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Zusammenfassung
Abstract

In dieser Arbeit wird ein Tool vorgestellt, das die Befehlsauswahlphase eines IR-
basierten Compilers automatisch generieren kann. Aus formalen Spezifikationen
der Zwischensprache des Compilers und der Ziel-Maschinensprache findet es mit-
tels eines SMT-Solvers zu jeder Maschineninstruktion einen äquivalenten DAG in
der Zwischensprache. In der Spezifikation kann insbesondere auch Speicherzugriff
effizient dargestellt werden. Aus den so gewonnenen Zuordnungen wird dann eine
Befehlsauswahlfunktion generiert, die in Firm integriert werden kann. Sie ist wie die
bestehende Firm-Befehlsauswahl ein „greedy DAG-matcher“.

Die Synthese von 58 Maschinenbefehlen aus einer Zwischensprache mit 20 Befehlen
dauert 2 Stunden. Die synthetisierte Befehlsauswahlfunktion kann die Mehrzahl der
Befehle aus dem SPEC-CINT2000-Benchmark in Maschinensprache übersetzen.

We present a tool that can automatically synthesise the instruction selection phase of
an IR-based compiler. Using formal specifications of intermediate representation and
machine language instructions, we match machine language instructions to DAGs of
IR instructions using an SMT solver. Our specification model includes an efficient
representation of memory access. From the associations between IR and machine
language, we generate a greedy DAG-matching instruction selector that can integrate
into Firm.

Our tool can synthesise an instruction selector for 58 machine instructions from a
set of 20 IR instructions in 2 hours. The synthesised instruction selector is able to
handle the majority of instructions from the SPEC CINT2000 benchmark.
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1. Introduction
The point of modern programming is not to convey orders to a computer, but
ideas to a fellow human. For this reason, computer science has developed high-level
programming languages, which are easier for humans to write and to understand.

Of course, a computer cannot execute a program in a high-level language without
help. A translation program called a compiler turns the high-level program into
a machine code program, which the computer can execute. In addition, the com-
piler should automatically improve (optimise) the program, so that the developer
may concentrate on writing clear and understandable code, but still achieves good
performance.

We can see from these requirements that developing a good compiler is a substantial
undertaking. The major compilers GCC and LLVM each have hundreds of thousands
of lines of code, and have been in development for more than 10 years. In fact, most
of the code and development effort went into the optimisations, which are in principle
the same in every compiler. Therefore, modern compilers are designed in such a way
that the optimisations (middle end) can work together with any high-level language
(front end) and any machine language (back end).

The middle end uses its own intermediate language to represent programs inde-
pendently from the front end language, and more or less independently from the
back end language (GCC’s intermediate language is more backend-specific than
LLVM’s). This means that the front end has to translate the high-level language
to the intermediate language, and the back end has to translate the intermediate
language to the machine language. It is the second of these translation steps that
this present work deals with.

In order to use the machine as efficiently as possible, the compiler should of course
make use of all its capabilities, i.e. it should be able to use the whole machine
language. This requires a lot of work, because today’s machines (first and foremost
Intel’s) have very large instruction sets, and frequently extend them. A good compiler
needs to keep up with this development.
To add a new machine instruction to a compiler, a developer has to do the

following: Translate the new instruction to intermediate language, check if the
translation overlaps with existing ones, write code to find the translation in an
intermediate language program, and finally write code to generate an instance of
the new instruction where its translation is found. With our work, we aim to relieve
compiler developers of this tedious task.
In our approach, the developer just has to specify the behaviour (semantics) of

each instruction in the intermediate and machine language in an abstract way. From
these descriptions, we automatically generate the translation step from intermediate

7



language to machine language (called instruction selection). This works even when
the same behaviour is specified in two different ways. For example, it is not obvious
that the expressions ∼(−x)1 and x− 1 are equivalent, but our program will match
instructions even in these cases.

In our work, we use an SMT solver. This is a software tool that can automatically
find the solutions to certain simple kinds of mathematical and logical problems.
For example, we may ask it to find integers x > 0, y > 0, and z > 5 such that
x2 + y2 = z2, and the SMT solver will find one solution (it might be x = 16, y = 12,
z = 20).
However, even with such a powerful tool at our disposal, there remains work to

be done, which we present in this thesis. First, we look at some prerequisites at
more detail in Chapter 2. Chapter 3 is the main part of our work; we develop our
algorithm to synthesise instruction selection. In Chapter 4, we then evaluate the
performance of our algorithm from different perspectives. Finally, we discuss our
results and take a broader outlook in Chapter 5.

1“∼” refers to the function that flips all bits in its argument
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2. Basics

2.1. Compiler Design
At the most basic level, a compiler’s task is to translate a program written in a
source language to a semantically equivalent program in a target language. Besides
that, the output program should be optimised, for example to run as quickly as
possible, or to be as small as possible. The compiler therefore applies optimisation
passes to the program when translating it, for example removing redundant code or
simplifying computations.
A compiler usually includes a large number of optimisation algorithms, each

of which requires considerable development effort. Compiler developers therefore
want to share optimisations between compilers for different languages. Moreover,
neither source nor target language are usually designed to be easily manipulated
programmatically, so that a more convenient representation is required anyway.

For these reasons, most compilers are designed around an intermediate representa-
tion (IR), on which most parts of the compiler operate. We will discuss IR design in
more detail in Section 2.1.1. A compiler having an IR is usually divided into three
components, which process the source program in turn:

• First, the source-specific front end parses the source language program and
checks it for errors. If the program is correct, the front end converts it to the
compiler’s IR.

• Next, the middle end applies the optimisations to the IR program in order to
produce an efficient output program.

• The optimised IR program is finally passed to the target-specific back end of
the compiler, where the IR is transformed into the target language, and some
additional optimisations may be performed.

By way of the middle end, every front end can be combined with every back end.
However, the compiler now requires two translation steps, from source language to
IR, and from IR to target language. The latter transformation is the instruction
selection, which we describe in Section 2.1.3.

From here on, we shall assume the most common case for compiler construction,
namely that the source language is a high-level imperative programming language,
and that the target language is an assembly language for a particular processor.
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CHAPTER 2. BASICS

# include <stdlib .h>

void f(int a, int *b)
{

int i = 2 * a;
if (b != NULL) {

*b -= i;
}

}

(a) C source program

f:
movl 8(% esp), %eax
testl %eax , %eax
je . LBB0_2
movl 4(% esp), %ecx
addl %ecx , %ecx
subl %ecx , (% eax)

. LBB0_2 :
retl

(b) x86 assembly produced by clang with
optimisations enabled

define void @f(i32 %a, i32* %b) #0 {
%1 = mul nsw i32 2, %a
%2 = icmp ne i32* %b, null
br i1 %2, label %3, label %6

; <label >:3
%4 = load i32 , i32* %b, align 4
%5 = sub nsw i32 %4, %1
store i32 %5, i32* %b, align 4
br label %6

; <label >:6
ret void

}

(c) LLVM bitcode after load-store
optimisation

f

Start Block 58

Block 76

Block 75

Block 84

End Block 56

Mul Is 68

Const 0x2 Is 67 Proj Is Arg 0 65

Proj M M 63

Proj X true 73Proj X false 74

Cond 72

Cmp b not_equal 71

Proj P Arg 1 66

Proj T T_args 62

Start 60

Conv P 70

Const 0x0 Is 69

Jmp 85

Return 87

Phi[loop] 86

End 57

Proj M M 82

Store 81

Proj M M 78Sub Is 80

Proj Is res 79

Load[Is] 77 Jmp 83

0

1

0

01

01

0

0

0

1

1

0 1

0

0
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(d) Firm graph before optimisation. See
page 76 for a larger version.

Figure 2.1.: Comparison of high-level, assembler and intermediate languages. Both
high-level and assembler language are more concise, but IRs have less
complexity.
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2.1. COMPILER DESIGN

2.1.1. Intermediate Representations
We have already presented the reasons for using an IR. In order to motivate the
design choices involved in an IR, we will first look at the typical structure of source
and target languages (i.e. high-level and assembly languages), and see why they are
unsuitable as IRs.
Throughout this section, we will refer to the example programs in Figure 2.1.

Figure 2.3c shows a sample C program, the others show its translation into x86
assembly (Figure 2.1b), LLVM bitcode as an example for an IR (Figure 2.1c), and
Firm (Figure 2.1d). We will discuss Firm in more detail in Section 2.1.2.
Programs in high-level languages are composed of nested statements and expres-

sions. They are internally represented as an abstract syntax tree (AST), annotated
with types and symbol resolutions. The AST can have tens of different node types,
each with a different internal structure. For example, the grammar for C99 has 21
non-terminal symbols for expressions, 35 for declarations and 9 for statements. [1,
Annex A]. This makes it inconvenient for the compiler to analyse and manipulate
the AST. In addition, the language might have some abstract concepts, which are
present in the AST, but hard for the optimisation algorithms to deal with.
On the other hand, assembly language programs have a simpler structure; they

are lists of atomic1 instructions. However, matters are complicated by hardware
limitations: There are only a fixed number of registers available, and instructions
might have implicit side effects (e.g. modifying flags). In addition, CISC processors
often have instructions that combine several simpler instructions into one. Thus, the
instruction set can become quite redundant. Again, such a language is not suited for
analysis and manipulation by a compiler.
Having these problems in mind, we can now draw up the criteria for IR design.

Simple structure The structure of the IR should be simple and uniform, so that it
may be easily handled by the compiler.

Small size There should be a small number of instructions with simple semantics in
the IR to ease analyses in the middle end. However, it should be reasonably
easy for the front end to produce IR from the source language.

Regularity IR instructions should have as few special cases as possible, and should
not have implicit side effects.

Abstraction The IR should abstract from details of both the hardware and the
source language.

Following these guidelines, IRs traditionally have the same structure as machine
languages: They consist of sequences of atomic instructions. An IR’s instructions
are mostly simple: It usually contains instructions for every basic arithmetical and
logical operation, and separate instructions for memory access.

1i.e. “indivisible”, not “suitable for synchronisation”
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2.1. COMPILER DESIGN

On the other hand, it also contains some high-level instructions, which can be
equivalent to a long sequence of machine instructions. For example, a function call is
often represented as a single IR instruction in order to abstract from the particular
hardware mechanisms in use.

Another important point of difference between IRs and machine languages is the
treatment of registers. A processor has a limited register set, which the compiler’s
back end must carefully manage. This register allocation is a complex problem, and
the middle end should not have to deal with it.

SSA form

Modern IRs use static single assignment form (SSA form) [2] to represent values
that the high-level language would keep in local variables, and the machine language
would keep in registers. In SSA form, each IR instruction defines some SSA values and
uses SSA values previously defined. To use an SSA value, an instruction refers to the
instruction that defined it earlier. Since SSA values are immutable, each assignment
to a variable creates a new SSA value. The variable is therefore represented by a
sequence of SSA values, with one SSA value for each assignment to it.

SSA form requires some overhead to deal with control flow. First, the program is
divided into basic blocks. Simply put, a basic block is the sequence of instructions
from one jump or jump target to the next, i.e. a set of instructions that are always
executed together.

If a basic block B has multiple predecessors, i.e. basic blocks that jump to it, some
values may depend on which predecessor actually executed before B. To express
this dependency, SSA form uses φ-functions at the start of the basic block. The
φ-function’s takes the values from the predecessors as arguments and returns the
value from the predecessor that actually executed. See Figure 2.2 for an example,
whereby the value of x3 depends on whether block A or block B executed previously.

In spite of this overhead, SSA form is easily constructible [3], and greatly simplifies
later analyses, because there is no need to track the value of local variables.

2.1.2. The Firm IR
Even though IRs traditionally represent programs as a sequence of instructions, such
total ordering is unnecessary. Instructions that do not use each other’s results or
have side effects can be reordered without changing the program’s semantics. If the
instructions are not fully ordered, the compiler can manipulate the program more
easily.

Firm implements the idea of partially ordering instructions by representing pro-
grams as dependency graphs. In a dependency graph, each instruction becomes a node,
and each dependency between instructions becomes an edge from the dependent
instruction to the instruction it depends on.

12



2.1. COMPILER DESIGN

if ( condition ())
/* block A */ {

x = 1;
}
else
/* block B */ {

x = 2;
}
return x;

(a) C program

if ( condition ())
/* block A */ {

x1 = 1;
}
else
/* block B */ {

x2 = 2;
}
x3 = φ(x1 , x2);
return x3;

(b) Program in SSA form

Figure 2.2.: An example for the use of φ-functions. Part (a) shows a code snippet
in C, part (b) shows the same code in SSA form. The value of x3
depends on previous execution. The φ-function selects the value form
the predecessor block that executed.

