Algorithms for Concept Lattice Decomposition
and their Application

P. Funk, A. Lewien, G. Snelting
TU Braunschweig
Abteilung Softwaretechnologie

Abstract

We present, algorithms for horizontal decomposition, subdirect decomposition, and
subtensorial decomposition of concept lattices. The implementations of these algorithms
are described, and their complexity is investigated. We then apply the decomposition al-
gorithms to reengineering problems in software engineering, and present several examples.
It turns out that concept lattice decomposition is useful not only for understanding old
software, but also for restructuring it.

1 Introduction

Analysing old software has become an important topic in software technology, as there are
millions of lines of legacy code which lack proper documentation; due to ongoing modifications,
software entropy has increased steadily. If nothing is done, such software will die of old age
- and the knowledge embodied in the software is inevitably lost. As a first step in "software
geriatry”, one must understand the structure of old software and reconstruct abstract concepts
from the source code (called ”software reengineering”). In a second step, one might try to
transform the source code such that the structure of the system is improved and obeys modern
software engineering principles.

In earlier work, we have shown that formal concept analysis is a useful tool for analysing old
software. As a particular reengineering problem, we have chosen the analysis of configurations
in UNIX source files. We have shown how configuration spaces can be extracted from old
source code, and how dependencies and interferences between configurations can be detected
using a concept lattice [Kr93, KS94, LS95]. More recent work described how to automatically
detect interferences, and how source files can be simplified according to lattice-generated
information [Le96, Sn95|. Still, automatic restructuring of configurations is an open problem.
Fortunately, the theory of concept lattices offers several promising approaches not only to
analysis of old software, but also to automatic restructuring.

In this paper, we are concerned with decompositions of concept lattices, namely horizon-
tal decompositions, subdirect decompositions, and subtensorial decompositions. The aim of
this work is twofold. First, we are interested in decomposition in its own right. We will
study algorithms for automatic lattice decomposition, and we will analyse the complexity
of these algorithms. Second, we want to test the actual implementations of the algorithms
and present several examples for the application of concept lattice decompositions in software
reengineering. The paper assumes some familiarity with the mathematics of concept analysis.

#ifdef A
P
#endif
#ifdef B
#ifdef C
N S |A B C D
#endif I | x
#ifdef D II X X
.. ITI. .. II7 X X 111
#endif A% X X X
#if defined(C) 1V
&& defined(D)
LWL IVL L
#endif
#endif

Figure 1: A small source text and its configuration lattice

1.1 Configuration reengineering based on formal concept analysis

Software configuration management is the discipline of controlling the evolution of software
systems. A configuration is a set of software elements (usually code pieces, functions or
modules) which meets the needs of a particular client or platform. Therefore, configura-
tion management must be able to build a software system from selected components, where
selection is done according to certain features (attributes) of the target configuration.

Many UNIX programs use the preprocessor CPP for configuration management. Configu-
ration-specific code is enclosed in #ifdef ... #endif brackets. During compiler invocation,
CPP variables are set which cause configuration-specific code to be selected and compiled.
Since #ifdefs can be nested and can use arbitrary complex governing expressions to control
selection of code pieces, such programs are often incomprehensible.

Formal concept analysis can be used to infer configuration structures from old source code.
First, the source file is transformed into a configuration table, which summarizes dependencies
of code pieces on CPP variables. From the table, a concept lattice is computed which not only
displays intent and extent of configurations, but also all dependencies between configurations,
e.g. “A code piece which is part of the sun configuration is part of the HP configuration as
well”. Such statements are not easy to obtain manually from complicated source files!

As an example, consider the small code fragment, its configuration table, and its concept
lattice presented in figure 1. In general, governing expressions may contain boolean operations,
thus construction of the configuration table is not trivial (see [KS94]).

The configuration lattice can be computed, displayed and analysed by the tool NORA /RECS.
Figure 2 presents a real-world example: the configuration structure of the RCS stream editor.
This 1656-line UNIX program uses 21 CPP variables for configuration management. The
lattice is quite flat: there is little interdependence between CPP variables, which is good from
a software engineering viewpoint. However in the right part there are some suspicious infima,
which show that there is interference between some configurations: they have common code,
where they should not. Indeed, one of the infima revealed a bug in the code!

BMORA-RECS==F——— FIEH
File Action Options Help

Grid off

Figure 2: Configuration structure of the RCS stream editor

Formally, a configuration table is a formal context C' = (O, A, R) where O is a set of code
pieces (the objects), A is a set of CPP variables (the attributes), and R C O x A. For a
formal context C' = (O, A, R), the corresponding concept lattice is denoted B(C'). The lattice
elements (formal concepts) are pairs written I = (X,Y) where X C O is the extent, and
Y C A is the intent of the concept: X = ext(I), Y = int(I). For o € O, the smallest concept
I where o € ext(I) is written ¥(0) = Aycepi(c) ¢, and for a € A, the largest concept where
a € int(I) is p(a) = Ve ¢ v and p are used to label the concepts with objects and
attributes. The attribute labels of a concept «(c) are given by a € a(u(a)); the object labels
w(c) are given by o € w(v(0)).

