
Algorithms for Concept Lattice Decompositionand their ApplicationP. Funk, A. Lewien, G. SneltingTU BraunschweigAbteilung SoftwaretechnologieAbstractWe present algorithms for horizontal decomposition, subdirect decomposition, andsubtensorial decomposition of concept lattices. The implementations of these algorithmsare described, and their complexity is investigated. We then apply the decomposition al-gorithms to reengineering problems in software engineering, and present several examples.It turns out that concept lattice decomposition is useful not only for understanding oldsoftware, but also for restructuring it.1 IntroductionAnalysing old software has become an important topic in software technology, as there aremillions of lines of legacy code which lack proper documentation; due to ongoing modi�cations,software entropy has increased steadily. If nothing is done, such software will die of old age- and the knowledge embodied in the software is inevitably lost. As a �rst step in "softwaregeriatry", one must understand the structure of old software and reconstruct abstract conceptsfrom the source code (called "software reengineering"). In a second step, one might try totransform the source code such that the structure of the system is improved and obeys modernsoftware engineering principles.In earlier work, we have shown that formal concept analysis is a useful tool for analysing oldsoftware. As a particular reengineering problem, we have chosen the analysis of con�gurationsin UNIX source �les. We have shown how con�guration spaces can be extracted from oldsource code, and how dependencies and interferences between con�gurations can be detectedusing a concept lattice [Kr93, KS94, LS95]. More recent work described how to automaticallydetect interferences, and how source �les can be simpli�ed according to lattice-generatedinformation [Le96, Sn95]. Still, automatic restructuring of con�gurations is an open problem.Fortunately, the theory of concept lattices o�ers several promising approaches not only toanalysis of old software, but also to automatic restructuring.In this paper, we are concerned with decompositions of concept lattices, namely horizon-tal decompositions, subdirect decompositions, and subtensorial decompositions. The aim ofthis work is twofold. First, we are interested in decomposition in its own right. We willstudy algorithms for automatic lattice decomposition, and we will analyse the complexityof these algorithms. Second, we want to test the actual implementations of the algorithmsand present several examples for the application of concept lattice decompositions in softwarereengineering. The paper assumes some familiarity with the mathematics of concept analysis.1

#ifdef A...I...#endif#ifdef B#ifdef C...II...#endif#ifdef D...III...#endif#if defined(C)&& defined(D)...IV...#endif#endif
A B C DI �II � �III � �IV � � �

������@@@@@@������@
@@@@@ ���@@@A BC DI II IIIIV

Figure 1: A small source text and its con�guration lattice1.1 Con�guration reengineering based on formal concept analysisSoftware con�guration management is the discipline of controlling the evolution of softwaresystems. A con�guration is a set of software elements (usually code pieces, functions ormodules) which meets the needs of a particular client or platform. Therefore, con�gura-tion management must be able to build a software system from selected components, whereselection is done according to certain features (attributes) of the target con�guration.Many UNIX programs use the preprocessor CPP for con�guration management. Con�gu-ration-speci�c code is enclosed in #ifdef ... #endif brackets. During compiler invocation,CPP variables are set which cause con�guration-speci�c code to be selected and compiled.Since #ifdefs can be nested and can use arbitrary complex governing expressions to controlselection of code pieces, such programs are often incomprehensible.Formal concept analysis can be used to infer con�guration structures from old source code.First, the source �le is transformed into a con�guration table, which summarizes dependenciesof code pieces on CPP variables. From the table, a concept lattice is computed which not onlydisplays intent and extent of con�gurations, but also all dependencies between con�gurations,e.g. \A code piece which is part of the sun con�guration is part of the HP con�guration aswell". Such statements are not easy to obtain manually from complicated source �les!As an example, consider the small code fragment, its con�guration table, and its conceptlattice presented in �gure 1. In general, governing expressions may contain boolean operations,thus construction of the con�guration table is not trivial (see [KS94]).The con�guration lattice can be computed, displayed and analysed by the tool NORA/RECS.Figure 2 presents a real-world example: the con�guration structure of the RCS stream editor.This 1656-line UNIX program uses 21 CPP variables for con�guration management. Thelattice is quite at: there is little interdependence between CPP variables, which is good froma software engineering viewpoint. However in the right part there are some suspicious in�ma,which show that there is interference between some con�gurations: they have common code,where they should not. Indeed, one of the in�ma revealed a bug in the code!2

