysis,
of which a single run can hardly be cheaper. However, the Demand Analyser still
performs Cardinality Analysis on every of its two runs, which could be left out.
There is still plenty of opportunity left to reach acceptable performance. Our

variant (3), for example, doesn’t exhibit the same problematic space complexity as
the other variants, because it gets rid of co-call graphs altogether. It turns out that
call arity aware LetDn-style analysis (as in (3)) is precise enough to optimise all
important cases!

The whole graph-based data-flow iteration story doesn’t yet run as performant as
it could. Currently, a Map is used to map nodes to transfer functions. If all syntax
nodes would provide sensible FrameworkNodes, modeling the graph as a fixed-size
array of monotone maps is possible. Also, the whole FrameworkBuilder incantation
would be obsolete if CoreExpr carried appropriate FrameworkNodes.

All in all, it is too early to judge the replacement for Cardinality Analysis and
Call Arity by compiler performance.

77

6 Related and Future Work
This section is dedicated to comparison of our analysis with prior approaches in
Section 6.1 and what loose ends can be tied up in the future in Section 6.2.

6.1 Related Work
Abstract Interpretation

Within the framework of abstract interpretation, questions of cardinality have been
successfully answered by backwards analyses based on projections [8] in the past.
Being an extension to the approach of Sergey et al. [17], with all the bells and

whistles such as call and product uses, our usage analysis is no different: What we
called usage transformers came into the world as the strictness-specific concept of
projection transformers [9], describing how a use on an expression translates into a
use on its free variables and arguments. We showed how the overlap in Call Arity
[3] and Cardinality Analysis (as in [17]) can be leveraged by giving a usage analysis
that generalises the results of both analyses, in order to possibly replace both in the
long run.
Key was the observation that call arity (the minimum number of arguments a

binding is applied to) can be computed independently of whether η-expanding the
binding to that arity is possible, considering sharing. In other words: By enriching
the domain of discourse to model more precise usage information, we could break the
interleaving of sharing and arity analysis out of Call Arity [3]. Usage information
is now computed by our usage analysis, while the arity analysis is done by GHC’s
regular arity analysis, specifically feeding on one-shot annotations1.

Type Systems

For comparing our analysis to approaches based on type systems, we kindly refer to
Sergey et al. [17, Section 8], who provide a great overview over recent advances. We
provide a summary of their excellent writing for completenes.
While linear type systems can express single-entry and one-shot annotations

quite naturally (modulo the caller vs. callee distiction [17]), they proved to be
too restrictive [23]. Nonetheless, this led to a series of papers on type systems,
specifically tailored to do usage analysis [19]. Wansbrough and Peyton Jones [23]

1Provided a little incentive from our side to always η-expand cheap (according to GHC’s cost
model) expressions, so that the behavior of Call Arity is matched.

79

6.1. RELATED WORK

identified polymorphism and subtyping to be essential for good results, which in
conjunction with an exponentially growing number of annotations needed [22] elicited
unacceptable complexity, both in terms of performance and in the implementation.

The main disadvantage of the approach by abstract interpretation is worse approx-
imations across function boundaries. Sergey et al. [17] (and therefore our solution)
recovers a good deed of that opportunity by computing usage signatures to appro-
priately analyse first- and second-order functions. Also, the very aggressive inliner
of GHC reduces the cases where interprocedural information flow is important to
recursive functions.
Sergey et al. [17] also compare the analysis strategy for let bindings to that of

type system. They conclude that type systems operate similar to LetUp, which
has several drawbacks compared to LetDn (corresponding to the more operational
view) as outlined in Section 3.3.6. Dealing with free variables in a precise manner
requires polymorphic effect systems as in Hage et al. [7], which try to alleviate some
of the pain regarding subtyping.
A recent type-based approach by Verstoep and Hage [21] seemingly originating