The CPP behaviour is abstractly described by a configuration function: for a configuration
table C, the configuration function K¢ : 24 — 29 is given by Ko(X) = {o € O | o/ C X},
where — as usual — the “derivative” o' = {a € A | (0,a) € R}. For any X C A, Ko (X) is the
set of code pieces (the configuration) selected by X.

2 Subdirect Decompositions

Subdirect products and subdirect decompositions are standard algebraic constructions, and
algorithms for subdirect decomposition are interesting in their own right. Subdirect factor-
ization seems also promising for restructuring, as it might be a basis for automatic modu-
larization. If a concept lattice is subdirectly decomposable, this means that its concepts are
in fact combinations of simpler concepts — perhaps this information can be used for code
restructuring.

2.1 Basic definitions and properties

Let A, A;, Ay be algebras. A is a subdirect product of A; and A, iff A is (isomorphic to)
a subalgebra of the direct product of A; and Ay: A C A; x Ay; where both projections
m A — Ay mi(x,y) =z and mo : A — Ay; me(x,y) = y are surjective.

The projections m; o are in fact homomorphisms. They are required to be surjective, as
otherwise not all of Ay or A> would be needed in order to generate A. If A C A; x Ay, we say
there is a subdirect decomposition of A into A . In case there are only trivial decompositions

X
I
IV

Ly Ly Ly x Ly L

Figure 3: A subdirect product of two lattices

(i.e. either 71 or 7y is an isomorphism), A is said to be subdirectly irreducible.

As an example, consider the lattices L; and Ly and their direct product Ly x Ly (figure 3).
Then the lattice L in the right part of the picture is a sublattice of L; x Lo, and both L 5
are homomorphic images of L via 71 2. Hence L can be subdirectly decomposed into L ».

Subdirect products can be generalized to more than two factors. The importance of subdirect
products compared to direct products is due to Birkhoff’s famous

Theorem. Every algebra is the subdirect product of subdirectly irreducible algebras.

As the projections from a subdirect product to its factors are surjective homomorphisms, they
induce congruences 6; and 6y: 019 = {(z,y) | m12(z) = m12(y)}. For z € A, the congruence
classes of x are written [z]y, resp. [z]y,, and the factor algebras are written A/60; resp. A/6s.
#1 and 65 have a characteristic separation property:

Definition. Congruences 6; and 5 on A have the separation property, iff 6; N0y = A4.!

01 and 6> have the separation property iff all intersections of respective congruence classes
have at most one element: |[z]g, N [y]s,| < 1. Hence a pair of 0 resp. #2 congruence classes
which are not disjoint exactly identifies an element in A: [z]p, N [x]p, = {z}. It is well known
that A is a subdirect product iff the corresponding congruences are separating:

Theorem.
Agéx&(:)OIOGQZAA

For a pair 0; 2 of separating congruences, A is isomorphic to a subalgebra of A/6; x A/0s.
The embedding of A into A/6; x A/, is given by

"/) : A%A/ol XA/G% ’(/)(ZE) = ([33]917[517]6‘2)

2.2 An algorithm for subdirect decomposition

The theorem opens a simple way to the computation of subdirect factors of a concept lattice
L =B((0,A,R)).

1. Determine all congruences of L (see below).

'As = {(z,z) | x € A} is the trivial congruence which has singleton congruence classes.

2. For all pairs of congruences 6; and 65, check whether they have the separation property:?
test whether
Vz] €01 Yyl € 0> : [[z]N[y]] <1

The congruences are determined by the standard method: for L’s context C' = (O, A, R)
the arrow relations and C O x A are computed (see [WG93]). Every congruence then
corresponds to an arrow-closed subset S C O U A. All these subsets are computed by a
standard algorithm on the arrow graph: for every x € O U A, its / "-closure is computed
by depth-first search. As unions of arrow-closed subsets are arrow-closed as well, finally the
U-closure of the arrow-closed subsets must be determined (see section 4.2 for the prototypical
implementation of a closure operator).

For an arrow-closed subcontext D = (O NS, AN S, Ronsxans) of C, the corresponding
congruence 6p is determined through B(C)/0p = B(D); furthermore, B(D) = ¢(B(C')) where
¢ : B(C) — B(D) merges concepts by removing objects and attributes not in S: ¢((X,Y)) =
(XN8S,YNS). This property is used for the actual computation of subdirect factors B(C) /6 ».

The arrow relations can be computed in worst-case time O(|O| - |A| - |L|), the arrow-closed
subsets can be determined in time O((|O| + |A])?), and their U-closure in worst-case time
O((|O] + |A])). If there are n congruences, the subsequent computation of all subdirect
factorizations will take time O(n?-|L|?) (note that a congruence has at most |L| classes, and
that determining [z] via ¢ can have worst-case complexity O(|L|) as well; thus the separation
property can be tested in O(|L|?)).