Dependencies

Generally speaking, an instruction i depends on another instruction j, if i requires
information from computed by j, and must therefore execute after j.

This includes the information, whether i should execute at all. In this case, i has
a control dependency on j. For our work, data dependencies are more important
though, and we shall now discuss these in more detail.
The simplest data dependency is the define-use relationship. The instruction j is

in define-use relationship with the instruction i, if i uses a value that j has previously
defined. This is the usual dependency between arithmetical instructions.
Besides that, instructions can also be data dependent through memory: If the

instruction i reads a value from a memory location that j writes to (read-after-write),
i and j must not be reordered to preserve the program’s behaviour. The same is true
for write-after-write and write-after-read dependencies.
Define-use relationships are explicit in all SSA-based IRs, but data dependencies

through memory side-effects are only kept implicitly in the total order of the instruc-
tions. Firm makes all data dependencies explicit, and can therefore do away with
ordering instructions totally.
A Firm instruction that has side-effects uses and defines an M-value, which

represents the state of the outside world at a given position in the program. Thus,
instructions with side-effects are ordered by a chain of M-values from one to the
next.
The M-value also represents the state of memory (hence its name), and we will

mostly need this aspect of it in our work below.
Ignoring loops, the dependency relation is a partial order, and the dependency

graph is therefore a DAG. Only φ-instructions in loops may break the partial order
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2.1. COMPILER DESIGN

to use a value defined in the previous iteration. Since we will not be concerned with
φ-instructions in our work, we may treat the dependency graphs as DAGs.

Modes

Each Firm node has a mode, which determines the kind of result it produces. It may
also determine the kinds of arguments the node takes.

In contrast to types, which the programmer or the programming language define,
modes are defined by the compiler. Firm has signed and unsigned integers 8, 16, 32,
and 64 bits wide; boolean values; pointers; single- and double-precision floating point
values; and special internal modes, namely M-values, values representing control flow,
and tuples.
Compilers using Firm map primitive types of their source languages to the

respective modes, and represent compound types as pointers.
The tuple mode T is required for nodes that define multiple values. For example,

a Call node, which represents a procedure call, returns both the call’s return value
and the updated M-value in a tuple.
Nodes that use one of the values in a tuple do so by way of a projection node

(called Proj). The Proj node uses the tuple value and defines the value of one of its
elements.

Firm Nodes

Let us now take a closer look at how Firm implements these principles. A Firm node
has the following components: Firstly, an opcode specifies the kind of instruction that
the node represents, and the node’s mode may specify a variant (e.g. floating-point
or integer arithmetic).
The node’s dependencies are stored in an array of pointers to the nodes it de-

pends on. Because the dependencies of arithmetical instructions are their arguments,
dependencies are also called arguments or inputs when talking about Firm nodes.
Finally, a node may have some opcode-specific attributes. For example, a node

defining a constant value (a “Const” node) has this value as an attribute.
We shall now give an overview of the most important typed of Firm nodes. See

Figure 2.3 for a display of some common nodes. The full list of available nodes can
be found in the Firm API [4].

Arithmetical nodes All usual arithmetical and logical operations are available in
Firm. The operations are not variadic, each instruction takes one or two
arguments. Arithmetical instructions can have all integer modes, and floating-
point modes where applicable. The input(s) must have the same mode as the
output. A conversion instruction (Conv) is available to convert between modes.
Instructions that may fail (namely division and remainder) additionally

depend on and produce an M-value to capture the side effect of them failing.
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2.1. COMPILER DESIGN

Memory-access nodes Only two kinds of nodes are relevant for our work, namely
Load and Store. Both have the expected semantics. Even though Load nodes
do not change the contents of memory, they still define a new M-value. This
is required to encode write-after-read dependencies, and to model access to
volatile memory.

Control flow Firm models control flow by giving basic blocks (and therefore the
nodes contained in them) a dependency on a control flow value produced by a
jump node. There is a Jmp node for unconditional jumps and a Cond node,
which takes a boolean value and produces a tuple of two control flow values,
one of which is chosen by the argument.

The Cond node usually works together with a Cmp (compare) node, which
compares two values and produces a boolean value as its result. The relation
to use ( for integral modes: <, ≤, 6=, = ≥, >) is an attribute of the Cmp node.

2.1.3. Instruction Selection
The compiler back end transforms IR to machine language in three main steps, of
which instruction selection is the first. Its task is only to replace IR instructions
with matching machine language instructions while keeping the program in graph
form. In later phases, the instructions are fully ordered (scheduling), and hardware
registers are assigned to the SSA values in the program (register allocation).

One machine instruction usually subsumes several IR instructions. Therefore, each
machine instruction is associated with an IR graph pattern that it implements. A
graph pattern is an incomplete IR graph, where some inputs are left unspecified
(the pattern’s arguments) and some nodes are marked as results. The unspecified
inputs correspond to the inputs of the machine instruction, and the marked result
nodes correspond to its results. If the machine instruction and its pattern are given
the same inputs, they produce the same results. Therefore, the instruction selector
can replace an occurrence of the pattern within the IR graph with the machine
instruction.

Additionally, each machine instruction is assigned a cost, for example the estimated
number of cycles it takes to execute.
The task of instruction selection is then to cover the input IR graph with the

patterns given by the available machine instructions, such that every node is covered
by one pattern, and the edges within the patterns correspond to edges present in
the graph. Also, in order to produce efficient machine code, the total cost of all
instructions used should be minimal.
Unfortunately, this covering problem is only tractable if the IR graph is a tree.

Even if we do not account for loops and restrict ourselves to IR DAGs, the problem
becomes NP-complete [5]. Therefore, a large number of heuristics and formalisations
have been developed. Blindell presents an extensive survey of instruction selection
algorithms in [6].
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CHAPTER 2. BASICS

Add
0

summand

1

summand

sum

Sub
0

minuend

1

subtrahend

difference

Minus
0

argument

negation

And
0

argument

1

argument

bitwise
conjunction

Shr
0

argument

1

shift

shifted
argument

Const 42

42

(a) Examples for arithmetical and bitwise nodes.

Load
0

M-value

1

address

Proj 0

M-value

Proj 1

loaded
value

Store
0

M-value

1

address

2

value

Proj 0

M-value

(b) Memory access nodes with their Projs.

Cmp <
0

left

1

right

Cond

Proj 0

condition
false

Proj 1

condition
true

(c) A Cmp node and a Cond node as used for conditional jumps. In this case, the jump is
taken if left < right.

Figure 2.3.: Some common Firm nodes. For the full list of available nodes, see
the API [4].
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2.2. SMT

We generate a greedy DAG-matcher, which recursively traverses the input depen-
dency graph. At each node, it finds the largest pattern that has the node as a root,
and replaces that pattern with the associated machine instruction.
However, our work can be applied to any instruction selector. Our task is to

provide the associations between IR patterns and machine instructions. From this
information, any kind of instruction selector can be built.

2.2. SMT
SMT (Satisfiability Modulo Theories) is an extension of boolean satisfiability (SAT).
In it, the boolean variables of a SAT problem may be replaced by terms from one or
more theories.
An SMT theory defines a sort (i.e. a type) or family of sorts together with its

associated operations. The SMT-LIB project has standardised some SMT theories [7],
which are used by the major SMT solvers. We now give an overview of the theories
that we use in our work below.

First, SMT-LIB treats classic SAT as a theory named “Core”. This theory defines
the sort Bool with its values true and false and the usual logical operations.

The “Int” theory defines the sort Int of unbounded integers together with the usual
arithmetic operations and the usual ordering.
The “FixedSizeBitVectors” theory defines a family of sorts: For each n, there is

a sort BitVecn representing a vector of n bits. The theory defines the usual logical
operations on the bits, as well as operations to concatenate vectors and extract
sub-vectors. More importantly, the theory also defines arithmetical operations, which
interpret the bit-vectors as integers encoded in binary form. The FixedSizeBitVectors
theory is therefore useful to represent CPU arithmetic.
Finally, the “ArraysEx” theory defines maps from one type to another. It also

defines two operations to manipulate these maps: A value can be associated with
another one by storing the association in the map, and the value associated with
a given value can be selected from the map. These maps can be used to represent
memory as a map from addresses to their contents.
In addition to theories, SMT problems also allow first-order quantifiers. As with

SAT problems, free variables are implicitly existentially quantified, and the SMT
solver needs to produce a valid assignment to them, called a model.

We use the SMT solver Z3 [8] in our work, which supports all these theories, and
allows to mix them in one query.
In the algorithms below, we will use the following convention to represent SMT

queries, with all quantifiers made explicit:
(r, a)← SMTSolve(∃x.φ(x))

The function returns a pair, whereby the first element is either sat (satisfiable) or
unsat (unsatisfiable), and the second element gives a model for the existentially
quantified variables if the formula was satisfiable. We represent the model as a
function from a variable’s name to its assigned value.

17



2.3. RELATED WORK

For example, if we execute this query:
(r, a)← SMTSolve(∃x.∃y.∃z. x ∗ x+ y ∗ y = z ∗ z),

we have r = sat and a(x) = 3, a(y) = 4, a(z) = 5 (or another Pythagorean triple).

2.2.1. Limitations
An SMT problem that may freely use quantifiers and the theories presented above
can be undecidable, because both first-order logic [9] and non-linear arithmetic [10]
are undecidable. Therefore, the admissible SMT problems may be restricted with a
certain logic. For example, the logic might forbid non-linear arithmetic, the use of
quantifiers, or unbounded integers (using bit vectors instead).

However, even if an SMT problem is decidable, it may still be impractically hard
to solve. For example, a bit vector problem involving a universally quantified variable
is decidable, but it may be necessary to consider all possible cases. When the bit
vector becomes sufficiently large, this is clearly too inefficient.

Therefore, the problems given to an SMT solver should be as simple as possible, and
should avoid universal quantification. However, a universal quantifier can sometimes
be eliminated by breaking up one intractable SMT problem into several smaller ones.

2.2.2. CEGIS
CEGIS (Counterexample-guided inductive synthesis) can eliminate the universal
quantifier in formulae of the structure ∃x.∀y. φ(x, y), where φ(x, y) is a quantifier-free
SMT formula.

In principle, the SMT solver now needs to consider all cases for y. However, a few
cases are usually enough to check those formulae which occur in practice. If φ is
sufficiently benign, there is a small set {y1, . . . , yn} such that

∃x. φ(x, y1) ∧ . . . ∧ φ(x, yn)⇒ ∀y. φ(x, y)

CEGIS (Algorithm 1) is an iterative heuristic to find this set of useful test cases.
In one iteration, CEGIS first queries the SMT solver for an x∗ that satisfies φ for all
current test cases. This is called the synthesis step. Next, the algorithm queries for a
y∗ that does not satisfy φ(x∗, y∗) (counterexample step). If the solver finds a model
for y∗, it is added to the set of test cases. Otherwise, the model for x∗ satisfies φ for
all y∗.

2.3. Related Work
2.3.1. Superoptimisers
The algorithm we present in Chapter 3 is closely related to those used in superopti-
misation. Given a loop-free input program, the goal of superoptimisation is to find
the shortest program equivalent to the input. Thus, a superoptimisation algorithm
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Algorithm 1 CEGIS
1: procedure CEGIS(∃x.∀y.φ(x, y))
2: Y ← ∅
3: loop
4: (r1, a1)← SMTSolve(∃x∗.∧yi∈Y φ(x∗, yi))
5: if r1 = unsat then
6: return (unsat, ∅)
7: end if
8: (r2, a2)← SMTSolve(∃y∗.¬φ(a1(x∗), y∗))
9: if r2 = unsat then
10: return (sat, {x 7→ a1(x∗)})
11: else
12: Y ← Y ∪ a2(y∗)
13: end if
14: end loop
15: end procedure

has two parts: it needs a way of generating possible programs, and it needs a way to
check whether two programs are equivalent.

Superoptimisation was introduced by Massalin in 1987 [11] with the Superoptimizer.
The Superoptimizer enumerates all programs as lists of machine instructions, and
checks them for equivalence with the goal using a suite of random tests. A complete
equivalence check was intractable at the time due to insufficient computing power.

In 2011, Gulwani et al. presented an algorithm which makes it possible to use SMT
solvers for automated program synthesis [12]. They represent loop-free programs as a
DAG of components and encode both the search and the verification in SMT queries.
Thus, manual enumeration of all programs becomes unnecessary. This algorithm was
used by Collingbourne to build the LLVM superoptimiser Souper [13].