from his master’s thesis [20]. It offers a similar take at the problem as the Demand
Analyser, computing all relevant cardinality information (absence, sharing, strictness,
uniqueness) in one run. Strongly inspired by Wansbrough [22], they differentiate
use from demand, resp. call use and evaluation in our language (cf. Section 2.1), in
order to handle seq appropriately. They plan to integrate their work into the Utrecht
Haskell Compiler (UHC), the inliner of which doesn’t seem to be as aggressive as
GHC’s. According to own claims [20], the approach enriches the work of Wansbrough
[22] with a combination of polymorphism and polyvariance, also adding an option
for uniqueness typing. Although the ensemble of polymorphism, subtyping and
annotating data types was identified as problematic by Sergey et al. [17], it is argued
that running the analysis plays out in terms of compiler performance, because it
provides a wealth of information [21]. There are no numbers yet to substantiate that
claim, appearently because integration into UHC isn’t finished yet.

Data-flow Frameworks

For the implementation of imperative languages, data-flow analysis on control flow
graphs or directly on graph-based intermediate representations [2] [11] are the norm.

There’s even a Haskell library for analysing and transforming control flow graphs,
hoopl, introduced in Ramsey et al. [15] and used in the C– backend of GHC. On
first sight, our Worklist module seems to be a direct contender to hoopl and in fact
we considered to use hoopl for our purposes. However, as we discovered the API, it
became evident quickly that expressing our rather complex analysis in terms of the
traditional gen/kill set terminology was quite impossible.
Thus we created our own solution to the problem, which worked out quite well

for us: We got to abstract data-flow iteration logic behind a State monad, for which
we exposed a single impure primitive, leading to analysis logic that is completely
decoupled from fixed-point iteration and change detection logic.

80

6.2. FUTURE WORK

6.2 Future Work
It was quite time consuming to develop the deep understanding of Call Arity and
Cardinality Analysis necessary to merge the two. Implementing a few unmentioned
iterations of the analysis, combined with fixing all the repercussions of hacking on a
central part of GHC, took even more time. Also considering the effort invested in
fleshing out the writing, it is clear that some things were out of scope for this thesis.

For reasons conjectured in Section 5.1, the full analysis can’t cope with some input
programs, space-wise. Interestingly, the problem wasn’t so much the topology of
graphs (which were almost exclusively sparse or dense), so it remains to be seen if
the painful resource usage explosion can be remedied. The obvious solution is to
employ the much better performing third variant, which still provides a benefit over
the separate Call Arity and Cardinality Analysis at hardly any cost in precision.

It would be interesting to see if some more explicitly operational model of sharing
would alleviate the need for the LetUp analysis order, as it is responsible for some
imprecision even when refined with co-call graphs (cf. the examples in Section 3.3.6).
All our attempts to split off shared evaluation into a heap-like model failed, because
of the complex interaction with sequential composition (e.g. &). Also, the grain
of improvement to precision probably wouldn’t matter much, as we already are at
the far end of diminishing returns, it seems. But it would be interesting to see the
comparison to variant (3) exactly for that reason.

The requirement for an iteration order decoupled from the syntax tree came from
better arity-aware LetDn-style analysis. In Section 4.8, we quickly came to the
conclusion that in order to keep our sanity, we had to separate iteration logic from
analysis logic.
This turned out to be an interesting path that no-one seems to have taken

before: We abstract in the Worklist module a (currently rather limited) approach to
iterating data-flow frameworks defined by mutually recursive TransferFunctions. Our
formulation still misses a lot of potential abstraction and performance tuning.
Thinking in broader strokes, we could easily see this graph-based fixed-point

iteration scheme become more widely used throughout GHC’s analyses. In order for
that to happen, assignment of FrameworkNodes to syntactic elements should be done
once in a central place after transformation passes, that this needless redundancy
won’t bleed into analysis logic.

There’s also the issue of monotonicity, discussed in Section 4.9. This is a con-
sequence of how we encoded usage transformers: The lack of an appropriate data
structure to model monotone maps over join-semilattices forced us to use ordinary
maps instead. The total ordering used for the balanced search tree doesn’t coincide
with the join-semilattice structure expressed by t in any way, so the potentially
helpful functions Map.lookupLT were of no use at all. Let alone that they have the
wrong return type to express multiple lower bounds, which are possible in a lattice.
Thus, an easy improvement over the current situation would be to look out for an
algorithmic solution to lookup values in a data structure that is keyed by a (join
semi-)lattice. The underlying data structure would have to maintain multiple sources

81

6.2. FUTURE WORK

of a directed acylclic graph to be remotely efficient, but considering that only very
few points of a usage transformer are ever requested, this seems like no big deal.