Figure 2: Con�guration structure of the RCS stream editorFormally, a con�guration table is a formal context C = (O;A;R) where O is a set of codepieces (the objects), A is a set of CPP variables (the attributes), and R � O � A. For aformal context C = (O;A;R), the corresponding concept lattice is denoted B(C). The latticeelements (formal concepts) are pairs written I = (X;Y) where X � O is the extent, andY � A is the intent of the concept: X = ext(I); Y = int(I). For o 2 O, the smallest conceptI where o 2 ext(I) is written (o) = Vo2ext(c) c, and for a 2 A, the largest concept wherea 2 int(I) is �(a) = Wa2int(c) c. and � are used to label the concepts with objects andattributes. The attribute labels of a concept �(c) are given by a 2 �(�(a)); the object labels!(c) are given by o 2 !((o)).The CPP behaviour is abstractly described by a con�guration function: for a con�gurationtable C, the con�guration function KC : 2A ! 2O is given by KC(X) = fo 2 O j o0 � Xg,where { as usual { the \derivative" o0 = fa 2 A j (o; a) 2 Rg. For any X � A, KC(X) is theset of code pieces (the con�guration) selected by X.2 Subdirect DecompositionsSubdirect products and subdirect decompositions are standard algebraic constructions, andalgorithms for subdirect decomposition are interesting in their own right. Subdirect factor-ization seems also promising for restructuring, as it might be a basis for automatic modu-larization. If a concept lattice is subdirectly decomposable, this means that its concepts arein fact combinations of simpler concepts { perhaps this information can be used for coderestructuring.2.1 Basic de�nitions and propertiesLet A;A1; A2 be algebras. A is a subdirect product of A1 and A2 i� A is (isomorphic to)a subalgebra of the direct product of A1 and A2: A � A1 � A2; where both projections�1 : A! A1; �1(x; y) = x and �2 : A! A2; �2(x; y) = y are surjective.The projections �1;2 are in fact homomorphisms. They are required to be surjective, asotherwise not all of A1 or A2 would be needed in order to generate A. If A � A1�A2, we saythere is a subdirect decomposition of A into A1;2. In case there are only trivial decompositions3

@@ ���� @@ � = @@ ���� @@@@ ���� @@@@ ���� @@���������������� � @@ ���� @@����L1 L2 L1 � L2 LFigure 3: A subdirect product of two lattices(i.e. either �1 or �2 is an isomorphism), A is said to be subdirectly irreducible.As an example, consider the lattices L1 and L2 and their direct product L1 � L2 (�gure 3).Then the lattice L in the right part of the picture is a sublattice of L1 � L2, and both L1;2are homomorphic images of L via �1;2. Hence L can be subdirectly decomposed into L1;2.Subdirect products can be generalized to more than two factors. The importance of subdirectproducts compared to direct products is due to Birkho�'s famousTheorem. Every algebra is the subdirect product of subdirectly irreducible algebras.As the projections from a subdirect product to its factors are surjective homomorphisms, theyinduce congruences �1 and �2: �1;2 = f(x; y) j �1;2(x) = �1;2(y)g. For x 2 A, the congruenceclasses of x are written [x]�1 resp. [x]�2 , and the factor algebras are written A=�1 resp. A=�2.�1 and �2 have a characteristic separation property:De�nition. Congruences �1 and �2 on A have the separation property, i� �1 \ �2 = �A.1�1 and �2 have the separation property i� all intersections of respective congruence classeshave at most one element: j[x]�1 \ [y]�2 j � 1. Hence a pair of �1 resp. �2 congruence classeswhich are not disjoint exactly identi�es an element in A: [x]�1 \ [x]�2 = fxg. It is well knownthat A is a subdirect product i� the corresponding congruences are separating:Theorem. A � A1 �A2 () �1 \ �2 = �AFor a pair �1;2 of separating congruences, A is isomorphic to a subalgebra of A=�1 � A=�2.The embedding of A into A=�1 �A=�2 is given by : A! A=�1 �A=�2; (x) = ([x]�1 ; [x]�2)2.2 An algorithm for subdirect decompositionThe theorem opens a simple way to the computation of subdirect factors of a concept latticeL = B((O;A;R)).1. Determine all congruences of L (see below).1�A = f(x; x) j x 2 Ag is the trivial congruence which has singleton congruence classes.
4