The overall complexity poses no problems even for large lattices on today’s workstations;
furthermore, some improvements are easy to apply.

2.3 Application examples

NORA/RECS offers to compute all congruences; congruence classes can be displayed in the
original lattice using color®. The factor lattice can also be displayed by merging congru-
ence classes into one element. Furthermore, NORA/RECS offers to compute all subdirect
decompositions, without displaying the congruences first [Fu96].

As a first example, consider the lattice of section 1.1 (repeated in the left part of figure 4)*.
This lattice has indeed a subdirect decomposition, the factors are presented in the right part
of figure 4. Among others, there are two congruences 6; 2, where #; merges C3/C5 and C2/C4,
6> merges C2/C3 and C4/C5. In the two factors L/f; 2, congruence classes are numbered
(K1 etc) and are represented by elements of the original lattice (C1 etc). The labelling in the
factor lattices correspond to the arrow-closed subcontexts which generate the factors.

01 2 are indeed separating. For example, C5 in the original lattice is the one and only element
in the intersection of congruence class K4 of #; and K4 of 5. Informally, the small square
in the original lattice is the direct product of the chains C2/C3 resp. C2/C4 in the factors,
whereas the rest of the factor lattices is copied but not duplicated. Although there are more
congruences (e.g. 01 U#,), there are no more subdirect decompositions, as there are no more
separating congruence pairs.

2Usually, one is interested in subdirect factors as small as possible; therefore it is reasonable to check pairs
of small factors first.

3 At the moment, congruence classes are numbered.

“NORA/RECS uses line number intervalls for identification of code pieces.

MORA-RECS

File Action Options Help

Starting graphplace..done.

i vy

t6: A/ 22| [c3: 0/ 99 b /6]

ile Action Options

Help

umber of subdirect factors computed: 1 ... dane.

C21k2:6E/F

C21KZ2:33/h

LG 1 KE: 2270
C21K4: 12212 7D

C4 1 K4 :12-12 7/ C

File Action Options Help

File Action Options Help

Starting graphplace..done.

Mumber of subdirect factors computed: 3 ... done.

o] -
CL ki u-11]

EEIK?:S-SKBI

C3: B

C4; C LG A/ 2-2

(73 4—4;

£2 | K2 : 11-11 / 1 3

EEIKE:FII

Figure 5: Another subdirect decomposition

Our second example is very similar. The lattice in the left part of figure 5 has several subdirect
decompositions; the decomposition presented in figure 5 has the smallest factor lattices and
is therefore the “best”. The first congruence merges C3/C6, C4/C7, and C5/C8; the second
merges C1/C2, C3/C4/C5, and C6/C7/C8. The reader may easily verify that the congruences
are separating. The example will return in chapter 4, where it will turn out that — to the
surprise of the authors — the subdirect factors are subtensorial factors as well.

We applied subdirect decomposition also to several lattices obtained from real UNIX pro-
grams. Unfortunately, these lattices are usually subdirectly irreducible. The reason is that
these lattices do not have congruences, as they are quite flat>. Some lattices had subdirect
decompositions, but the factors were almost as large as the original lattices — hence unusable
for automatic restructuring. For example, “rcsedit” (figure 2) has a subdirect decomposition,
as merging C31/C32 and C10/C22 results in two separating congruences. But the factor

’Remember that lattice congruence classes must be intervals, that is, all elements between an interval top
and a bottom element.

lattices have 32 elements each, whereas the original latice has 33 elements. Another program
crying most loudly for restructuring had a lattice of 143 elements, but just one congruence!
It should be mentioned that full lattice congruences are maybe too strong a requirement for
restructuring. Congruences on the supremum-semilattice should be much more common, and
already provide a reasonable partitioning of the attribute space, which might guide manual
restructuring.

3 Horizontal Decompositions

One of the most valuable properties of the configuration lattice is its ability to visualize code
pieces which depend on two or more CPP symbols. Such code pieces must be infima with
non-empty extent. For example, in figure 2, C27 indicates that C3 and C26 have common
code. Such common code may be problematic from a software engineering viewpoint. In
particular, infima between sublattices indicate so-called interference if the CPP symbols in the
sublattices deal with independent configuration aspects. It is therefore of practical importance
to determine all interferences automatically; this is achieved via horizontal decompositions.
A discussion of interferences from a software engineering viewpoint is presented in [Sn95].

3.1 Basic definitions

Definition. Let Ly, Lo,..., L, be lattices. The horizontal sum of these lattices is
n n
ZLZ' ={T,L}U U L\ {T;, L;}
i=1 i=1

where T >z, L <z for all z € 3}, L;. The L; are assumed to be disjoint and are called
summands. Horizontal sums can be generalized to bounded partial orders.