A data structure for monotone maps would completely get rid of the monotonicity
hacks in Section 4.9 and conceivably lead to better performance of the analysis
overall.
Strictness analysis possibly benefits from the same improvements to LetDn

analysis strategy, which would be interesting to pursue. Shattering the Demand
Analyser in its three parts (usage, strictness, constructed product result analysis)
sketched in Section 2.4.2 seems worthwhile from a perspective of software engineering
and could also lay the ground work for integrating the graph-based data-flow iteration
approach.
Lastly, we feel like there needs to be held a discussion about what the arity

analyser should compute. Some GHC comments contradict each other in the details
of what idArity is really supposed to mean: There’s the notion of ‘does essentially
no work until applied to idArity arguments’ (in the haddock of ArityInfo) vs. ‘We
want expressions returning one-shot lambdas to have arity one’ (Note ‘One-shot
lambdas’ in CoreArity). Either approach seems fine to us, but documentation should
be clear about it, and possibly integrate usage information directly instead of one-
shot annotations only. We anticipate some advantages in looking at the usage of
a binder: The example in Note ‘Arity analysis’ in CoreArity would not need any
fixed-pointing to figure out that f has arity 2; this property seems entirely specific
to how many arguments f is applied to within its scope, a typical usage property.
E.g., a usage analysis would compute the dreaded fixed-point to find out a usage of
ω ∗ Cω(C1(U)), based on which the arity analyser could compute the arity based on
the arity expansion procedure in Section 3.4.1. Of course, even without messing about
with usage information, the arity analyser aggregates more than enough heuristic
concern (e.g. if an exprIsCheap enough to arity expand over) to justify its existence.

Hence, cutting out any logic in the arity analyser that computes usage information
seems like a good idea to reduce intellectual and runtime cost of the analysis (though
it’s arguably rather cheap anyway).

82

7 Conclusion
Demand Analysis and Call Arity share subtle commonalities. Our work made these
very explicit by providing a usage analysis that subsumes Call Arity and the usage
analysis within Demand Analysis, referred to as Cardinality Analysis.
We highlighted problematic differences between the two (Chapter 1), like the

LetUp vs. LetDn analysis order, and showed how to systematically solve them.
In Section 2.4.2, we advocated a clear separation of concerns and a split of the

Demand Analyser in its sub analyses, consequently. We substantiated our claim
by pointing out a number of tradeoffs associated with performing all analyses in
lockstep, without any real data dependency between them which justifies doing so.

Although the abstract domain in which we interpret programs is not fundamentally
different to that of Sergey et al. [17], we gave a more precise meaning to each element
of the domain. In particular our treatment of usage transformers was more explicit
than in Sergey et al. [17], which was needed because we denote our programs with
them via our transfer function in Section 3.3.

As Chapter 4 reveals, implementing the analysis was challenging, as we needed to
provide quite some infrastructure before writing the analysis in the final form was
even feasible. We are particularly proud of our take on solving data-flow problems
with a graph-based approach, decoupled from the syntax tree in Section 4.8 and
expect interesting further discussions. There were quite some hacks involved in
making the analysis realisable, some of which evoked further problems, like the lack
of a data structure for maps indexed by join-semilattices in Section 4.9.
Although according to Chapter 5 the full generalisation has performance issues

due to ubiquotious use of co-call graphs (which might be entirely related to the
implementation), a variant without co-call graphs seems to compromise little on
precision but still reaches performance comparable to prior approaches.
Opportunities for future work were discussed in Section 6.2 and left the author

excited to pursue some open problems and to contribute to GHC in the future.