2. For all pairs of congruences �1 and �2, check whether they have the separation property:2test whether 8[x] 2 �1 8[y] 2 �2 : j[x] \ [y]j � 1The congruences are determined by the standard method: for L's context C = (O;A;R)the arrow relations % and . � O � A are computed (see [WG93]). Every congruence thencorresponds to an arrow-closed subset S � O [A. All these subsets are computed by astandard algorithm on the arrow graph: for every x 2 O [A, its .%-closure is computedby depth-�rst search. As unions of arrow-closed subsets are arrow-closed as well, �nally the[-closure of the arrow-closed subsets must be determined (see section 4.2 for the prototypicalimplementation of a closure operator).For an arrow-closed subcontext D = (O \ S;A \ S;RjO\S�A\S) of C, the correspondingcongruence �D is determined through B(C)=�D = B(D); furthermore, B(D) = �(B(C)) where� : B(C)! B(D) merges concepts by removing objects and attributes not in S: �((X;Y)) =(X\S; Y \S). This property is used for the actual computation of subdirect factors B(C)=�1;2.The arrow relations can be computed in worst-case time O(jOj � jAj � jLj), the arrow-closedsubsets can be determined in time O((jOj + jAj)2), and their [-closure in worst-case timeO((jOj + jAj)3). If there are n congruences, the subsequent computation of all subdirectfactorizations will take time O(n2 � jLj3) (note that a congruence has at most jLj classes, andthat determining [x] via � can have worst-case complexity O(jLj) as well; thus the separationproperty can be tested in O(jLj3)).The overall complexity poses no problems even for large lattices on today's workstations;furthermore, some improvements are easy to apply.2.3 Application examplesNORA/RECS o�ers to compute all congruences; congruence classes can be displayed in theoriginal lattice using color3. The factor lattice can also be displayed by merging congru-ence classes into one element. Furthermore, NORA/RECS o�ers to compute all subdirectdecompositions, without displaying the congruences �rst [Fu96].As a �rst example, consider the lattice of section 1.1 (repeated in the left part of �gure 4)4.This lattice has indeed a subdirect decomposition, the factors are presented in the right partof �gure 4. Among others, there are two congruences �1;2, where �1 merges C3/C5 and C2/C4,�2 merges C2/C3 and C4/C5. In the two factors L=�1;2, congruence classes are numbered(K1 etc) and are represented by elements of the original lattice (C1 etc). The labelling in thefactor lattices correspond to the arrow-closed subcontexts which generate the factors.�1;2 are indeed separating. For example, C5 in the original lattice is the one and only elementin the intersection of congruence class K4 of �1 and K4 of �2. Informally, the small squarein the original lattice is the direct product of the chains C2/C3 resp. C2/C4 in the factors,whereas the rest of the factor lattices is copied but not duplicated. Although there are morecongruences (e.g. �1 [�2), there are no more subdirect decompositions, as there are no moreseparating congruence pairs.2Usually, one is interested in subdirect factors as small as possible; therefore it is reasonable to check pairsof small factors �rst.3At the moment, congruence classes are numbered.4NORA/RECS uses line number intervalls for identi�cation of code pieces.5

Figure 4: Subdirect decomposition of example lattice from �gure 1

Figure 5: Another subdirect decompositionOur second example is very similar. The lattice in the left part of �gure 5 has several subdirectdecompositions; the decomposition presented in �gure 5 has the smallest factor lattices andis therefore the \best". The �rst congruence merges C3/C6, C4/C7, and C5/C8; the secondmerges C1/C2, C3/C4/C5, and C6/C7/C8. The reader may easily verify that the congruencesare separating. The example will return in chapter 4, where it will turn out that { to thesurprise of the authors { the subdirect factors are subtensorial factors as well.We applied subdirect decomposition also to several lattices obtained from real UNIX pro-grams. Unfortunately, these lattices are usually subdirectly irreducible. The reason is thatthese lattices do not have congruences, as they are quite at5. Some lattices had subdirectdecompositions, but the factors were almost as large as the original lattices { hence unusablefor automatic restructuring. For example, \rcsedit" (�gure 2) has a subdirect decomposition,as merging C31/C32 and C10/C22 results in two separating congruences. But the factor5Remember that lattice congruence classes must be intervals, that is, all elements between an interval topand a bottom element. 6

lattices have 32 elements each, whereas the original latice has 33 elements. Another programcrying most loudly for restructuring had a lattice of 143 elements, but just one congruence!It should be mentioned that full lattice congruences are maybe too strong a requirement forrestructuring. Congruences on the supremum-semilattice should be much more common, andalready provide a reasonable partitioning of the attribute space, which might guide manualrestructuring.3 Horizontal DecompositionsOne of the most valuable properties of the con�guration lattice is its ability to visualize codepieces which depend on two or more CPP symbols. Such code pieces must be in�ma withnon-empty extent. For example, in �gure 2, C27 indicates that C3 and C26 have commoncode. Such common code may be problematic from a software engineering viewpoint. Inparticular, in�ma between sublattices indicate so-called interference if the CPP symbols in thesublattices deal with independent con�guration aspects. It is therefore of practical importanceto determine all interferences automatically; this is achieved via horizontal decompositions.A discussion of interferences from a software engineering viewpoint is presented in [Sn95].3.1 Basic de�nitionsDe�nition. Let L1; L2; : : : ; Ln be lattices. The horizontal sum of these lattices isnXi=1Li = f>;?g [n[i=1Li n f>i;?igwhere > � x, ? � x for all x 2 Pni=1 Li. The Li are assumed to be disjoint and are calledsummands. Horizontal sums can be generalized to bounded partial orders.Conversely, a lattice L is horizontally decomposable, if it is a horizontal sum. But in practice,L might not just have a top element, but a top chain t1 < t2 < : : : < > (and instead ofa bottom element, it might have a bottom chain t1 > t2 > : : : > ?). For purposes ofinterference analysis, such top or bottom chains are irrelevant, as { in our application { theyjust reveal a top-level nesting of #ifdefs. We therefore generalize horizontal decomposabilityby applying it to a factor order L=�, where the congruence � merges the top/bottom chainsinto one element: t1�t2� : : : �>, and t1�t2� : : : �? ([x]� = fxg otherwise).De�nition. A lattice L is called horizontally decomposable if it has a top or bottom chainwith corresponding congruence �, and the factor lattice is a horizontal sum: L=� =Pni=1 Li.Any Li n f>;?g [f[>]�; [?]�g is called a summand of L.In case a lattice (or bounded partial order) is not horizontally decomposable, it might be thatit is decomposable after a small number of interferences have been removed.De�nition. Two attributes a and b interfere if ext (� (a) ^ � (b)) 6= ;. Two sets A;B ofattributes interfere, if there exist interfering a 2 A; b 2 B.In our application, interference means that con�gurations have common code. Interferenceis a syntactic phenomenon and can be detected automatically (see below). It is much moredi�cult to decide whether an interference is harmful, as this depends on the semantics of theinvolved attributes (CPP symbols, in our application). Only a human with good knowledge7