Conversely, a lattice L is horizontally decomposable, if it is a horizontal sum. But in practice,
L might not just have a top element, but a top chain t' < t2 < ... < T (and instead of
a bottom element, it might have a bottom chain ¢; > 5 > ... > 1). For purposes of
interference analysis, such top or bottom chains are irrelevant, as — in our application — they
just reveal a top-level nesting of #ifdefs. We therefore generalize horizontal decomposability
by applying it to a factor order L/, where the congruence € merges the top/bottom chains
into one element: t'0t20...0T, and t,0t20...0L ([x]y = {z} otherwise).

Definition. A lattice L is called horizontally decomposable if it has a top or bottom chain
with corresponding congruence 6, and the factor lattice is a horizontal sum: L/0 = "7 | L;.
Any L\ {T, L} U{[T]g,[L]o} is called a summand of L.

In case a lattice (or bounded partial order) is not horizontally decomposable, it might be that
it is decomposable after a small number of interferences have been removed.

Definition. Two attributes a and b interfere if ext (u (a) A (b)) # 0. Two sets A, B of
attributes interfere, if there exist interfering a € A,b € B.

In our application, interference means that configurations have common code. Interference
is a syntactic phenomenon and can be detected automatically (see below). It is much more
difficult to decide whether an interference is harmful, as this depends on the semantics of the
involved attributes (CPP symbols, in our application). Only a human with good knowledge

@ (b) © (d)

Figure 6: Simple and complex interferences

of software engineering principles can decide whether code common to two configurations
should be considered beneficial reuse, or violation of software design principles.

For an algorithmic analysis of interferences, it is reasonable to investigate interferences be-
tween big sublattices or horizontal summands first, as — in our application — these are more
likely to reveal bad system structure. This leads to the following definition.

Definition.® Tet L,..., L, be sublattices of L. Let I be A-reducible: T = AI_, (¢;), (c;
direct predecessor of I), where ext(I) # 0. I is called simple interference between Ly, ..., L;,
if ¢; € L;, and I connects horizontal summands: there are sublattices Lyy1,..., Ly, such that

I\ JTu{Ll} = i(Li\ JTU{L:})

r is called the valence of the interference. Figure 6a and b both present simple interferences.
In the latter example, there is another infimum I < I; between S; and So, but removal of | I
does not make S 2 horizontal summands. Thus interferences must be maximal infima between
sublattices. From an application viewpoint, the two interferences I » in figure 6b cannot be
considered worse than the simple interference I, as Iy < I is equivalent to ext(Is) C ext(Iy),
and we already know that the configuration subspaces S; and Ss interfere in the configuration
code established by ext(Is).

In figure 6c however, we have two overlapping interferences I; and I» of valence 2. Here,
1 1N} I # 0, but neither Iy < Iy nor I, < I. Hence I and I, are not simple interferences,
but together they constitute a complex interference. In general it might be that k infima
must be removed in order to make the lattice decomposable. This leads to the following
Definition. An interference of connectivity k between Lq,..., L, consists of & mutually
incomparable infima I, ..., Iy, if there are L,q,..., L, such that

I\ Y UL = SO LT I} U L)
=1

and no subset of {I1,...,I;} is an interference of connectivity k — 1 between L1, ..., L,.
Thus simple interferences are interferences of connectivity 1. Note that k simple interferences
are not one interference of connectivity k£ — the definition requires that only simultaneous
removal of the interferences decomposes the lattice. Figure 6¢ shows an interference of con-
nectivity 2 between S7 and S,. Figure 6d displays an interference of connectivity 2 between
S1,52 and S3. The latter example can also be considered an interference between S and Sy
alone. However, figure 6b shows an interference of connectivity 1, as Iy > Is.

For X CIL, | X={reL|IyecX:z<y}landtX={rcL|IyeX: x>y}

Interference as defined above implies interfering attributes. But the converse is not true, as
there might be interfering attributes which do not show up as interferences — they are hidden
in sublattices and will only be detected if such sublattices are investigated in isolation. Thus
the above interference definitions are biased towards top-level interferences.

3.2 An algorithm for horizontal decomposition

The algorithm for detecting interferences of minimal connectivity implements the definitions
from the previous section. It proceeds as follows:

1. Try a horizontal decomposition of the lattice. In case ext([L]g) # 0, the top element
of the bottom chain represents an interference, thus decomposition fails. Otherwise,
remove the top and bottom chains and determine the connected components of the
(undirected) lattice graph by depth-first search. If successful, there are no top level
interferences (connectivity = 0). Reattach [T]y and [L]p (with unchanged labelling) to
each connected component, and apply the remaining steps recursively to the sublattices.

2. Simple interferences in L can be detected by computing the A-reducible articulation
points of L\ ([T]gp U[L]p). This is done by an extension of the standard algorithm
for biconnected components, which itself is a simple extention of the depth-first search.
Unfortunately not all the simple interferences can be detected that way. As explained
above, two infima I, I> between sublattices where Iy < I; are considered of connec-
tivity 1 but cannot be detected through biconnected components (figure 6b). Such
interferences are found together with interferences of higher connectivity.