83

Bibliography
[1] Clem Baker-Finch, Kevin Glynn, and Simon Peyton Jones. “Constructed

Product Result Analysis for Haskell”. In: J. Funct. Program. 14.2 (Mar. 2004),
pp. 211–245. issn: 0956-7968. doi: 10.1017/S0956796803004751. url: http:
//dx.doi.org/10.1017/S0956796803004751.

[2] Matthias Braun, Sebastian Buchwald, and Andreas Zwinkau. Firm - A graph-
based intermediate representation. KIT, Fakultät für Informatik, 2011.

[3] Joachim Breitner. “Lazy Evaluation: From natural semantics to a machine-
checked compiler transformation”. PhD thesis. Karlsruhe Institute of Technol-
ogy, 2016.

[4] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. “Iterative dataflow
analysis, revisited”. In: (2002).

[5] Andy Gill and Graham Hutton. “The Worker/Wrapper Transformation”. In:
J. Funct. Program. 19.2 (Mar. 2009), pp. 227–251. issn: 0956-7968. doi:
10 . 1017 / S0956796809007175. url: http : / / dx . doi . org / 10 . 1017 /
S0956796809007175.

[6] Martin Charles Golumbic. “Comparability graphs”. In: Annals of Discrete
Mathematics. Vol. 57. 2004, pp. 105–148. isbn: 9780444515308. doi: 10.1016/
S0167-5060(04)80053-0.

[7] Jurriaan Hage, Stefan Holdermans, and Arie Middelkoop. “A Generic Usage
Analysis with Subeffect Qualifiers”. In: SIGPLAN Not. 42.9 (Oct. 2007),
pp. 235–246. issn: 0362-1340. doi: 10.1145/1291220.1291189. url: http:
//doi.acm.org/10.1145/1291220.1291189.

[8] Ralph Hinze. “Projection-based strictness analysis - theoretical and practical
aspects.” PhD thesis. Universität Bonn, 1995, p. 237.

[9] Ryszard Kubiak, John Hughes, and John Launchbury. “Implementing
Projection-based Strictness Analysis”. In: Functional Programming, Glasgow
1991: Proceedings of the 1991 Glasgow Workshop on Functional Programming,
Portree, Isle of Skye, 12–14 August 1991. Ed. by Rogardt Heldal, Carsten
Kehler Holst, and Philip Wadler. London: Springer London, 1992, pp. 207–224.
isbn: 978-1-4471-3196-0. doi: 10 . 1007 / 978 - 1 - 4471 - 3196 - 0 _ 17. url:
https://doi.org/10.1007/978-1-4471-3196-0_17.

[10] John Launchbury and Simon L. Peyton Jones. “Lazy Functional State Threads”.
In: SIGPLAN Not. 29.6 (June 1994), pp. 24–35. issn: 0362-1340. doi: 10.1145/
773473.178246. url: http://doi.acm.org/10.1145/773473.178246.

85

http://dx.doi.org/10.1017/S0956796803004751
http://dx.doi.org/10.1017/S0956796803004751
http://dx.doi.org/10.1017/S0956796803004751
http://dx.doi.org/10.1017/S0956796809007175
http://dx.doi.org/10.1017/S0956796809007175
http://dx.doi.org/10.1017/S0956796809007175
http://dx.doi.org/10.1016/S0167-5060(04)80053-0
http://dx.doi.org/10.1016/S0167-5060(04)80053-0
http://dx.doi.org/10.1145/1291220.1291189
http://doi.acm.org/10.1145/1291220.1291189
http://doi.acm.org/10.1145/1291220.1291189
http://dx.doi.org/10.1007/978-1-4471-3196-0_17
https://doi.org/10.1007/978-1-4471-3196-0_17
http://dx.doi.org/10.1145/773473.178246
http://dx.doi.org/10.1145/773473.178246
http://doi.acm.org/10.1145/773473.178246

Bibliography

[11] Roland Leißa, Marcel Köster, and Sebastian Hack. “A Graph-based Higher-
order Intermediate Representation”. In: Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization.
CGO ’15. San Francisco, California: IEEE Computer Society, 2015, pp. 202–
212. isbn: 978-1-4799-8161-8. url: http://dl.acm.org/citation.cfm?id=
2738600.2738626.