ckc 1 c m cn cock+1

C1 C2 Cr

I

I

(a)

S 1 S 2 S1 S 2

I 2

I 1

I 1

I 2
 I1

I 2

I

I 2

1

(b) (c)

2

I1

 I2

S 1 S2S 3

(d)Figure 6: Simple and complex interferencesof software engineering principles can decide whether code common to two con�gurationsshould be considered bene�cial reuse, or violation of software design principles.For an algorithmic analysis of interferences, it is reasonable to investigate interferences be-tween big sublattices or horizontal summands �rst, as { in our application { these are morelikely to reveal bad system structure. This leads to the following de�nition.De�nition.6 Let L1; : : : ; Lr be sublattices of L. Let I be ^-reducible: I = Vri=1 (ci), (cidirect predecessor of I), where ext(I) 6= ;. I is called simple interference between L1; : : : ; Lr,if ci 2 Li, and I connects horizontal summands: there are sublattices Lr+1; : : : ; Ln such thatLn #I [f?g = nXi=1(Lin #I [f?ig)r is called the valence of the interference. Figure 6a and b both present simple interferences.In the latter example, there is another in�mum I2 � I1 between S1 and S2, but removal of #I2does not make S1;2 horizontal summands. Thus interferences must be maximal in�ma betweensublattices. From an application viewpoint, the two interferences I1;2 in �gure 6b cannot beconsidered worse than the simple interference I1, as I2 � I1 is equivalent to ext(I2) � ext(I1),and we already know that the con�guration subspaces S1 and S2 interfere in the con�gurationcode established by ext(I2).In �gure 6c however, we have two overlapping interferences I1 and I2 of valence 2. Here,# I1\ # I2 6= ;, but neither I1 � I2 nor I2 � I1. Hence I1 and I2 are not simple interferences,but together they constitute a complex interference. In general it might be that k in�mamust be removed in order to make the lattice decomposable. This leads to the followingDe�nition. An interference of connectivity k between L1; : : : ; Lr consists of k mutuallyincomparable in�ma I1; : : : ; Ik, if there are Lr+1; : : : ; Ln such thatLn #fI1; : : : ; Ikg [f?g = nXi=1(Lin #fI1; : : : ; Ikg [f?ig)and no subset of fI1; : : : ; Ikg is an interference of connectivity k � 1 between L1; : : : ; Lr.Thus simple interferences are interferences of connectivity 1. Note that k simple interferencesare not one interference of connectivity k { the de�nition requires that only simultaneousremoval of the interferences decomposes the lattice. Figure 6c shows an interference of con-nectivity 2 between S1 and S2. Figure 6d displays an interference of connectivity 2 betweenS1; S2 and S3. The latter example can also be considered an interference between S1 and S2alone. However, �gure 6b shows an interference of connectivity 1, as I1 � I2.6For X � L, #X = fx 2 L j 9y 2 X : x � yg, and "X = fx 2 L j 9y 2 X : x � yg.8