3. For computing interferences of higher connectivity first determine the set of potential
interference candidates C' = {(I,{(a1,...,a,)}) | I is A—reducible and ay,...a, € direct
predecessors(I)} where 1 a;N 1 a; = 0}.

Now determine the interferences of higher connectivity”

FOR ALL k-subsets S = {c1,...,c;} of C DO
LET any ¢; = (I;,{a},...,a'})
IF I,...,I; are mutually incomparable THEN
FOR ¢:=1 TO k£ DO remove | I; from the lattice graph;
choose a candidate ¢; from S';
IF da}",... ,a,gn"'"_l C{a},...,a’} where the a/ are mutually unconnected
AND Ve; € S\ ¢ Ela;-“,...,a;f’“rnfl C {a},...,a;j}
where af —a¥ (v=m...m+n —1) THEN
I, ..., I is interference of connectivity k£ and valence n!

Step 1 and 2 are both based on depth-first search and thus have time complexity O(|L|). Allk-
combinations of candidates can be determined by taking the standard algorithm for computing
the strong isotonic words® of length k over the alphabet C' with length of alphabet = |L|.
The removal of the & | I; can be done in worst-case time O(|L|). The subset {a,...a,} of a

Ta — b stands for a is connected with b
8the strong isotonic words of length s correspond to the s-combinations without repetition.

[MORA-RECS =—— [@IEHf] T HORA-RECS

File Action Options Help File Action

Lattice selected. Grid off.
A

T
I
= A |
1 | |st: o |

r14] [cas] o] s
Jd O O Od Od O

Figure 7: Horizontal decomposition of lattices from fig. 1 and fig. 2

[& MORA-RECS

File Action Options

CET: (had_unlink || has_MF3)
Lattice selected has_NF3

has_rename

Figure 8: Interference analysis in a horizontal summand

given candidate which defines a interference of connectivity k, valence n can be determined
in O(|L|?). This results from iteration over the (I;,{ai,...a;}) and the connectivity test
using depth-first-search. Thus the overall time complexity for interferences of connectivity &

is O (1) x |L%).

3.3 Application examples

The lattice from figure 1 is horizontally decomposable, it has two summand lattices (left
picture in figure 7). Note that the summands do not exactly correspond to subtables of
the original context, as they have “artificial” top and bottom elements. These are required

according to the decomposition definition, and represent the “environment” of the summand.

After initial horizontal decomposition, interference analysis in the right summand revealed a

simple interference of connectivity 1, valence 2. This interference is highlighted in figure 7:
code piece IV depends on both C and D.?

Interference analysis was also applied to several UNIX programs. The right picture in figure 7
presents the horizontal decomposition of the configuration space of the RCS stream editor (see
figure 2). From left to right the summands become more complex: on the left are a lot of very
small chains representing simple variants, on the right there is a grid-like structure concerning
networking which is subject to interference analysis. It reveals an interesting interference with

“Interfering suborders are numbered (SL1, SL0O). We plan to use color for suborders and interferences.

10

t u v w
I | x x X
IT | x x X
II7 X X X
IV | x X X

Figure 9: A lattice which is tensorially decomposable

connectivity 1, namly C27, which is infimum of C3 and C26. C3 is labeled ”has_rename”, C26
is labeled "has NFS” and C27 is labelled 1426-1426'°. Thus line 1426 is governed by both
"has_ NFS” and "has_rename”. As these should be orthogonal, the interference is considered
harmful. Networking issues and file access variants are not clearly seperated.'!

NORA/RECS also offers “modularization” based on horizontal summands: for every sum-
mand, a simplified source file containing only code pieces from the summand can be created.
It is also possible to generate a special ”problematic” source file which contains the code
producing an interference [Sn95, Le96].

4 Subtensorial Decompositions

In this final chapter, we describe an algorithm for subtensorial decompositions of concept
lattices. Subtensorial decompositions are important, as they reveal hidden structures in
objects and attributes. Note that there is a connection between subdirect and subtensorial
decompositions: if the concepts are combinations of simpler concepts, this is valid for the
respective objects and attributes as well. Therefore one expects subdirectly reducible lattices
to be subtensorially reducible as well (but not vice versa).

For reengineering purposes, subtensorial decompositions are more promising than subdirect
decompositions, as their mathematical features (as described in [GW94], section 3) correspond
to “natural” features of “modules”.

4.1 Basic definitions and properties

As an example, consider the context and its lattice in figure 9. As we will see, this lattice
is a tensorial product of two smaller lattices, where the tensorial decomposition reveals that
both objects and attributes are in fact combinations of “simpler” things. In a reengineering
context, such substructures of governing symbols are usually not at all obvious, just as a
proton hardly reveals that it consists of quarks.

10the labels are not shown in the figure, because the representation is very abstract; all labels, extents and
intents can be obtained by a simple mouseclick
"1In fact, C27 revealed a bug in the program (see [KS94]).