2.3.2. Specifying Instruction Selectors
Since machine instructions often have multiple similar variants, and compiler develop-
ers want to avoid code duplication, some compilers contain a domain specific language
to describe machine instructions concisely. For example, GCC contains “machine
descriptions” [14], and LLVM uses the “TableGen” format [15]. Preprocessing tools
then take these descriptions of the target instruction set, and expand them into
source code (e.g. datatype definitions and parts of the back end).
These instruction specifications also contain an IR pattern for the instruction.

However, this is a purely syntactic description. The generated instruction selector
will only be able to match exactly the specified pattern. In contrast, we describe the
instructions semantically, and can also find patterns that have a structure different
from the specification.
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2.3.3. Other Synthesis Approaches
Dias and Ramsey have already presented a tool to generate instruction selectors [16].
However, their synthesiser finds a sequence of machine instructions for each IR
instruction, thus producing inefficient back end code. The authors claim that this
can be remedied by subsequent peephole optimisations.

Heule et al. also worked on synthesis in the context of machine languages [17]. They
developed a tool to find logical formulae for x64-64 instructions through inference
from the instructions’ behaviour in experiments.
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3. Design and Implementation
In this chapter, we describe the design of the instruction selection generator, and of
the algorithms it uses.
The instruction selection generator takes the semantic models of both IR and

machine instructions, and produces code implementing an instruction selector that
translates the IR to the machine language.
Algorithm 2 gives an overview of the process. The parameter I is the multiset of

IR instructions, and M is the set of machine instructions. I must contain each IR
instruction in sufficient number to build a pattern for any machine instruction.

For each machine instruction (the goal instruction), the synthesiser produces a set
of patterns of IR instructions, which we collect in the set S. Then, the code generator
creates an instruction selector based on this set.

Algorithm 2 Overview
1: procedure SelectionGenerator(I : {{Instruction}}, M : {Instruction})
2: S ← {} . S : {(M × Pattern(I))}
3: for each g ∈M do
4: {p1, . . . , pn} ← Synthesise(I, g) . pi : Pattern(I)
5: S ← S ∪ {(g, p1) , . . . , (g, pn)}
6: end for
7: c← GenerateCode(S) . c : source code string
8: return c
9: end procedure

As we have pointed out in Section 2.1.3, the results of the synthesiser can be used
for any instruction selection algorithm. For compatibility with Firm, we generate a
greedy DAG-matcher as used in the existing Firm back ends.

We present both steps in more detail below (Section 3.2 and Section 3.4). However,
we first need to describe how we model instructions and their semantics (Section 3.1).

Notes on Notation

We will use the usual mathematical operators for both bit-vectors and integers. In
addition, we use these bit-vector-specific functions:

• v[n . . .m]: The extraction of bits n down to m from the bit-vector v

• v[b 7→ x]: A copy of bit-vector v with the bit at index b set to x

21



3.1. MODELLING INSTRUCTIONS

• u ◦ v: The concatenation of bit-vectors u and v.

The indices are zero-based, with bit 0 being the least significant bit. For example,
0110[2 . . . 1] = 11, 0110[1 7→ 0] = 0100, and 11 ◦ 0100 = 110100.

We also use square brackets to denote literal lists and access to list elements, as is
common in programming. Lists use zero-based indexing, too.
Finally, we use let-bindings as known in functional programming to make our

expressions more readable: We define “let x = t in φ” to mean (λx. φ)t, where the
abstraction captures unbound occurrences of x in φ.

3.1. Modelling Instructions
Our goal in this section is to construct a model of IR and machine instructions to
represent them in SMT formulae. Our model is an extension of the one presented by
Gulwani et al. [12].
Basically, an instruction takes some arguments, and computes some results. In

addition, some instructions have internal attributes, which are chosen at compile time
and fixed at run time. For example, a conditional branch instruction has the condition
code as an internal attribute. Together, these form the instruction’s interface.
The instruction declares the sorts of its interface in three lists Sa, Si, and Sr for

arguments, internal attributes and results respectively.
We also have to specify the instruction’s behaviour. We do this through three

functions P , Q, and V . Each of the functions takes three lists of SMT expressions va,
vi, and vr, whereby the sorts of these expressions must be equal to those in Sa, Si,
and Sr respectively (i.e. sort(va[n]) = Sa[n] for all elements). P and Q return SMT
formulae, which specify the instruction’s behaviour thus:

• P (va, vi, vr) is the precondition. If this formula does not hold, the instruction’s
behaviour is undefined. In the synthesis, we may ignore test cases where the
precondition does not hold.

• Q(va, vi, vr) is the postcondition. If P (va, vi, vr) holds, Q(va, vi, vr) also holds.
Its purpose is to define vr in terms of va and vi.

V (va, vi, vr) is a list of SMT expressions, namely the list of valid pointers for
this instruction. Depending on whether the instruction is the synthesis’ goal or a
candidate, we either assume or require that the pointers in V (va, vi, vr) be valid.

Thus, as far as the synthesis algorithm is concerned, we can represent an instruction
as a 6-tuple (Sa, Si, Sr, P,Q, V ). To denote one of the elements of instruction i, we
write Sa(i), P (i) etc.

We now present some exemplary instruction definitions. In particular, we show
how to model memory accesses.

22



3.1. MODELLING INSTRUCTIONS

3.1.1. Arithmetical instructions
Most arithmetical instructions are quite easy to define, because the bit-vector arith-
metic defined in SMT-LIB is very similar to the usual arithmetic of a processor.

Thus, to represent an integral type of n bits, we choose an SMT bit vector of equal
length (the sort BitVecn). We do not distinguish between signed and unsigned types,
but define separate instruction for signed and unsigned arithmetic in the few cases
where this is necessary.

Then, defining most arithmetical instructions is straightforward. For example, this
is the definition of a 32-bit subtraction instruction:

Sa = [BitVec32,BitVec32]
Si = []
Sr = [BitVec32]
P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ vr[0] = va[0]− va[1]
V = (va, vi, vr) 7→ []

sub32 = (Sa, Si, Sr, P,Q, V )

However, bit shift operations are problematic, because there are different ways
to deal with an out-of-range shift amount. In C, the shift amount must be non-
negative and less than the bit width, or the bit shift’s behaviour is undefined. In the
x86 assembly language and Firm, the shift amount is interpreted as unsigned and
implicitly reduced modulo the bit width.
We can specify both behaviours in our semantics. The interface is the same for

both:

Sa = [BitVec32,BitVec32]
Si = []
Sr = [BitVec32]
V = (va, vi, vr) 7→ []

shr32 = (Sa, Si, Sr, P,Q, V )

Then, to use the C semantics, we define

P = (va, vi, vr) 7→ 0 ≤ va[1] < 32
Q = (va, vi, vr) 7→ vr[0] = va[0] >> va[1]

and for the x86 and Firm semantics, we define

P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ vr[0] = va[0] >> (va[1] mod 32)
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We can see that the compiler may translate a C shift operation as a Firm shift
operation (and, in turn, an x86 shift operation), because where the C operation
is defined, the Firm/x86 operation has the same behaviour. However, we lose the
freedom to exploit the undefinedness of the C operation when we translate it to
Firm.

3.1.2. Memory Access
We model our memory access instructions like those in Firm: They use and define
values representing the current state of memory.

When SMT is used to describe program semantics, the memory state is usually
represented as an SMT array (i.e. an associative map) [18]: An address space of
32 bits with 8 bit words being addressed is presented as an array from BitVec32 to
BitVec8. The SMT-LIB Array theory then provides the functions select and store,
which directly implement the usual load and store operations.

However, this approach proved to be too inefficient for our needs. In the counterex-
ample step of our algorithm (see Section 3.2.2), we found that the SMT solver could
not prove with acceptable efficiency that no counterexample memory state exists.
We therefore need to find a more efficient model for memory state.

As we can see from the overview algorithm (Algorithm 2 on Page 21), we only
consider one machine instruction at a time as our goal. Therefore, we can restrict our
memory model to only represent those addresses that the goal instruction uses (its
valid pointer list). If a synthesis candidate uses any other addresses, we can exclude
the candidate.
We have tried to specify this restriction in the Array theory, but the SMT solver

could not make use of it. Therefore, we need to model the memory ourselves.
The memory state needs to hold two pieces of information for each valid pointer:

Of course, it must store the value located at that address. In addition, it must store
an access flag that is set when the address is loaded from.

We need the access flag for the following reason: A load operation does not change
the state of our representation, but can actually have side-effects on volatile memory.
Moreover, Firm requires that a Load node produce a new M-value in order to encode
write-after-read dependencies.

Therefore, we introduce an artificial change to the memory using the access flag.
This way, the goal instruction and synthesis candidate are only deemed equivalent if
they load from the same memory locations.
To generate an M-value sort M(g) for a goal instruction g with the valid pointer

list V (g), we use a bit vector of size |V (g)| · (w + 1), where w is the bit-width of the
words being addressed.

This bit vector is laid out as follows: Bits k · (w+ 1) + 1 to k · (w+ 1) +w hold the
value located at the address V (g)[k]. The extra bit k · (w + 1) holds the access flag.

Defining load and store functions is then a matter of extracting and overwriting
the right bits in the M-value. We also need not concern ourselves with handling
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invalid pointers, since the synthesis algorithm will ensure that all pointers are valid
(see Section 3.2.2).

First, we define two primitives “ld” and “st” to load and store one word, and then
build up the memory access instructions from these. For the following definitions, we
use these abbreviations:

l(k) := k · (w + 1) + 1 Lower bound of k-th word
u(k) := k · (w + 1) + w Upper bound of k-th word
f(k) := k · (w + 1) Flag for k-th word

n := |V (g)|

The function “ld” is parameterised by V (g) (which we assume is externally defined),
takes an M-value and an address to load from, and returns a new M-value and the
value loaded:

ld(m, a) =



(m[f(0) 7→ 1],m[u(0) . . . l(0)]) a = V (g)[0]
... ...

(m[f(k) 7→ 1],m[u(k) . . . l(k)]) a = V (g)[k]
... ...

(m[f(n− 1) 7→ 1],m[u(n− 1) . . . l(n− 1)]) otherwise

Similarly, we define “st”. It takes an M-value, an address and a value to store, and
returns the updated M-value.

st(m, a, v) =



m[n · (w + 1) . . . u(0) + 1] ◦ v ◦m[l(0)− 1 . . . 0] a = V (g)[0]
...

...
m[n · (w + 1) . . . u(k) + 1] ◦ v ◦m[l(k)− 1 . . . 0] a = V (g)[k]

...
...

m[n · (w + 1) . . . u(n− 1) + 1] ◦ v ◦m[l(n− 1)− 1 . . . 0] otherwise

In each definition’s last case, we use the fact that we can assume the address to be
valid. We therefore need not check against V (g)[n− 1]. In the SMT solver’s language,
these definitions by cases become a chain of conditional assignments (called ite for
if-then-else in SMT-LIB).
Having defined the load and store functions, we can now specify load and store

instructions. For example, this is the specification of a 32-bit store instruction (again,
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we assume that the goal instruction is globally defined):

Sa = [M(g),BitVec32,BitVec32] (M-value, address, value)
Si = []
Sr = [M(g)]
P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ let m0 = st(va[0], va[1], va[2][7 . . . 0]) in

let m1 = st(m0, va[1] + 1, va[2][15 . . . 8]) in
let m2 = st(m1, va[1] + 2, va[2][23 . . . 16]) in
let m3 = st(m2, va[1] + 3, va[2][31 . . . 24]) in

vr[0] = m3

V = (va, vi, vr) 7→ [va[1], va[1] + 1, va[1] + 2, va[1] + 3]
store32 = (Sa, Si, Sr, P,Q, V )

Implementation Matters

For any instruction i, V (i) can easily be generated from Q(i): V (i) is the set of all
values occurring as second arguments to ld or st. This also ensures that V (i) always
stays consistent with Q(i).
However, the definitions of ld and st require the memory type M(g), and thus

V (g), to be known (where g is the goal instruction). Thus, if Q(g) uses ld or st, we
can only define it after V (g) is known, but we would like to extract V (g) from Q(g)
automatically.
In order to break this cycle, the instructions do not define P , Q, and V directly,

but specify their semantics in one function that takes a NodeEnv as its argument.
NodeEnv is an abstract type with two implementations. The first implementation
(the “dummy implementation”) records all uses of ld and st to collect V . The second
implementation uses V (g) to actually produce the SMT expressions for P and Q
that specify the instruction.