Interference as de�ned above implies interfering attributes. But the converse is not true, asthere might be interfering attributes which do not show up as interferences { they are hiddenin sublattices and will only be detected if such sublattices are investigated in isolation. Thusthe above interference de�nitions are biased towards top-level interferences.3.2 An algorithm for horizontal decompositionThe algorithm for detecting interferences of minimal connectivity implements the de�nitionsfrom the previous section. It proceeds as follows:1. Try a horizontal decomposition of the lattice. In case ext([?]�) 6= ;, the top elementof the bottom chain represents an interference, thus decomposition fails. Otherwise,remove the top and bottom chains and determine the connected components of the(undirected) lattice graph by depth-�rst search. If successful, there are no top levelinterferences (connectivity = 0). Reattach [>]� and [?]� (with unchanged labelling) toeach connected component, and apply the remaining steps recursively to the sublattices.2. Simple interferences in L can be detected by computing the ^-reducible articulationpoints of L n ([>]� [[?]�). This is done by an extension of the standard algorithmfor biconnected components, which itself is a simple extention of the depth-�rst search.Unfortunately not all the simple interferences can be detected that way. As explainedabove, two in�ma I1; I2 between sublattices where I2 � I1 are considered of connec-tivity 1 but cannot be detected through biconnected components (�gure 6b). Suchinterferences are found together with interferences of higher connectivity.3. For computing interferences of higher connectivity �rst determine the set of potentialinterference candidates C = f(I; f(a1; : : : ; ar)g) j I is ^�reducible and a1; : : : ar 2 directpredecessors(I)g where " ai\ " aj = ;g.Now determine the interferences of higher connectivity7FOR ALL k-subsets S = fc1; : : : ; ckg of C DOLET any ci = (Ii; fa1i ; : : : ; arii g)IF I1; : : : ; Ik are mutually incomparable THENFOR i := 1 TO k DO remove # Ii from the lattice graph;choose a candidate ci from S;IF 9ami ; : : : ; am+n�1i � fa1i ; : : : ; arii g where the a�i are mutually unconnectedAND 8cj 2 S n ci 9amj ; : : : ; am+n�1j � fa1j ; : : : ; arjj gwhere a�i ! a�j (� = m: : :m+ n� 1) THENI1; : : : ; Ik is interference of connectivity k and valence n!Step 1 and 2 are both based on depth-�rst search and thus have time complexity O(jLj). All k-combinations of candidates can be determined by taking the standard algorithm for computingthe strong isotonic words8 of length k over the alphabet C with length of alphabet = jLj.The removal of the k # Ii can be done in worst-case time O(jLj). The subset fa1; : : : ang of a7a! b stands for a is connected with b8the strong isotonic words of length s correspond to the s-combinations without repetition.9

Figure 7: Horizontal decomposition of lattices from �g. 1 and �g. 2

Figure 8: Interference analysis in a horizontal summandgiven candidate which de�nes a interference of connectivity k, valence n can be determinedin O(jLj3). This results from iteration over the (Ij; fa1; : : : akg) and the connectivity testusing depth-�rst-search. Thus the overall time complexity for interferences of connectivity kis O ��jLjk �� jLj3)�.3.3 Application examplesThe lattice from �gure 1 is horizontally decomposable, it has two summand lattices (leftpicture in �gure 7). Note that the summands do not exactly correspond to subtables ofthe original context, as they have \arti�cial" top and bottom elements. These are requiredaccording to the decomposition de�nition, and represent the \environment" of the summand.After initial horizontal decomposition, interference analysis in the right summand revealed asimple interference of connectivity 1, valence 2. This interference is highlighted in �gure 7:code piece IV depends on both C and D.9Interference analysis was also applied to several UNIX programs. The right picture in �gure 7presents the horizontal decomposition of the con�guration space of the RCS stream editor (see�gure 2). From left to right the summands become more complex: on the left are a lot of verysmall chains representing simple variants, on the right there is a grid-like structure concerningnetworking which is subject to interference analysis. It reveals an interesting interference with9Interfering suborders are numbered (SL1, SL0). We plan to use color for suborders and interferences.10

t u v wI � � �II � � �III � � �IV � � �
���� �� AAHHHHHHHH AA �������� AAQQQ���� @@HHHH���� HHHH!!!!! �� AAAA ��!!!!!HHHH ����HHHH @@ ����QQQ AA ��w u v tIII I IV II

Figure 9: A lattice which is tensorially decomposableconnectivity 1, namly C27, which is in�mum of C3 and C26. C3 is labeled "has rename", C26is labeled "has NFS" and C27 is labelled 1426-142610 . Thus line 1426 is governed by both"has NFS" and "has rename". As these should be orthogonal, the interference is consideredharmful. Networking issues and �le access variants are not clearly seperated.11NORA/RECS also o�ers \modularization" based on horizontal summands: for every sum-mand, a simpli�ed source �le containing only code pieces from the summand can be created.It is also possible to generate a special "problematic" source �le which contains the codeproducing an interference [Sn95, Le96].4 Subtensorial DecompositionsIn this �nal chapter, we describe an algorithm for subtensorial decompositions of conceptlattices. Subtensorial decompositions are important, as they reveal hidden structures inobjects and attributes. Note that there is a connection between subdirect and subtensorialdecompositions: if the concepts are combinations of simpler concepts, this is valid for therespective objects and attributes as well. Therefore one expects subdirectly reducible latticesto be subtensorially reducible as well (but not vice versa).For reengineering purposes, subtensorial decompositions are more promising than subdirectdecompositions, as their mathematical features (as described in [GW94], section 3) correspondto \natural" features of \modules".4.1 Basic de�nitions and propertiesAs an example, consider the context and its lattice in �gure 9. As we will see, this latticeis a tensorial product of two smaller lattices, where the tensorial decomposition reveals thatboth objects and attributes are in fact combinations of \simpler" things. In a reengineeringcontext, such substructures of governing symbols are usually not at all obvious, just as aproton hardly reveals that it consists of quarks.10the labels are not shown in the �gure, because the representation is very abstract; all labels, extents andintents can be obtained by a simple mouseclick11In fact, C27 revealed a bug in the program (see [KS94]).11