11

(%)

a b >
1| x

2 X %

X

Figure 10: A direct product of contexts and the corresponding tensor product of lattices

Tensorial decompositions are special cases of subtensorial decompositions, which we need in
general. First, we need the notion of a direct product of contexts. The direct product of
contexts Cl == (01, Al, Rl), 02 == (OQ,AQ,RQ) is given by

Cl X 02 = (01 X 02,A1 X AQ,V)

where (01,09)V(a1,a2) iff 01 R1a1 or 02Rsas.
As an example, consider two small contexts and their direct product in figure 10. Each cross
in an original table becomes a cross rectangle in the direct product. Note that the product
context is isomorphic to the context above; this already shows that there is hidden structure
in the attributes and objects of the motivating example.
A tensor product of two concept lattices is just the lattice which belongs to the direct product
of two contexts [Wi85]:

B(Cl) X B(CQ) = B(Cl X CQ)

Figure 10 presents an example of a tensor product.'?> Note that the direct product of two
contexts always contains copies of both original contexts as subcontexts; these can be obtained
by deleting rows and columns in the product. Therefore, the tensor product of the lattices
will contain copies of both original lattices as sublattices. This characteristic property is also
valid for the more general definition of a subtensorial product.

A subtensorial product of two concept lattices is a factor of a tensor product such that the
original lattices are still contained as sublattices [GW94]:

B(C1) @ B(C2) = (B(C1) ® B(C2))/0

0 must be a lattice congruence which preserves B(C4) and B(Cs): [z]g = {z} for x € B(Cy)U
B(C5). Subtensorial products of concept lattices correspond to subdirect products of contexts,
that is, certain arrow-closed subcontexts of the direct product of contexts. Ganter and Wille
have proven the

Theorem [GW94]. A concept lattice L is a subtensorial product of two concept lattices L
and Ly iff L; 2 are sublattices whose union generates L, and every pair (z1,z2) € L1 X Ly is
weakly distributive.

12The lattice is also directly decomposable, as it is isomorphic to the boolean Algebra 2% =2 22 x 22,

12

4.2 An algorithm for subtensorial decomposition

The above theorem is the basis for the subtensorial decomposition algorithm. The crucial
problem in subtensorial decompositions is to find candidate sublattices, which must then be
checked for further properties. Finding sublattices is not a trivial task. The naive approach
of enumerating all subsets and checking whether they are sublattices has exponential time
complexity and thus forbids itself. Fortunately, formal concept analysis provides the building
blocks for an efficient algorithm.'?

In order to understand the algorithm, we first observe that for a lattice L the mapping
U : 2L — 2L which maps every subset M of L to the sublattice generated by M is a closure
operator: we have M C U(M), UU(M)) = U(M), and for M C N, U(M) C U(N). It is
well known that Ganter’s algorithm for the computation of all concepts of a given context
is in fact an algorithm which computes all closed sets of a given closure operator [Ga87].
For computation of concept lattices, the closure operator is the composition of the Galois
mappings of the context, denoted ”. But it is not forbidden to use Ganter’s algorithm for
other closure operators as well, for example the closure operator U.

In order to implement this idea, we first need an implementation of /. Here is a simple
algorithm:

UM := M;
REPEAT
UM2 := UM;
FOR x IN UM2 DO
FOR y IN UM2 DO
UM := UM U {z Ay,zVy};
UNTIL UM=UM2;
This algorithm will compute UM = U(M) for any M C L; it has time complexity O(|L|?).
Now the algorithm for subtensorial decomposition can be described as follows.

1. Run Ganter’s algorithm on L, using closure operator ¢/.'* This will produce all sublat-
tices of L.

2. For every pair of sublattices L; and Lo, check whether their union generates L, and
whether they are weakly distributive:

(a) test whether U(L; U Ly) = L
(b) test whether for all (z1,22) € Ly X Lo,

Vge J(L):g<x1 Vo < g<z10rg<umo

as well as
Vge M(L):g>x1 N2y <= g>x10rg> 129

(Note that in these equivalences, one direction is trivial and need not be tested).

13Note the analogy to subdirect decompositions, where in a first step congruences must be found, which are
then ckecked for the separation property. Naive generation of congruences is forbidding for complexity reasons.
But the computation of the arrow relations opens the door to an efficient algorithm.

14This requires that the lattice elements are numbered first, as Ganter’s algorithm utlizies the lexicographic
order of element sets.

13

#if defined(A) && defined(B)
P R

#ifdef C

LWGITL ‘
#endif

#endif

#ifdef D

#if defined(B) && defined(C)
LWITIL ..

#endif

LIV

#endif

~
X |
X X X |

IT | x
II7
v X

Figure 11: Source file to be modularized

This algorithm requires that the irreducible elements J(L) resp. M (L) are precomputed (both
sets can be determined in time O(|L|)). Both the check for weak distributivity and the test
whether the candidates generate L have time complexity O(|L|3). If there are n sublattices
of L, the overall time complexity thus is O(n? - |L|?).