3.1.3. Constants
There are two kinds of constants we have to deal with, which differ in the point at
which their value is defined.

Firstly, synthesis-time constants have their value chosen during synthesis. That
value is the same for all instances of the instruction. For example, the IR equivalent
of the increment instruction x2 = inc(x1) is x2 = x1 + 1, where 1 is a synthesis-time
constant.

We represent synthesis-time constants with IR instructions that take no arguments
and produce a constant from their internal attribute. They are equivalent to the
Const node in Firm in its different modes. For example, a 32-bit-wide constant is
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defined as follows:

Sa = []
Si = [BitVec32]
Sr = [BitVec32]
P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ vr[0] = vi[0]
V = (va, vi, vr) 7→ []

const32 = (Sa, Si, Sr, P,Q, V )

Secondly, there are compile-time constants. In assembly language, these occur
as immediate arguments to instructions. Since it is very inefficient to generate
separate rules for every possible immediate, the synthesis actually treats compile-
time constants as arguments of the instruction that are marked as constant.

The synthesis then proceeds as normal, and it is up to the code generator to emit
the tests required to ensure that the argument in question is in fact a compile-time
constant.

3.1.4. Conditional Control Flow
Many IRs handle conditional control flow similarly, but still differ slightly (compare
LLVM’s icmp and br [19] to Firm’s Cmp and Cond). Therefore, the following section
is Firm-specific, but can be adapted to other IRs.
To represent control flow, we need to represent three additional modes:

• To represent boolean values, we use the built-in sort Bool

• To represent the possible relations for a comparison, we use a 3-bit bit vector.
Bit 2 represents the relation “greater than”, bit 1 represents “less than”, and bit
0 represents “equal to”. Relations are combined by settings multiple bits. For
example, relation number 6 is “greater than or less than”, i.e. “not equal to”.
The three bits correspond to the three bits in Firm’s type ir_relation [4] that
are used for integers (ir_relation_unordered is only used for floating-point
comparisons).

• To represent control flow, we also use the sort Bool, whereby true represents a
branch being taken.

With these new modes, we can represent the Cmp node, using an internal attribute
for the relation. See the Firm API documentation for all possible relation values.
Signedness matters in the comparison instruction. Firm determines whether to

use signed or unsigned comparison based on the arguments’ modes; we define two
variants of the instruction. Both definitions look exactly the same, only the meaning
of the relational operators is changed.
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Sa = [BitVec32,BitVec32]
Si = [BitVec3]
Sr = [Bool]
P = (va, vi, vr) 7→ true

Q = (va, vi, vr) 7→ vr[0] =



false vi[0] = 0
va[0] = va[1] vi[0] = 1

... ...
va[0] 6= va[1] vi[0] = 6
true vi[0] = 7

V = (va, vi, vr) 7→ []
cmp32 = (Sa, Si, Sr, P,Q, V )

When defining any control flow node, we must be careful to set exactly one of the
control flow results to true, and the rest to false. Other than that, the definition of
the Cond node is simple. It produces two control flow results. The first result is the
branch taken if the input is false, the second result is taken if the input is true.

Sa = [Bool]
Si = []
Sr = [Bool,Bool]
P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ vr[0] = ¬va[0] ∧ vr[1] = va[0]
V = (va, vi, vr) 7→ []

cond = (Sa, Si, Sr, P,Q, V )

3.1.5. Machine Instructions
We define machine instructions in the same way, but these may be more complex
for CISC machines. For example, the following is the definition of a 32-bit-wide
subtraction of a value from a location in memory (such as the x86 instruction sub
%eax, x, where x is a global variable).

In comparison with the IR instruction store32, the order of M-value and address
is reversed in the argument sequence. This is because we follow the interface set by
the nodes in the Firm x86 back end.
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Sa = [BitVec32,M(g),BitVec32] (address, M-value, subtrahend)
Si = []
Sr = [M(g)]
P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ let (m0, x0) = ld(va[1], va[0]) in

let (m1, x1) = ld(m0, va[0] + 1) in
let (m2, x2) = ld(m1, va[0] + 2) in
let (m3, x3) = ld(m2, va[0] + 3) in
let x = x3 ◦ x2 ◦ x1 ◦ x0 in
let x′ = x− va[2] in
let m4 = st(m3, va[0], x′[7 . . . 0]) in
let m5 = st(m4, va[0] + 1, x′[15 . . . 8]) in
let m6 = st(m5, va[0] + 2, x′[23 . . . 16]) in
let m7 = st(m6, va[0] + 3, x′[31 . . . 24]) in

vr[0] = m7

V =(va, vi, vr) 7→ [va[0], va[0] + 1, va[0] + 2, va[0] + 3]
ia-submem32 = (Sa, Si, Sr, P,Q, V )

Control Flow In Machine Instructions

Where control flow is concerned, machine architectures differ significantly. Our target
architecture is x86, which has a generic comparison instruction, and encodes the
relation to check for in the conditional jump. Other machines, such as MIPS, use an
approach more like Firm’s.
The x86 compare instruction ia-cmp32 sets the processor’s flags [20], and the

conditional jump instructions evaluate them [21]. We represent the arithmetic flags
OF, SF, ZF, PF, and CF in a 5-bit bit vector.
The computation of SF, ZF, PF, and CF is straightforward. To compute OF,

consider the following (⊕ represents exclusive or): Let s(x) be the sign bit of x, and
let ci be the bit carried into the sign bit during the computation a− b. Then OF is
defined as ci⊕ CF, since CF is the carry out of the sign bit. On the other hand, we
have s(a− b) = s(a)⊕ s(b)⊕ ci, because − and ⊕ are the same function on single
bits. From this follows OF = s(a− b)⊕ s(a)⊕ s(b)⊕ CF.

As with the IR comparison instruction, the relation to check (the condition code)
is an internal attribute, but in this case one of the jump instruction. There are 16
possible condition codes for integers, which we represent in the same way as the type
x86_condition_code_t in Firm’s x86 back end.

We define ia-cmp32 and ia-jcc as follows, whereby the if-then-else function ite
returns the second argument, if the first argument is true, and the third one otherwise.
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Sa = [BitVec32,BitVec32]
Si = []
Sr = [BitVec5]
P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ let s = va[0]− va[1] in

let SF = s[31 . . . 31] in
let ZF = ite(s = 0, 1, 0) in

let PF =
7⊕

i=0
s[i . . . i] in

let CF = ite(va[0] <unsigned va[1], 1, 0) in
let OF = SF ⊕ va[0][31 . . . 31]⊕ va[1][31 . . . 31]⊕ CF in

vr[0] = OF ◦ SF ◦ ZF ◦ PF ◦ CF
V = (va, vi, vr) 7→ []

ia-cmp32 = (Sa, Si, Sr, P,Q, V )

Sa = [BitVec5]
Si = [BitVec4]
Sr = [Bool,Bool]
P = (va, vi, vr) 7→ true
Q = (va, vi, vr) 7→ let OF = va[0][4] in

let SF = va[0][3] in
let ZF = va[0][2] in
let PF = va[0][1] in
let CF = va[0][0] in

let j =



OF = 1 vi[0] = 0
OF = 0 vi[0] = 1

... ...
ZF = 0 ∧ SF = OF vi[0] = 15

in

vr[0] = ¬j ∧ vr[1] = j

V = (va, vi, vr) 7→ []
ia-jcc = (Sa, Si, Sr, P,Q, V )

The difference between the way that the IR and the machine language handle
control flow leads to a problem for the synthesis: From the overview algorithm
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ia32_Cmp
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vr[1]
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Figure 3.1.: A graph pattern consisting of a comparison and conditional jump
instruction. We use this pattern as an example to construct a compound
instruction.

(Algorithm 2 on Page 21), we can see that the synthesis searches for an IR pattern
that implements a single instruction. However, the Firm IR does not use flags, so
no IR pattern can represent a machine instruction that uses or produces a flag value.
To solve this problem, we introduce compound instructions.

3.1.6. Compound Instructions
A compound instruction is an instruction defined through a graph pattern. For
example, the graph pattern shown in Figure 3.1 can define a compound instruction
to represent the instructions cmp x, y; jl label as a unit.
To build an SMT formula for the precondition or postcondition of a compound

instruction c (i.e. P (c) or Q(c)), we first introduce fresh intermediate variables for
every instruction in c’s graph pattern. Then, we construct P (i) or Q(i) for every
instruction i in the pattern. Finally, for each edge in the pattern, we assert that the
values it connects should be equal.

Taking the compound instruction defined by the pattern in Figure 3.1 as an
example, we get the following for Q(c) (the condition code for “less than” is 12):

Q(c)(va, vi, vr) = Q(ia-cmp32)([iv-arg-1, iv-arg-2], [], [iv-result-1]) ∧
Q(ia-jcc)([iv-arg-3], [12], [iv-result-2, iv-result-3] ∧
iv-arg-1 = va[0] ∧
iv-arg-2 = va[1] ∧
iv-arg-3 = iv-result-1 ∧
vr[0] = iv-result-2 ∧
vr[1] = iv-result-3
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3.2. Synthesis Algorithm
Having defined the IR and machine instructions, we can now solve the main problem:
Given a goal instruction g and the multiset of IR instructions I, we have to synthesise
a graph pattern of IR instructions that implements g. Assuming that we have a
function Q+, which extends the postcondition-function Q from single instructions to
patterns, we can express our query as follows:

∃pattern. ∃Vi.∀(Va, Vr). Q+(pattern)(Va, Vi, Vr)⇒ Q(g)(Va, [], Vr)

This formula is simplified, because it ignores preconditions and pointer validity. We
develop the full formula in Section 3.2.2.

In the following, we will assume that the goal instruction has no internal attributes.
If we want to synthesise a goal instruction with internal attributes, we have to iterate
over all possible assignments to them.

Of course, the concept of an IR graph pattern is not readily understandable to an
SMT solver. Therefore, we first have to find an encoding of graph patterns that the
SMT solver can use. We present this in Section 3.2.1.
Next, we use a CEGIS-like algorithm to search the set of IR graph patterns

for those that implement the goal instruction. We present the search algorithm in
Section 3.2.2, and discuss some optimisations in Section 3.3.

Throughout this section, we will use the ia-submem32 instruction as our example,
which we will synthesise from a sub32 instruction, a load32 instruction, and a store32
instruction. Of course, in a real synthesis we would not know which IR instructions
we need, and therefore would provide many more.

3.2.1. Pattern Representation
The IR pattern representation must support the following:

• The SMT solver must be able to enumerate IR patterns

• We need to express semantics for patterns in SMT formulae

• We need to assert that a pattern is well-formed

The representation we present has been developed in [12], where it is used in
constructing a superoptimiser. We add support for multiple sorts and instructions
with multiple results.

We construct our patterns from a set of components. There is one component for
each element of I. For abbreviation, we will use the component as an argument to
Sa, Q, etc. to mean the instruction associated with it.
To form a pattern, we must determine the order of components, the place where

each component gets its input data from, and which values are the pattern’s results.
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Pattern Encoding

We encode the patterns using the concept of locations. A location is any place in
the pattern where data is produced. Therefore, the set of locations is also the set of
possible arguments for a component, and of possible results of the pattern.
In our IR patterns, we have two kinds of locations: Each argument to the whole

pattern is a location, and each result of a component is a location.
We encode the locations by an integer index starting from 0. If our pattern has
|Sa(g)| arguments (g being the goal instruction), and the set of available components
is C, the number of locations necessary is

Nl = |Sa(g)|+
∑
c∈C

|Sr(c)|

A location variable is an SMT variable whose value is a location. In the SMT
formulae, we use the Int sort for location variables, and constrain the values to
the valid range: For every location variable l defined below, we add the constraint
0 ≤ l ∧ l < Nl. We call the formula containing all these constraints φrange.
Given a component c, we need the following location variables to place this

component in the pattern:

• c-loc is the location of the component itself. The component will define its
results at the locations c-loc through c-loc + (|Sr(c)| − 1)

• c-arg-i-loc for each i from 0 to |Sa(c)| − 1 is the location of the value used as
the i-th argument of the component.

In addition, we need to specify where the pattern’s results are taken from:

• result-i-loc holds the location of the value to be used as the i-th result of the
pattern, for each i from 0 to |Sr(g)| − 1.

During synthesis, it is the SMT solver’s task to find an assignment to the location
variables, which define an IR pattern for the goal instruction. To achieve this, we
first need to constrain the arrangement of components to valid loop-free programs.
We capture the conditions necessary for this in the well-formedness constraint.