a b1 �2 � x y3 �4 � �a;x� �a;y � �b;x� �b;y�(1; 3) � � �(1; 4) � � �(2; 3) � � �(2; 4) � � �
@@ ���� @@1a 2b
 @@ ���� @@4x 3y = ���� �� AAHHHHHHHH AA �������� AAQQQ���� @@HHHH���� HHHH!!!!! �� AAAA ��!!!!!HHHH ����HHHH @@ ����QQQ AA ��(b,y) (a,y)(b,x) (a,x)(2,3) (1,3)(2,4) (1,4)Figure 10: A direct product of contexts and the corresponding tensor product of latticesTensorial decompositions are special cases of subtensorial decompositions, which we need ingeneral. First, we need the notion of a direct product of contexts. The direct product ofcontexts C1 = (O1; A1; R1), C2 = (O2; A2; R2) is given byC1 � C2 = (O1 �O2; A1 �A2;r)where (o1; o2)r(a1; a2) i� o1R1a1 or o2R2a2.As an example, consider two small contexts and their direct product in �gure 10. Each crossin an original table becomes a cross rectangle in the direct product. Note that the productcontext is isomorphic to the context above; this already shows that there is hidden structurein the attributes and objects of the motivating example.A tensor product of two concept lattices is just the lattice which belongs to the direct productof two contexts [Wi85]: B(C1)
 B(C2) = B(C1 � C2)Figure 10 presents an example of a tensor product.12 Note that the direct product of twocontexts always contains copies of both original contexts as subcontexts; these can be obtainedby deleting rows and columns in the product. Therefore, the tensor product of the latticeswill contain copies of both original lattices as sublattices. This characteristic property is alsovalid for the more general de�nition of a subtensorial product.A subtensorial product of two concept lattices is a factor of a tensor product such that theoriginal lattices are still contained as sublattices [GW94]:B(C1)� B(C2) = (B(C1)
B(C2))=�� must be a lattice congruence which preserves B(C1) and B(C2): [x]� = fxg for x 2 B(C1)[B(C2). Subtensorial products of concept lattices correspond to subdirect products of contexts,that is, certain arrow-closed subcontexts of the direct product of contexts. Ganter and Willehave proven theTheorem [GW94]. A concept lattice L is a subtensorial product of two concept lattices L1and L2 i� L1;2 are sublattices whose union generates L, and every pair (x1; x2) 2 L1 � L2 isweakly distributive.12The lattice is also directly decomposable, as it is isomorphic to the boolean Algebra 24 �= 22 � 22.12

4.2 An algorithm for subtensorial decompositionThe above theorem is the basis for the subtensorial decomposition algorithm. The crucialproblem in subtensorial decompositions is to �nd candidate sublattices, which must then bechecked for further properties. Finding sublattices is not a trivial task. The naive approachof enumerating all subsets and checking whether they are sublattices has exponential timecomplexity and thus forbids itself. Fortunately, formal concept analysis provides the buildingblocks for an e�cient algorithm.13In order to understand the algorithm, we �rst observe that for a lattice L the mappingU : 2L ! 2L which maps every subset M of L to the sublattice generated by M is a closureoperator: we have M � U(M), U(U(M)) = U(M), and for M � N , U(M) � U(N). It iswell known that Ganter's algorithm for the computation of all concepts of a given contextis in fact an algorithm which computes all closed sets of a given closure operator [Ga87].For computation of concept lattices, the closure operator is the composition of the Galoismappings of the context, denoted 00. But it is not forbidden to use Ganter's algorithm forother closure operators as well, for example the closure operator U .In order to implement this idea, we �rst need an implementation of U . Here is a simplealgorithm:UM := M;REPEATUM2 := UM;FOR x IN UM2 DOFOR y IN UM2 DOUM := UM [fx ^ y; x _ yg;UNTIL UM=UM2;This algorithm will compute UM = U(M) for any M � L; it has time complexity O(jLj3).Now the algorithm for subtensorial decomposition can be described as follows.1. Run Ganter's algorithm on L, using closure operator U .14 This will produce all sublat-tices of L.2. For every pair of sublattices L1 and L2, check whether their union generates L, andwhether they are weakly distributive:(a) test whether U(L1 [L2) = L(b) test whether for all (x1; x2) 2 L1 � L2,8g 2 J(L) : g � x1 _ x2 () g � x1 or g � x2as well as 8g 2M(L) : g � x1 ^ x2 () g � x1 or g � x2(Note that in these equivalences, one direction is trivial and need not be tested).13Note the analogy to subdirect decompositions, where in a �rst step congruences must be found, which arethen ckecked for the separation property. Naive generation of congruences is forbidding for complexity reasons.But the computation of the arrow relations opens the door to an e�cient algorithm.14This requires that the lattice elements are numbered �rst, as Ganter's algorithm utlizies the lexicographicorder of element sets. 13

#if defined(A) && defined(B)...I...#ifdef C...II...#endif#endif#ifdef D#if defined(B) && defined(C)...III...#endif...IV...#endif
A B C DI � �II � � �III � � �IV �

Figure 11: Source �le to be modularizedThis algorithm requires that the irreducible elements J(L) resp. M(L) are precomputed (bothsets can be determined in time O(jLj)). Both the check for weak distributivity and the testwhether the candidates generate L have time complexity O(jLj3). If there are n sublatticesof L, the overall time complexity thus is O(n2 � jLj3).4.3 Modularization based on subtensorial decompositionIt is the aim of con�guration restructuring to decompose the code into modules such thathigh cohesion and low coupling between modules is achieved, while the con�guration space isleft intact15 [Sn95]. Subtensorial decomposition can be the basis for a restructuring method,as described in this chapter. This method is not yet fully implemented and has not beentested on real-world restructuring problems. But if it succeeds, it can very well be considereda breakthrough in automated restructuring.The algorithm is best explained by an example. Consider the source text and its con�gurationtable C presented in �gure 11 (its lattice L is displayed in �gure 5). As demonstrated in[GW94], the corresponding lattice has a subtensorial decomposition. The context tables C1and C2 corresponding to the required sublattices L1 and L2 are given in �gure 12 (L1;2 aredisplayed in the right part of �gure 5, as they are subdirect factors as well). Hence C1; C2are subdirect factors of C. In these subdirect factors, \A;B"means that A and B govern thesame code pieces, while \III; IV " means that code pieces III and IV are governed by thesame CPP symbols. The modules corresponding to the subcontexts are displayed right tothe tables. They are generated straightforward from the factor tables. The direct product ofC1 and C2 is given in �gure 13. The arrow-closed subcontext of C1 �C2 which is isomorphicto the original table C is obtained by selecting only those rows and columns marked with abullet (the reader should switch row III and row IV in �gure 11 to see this).Note that in this example, the code pieces are split into disjoint subsets, but this need notbe the case - hence in general the modules are not completely redundant free. As this smallexample is �ctious, we cannot say whether the modularization produced low coupling andhigh cohesion. In general, this depends on the meaning of A, B, C, D and requires humanjudgement [Sn95].15the latter property is called correctness of the con�guration restructuring method.14

A;B C DI �II � �III; IV �)
#if defined(A)&& defined(B)...I...#endif#if defined(A)&& defined(B)&& defined(C)...II...#endif#ifdef D...III... || ...IV...#endifA B;C;DI; II; IVIII �) #if defined(B)&& defined(C)&& defined(D)...III...#endifFigure 12: Modularized source �le�A;B;A � � A;B;B;C;D� �C;A � � C;B;C;D� �D;A � � D;B;C;D�� � � �(I; I; II; IV) � � �(I; III) � � � �(II; I; II; IV) � � � � �(II; III) � � � � �(IV ; I; II; IV) � � �(IV ; III) � � � � �Figure 13: The con�guration table of �gure 11 as a subdirect productWe will now describe how the original con�guration function can be reconstructed from thecon�guration functions of the subdirect factors of a given con�guration table. This is essen-tial, as it guarantees that the con�guration space remains intact after modularization. Webegin with direct decomposition of con�guration tables. First, we show how the derivationfunction16 of the product is obtained from the factor's derivation function.Let C = C1 � C2 = (O1 � O2; A1 � A2;r) be a direct product of C1 = (O1; A1; R1) andC2 = (O2; A2; R2). Let �; �1; �2 be the corresponding derivation functions. Then�((o1; o2)) = f(a1; a2) 2 A1 �A2 j (o1; o2)r(a1; a2)g= f(a1; a2) j o1R1a1 _ o2R2a2g= f(a1; a2) j o1R1a1g [f(a1; a2) j o2R2a2g= �1(o1)�A2 [A1 � �2(o2)16the \derivation function" has been written \0" in the introduction. In order to be able to distinguishseveral \derivations" for several tables, we now use � instead: �T (o) = fa j (o; a) 2 Tg. Other indices for �may be used as appropriate. 15