4.3 Modularization based on subtensorial decomposition

It is the aim of configuration restructuring to decompose the code into modules such that
high cohesion and low coupling between modules is achieved, while the configuration space is
left intact'® [Sn95]. Subtensorial decomposition can be the basis for a restructuring method,
as described in this chapter. This method is not yet fully implemented and has not been
tested on real-world restructuring problems. But if it succeeds, it can very well be considered
a breakthrough in automated restructuring.

The algorithm is best explained by an example. Consider the source text and its configuration
table C' presented in figure 11 (its lattice L is displayed in figure 5). As demonstrated in
[GW94], the corresponding lattice has a subtensorial decomposition. The context tables C;
and Cy corresponding to the required sublattices L; and Lo are given in figure 12 (L; 2 are
displayed in the right part of figure 5, as they are subdirect factors as well). Hence Cy,Co
are subdirect factors of C. In these subdirect factors, “A, B”means that A and B govern the
same code pieces, while “ITT,IV” means that code pieces III and IV are governed by the
same CPP symbols. The modules corresponding to the subcontexts are displayed right to
the tables. They are generated straightforward from the factor tables. The direct product of
C1 and (5 is given in figure 13. The arrow-closed subcontext of C; x C5 which is isomorphic
to the original table C is obtained by selecting only those rows and columns marked with a
bullet (the reader should switch row III and row IV in figure 11 to see this).

Note that in this example, the code pieces are split into disjoint subsets, but this need not
be the case - hence in general the modules are not completely redundant free. As this small
example is fictious, we cannot say whether the modularization produced low coupling and
high cohesion. In general, this depends on the meaning of A, B, C, D and requires human
judgement [Sn95].

'Sthe latter property is called correctness of the configuration restructuring method.

14

#if defined(A)
&& defined(B)
T I
#endif
| A,B C D #if defined(A)
I X && defined(B)
II X X && defined(C)
111,1V X P)
#endif
#ifdef D
LJIITL ..] LTIV,
#endif

#if defined(B)
|A B,C,D && defined(C)
III, IV = && defined(D)
IIT X CLITIL ..

#tendif

Figure 12: Modularized source file

AP GED D BEp G e
[] [] [] []
(LILIV) e x X
(I;111) X X X X
(IL;I,II,IV) e X X X X
(IT;1I1) X X X X X
(IV;I,II,IV) e x x
(IV;III) . X X X X

Figure 13: The configuration table of figure 11 as a subdirect product

We will now describe how the original configuration function can be reconstructed from the
configuration functions of the subdirect factors of a given configuration table. This is essen-
tial, as it guarantees that the configuration space remains intact after modularization. We
begin with direct decomposition of configuration tables. First, we show how the derivation
function'® of the product is obtained from the factor’s derivation function.

Let C = C; x Cy = (01 x 09, A1 x A9, V) be a direct product of C; = (O, Ay, Ry) and
Cy = (O3, Ag, Rs). Let 0,01,09 be the corresponding derivation functions. Then

o((01,02)) ={(a1,a2) € Ay x Az | (01,02)V(a1,a2)}
= {(al,ag) | o1Ria1 vV OQRQO,Q}
= {(a1,a2) | o1R1a1} U {(a1,a2) | 02R2a2}
= 0'1(01) X A2 U A1 X 0'2(02)

'Sthe “derivation function” has been written “” in the introduction. In order to be able to distinguish

several “derivations” for several tables, we now use o instead: or(o) = {a | (0,a) € T'}. Other indices for o
may be used as appropriate.

15

Now let I, K1, Ko the configuration functions belonging to C, C1, Cy. Let X C Ay X Ay. Then

’C(X) = {(01,02) € 01 x Oy | O'((Ol,Og)) C X}
= {(01,02) | 0'1(01) x Ay U Ay % 02(02) C X}
= {(01,02) |O’1(01) x A C X N Ay XO’Q(OQ) QX}
= ({01 € O | 01(01) x Ay C X} X 02) N (01 X {02 € Oy | Ay X 0’2(02) C X})

Thus we can compute K from Cy and C5 alone — the original configuration table C' is no
longer needed.
Now we will investigate how congruences affect derivation functions. Let L; = B(Cy), Ly =
B(C5), and let Ly = L2/#. The congruence 0 corresponds to an arrow-closed subcontext
induced by T = Tg - O U A: 01 = (02 N T, A2 N T, R2|020T><AQDT)- For o € 01, 01(0) =
ext1(71(0)) = exti(Aoceat(c) ©) = Uesi(0) @1(c). But in fact, y1(0) as well as all the ¢ >
71(0) represent congruence classes in Ly: exti(c) = U{ext2(d) NT | ¢(¢') = c}.'7 Thus
ai(c) = U{aa(d)NT | ¢(c’) = ¢} (note that € is a congruence and thus preserves the lattice
order). Hence 01(0) = Ucs, (o) Ug(er)=c @2(¢’) NT. For any a € A, we define © : A} — 242
where O(a) = U{az(c) | #(c') = pu(a)}. Thus 01(0) = Ue,>4,(0) ©(@1(c1)) NT. Furthermore,
72(0) = Ucy>5(0) @2(€) = Ue; >(v2(0)) ©(@1(c1)).
Therefore we obtain