Well-Formedness

The arrangement of components must fulfil these conditions to be a well-formed IR
pattern:

• It must be loop-free, i.e. a DAG

• There must be exactly one pattern argument or component result assigned to
each location.
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• If a component’s argument has the sort s, the location variable of that argument
must refer to a location that is associated with a value of sort s.

We can achieve loop-freedom, if we require that all components take their arguments
from lesser-valued locations. Thus, given a component c as above, we define its DAG-
constraint as follows:

φDAG(c) =
|Sa(c)|−1∧

i=0
c-arg-i-loc < c-loc

Next, we must assure that there is exactly one value assigned to each location.
SMT-LIB has a built-in predicate distinct, which holds if the values of all its arguments
are distinct. We can efficiently express the required constraint using this predicate.
In particular, we need the following locations to be distinct: Firstly, all pattern

arguments, and secondly all locations which are used as results by a component.

φdistinct = distinct
(
{0, . . . , |Sa(g)| − 1} ∪

⋃
c∈C

{c-loc, . . . , c-loc + (|Sr(c)| − 1)}
)

Finally, we must match sorts between definition and use. For this, let same(s) be
the set of all locations (pattern arguments or component results) with sort s. Then,
the i-th argument of the component c must refer to a location from same(Sa(c)[i]):

φasort(c) =
|Sa(c)|−1∧

i=0

 ∨
l∈same(Sa(c)[i])

c-arg-i-loc = l


We also need a similar condition for the pattern’s results (g is the goal instruction,

which the pattern is to implement):

φrsort =
|Sr(g)|−1∧

i=0

 ∨
l∈same(Sr(g)[i])

result-i-loc = l


In conclusion, the well-formedness constraint for the set of components C is

φwf = φrange ∧ φdistinct ∧
∧

c∈C

(φDAG(c) ∧ φasort(c)) ∧ φrsort

Example

In our example, the goal instruction is ia-submem32, and thus the pattern has three
arguments with the sorts BitVec32,M(ia-submem32),BitVec32; and one result with
the sort M(ia-submem32). Since the goal instruction has four valid pointers, we have
M(ia-submem32) = BitVec36.
The component set is C = {sub32, load32, store32}. In the SMT formula, we will

name the components sub, load, and store. Since the load32 instruction has two
results, we need seven locations in total.
All in all, we get the formula shown in Figure 3.2 for φwf(C). Following the

definitions above, the formulae for φasort contain cases such as sub-arg-0-loc = sub-loc.
These are of course impossible due to the DAG-constraint, and can be easily optimised,
but we have rather kept the definition of φasort simpler.
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φwf (C) = range(sub-loc) ∧ range(sub-arg-0-loc) ∧ range(sub-arg-1-loc) ∧
range(load-loc) ∧ range(load-arg-0-loc) ∧ range(load-arg-1-loc) ∧
range(store-loc) ∧ range(store-arg-0-loc) ∧ range(store-arg-1-loc) ∧

range(store-arg-2-loc) ∧
range(result-0-loc) ∧
distinct(0, 1, 2, sub-loc, load-loc, load-loc + 1, store-loc) ∧
sub-arg-0-loc < sub-loc ∧ sub-arg-1-loc < sub-loc ∧
load-arg-0-loc < load-loc ∧ load-arg-1-loc < load-loc ∧
store-arg-0-loc < store-loc ∧ store-arg-1-loc < store-loc ∧

store-arg-2-loc < store-loc ∧
(sub-arg-0-loc = 0 ∨ sub-arg-0-loc = 2 ∨ sub-arg-0-loc = sub-loc ∨

sub-arg-0-loc = load-loc + 1) ∧
(sub-arg-1-loc = 0 ∨ sub-arg-1-loc = 2 ∨ sub-arg-1-loc = sub-loc ∨

sub-arg-1-loc = load-loc + 1) ∧
(load-arg-0-loc = 1 ∨ load-arg-0-loc = load-loc ∨

load-arg-0-loc = store-loc) ∧
(load-arg-1-loc = 0 ∨ load-arg-1-loc = 2 ∨ load-arg-1-loc = sub-loc ∨

load-arg-1-loc = load-loc + 1) ∧
(store-arg-0-loc = 1 ∨ store-arg-0-loc = load-loc ∨

store-arg-0-loc = store-loc) ∧
(store-arg-1-loc = 0 ∨ store-arg-1-loc = 2 ∨ store-arg-1-loc = sub-loc ∨

store-arg-1-loc = load-loc + 1) ∧
(store-arg-2-loc = 0 ∨ store-arg-2-loc = 2 ∨ store-arg-2-loc = sub-loc ∨

store-arg-2-loc = load-loc + 1) ∧
(result-0-loc = 1 ∨ result-0-loc = load-loc ∨

result-0-loc = store-loc)

Figure 3.2.: The full well-formedness constraint for the three components sub, load,
and store. We abbreviate 0 ≤ x ∧ x < 7 with range(x).
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Semantics of Patterns

As we have seen at the start of Section 3.2, we need to construct a formula that
specifies the semantics of a pattern by combining the semantics of the pattern’s
nodes (i.e. their Q). Given a pattern made of the components C, SMT expressions
for the pattern’s arguments (Va), and SMT expressions for its return values (Vr), we
have to produce an SMT formula Q+(E,C, Va, Vr) that constrains the elements of
Vr to the results of C given the arguments Va.

For each use of Q+, we provide a set E of fresh variables for every argument and
return value in C. For every c ∈ C, we have:

• E-c-arg-i with sort Sa(c)[i] for each i from 0 to |Sa(c)|.

• E-c-result-i with sort Sr(c)[i] for each i from 0 to |Sr(c)|.

In the implementation, we give each use of Q+ an index, and prefix the variable
names with that.
On the other hand, the values of internal attributes do not change with Va, and

we therefore assume that a variable c-internal-i with sort Si(c)[i] is globally declared
for each i from 0 to |Si(c)|. We call the set of all these variables Vi.

We must now connect the variables. There are two kinds of connections to encode:
Firstly, the argument and result values of the same component must be connected as
specified in the component’s semantics: If we define for c ∈ C

va(E, c) := [E-c-arg-i]0≤i≤|Sa(c)|

vi(c) := [c-internal-i]0≤i≤|Si(c)|

vr(E, c) := [E-c-result-i]0≤i≤|Sr(c)|

we have
φcompute(E,C) =

∧
c∈C

Q(c)(va(E, c), vi(c), vr(E, c))

Secondly, we must connect the components to each other as prescribed by the
location variables defined above. Each argument value E-c-arg-i has a corresponding
location variable c-arg-i-loc, which refers to an argument of the pattern or a result of
another component. We must now compare the value of c-arg-i-loc with the locations
of the same sort, and set E-c-arg-i equal to the matching location’s value. For the
pattern arguments, we have:

φa(E,C, Va) =
∧

c∈C

|Sa(c)|−1∧
i=0

∧
A∈samea(Sa(c)[i])

c-arg-i-loc = A =⇒ E-c-arg-i = Va[A]

where samea(s) is the set of all pattern arguments with sort s:

samea(s) = {A | 0 ≤ A < |Sa(g)| ∧ Sa(g)[A] = s}
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For the other component’s results, we have:

φc(E,C) =
∧

c,c′∈C

|Sa(c)|−1∧
i=0

∧
r∈samer(c′,Sa(c)[i])

c-arg-i-loc = c′-loc + r =⇒ E-c-arg-i = E-c′-result-r

where samer(c, s) is the set of all results of c with sort s:

samer(c, s) = {r | 0 ≤ r < |Sr(c)| ∧ Sr(c)[r] = s}

In the same way, we connect the pattern’s results (given by Vr[i]) to their respective
locations (given by result-i-loc) in the formulae φar(Va, Vr) and φcr(E,C, Vr), namely:

φar(Va, Vr) =
|Sr(g)|−1∧

i=0

∧
A∈samea(Sr(g)[i])

result-i-loc = A =⇒ Vr[i] = Va[A]

φcr(E,C, Vr) =
|Sr(g)|−1∧

i=0

∧
c′∈C

∧
r∈samer(c′,Sr(g)[i])

result-i-loc = c′-loc + r =⇒ Vr[i] = E-c′-result-r

All in all, we can now define Q+(E,C, Va, Vr):

Q+(E,C, Va, Vr) = φcompute(E,C) ∧ φa(E,C, Va) ∧ φc(E,C) ∧
φar(Va, Vr) ∧ φcr(E,C, Vr)

Example

Returning to our example to synthesise ia-submem32, we need three values for the
pattern’s arguments and one for its result. For the example, we choose the symbolic
values Va = [arg-0, arg-1, arg-2] and Vr = [result-0]. The formula for Q+(E,C, Va, Vr)
is shown in Figure 3.3, but with the prefix for E omitted.

3.2.2. Search Algorithm
In the previous section, we have developed a representation of graph patterns which
the SMT solver can work with. Using this representation, our simplified constraint
now becomes

∃L(C). ∃Vi.∀(Va, Vr).∃E. φwf (C) ∧Q+(E,C, Va, Vr)⇒ Q(g)(Va, [], Vr)

where L(C) is the set of all location variables for the components C.
We shall now extend this formula to include all necessary parts. First, the formula

need only hold if the preconditions of all instructions in C hold. On the other hand,
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Q+(E,C, Va, Vr) =
Q(sub32)([sub-arg-0, sub-arg-1], [], [sub-result-0]) ∧
Q(load32)([load-arg-0, load-arg-1], [], [load-result-0, load-result-1]) ∧
Q(store32)([store-arg-0, store-arg-1, store-arg-2], [], [store-result-0]) ∧
sub-arg-0-loc = 0⇒ sub-arg-0 = arg-0 ∧

sub-arg-0-loc = 2⇒ sub-arg-0 = arg-2 ∧
sub-arg-0-loc = sub-loc⇒ sub-arg-0 = sub-result-0 ∧
sub-arg-0-loc = load-loc + 1⇒ sub-arg-0 = load-result-1 ∧

sub-arg-1-loc = 0⇒ sub-arg-1 = arg-0 ∧
sub-arg-1-loc = 2⇒ sub-arg-1 = arg-2 ∧
sub-arg-1-loc = sub-loc⇒ sub-arg-1 = sub-result-0 ∧
sub-arg-1-loc = load-loc + 1⇒ sub-arg-1 = load-result-1 ∧

load-arg-0-loc = 1⇒ load-arg-0 = arg-1 ∧
load-arg-0-loc = load-loc⇒ load-arg-0 = load-result-0 ∧
load-arg-0-loc = store-loc⇒ load-arg-0 = store-result-0 ∧

load-arg-1-loc = 0⇒ load-arg-1 = arg-0 ∧
load-arg-1-loc = 2⇒ load-arg-1 = arg-2 ∧
load-arg-1-loc = sub-loc⇒ load-arg-1 = sub-result-0 ∧
load-arg-1-loc = load-loc + 1⇒ load-arg-1 = load-result-1 ∧

store-arg-0-loc = 1⇒ store-arg-0 = arg-1 ∧
store-arg-0-loc = load-loc⇒ store-arg-0 = load-result-0 ∧
store-arg-0-loc = store-loc⇒ store-arg-0 = store-result-0 ∧

store-arg-1-loc = 0⇒ store-arg-1 = arg-0 ∧
store-arg-1-loc = 2⇒ store-arg-1 = arg-2 ∧
store-arg-1-loc = sub-loc⇒ store-arg-1 = sub-result-0 ∧
store-arg-1-loc = load-loc + 1⇒ store-arg-1 = load-result-1 ∧

store-arg-2-loc = 0⇒ store-arg-2 = arg-0 ∧
store-arg-2-loc = 2⇒ store-arg-2 = arg-2 ∧
store-arg-2-loc = sub-loc⇒ store-arg-2 = sub-result-0 ∧
store-arg-2-loc = load-loc + 1⇒ store-arg-2 = load-result-1 ∧

result-0-loc = 1⇒ result-0 = arg-1 ∧
result-0-loc = load-loc⇒ result-0 = load-result-0 ∧
result-0-loc = store-loc⇒ result-0 = store-result-0

Figure 3.3.: Example semantics of the component set C = {sub, load, store} with
the symbolic arguments [arg-0, arg-1, arg-2] and the result variable
result-0.
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it must ensure the precondition of the goal instruction. Thus, we have (eliding the
quantifiers):

φwf (C) ∧Q+(E,C, Va, Vr) ∧ pre(E,C)⇒
P (g)(Va, [], Vr) ∧Q(g)(Va, [], Vr)

where pre(E,C) collects the preconditions of all components:

pre(E,C) =
∧

c∈C

P (c)([E-c-arg-0, . . .], [c-internal-0, . . .], [E-c-result-0, . . .])