[12] Simon Marlow. “Update Avoidance Analysis by Abstract Interpretation”. In:
Functional Programming, Glasgow 1993: Proceedings of the 1993 Glasgow
Workshop on Functional Programming, Ayr, Scotland, 5–7 July 1993. Ed. by
John T. O’Donnell and Kevin Hammond. London: Springer London, 1994,
pp. 170–184. isbn: 978-1-4471-3236-3. doi: 10.1007/978-1-4471-3236-3_14.
url: https://doi.org/10.1007/978-1-4471-3236-3_14.

[13] Will Partain. “The nofib Benchmark Suite of Haskell Programs”. In: Functional
Programming, Glasgow 1992: Proceedings of the 1992 Glasgow Workshop on
Functional Programming, Ayr, Scotland, 6–8 July 1992. Ed. by John Launch-
bury and Patrick Sansom. London: Springer London, 1993, pp. 195–202. isbn:
978-1-4471-3215-8. doi: 10.1007/978- 1- 4471- 3215- 8_17. url: https:
//doi.org/10.1007/978-1-4471-3215-8_17.

[14] Simon Peyton Jones, Peter Sestoft, and John Hughes. Demand Analysis. 2006.
url: https://www.microsoft.com/en-us/research/publication/demand-
analysis/.

[15] Norman Ramsey, João Dias, and Simon Peyton Jones. “Hoopl: A Modular,
Reusable Library for Dataflow Analysis and Transformation”. In: SIGPLAN
Not. 45.11 (Sept. 2010), pp. 121–134. issn: 0362-1340. doi: 10.1145/2088456.
1863539. url: http://doi.acm.org/10.1145/2088456.1863539.

[16] Amr Sabry and Matthias Felleisen. “Reasoning About Programs in Continuation-
passing Style.” In: SIGPLAN Lisp Pointers V.1 (Jan. 1992), pp. 288–298. issn:
1045-3563. doi: 10.1145/141478.141563. url: http://doi.acm.org/10.
1145/141478.141563.

[17] Ilya Sergey, Dimitrios Vytiniotis, and Simon Peyton Jones. “Modular, Higher-
order Cardinality Analysis in Theory and Practice”. In: SIGPLAN Not. 49.1
(Jan. 2014), pp. 335–347. issn: 0362-1340. doi: 10.1145/2578855.2535861.
url: http://doi.acm.org/10.1145/2578855.2535861.

[18] Peter Sestoft. “Analysis and Efficient Implementation of Functional Programs”.
PhD thesis. 1991.

[19] David N. Turner, Philip Wadler, and Christian Mossin. “Once Upon a Type”.
In: Proceedings of the Seventh International Conference on Functional Program-
ming Languages and Computer Architecture. FPCA ’95. La Jolla, California,
USA: ACM, 1995, pp. 1–11. isbn: 0-89791-719-7. doi: 10.1145/224164.
224168. url: http://doi.acm.org/10.1145/224164.224168.

[20] Hidde Verstoep. “Counting Analyses”. MA thesis. Utrecht University, 2013.

86

http://dl.acm.org/citation.cfm?id=2738600.2738626
http://dl.acm.org/citation.cfm?id=2738600.2738626
http://dx.doi.org/10.1007/978-1-4471-3236-3_14
https://doi.org/10.1007/978-1-4471-3236-3_14
http://dx.doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1007/978-1-4471-3215-8_17
https://doi.org/10.1007/978-1-4471-3215-8_17
https://www.microsoft.com/en-us/research/publication/demand-analysis/
https://www.microsoft.com/en-us/research/publication/demand-analysis/
http://dx.doi.org/10.1145/2088456.1863539
http://dx.doi.org/10.1145/2088456.1863539
http://doi.acm.org/10.1145/2088456.1863539
http://dx.doi.org/10.1145/141478.141563
http://doi.acm.org/10.1145/141478.141563
http://doi.acm.org/10.1145/141478.141563
http://dx.doi.org/10.1145/2578855.2535861
http://doi.acm.org/10.1145/2578855.2535861
http://dx.doi.org/10.1145/224164.224168
http://dx.doi.org/10.1145/224164.224168
http://doi.acm.org/10.1145/224164.224168