Now let K;K1;K2 the con�guration functions belonging to C;C1; C2. Let X � A1�A2. ThenK(X) = f(o1; o2) 2 O1 �O2 j �((o1; o2)) � Xg= f(o1; o2) j �1(o1)�A2 [A1 � �2(o2) � Xg= f(o1; o2) j �1(o1)�A2 � X ^A1 � �2(o2) � Xg= �fo1 2 O1 j �1(o1)�A2 � Xg �O2� \ �O1 � fo2 2 O2 j A1 � �2(o2) � Xg�Thus we can compute K from C1 and C2 alone { the original con�guration table C is nolonger needed.Now we will investigate how congruences a�ect derivation functions. Let L1 = B(C1); L2 =B(C2), and let L1 = L2=�. The congruence � corresponds to an arrow-closed subcontextinduced by T = T� � O [A: C1 = (O2 \ T;A2 \ T;R2jO2\T�A2\T). For o 2 O1, �1(o) =ext1(1(o)) = ext1(Vo2ext(c) c) = Sc�1(o) �1(c). But in fact, 1(o) as well as all the c �1(o) represent congruence classes in L2: ext1(c) = Sfext2(c0) \ T j �(c0) = cg.17 Thus�1(c) = Sf�2(c0) \ T j �(c0) = cg (note that � is a congruence and thus preserves the latticeorder). Hence �1(o) = Sc�1(o)S�(c0)=c �2(c0) \ T . For any a 2 A1, we de�ne � : A1 ! 2A2where �(a) = Sf�2(c0) j �(c0) = �(a)g. Thus �1(o) = Sc1�1(o)�(�1(c1)) \ T . Furthermore,�2(o) = Sc2�2(o) �2(c) = Sc1��(2(o))�(�1(c1)).Therefore we obtainK2(S�(X)) \ T = fo 2 O2 j �2(o) � S�(X)g \ T= fo 2 O1 j Sc1��(2(o))�(�1(c1)) � S�(X)g= fo 2 O1 j Sc1�1(o)�(�1(c1)) � Sa2X �(a)g= fo 2 O1 j Sc1�1(o) �1(c1) � Xg= fo 2 O1 j �1(o) � Xg= K1(X)Thus the con�guration function of an arrow-closed subcontext can easily be computed fromthe con�guration function of the original context. It is wise to use a precomputed table for �;furthermore, T must be available. Note that several details in the above computation havebeen left out for space limitations.Let us now assume that we have a subtensorial decomposition: L = B(C) �= B(C1 � C2)=�.Putting both above parts together, we obtainKC(X) = KC1�C2(S�(X)) \ T�= �fo1 2 O1 j �1(o1)�A2 � S�(X)g �O2�\�O1 � fo2 2 O2 j A1 � �2(o2) � S�(X)g� \ T�This shows how the original con�guration function can be determined solely from the tablesof the subtensorial factors, and completes our restructuring method. Note that KC(X) can becomputed quite e�ciently, but is nevertheless much more complicated than the original CPPcon�guration function. Thus one has to pay a price for restructuring: con�guration selectionbecomes more di�cult to understand.An open questions remains: Will subtensorial decomposition indeed produce modules whichstick to the principles of high cohesion and low coupling? This can only be answered byempirical studies of real-world programs and will be checked once the implementation iscompleted.17� : L2 ! L1 is the canonical homomorphism as described in section 2.2: �(X;Y) = (X \ T; Y \ T).16

5 ConclusionsFormal context analysis is a powerful tool for analysis of con�guration structures, but as atool for restructuring, the approach is still in its infancy. In particular, it turned out thathorizontal decompositions do not preserve the complete con�guration space and thus canonly be used for what Parnas calls \amputation"; subdirect decompositions are very seldomin practice, and it is still unclear whether subtensorial decompositions can be applied toreal-world problems. Nevertheless, decomposition of concept lattices has turned out to be avaluable tool for software reengineering and restructuring. Even if automatic restructuring isimpossible, the decomposition algorithms lead to very powerful analysis tools.6 References[Fu96] P. Funk: Subdirekte Zerlegung von Begri�sverb�anden. Diplomarbeit, FB Informatik,TU Braunschweig 1996.[Ga87] B. Ganter: Algorithmen zur formalen Begri�sanalyse. In B. Ganter, R. Wille (Ed.):Beitr�age zur formalen Begri�sanalyse. B.I. 1987, pp. 241-254.[GW94] B. Ganter, R. Wille: Subtensorial decompositions of concept lattices. BerichtMATH-AL-1-1994, TU Dresden FB Mathematik, 1994.[Kr93] M. Krone: Reverse Engineering von Kon�gurationsstrukturen. Diplomarbeit, FBInformatik, TU Braunschweig 1993.[KS94] M. Krone, G. Snelting: On the Inference of Con�guration Structures from SourceCode. Proc. 16th International Conference on Software Engineering, Mai 1994, IEEEComp. Soc. Press, pp. 49-57.[Le96] A. Lewien: Analyse und Vereinfachung von Kon�gurationsr�aumen durch horizon-tale Zerlegung von Begri�sverb�anden. Diplomarbeit, FB Informatik, TU Braunschweig1996.[LS95] C. Lindig, G. Snelting: Formale Begri�sanalyse im Software Engineering. Erscheintin R. Wille (Hrsg.) Begri�iche Wissensverarbeitung: Methoden und Anwendungen,BI-Wissenschaftsverlag.[Sn95] G. Snelting: Reengineering of Con�gurations Based on Mathematical Concept Analy-sis. Informatik-Bericht 95-02, Januar 1995. To appear in ACM Transactions on SoftwareEngineering and Methodology.[Wi82] R. Wille: Restructuring lattice theory: An approach based on hierarchies of concepts.In: I. Rival, (Ed.), Ordered Sets, pp. 445-470, Reidel 1982.[Wi83] R. Wille: Subdirect decomposition of concept lattices. Algebra Universalis 17 (1993),pp. 275-287.[Wi85] R. Wille: Tensorial decomposition of concept lattices. Order 2 (1985), pp. 81-95.[WG93] R. Wille, B. Ganter: Mathematische Theorie der formalen Begri�sanalyse. Skript,TH Darmstadt 1993. 17