In addition, we must ensure that the instructions in C only access valid pointers.
Since the set of valid pointers is defined as the set of pointers that g accesses, we do
not need to add a constraint to the pointers of g. Including this, we arrive at the
complete formula (again eliding quantifiers):

φwf (C) ∧Q+(E,C, Va, Vr) ∧ pre(E,C)⇒
vp(E,C) ∧ P (g)(Va, [], Vr) ∧Q(g)(Va, [], Vr)

where vp(E,C) ensures that all pointers in C are valid:

vp(E,C) =
∧

c∈C

∧
p∈V ′(E,c)

 ∨
v∈V ′(E,g)

p = v

 ,
and where V ′ computes the list of valid pointers for E:

V ′(E, c) = V (c)([E-c-arg-0, . . .], [c-internal-0, . . .], [E-c-result-0, . . .])

CEGIS

Our final formula is now simple enough to be handled by an SMT solver, but too
complex to be solved in an acceptable time. However, it is suitable for a solution
using CEGIS.
For CEGIS, we need two separate formulae: One to synthesise a graph pattern,

and one to produce a counterexample test case for the pattern. A test case t is the
list Va(t) of its arguments and the set E(t) of variables required for Q+. We will call
the set of all test cases T .
To synthesise a graph pattern, we need to solve the following formula:

φsynth(C, T, g) = ∃L(C).∃Vi.

φwf (C) ∧∧
t∈T

(
∃E(t).∃Vr. pre(E(t), C)⇒

vp(E(t), C) ∧Q+(E(t), C, Va(t), Vr) ∧
P (g)(Va(t), [], Vr) ∧Q(g)(Va(t), [], Vr)

)

39



3.2. SYNTHESIS ALGORITHM

We still need to check for pre(E(t), C), because the test cases might come from other
solutions (i.e. other graph patterns) with different preconditions.

If φsynth is satisfiable, solving it gives us a model for all location variables L∗ and
for the internal attributes V ∗i of the components in C.

Using the models, we can then verify that L∗ and V ∗i are correct for all inputs, or
obtain a new test case that was not covered previously. For this, we use the following
formula:

φcex(C, g, L∗, V ∗i ) = ∃L(C).∃Va. ∃Vi.∃Vr.∃V ′r .∃E.
L(C) = L∗ ∧ Vi = V ∗i ∧ pre(E,C) ∧
Q+(E,C, Va, Vr) ∧Q(g)(Va, [], V ′r ) ∧
(¬P (g)(Va, [], Vr) ∨ ¬vp(E,C) ∨ Vr 6= V ′r )

As we can see from φcex, the test case Va can be a counterexample in three different
ways: It can fail to fulfil the goal’s precondition, it can access an invalid pointer, or
its results can be different from the goal’s results.

In contrast to φsynth, we demand that Va fulfil pre(E,C) rather than conditioning on
it. Even though a Va that does not fulfil pre(E,C) is logically a valid counterexample
for every possible C, it does not help at all in adding further constraints to φsynth.
We can then use φsynth and φcex in a CEGIS loop to synthesise a graph pattern

that implements the goal instruction g. This is summarised in Algorithm 3.

Algorithm 3 Simple CEGIS
1: procedure SimpleCEGIS(I : {{Instruction}}, g : Instruction)
2: C ← MakeComponents(I)
3: T ← ∅ . T : {TestCase}
4: loop
5: (r1, a1)← SMTSolve(φsynth(C, g))
6: if r1 = unsat then
7: return []
8: end if
9: (r2, a2)← SMTSolve(φcex(C, g, a1(L(C)), a1(Vi)))

10: if r2 = unsat then
11: gp← MakeGraphPattern(a1(L(C)))
12: return [gp]
13: else
14: T ← T ∪ {(a2(Va), fresh variables for E(t))}
15: end if
16: end loop
17: end procedure
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Finding All Patterns

Many instructions have several different possible implementations: For example,
the increment instruction inc(x) has the implementations x + 1, 1 + x, x − (−1),
and −not(x). Since the instruction selector should recognise all these patterns, the
synthesiser has to find them all.

To find multiple different patterns, we run the CEGIS algorithm repeatedly, adding
an additional constraint to φsynth that excludes those patterns from the solution
that we have already found. If we have already found the patterns in F , where each
element (lf , vf) ∈ F consists of an assignment to the location variables lf , and an
assignment to the internal values vf , φsynth becomes:

φsynth(C, g, F ) = ∃L(C).∃Vi.

φwf (C) ∧∧
t∈T

(
∃E(t).∃Vr. pre(E,C)⇒

vp(E(t), C) ∧Q+(E(t), C, Va(t), Vi, Vr) ∧
P (g)(Va(t), [], Vr) ∧Q(g)(Va(t), [], Vr)

)
∧∧

(lf ,vf )∈F

(L(C) 6= lf ∨ Vi 6= vf )

However, we now also find patterns in which we are not interested, because they
would have been optimised earlier in the compiler. For example, we might find
not(not(x) + 1) for inc(x). Therefore, we add an additional constraint to φsynth that
sets an upper bound for the locations of the pattern’s results, and thereby also for the
number of components used in the pattern. Calling this upper bound ` (the length
of the program), we are then interested in all patterns with the smallest possible `.
Including this constraint then gives us the final version of φsynth:

φsynth(C, g, F, `) = ∃L(C).∃Vi.

φwf (C) ∧∧
t∈T

(
∃E(t).∃Vr. pre(E,C)⇒

vp(E(t), C) ∧Q+(E(t), C, Va(t), Vi, Vr) ∧
P (g)(Va(t), [], Vr) ∧Q(g)(Va(t), [], Vr)

)
∧∧

(lf ,vf )∈F

(L(C) 6= lf ∨ Vi 6= vf ) ∧

|Sr(g)|−1∧
i=0

(result-i-loc ≤ `)

The final version of the whole CEGIS algorithm is shown in Algorithm 4. We
iterate over ` rather than expressing our requirement to find the smallest possible
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` logically (∃`. φsynth(`) ∧ ¬∃`′. `′ < ` ∧ φsynth(`′)) to give the SMT solver an easier
task.

Algorithm 4 CEGIS to find all results
1: procedure CEGISAllResults(I : {{Instruction}}, g : Instruction)
2: C ← MakeComponents(I)
3: T ← ∅ . T : {TestCase}
4: F ← ∅ . F : {LocationVariables × InternalAttributes}
5: R← ∅ . R : {GraphPattern}
6: `← 1
7: while R = ∅ do
8: loop
9: (r1, a1)← SMTSolve(φsynth(C, g, F, `))

10: if r1 = unsat then
11: Leave loop
12: end if
13: (r2, a2)← SMTSolve(φcex(C, g, a1(L(C)), a1(Vi)))
14: if r2 = unsat then
15: F ← F ∪ (a1(L(C)), a1(Vi))
16: gp← MakeGraphPattern(a1(L(C)))
17: R← R ∪ {gp}
18: else
19: T ← T ∪ {(a2(Va), fresh variables E)}
20: end if
21: end loop
22: `← `+ 1
23: end whilereturn R
24: end procedure

Even if we are only interested in one solution, we still need to set an upper bound
depending on the SMT solver used. While Gulwani et al. [12] found that Yices [22]
always produced minimal patterns without the upper bound, Z3 often produced
non-optimal patterns in our setup.

3.3. Optimisations
We have now fully presented the synthesis algorithm. However, this algorithm is still
too inefficient. In this section, we will show some ways to improve its performance.

3.3.1. Distribution Of Work
The most important source of inefficiency is that we only have coarse-grained control
over the amount of IR instructions used in the SMT queries. In our algorithm, the
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multiset I must contain every IR instruction in sufficient number to construct a
pattern for each machine instruction. However, every single machine instruction will
only use a few of the instructions in I, making the SMT problem unnecessarily large
and inefficient to solve.
We can therefore make the synthesis more efficient, if we move the iteration over

the IR instructions to use from the SMT query to the driver procedure. There are
three approaches to do this.

Iterating Over Multisets

In this approach, we take I to be a simple set and iterate over multisets of elements
from I in order of increasing size. To enumerate the multisets, we order the elements
of I arbitrarily and iterate over a sequence of indices as shown in algorithm 5.

We then run the CEGIS prodecure using each multiset generated by this iteration
as the multiset of available IR instructions. When the CEGIS procedure first returns
a solution, we continue to iterate over the remaining multisets of the current size.
After that, we have found all patterns with minimal size.

Because the iteration proceeds in order of increasing size anyway, we do not need
to constrain the maximum program length in φsynth anymore, and we therefore also
do not need to iterate over ` in the CEGIS procedure.

Algorithm 5 Iteration over all multisets
1: procedure MultisetIteration(I : {Instruction}, g : Instruction)
2: I ← SetToSequence(I)
3: `← 1
4: R← ∅
5: while R = ∅ do
6: K = [0, . . . , 0]0≤∗<`

7: loop
8: I ′ ← {{I[K[0]], . . . , I[K[`− 1]]}}
9: R← R ∪CEGISAllResults(I ′, g)
10: k ← max{k | K[k] < `− 1}
11: if no k exists then
12: Leave loop
13: end if
14: K[k]← K[k] + 1
15: K[k + 1, . . . , `− 1]← [K[k], . . . , K[k]]
16: end loop
17: `← `+ 1
18: end while
19: end procedure
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Iterating over Sequences

This approach is similar to iteration over multisets, except that we now also proscribe
the order of components in the pattern. We enumerate all sequences of elements from
I as shown in Algorithm 6. In addition, we modify the CEGIS procedure to take a
sequence instead of a multiset for I, and amend φsynth with additional constraints to
fix the location of each component:

φsynth(C, g, F, `) = ∃L(C).∃Vi.

φwf (C) ∧∧
t∈T

(
∃E(t).∃Vr. pre(E,C)⇒

vp(E(t), C) ∧Q+(E(t), C, Va(t), Vi, Vr) ∧
P (g)(Va(t), [], Vr) ∧Q(g)(Va(t), [], Vr)

)
∧∧

(lf ,vf )∈F

(L(C) 6= lf ∨ Vi 6= vf ) ∧

|C|−1∧
i=0

(C[i]-loc = Σi−1
k=0 |Sr(C[k])|)

Because components can have multiple results, we need to sum the number of
previous results to find the location of the i-th component. Again, we do not need
the maximum program length constraint in the CEGIS procedure.

Iterating over Patterns

In this approach, the driver program generates all patterns and the SMT solver only
has to check one specific pattern for equality with the goal. Buchwald has used this
approach in the optimiser generator Optgen [23].

We have also evaluated this approach for our work, but did not find it worthwhile,
because the iteration over patterns did not scale well (Optgen uses patterns of size
up to 3, whereas we need size 5). Additionally, Optgen’s approach is designed for
an algorithm that works on many patterns at once, which is not our use case.
For these reasons, and because the implementation would differ significantly, we

do not include an implementation of Optgen’s iteration in our final program, and
do not evaluate its performance.

All these optimisations replace a few large SMT queries (one CEGIS run) with
more smaller and easier ones. If we have n instructions and want to generate patterns
of length `, we need the following number of iterations:

• To iterate over all multisets: Nm(n, `) =
(

n+`−1
`

)
• To iterate over all sequences: Ns(n, `) = n`
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Algorithm 6 Iteration over all sequences
1: procedure SequenceIteration(I : {Instruction}, g : Instruction)
2: I ← SetToSequence(I)
3: `← 1
4: R← ∅
5: while R = ∅ do
6: K = [0, . . . , 0]0≤∗<`

7: loop
8: I ′ ← {{I[K[0]], . . . , I[K[`− 1]]}}
9: R← R ∪ FixedPositionCEGISAllResults(I ′, g)
10: k ← max{k | K[k] < `− 1}
11: if no k exists then
12: Leave loop
13: end if
14: K[k]← K[k] + 1
15: K[k + 1, . . . , `− 1]← [0, . . . , 0]
16: end loop
17: `← `+ 1
18: end while
19: end procedure

For example, if we have n = 21 IR instructions, and need patterns up to a size of
` = 5, this amounts to 65 779 iterations for multisets and 4 288 305 for sequences to
synthesise one machine instruction. On the other hand, the queries in the multiset
iteration are more complex, because the SMT solver needs to assign the components’
locations.