Bibliography

[21] Hidde Verstoep and Jurriaan Hage. “Polyvariant Cardinality Analysis for
Non-strict Higher-order Functional Languages: Brief Announcement”. In: Pro-
ceedings of the 2015 Workshop on Partial Evaluation and Program Manipulation.
PEPM ’15. Mumbai, India: ACM, 2015, pp. 139–142. isbn: 978-1-4503-3297-2.
doi: 10.1145/2678015.2682536. url: http://doi.acm.org/10.1145/
2678015.2682536.

[22] Keith Wansbrough. “Simple polymorphic usage analysis”. PhD thesis. Univer-
sity of Cambridge, 2005.

[23] Keith Wansbrough and Simon Peyton Jones. “Once Upon a Polymorphic
Type”. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’99. San Antonio, Texas, USA:
ACM, 1999, pp. 15–28. isbn: 1-58113-095-3. doi: 10.1145/292540.292545.
url: http://doi.acm.org/10.1145/292540.292545.

87

http://dx.doi.org/10.1145/2678015.2682536
http://doi.acm.org/10.1145/2678015.2682536
http://doi.acm.org/10.1145/2678015.2682536
http://dx.doi.org/10.1145/292540.292545
http://doi.acm.org/10.1145/292540.292545

Erklärung

Hiermit erkläre ich, Sebastian Graf, dass ich die vorliegende Masterarbeit selbst-
ständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis
beachtet habe.

Ort, Datum Unterschrift

89

Danke
Ich möchte mich bei Denis Lohner für seine außerordentlich hilfreiche und herzliche
Betreuung bedanken. Dass er sich bereit erklärt hat, sich in ein für ihn weitgehend
fremdes Thema einzuarbeiten, verdient meinen größten Respekt. Dein steter Rat
hat mir aus so mancher Bredouille während des Aufschriebs geholfen!
Außerdem möchte ich diese Chance nutzen, meinem Mentor Joachim Breitner

zu danken. Danke für Deine Doktorarbeit, ohne die diese Arbeit nicht zustande
gekommen wäre. Danke auch für Deine fachlichen Hilfestellungen, mit denen Du mir
aus den regelmäßigen Sackgassen geholfen hast. Nicht zuletzt möchte ich mich für
Deine stets wohlwollend angenommenen Schubser ins kalte Wasser bedanken :).

Zum Schluss sei noch der gesamten Haskell Community mein Dank ausgesprochen.
Es ist ein Privileg und eine Übung in Bescheidenheit zugleich, wenn man so mühelos
über das Internet Kontakt zu unglaublich netten und klugen Leuten herstellen kann,
die für die gleichen Themen brennen.

91

	Introduction
	Contributions

	Preliminaries
	Analysis Zoo
	Cardinality Analysis
	Strictness Analysis
	Usage Analysis
	Arity Analysis

	Worker/Wrapper Transformation
	Call Arity
	Demand Analyser
	Implementation
	Untangling Analyses

	Formal Specification
	Object Language
	Analysis Domain
	Expression Use and Identifier Usage
	Usage signatures
	Free-variable graph
	Free-variable use environment
	Usage types and lookup of free-variable usage
	Usage transformers
	Lattice Structure
	Sequential Composition

	Transfer Function
	Lambda Abstraction
	Application and Pairs
	case Expressions
	if Expressions
	Variables
	Non-recursive Let
	Recursive Let

	Relationship to Call Arity and Demand Analysis
	Call Arity and -Expansion
	Recovering Demand Analysis

	Implementation
	Object Language
	Top-level Bindings
	On `Interesting' Identifiers
	Graph Representation
	Bounding Product Uses
	Approximating Usage Transformers
	Annotations
	Solving the Data-flow Problem
	Monotonicity
	Hacking on GHC

	Evaluation
	Benchmarks
	Allocations
	Instructions Executed
	Compiler Performance

	Related and Future Work
	Related Work
	Future Work

	Conclusion