K:(UO(X)NT = {o€0z|0o2(0) CUBX)}NT
{0 € O1 | Ue,>(1s(0)) ©Olai(c1)) CUOB(X)}
{0 € 01 [Ue 30 Olai(e1)) € Uaex O(a)}
{o € O1[Ue;>y(0 1 (c1) € X}
= {0€0;|o1(o) CX}
= Ki(X)

Thus the configuration function of an arrow-closed subcontext can easily be computed from
the configuration function of the original context. It is wise to use a precomputed table for O;
furthermore, T' must be available. Note that several details in the above computation have
been left out for space limitations.

Let us now assume that we have a subtensorial decomposition: L = B(C) = B(C; x C3)/#.
Putting both above parts together, we obtain

Ke(X) = Keixe,(UO(X)) NTy
= ({01 € 01| o1(o1) x Ay CUB(X)} x 02)
ﬂ(Ol X {02 c 02 | A1 X 0'2(02) C U@(X)}) ﬂTg

This shows how the original configuration function can be determined solely from the tables
of the subtensorial factors, and completes our restructuring method. Note that (X)) can be
computed quite efficiently, but is nevertheless much more complicated than the original CPP
configuration function. Thus one has to pay a price for restructuring: configuration selection
becomes more difficult to understand.

An open questions remains: Will subtensorial decomposition indeed produce modules which
stick to the principles of high cohesion and low coupling? This can only be answered by
empirical studies of real-world programs and will be checked once the implementation is
completed.

¢ : Ly — L, is the canonical homomorphism as described in section 2.2: ¢(X,Y) = (X NT,Y NT).

16

5 Conclusions

Formal context analysis is a powerful tool for analysis of configuration structures, but as a
tool for restructuring, the approach is still in its infancy. In particular, it turned out that
horizontal decompositions do not preserve the complete configuration space and thus can
only be used for what Parnas calls “amputation”; subdirect decompositions are very seldom
in practice, and it is still unclear whether subtensorial decompositions can be applied to
real-world problems. Nevertheless, decomposition of concept lattices has turned out to be a
valuable tool for software reengineering and restructuring. Even if automatic restructuring is
impossible, the decomposition algorithms lead to very powerful analysis tools.

6 References

[Fu96] P. Funk: Subdirekte Zerlegung von Begriffsverbanden. Diplomarbeit, FB Informatik,
TU Braunschweig 1996.

[Ga87] B. Ganter: Algorithmen zur formalen Begriffsanalyse. In B. Ganter, R. Wille (Ed.):
Beitrage zur formalen Begriffsanalyse. B.I. 1987, pp. 241-254.

[GW94] B. Ganter, R. Wille: Subtensorial decompositions of concept lattices. Bericht
MATH-AL-1-1994, TU Dresden FB Mathematik, 1994.

[Kr93] M. Krone: Reverse Engineering von Konfigurationsstrukturen. Diplomarbeit, FB
Informatik, TU Braunschweig 1993.

[KS94] M. Krone, G. Snelting: On the Inference of Configuration Structures from Source
Code. Proc. 16th International Conference on Software Engineering, Mai 1994, IEEE
Comp. Soc. Press, pp. 49-57.

[Le96] A. Lewien: Analyse und Vereinfachung von Konfigurationsrdumen durch horizon-
tale Zerlegung von Begriffsverbanden. Diplomarbeit, FB Informatik, TU Braunschweig
1996.

[LS95] C. Lindig, G. Snelting: Formale Begriffsanalyse im Software Engineering. Erscheint
in R. Wille (Hrsg.) Begriffliche Wissensverarbeitung: Methoden und Anwendungen,
BI-Wissenschaftsverlag.

[Sn95] G. Snelting: Reengineering of Configurations Based on Mathematical Concept Analy-
sis. Informatik-Bericht 95-02, Januar 1995. To appear in ACM Transactions on Software
Engineering and Methodology.

[Wi82] R. Wille: Restructuring lattice theory: An approach based on hierarchies of concepts.
In: I. Rival, (Ed.), Ordered Sets, pp. 445-470, Reidel 1982.

[Wi83] R. Wille: Subdirect decomposition of concept lattices. Algebra Universalis 17 (1993),
pp. 275-287.

[Wi85] R. Wille: Tensorial decomposition of concept lattices. Order 2 (1985), pp. 81-95.

[WG93] R. Wille, B. Ganter: Mathematische Theorie der formalen Begriffsanalyse. Skript,
TH Darmstadt 1993.

17