3.3.2. Simultaneous Search
In order to reduce the overhead from the large number of SMT queries, we can
synthesise several machine instructions simultaneously if they have the same interface
(i.e. the same Sa, Si, and Sr). To do this, we collect the goal instructions in the
sequence G, and add an SMT variable goal-index to let the SMT solver choose, for
which instruction it synthesises a pattern. Thus, we extend φsynth yet again to include
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multiple goals and the choice between them.

φsynth(C, g, F, `) = ∃L(C).∃Vi.∃goal-index.
φwf (C) ∧ 0 ≤ goal-index < |G| ∧∧
t∈T

(
∃E(t).∃Vr. pre(E,C)⇒

vp(E(t), C) ∧Q+(E(t), C, Va(t), Vi, Vr) ∧
|G|−1∧
i=0

(goal-index = i =⇒

P (G[i])(Va(t), [], Vr) ∧Q(G[i])(Va(t), [], Vr))
)
∧∧

(lf ,vf )∈F

(L(C) 6= lf ∨ Vi 6= vf ) ∧

|Sr(g)|−1∧
i=0

(result-i-loc ≤ `)

φcex remains unchanged, because we have already decided on the instruction to
synthesise at this point.

The CEGIS algorithm with simultaneous search is shown in Algorithm 7. For each
`, we collect the instructions which have an implementation of length ` in the set D.
When we have found all possible patterns of length `, we remove D from G, so that
no more patterns for these instructions are generated.

3.3.3. Multithreading
Our algorithm naturally lends itself to multithreading, because the syntheses of
different goals (or, with simultaneous search, sets of goals) are completely independent.

Our implementation uses a fixed pool of threads with a shared list of goals left to
synthesise, and a shared list of synthesis results. Threads need only acquire a mutex
for a very short time to update these lists, when they have finished a synthesis.

We evaluate the success of all optimisations in Section 4.1.

3.4. Generating the Instruction Selector
Our task is now to implement the function GenerateCode from Algorithm 2 on
page 21. Since the implementation of this function is tightly coupled to the target
compiler, we present the concrete implementation for x86 on Firm here. In order to
describe the code generator, we need to define some new data types:

Graph Patterns

First, we need a more precise definition of graph patterns (Section 2.1.3). A graph
pattern is a DAG, where each node is of one of these three kinds:
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Algorithm 7 CEGIS with simultaneous search
1: procedure SimultaneousCEGISAllResults(I : {{Instruction}}, G : {In-

struction} )
2: G← SetToSequence(G)
3: C ← MakeComponents(I)
4: T ← ∅ . T : {TestCase}
5: F ← ∅
. patterns already found – F : {LocationVariables × InternalAttributes}

6: R← ∅ . results – R : {GraphPattern}
7: `← 1
8: while G 6= ∅ do
9: D ← ∅ . instructions found in this round – D : {Instruction}
10: loop
11: (r1, a1)← SMTSolve(φsynth(C, g, F, `))
12: if r1 = unsat then
13: Leave loop
14: end if
15: g ← G[a1(goal-index)]
16: (r2, a2)← SMTSolve(φcex(C, g, a1(L(C)), a1(Vi)))
17: if r2 = unsat then
18: F ← F ∪ {(a1(L(C)), a1(Vi))}
19: gp← MakeGraphPattern(a1(L(C)))
20: R← R ∪ {(g, gp)}
21: D ← D ∪ {g}
22: else
23: T ← T ∪ {(a2(Va), fresh variables E)}
24: end if
25: end loop
26: `← `+ 1
27: G← G \D
28: end while
29: return R
30: end procedure
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• An instruction node contains a reference to an instruction and a matching list
of internal values. In addition, it has a list of edges pointing to other nodes,
whose results are the instruction’s arguments.

• A variable node represents one of the inputs of the whole pattern. It contains the
variable’s index in the pattern’s argument array, and information on whether
the variable has to be a compile-time constant.

• A projection node selects one result from an instruction that defines multiple
results. We include it in our patterns to make them isomorphic to the matching
Firm graphs.

We call an instruction node the root of a graph pattern, if all other nodes, except
for the root’s projection nodes, are reachable from the root. If a pattern p has a root,
we call it rooted, and write root(p) to refer to the root.

Given a node n in a graph pattern, we use the following functions:

• vi(n) refers to the list of internal values, if n is an instruction node

• args(n) refers to the list of the n’s arguments

• users(n) refers to the list of nodes that have an edge to n

Instruction Data

In the code generator, we need to be able to recognise Firm nodes as instances of
certain IR instructions and construct Firm back end nodes. Therefore, we extend
each instruction i with two additional attributes that specify the necessary code:

• The predicate generator function gp(i) takes an expression e and a list of
expressions ei. It returns an expression that evaluates to true, if and only if e
is an instance of the instruction. e evaluates to a Firm node, and the elements
of ei evaluate to integers that are its internal attributes.

• The constructor generator function gc(i) takes two lists of expressions ea and
ei, and an l-value v. It returns a statement that constructs an instance of
the instruction in v. The elements of ea evaluate to Firm nodes that are the
instruction’s arguments, and the elements of ei evaluate to integers that are its
internal attributes.

For example, the IR instruction sub32 has

gp(sub32)(e) =
is_Sub(e) && (get_irn_mode(e) == mode_Is ||
get_irn_mode(e) == mode_Iu || get_irn_mode(e) == mode_P)
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and the back end instruction ia-submem32 has

gc(ia-submem32)(ea, ei, v) =
v = new_bd_ia32_SubMem(dbgi, block, ea[0], noreg_GP, ea[1], ea[2]);
set_ia32_ls_mode(v, mode_Iu);

The constructor generator gc may assume that variables called block and dbgi
are in scope, and contain references to the current basic block and debug information
respectively. Since these names are frequently used all over Firm, we saw no use in
abstracting over them.

Implementation Matters

Because closures are relatively heavyweight objects in C++, we instead represent gp

and gc with template strings. In our implementation, gc(ia32-submem) is actually
the string

$node = new_bd_ia32_SubMem (dbgi , block , $arg0 ,
noreg_GP , $arg1 , $arg2 );

set_ia32_ls_mode ($node , mode_Iu );

The “$” characters in that string mark the variables to be replaced.

3.4.1. Overview
We continue our example to generate a subtraction from a value in memory (in Firm
parlance, an ia32_SubMem node). The pattern that implements this node is shown
in Figure 3.4. The numbers annotated at the edges are the indices in the argument
array.

The structure of Firm graphs imposes a limitation to the instruction selector we
generate: Firm nodes only have pointers to their arguments; traversing patterns
from definitions to users requires complicated use of the out-edges. In addition, the
existing Firm instruction selector also assumes that instruction selection happens
recursively from End node towards Start node.
Since we aim to be compatible with the existing instruction selector, we require

that all IR patterns be rooted. This way, we can match the pattern when we encounter
the root and replace it with the associated machine instruction. All of this does not
require traversing the out-edges.
In Algorithm 8, we give an overview of the code generator. First, we sort the

elements of S by the following rule:

(m1, p1) <match (m2, p2) :⇔ |p1| > |p2| ∨ (|p1| = |p2| ∧ |vars(p1)| < |vars(p2)|

This ensures that we check for large patterns first, which produce one (presumably
efficient) machine instruction from many IR instructions. When patterns have the
same size, we prefer the pattern with fewer variables, because we assume that the
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Store

Proj 0 Sub

Proj 1

Load

variable 0 variable 1 variable 2

result 0

01

0 1

1 0 2

Figure 3.4.: An IR graph pattern that implements a subtraction from a value in
memory (sub %eax, x in x86; ia32_SubMem in Firm).

target machine instruction will have a simpler encoding if it has access to fewer
variables.

Then, we emit a function for each pair of pattern and machine instruction. The
first part of the function checks that the node we analyse is in fact the root of
the pattern. If that is the case, the function constructs an instance of the machine
instruction with the arguments taken from the pattern’s arguments, after they have
themselves been transformed into machine instructions.

Finally, we emit a function that checks every pattern in turn and returns the first
match.

3.4.2. Matching IR Patterns
The predicate generator gp of an instruction does not need to check for the correct
arguments, which would require a recursive function with access to the other instruc-
tions’ gp. Instead, we can walk the IR graph pattern independent from the types of
instructions contained within.

To check whether the pattern p matches the Firm graph rooted at r, we traverse p
in pre-order. During the traversal, the variable f holds the expression that evaluates
to the equivalent Firm node relative to r. At each node, we have four cases to
consider:

• At an instruction node with instruction i, we generate a condition to check for
gp(i)(f). If the predicate does not hold, we abort the match.
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Algorithm 8 Overview of the code generator
1: procedure GenerateCode(S : {(M × Pattern(I))})
2: . M : machine instructions, I: IR instructions
3: S ← SortByMatchOrder(S)
4: for each (m, i) ∈ S do
5: Emit code: ir_node *transform_i(ir_node *node, ir_node *block,
6: dbg_info *dbgi) {
7: for each v ∈ [0, . . . , |Sa(m)| − 1] do
8: Emit code: ir_node *var_v = NULL;
9: end for
10: EmitMatchPattern(i, node)
11: for each v ∈ [0, . . . , |Sa(m)| − 1] do
12: Emit code: var_v = be_transform_node(var_v);
13: end for
14: Emit code: ir_node *new_node = NULL;
15: gc(m)(new_node, [var_0, . . . , var_|Sa(m)| − 1], [])
16: return new_node;
17: }
18: end for
19: Emit code: ir_node *transform_all(ir_node *node) {
20: ir_node *new_node = NULL;
21: ir_node *block = be_transform_node(
22: get_nodes_block(node));
23: dbg_info *dbgi = get_irn_dbg_info(node);
24: for each (m, i) ∈ S do
25: Emit code: new_node = transform_i(node, block, dbgi);
26: if (new_node != NULL) return node;
27: end for
28: Emit code: }
29: end procedure

51



3.4. GENERATING THE INSTRUCTION SELECTOR

Also, if the node is not the pattern’s root, we demand that the Firm node
has as many users as the node in the pattern.

• At a projection node, we check for a Proj node on the Firm side. If there is
none, we abort the match.

• When we first encounter a variable node, we accept any node on the Firm
side, and save it as the argument for the back end node. If we encounter the
variable node again, we check that the node on the Firm side is equal to the
value we saved.

• An immediate node is handled like a variable node, with the additional con-
straint, that Firm must be able to construct an immediate from the value. The
x86 back end provides the function x86_match_immediate for this purpose.

Algorithm 9 summarises the description above. We have omitted the case for
immediate values, since it is very similar to the case for variables.

Example

Returning to our example instruction ia-submem32, we can finally present the part
of the instruction selector that matches its pattern and constructs the back end
node. The function is shown in Figure 3.5. Because of its length, we have abridged
the checks for the correct modes of each instruction node. Each “. . . ” in the listing
stands for the following expression:
get_irn_mode(node) == mode_Is ||
get_irn_mode(node) == mode_Iu ||
get_irn_mode(node) == mode_P
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Algorithm 9 Matching a pattern p against the Firm graph rooted at r
1: procedure EmitMatchNode(n : Node, f : Code)
2: if n is an instruction node with instruction i then
3: Emit code: if (!gp(i)(f, InternalsToCode(vi(n)))) {
4: return NULL;
5: }
6: if n is not the pattern’s root then
7: Emit code: if (|users(n)| != get_irn_n_edges(f)) {
8: return NULL;
9: }
10: end if
11: for each i ∈ [0, . . . , |args(n)| − 1] do
12: EmitMatchNode(args(n)[i], get_irn_n(f, i))
13: end for
14: else if n is a projection node with projection number pn then
15: Emit code: if (!is_Proj(f) || get_Proj_num(f) != pn) {
16: return NULL;
17: }
18: EmitMatchNode(args(n)[0], get_Proj_pred(f))
19: else if n is a variable node with variable index i then
20: Emit code: if (var_i == NULL) {
21: var_i = f;
22: } else if (var_i != f) {
23: return NULL;
24: }
25: end if
26: end procedure
27: procedure EmitMatchPattern(p : Pattern, r : Code)
28: EmitMatchNode(root(p), r)
29: end procedure
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static ir_node * transform_f50 ( ir_node *node , ir_node *block , dbg_info *dbgi)
{

(void) block ;
(void)dbgi;
x86_imm32_t tmp_imm ;
(void) tmp_imm ;
ir_node *var0 = NULL;
ir_node *var1 = NULL;
ir_node *var2 = NULL;

if (!( is_Store (node) && ... )) {
return NULL;

}
if (!( is_Proj ( get_irn_n (node , 0)) && get_Proj_num ( get_irn_n (node , 0)) == 0 &&

get_irn_n_edges ( get_irn_n (node , 0)) == 1)) {
return NULL;

}
if (!( is_Load ( get_Proj_pred ( get_irn_n (node , 0))) && ... &&

get_irn_n_edges ( get_Proj_pred ( get_irn_n (node , 0))) == 2)) {
return NULL;

}
if (var1 == NULL || var1 == get_irn_n ( get_Proj_pred ( get_irn_n (node , 0)) , 0)) {

var1 = get_irn_n ( get_Proj_pred ( get_irn_n (node , 0)) , 0);
} else return NULL;

if (var0 == NULL || var0 == get_irn_n ( get_Proj_pred ( get_irn_n (node , 0)) , 1)) {
var0 = get_irn_n ( get_Proj_pred ( get_irn_n (node , 0)) , 1);

} else return NULL;

if (var0 == NULL || var0 == get_irn_n (node , 1)) {
var0 = get_irn_n (node , 1);

} else return NULL;

if (!( is_Sub ( get_irn_n (node , 2)) && ... &&
get_irn_n_edges ( get_irn_n (node , 2)) == 1)) {

return NULL;
}
if (!( is_Proj ( get_irn_n ( get_irn_n (node , 2), 0)) &&

get_Proj_num ( get_irn_n ( get_irn_n (node , 2), 0)) == 1 &&
get_irn_n_edges ( get_irn_n ( get_irn_n (node , 2), 0)) == 1)) {

return NULL;
}
if (!( is_Load ( get_Proj_pred ( get_irn_n ( get_irn_n (node , 2), 0))) && ... &&

get_irn_n_edges ( get_Proj_pred ( get_irn_n ( get_irn_n (node , 2), 0))) == 2)) {
return NULL;

}
if (var1 == NULL ||

var1 == get_irn_n ( get_Proj_pred ( get_irn_n ( get_irn_n (node , 2), 0)) , 0)) {
var1 = get_irn_n ( get_Proj_pred ( get_irn_n ( get_irn_n (node , 2), 0)) , 0);

} else return NULL;

if (var0 == NULL ||
var0 == get_irn_n ( get_Proj_pred ( get_irn_n ( get_irn_n (node , 2), 0)) , 1)) {

var0 = get_irn_n ( get_Proj_pred ( get_irn_n ( get_irn_n (node , 2), 0)) , 1);
} else return NULL;

if (var2 == NULL ||
var2 == get_irn_n ( get_irn_n (node , 2), 1)) {

var2 = get_irn_n ( get_irn_n (node , 2), 1);
} else return NULL;

ir_node * new_node = NULL;
new_node = new_bd_ia32_SubMem

(dbgi , block ,
is_ia32_Immediate (var0) ? var0 : be_transform_node (var0),
noreg_GP ,
is_ia32_Immediate (var1) ? var1 : be_transform_node (var1),
is_ia32_Immediate (var2) ? var2 : be_transform_node (var2 ));

set_ia32_ls_mode (new_node , get_irn_mode ( get_Store_value (node )));
return new_node ;

}

Figure 3.5.: The matcher function that matches an ia-submem32 instruction. Checks
for the correct modes of instruction nodes have been abridged.



4. Evaluation
To evaluate the success of our work, we will consider each of the following questions
in turn:

• Does the synthesis run with acceptable performance? What is the effect of the
optimisations from Section 3.3?

• Which kinds of IR nodes can the synthesised instruction selector handle?

• How much of the existing instruction selector can be replaced with our work?

• Does our approach have advantages over specification languages (e.g. Table-
Gen)?

• How good is the machine code that the synthesised instruction selector pro-
duces?

• What is the performance of the synthesised instruction selector when compiling?

4.1. Synthesis Performance
First of all, we must set ourselves a more concrete goal: Synthesising a new instruction
selector only needs to be done when the IR or the machine language change, or after
a specification bug has been found. While repairing a bug, a full synthesis is not
necessary. Therefore, our goal is that the full synthesis should run “over night”, i.e.
in at most 12 hours.
For the performance benchmarks, we use the following set of IR instructions as

available components: Add, And, Cmp (signed/unsigned), Cond, Const, Eor, Jmp,
Load, Minus, Mux, Mul, Mulh (signed/unsigned), Not, Or, Shl, Shr, Shrs, Store, Sub.
All instructions, as well as the machine instructions we synthesise in this section, use
32-bit arithmetic.

We ran all except the multithreading benchmarks on an Intel Core i5-4200U
processor with 12GB of RAM. Since this is only a dual-core processor, we ran the
multithreading benchmarks on a quad-core Intel Core i5-750 with 20GB of RAM.

4.1.1. Optimisations
We have seen very quickly that the non-iterative CEGIS algorithm does not perform
well at all as the number of available IR instructions grows. With 18 IR instructions
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to choose from (the set above without Load and Store), even the synthesis of the
most simple machine instructions did not finish within 90 minutes. This clearly does
not meet our goal. Thus, we definitely require optimisations.

Search Strategies

First, we compare the two remaining search strategies, namely iterating over multisets
and iterating over sequences (see Section 3.3.1). With each strategy, we synthesised
the following machine instructions, which take from 1 to 5 IR instructions to represent:

IR size benchmark sample
1 subtract (sub)
2 decrement (dec)
2 compare and jump if greater (cmp, jg)
3 subtract from memory (sub (memory))
4 subtract from memory with indexed addressing (sub (memory, indexed))
4 decrement value in memory (dec (memory))
4 bitwise rotate left (rol)
5 decrement value in memory with indexed addressing (dec (memory,

indexed))

The results of this benchmark can be found in Table 4.1. We can see that iteration
over multisets performs better than iteration over sequences, especially when the
patterns (and therefore the search space) get large. While we could iterate over all
multisets of size 5 out of 20 IR instructions in about 20 minutes, iterating over all
sequences did not finish within 6 hours.
In addition, we can see that the Rol instruction is harder to synthesise than

the other nodes with 4 IR instructions. This is due to two reasons: Firstly, the
computation that this node performs is more complicated than a read-modify-write
operation. Secondly, the other nodes all access memory, and the SMT solver can
quickly rule out any combination of IR nodes that does not contain a Load or Store
node.

Simultaneous Search and Multithreading

Having found a search strategy, we now evaluate the usefulness of simultaneous search
(see Section 3.3.2). To do this, we need a larger set of goal instructions, because the
simultaneous search is intended to increase performance if multiple instructions have
the same interface.
We therefore use our full set of 32-bit instructions as the goal set. Many of

the instructions have three variants: Simple register-register operation, destination
operand in memory, and destination operand in memory with indexed addressing.
These instructions are marked with an asterisk in the following list.
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Goal instruction IR size Multiset Sequence
sub 1 0.26 s 0.27 s
dec 2 2.02 s 3.26 s
cmp, jg 2 1.78 s 2.93 s
sub (memory) 3 17.70 s 93.70 s
sub (memory, indexed) 4 182.78 s 2 206.06 s
dec (memory) 4 125.53 s 2 051.89 s
rol 4 1 232.58 s 3 941.31 s
dec (memory, indexed) 5 1 128.15 s ∗

Table 4.1.: Performance comparison of iteration over multisets and iteration over se-
quences. Iteration over sequences did not finish within 6 hours (21 600 s)
for decrement in memory with indexed addressing.

Number of threads Not simultaneous Simultaneous
1 10 729 s 9 401 s
2 6 541 s 5 067 s
3 5 232 s 4 872 s
4 5 041 s 4 472 s

Table 4.2.: Performance comparison with and without simultaneous search, using
one to four threads.

These are the instructions we use as goals for the benchmark (see [21] for detailed
descriptions): lea/add∗, and∗, or∗, xor∗, sub∗, inc∗, dec∗, not∗, shl∗, shr∗, sar∗, rol, ror,
andn, btc, btr, bts, blsi, blsr. In addition, we add a compound instruction consisting
of a compare and each of the following condition jumps: jb, jae, je, jne, jbe, ja, js,
jns, jl, jge, jle, jg.
We also test the benefit of multithreading in this section. Because simultaneous

search merges several syntheses into one, there are fewer, but larger packets of
work for the threads, so that simultaneous search may have a negative impact on
multithreading.

Therefore, we run the synthesis of the instruction set above on one to four threads,
and with and without simultaneous search. The results can be found in Table 4.2.

We can conclude from this that simultaneous search and multithreading do indeed
have a positive effect on performance. However, the speedup due to multithreading
is markedly sublinear. This is because there is often one long synthesis left to do at
the end, which cannot be done in parallel to others.
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Benchmark Synthesis Call etc. Phi etc. Fallback Ratio
164.gzip 9 570 911 2 004 5 442 0.637
175.vpr 27 244 4 281 3 819 14 310 0.656
176.gcc 63 367 10 008 6 420 16 020 0.798
181.mcf 3 451 168 454 802 0.811
186.crafty 15 367 844 1 833 5 882 0.723
197.parser 44 406 5 683 7 715 20 884 0.680
253.perlbmk 25 897 2 957 3 052 6 907 0.789
254.gap 156 300 18 219 25 228 82 833 0.654
255.vortex 108 084 23 869 12 707 74 234 0.593
256.bzip2 10 853 1 330 1 580 3 766 0.742
300.twolf 55 723 4 112 8 091 20 527 0.731
Total 520 262 72 382 72 903 251 607 0.674

Table 4.3.: Number of nodes transformed by the synthesised instruction selector
(“Synthesis”) and the existing instruction selector (“Fallback”) for each
benchmark. Call nodes and their Proj nodes are counted as “Call etc.”;
Phi nodes and Sync nodes are counted as “Phi etc”. “Ratio” gives the
ratio between “Synthesis”, and “Synthesis” plus “Fallback” (i.e. all
nodes except Calls and Phis).

4.2. IR Coverage
For this and the following section, we need a set of source code files to use as
benchmarks. Since we do not synthesise any floating-point instructions, these should
be purely integer programs. We therefore chose the SPEC CINT2000 integer bench-
marks [24].
We instrumented the compiler to log each call to be_transform_node (see [4]).

The log contains the kind of IR node to transform, whether the transformation was
done by our instruction selector or fell back to the existing one, and which rule of
our instruction selector has matched.
We exclude two kinds of Firm nodes from our evaluation, because they are

impossible to specify: First, we cannot specify Call nodes with their complicated
calling conventions, and second, Phi and Sync nodes are variadic. Although their
function is simple, we cannot express variadicity in our specifications.
The results are shown in Table 4.3. Our synthesised instruction selector can

transform between 59.3% and 81.1% of all nodes in the individual benchmarks, and
67.4% of all nodes in total.

We should also look at those nodes that the synthesised instruction selector should
be able to transform, but failed. To do this, we collected all those nodes from all
benchmarks, and grouped them by their type. Table 4.4 on Page 59 shows the ten
most common node types that we could not transform, and how often they occurred.
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There are three groups of node types that we have trouble transforming:

• Load nodes that load from a smaller value than 32 bit. See Section 5.2.1 for
further discussion of this topic.

• Cond nodes whose condition does not match one of the “compare and jump”
patterns. To match these nodes, we need to add more machine instructions
that produce flags, such as the “test” instruction. This can be done with little
effort.

• Constants and addresses (Const, Address, Member). These nodes may contain
symbolic values, which are only later resolved by the linker. We cannot capture
these in our specifications.

Rank Node Count
1 Proj Load 40 560
2 Proj Cond 24 838
3 Const 22 544
4 Conv 20 559
5 Load 18 137
6 Proj Proj 17 419
7 Cmp 13 516
8 Cond 12 419
9 Address 11 862
10 Member 10 448

Table 4.4.: Most frequent node types that the synthesised instruction selector could
not transform. If the node is a Proj, its predecessor is also given.

4.3. Replacing the Instruction Selector
In this section, we would like to find out how much of the existing instruction selector
we can replace with the synthesised instruction selector. To do this, we compile the
benchmarks twice, and record the code coverage of the existing instruction selector
each time.

First, we compile with the synthesised instruction selector deactivated. This gives
us the amount of code in the existing instruction selector that is needed to compile
the benchmark. This amount of code is our baseline.

Then, we compile the benchmark with the synthesised instruction selector activated.
If the synthesised instruction selector cannot transform an IR node, it falls back to
the existing instruction selector. If the synthesised instruction selector can fully take
over one task (e.g. transforming additions) from the existing instruction selector, a
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Synthesised selector Delta /
Benchmark off on Delta off
164.gzip 51.93% 48.68% 3.25% 6.26 %
175.vpr 55.75% 49.98% 5.77% 10.35 %
176.gcc 64.60% 60.71% 3.89% 6.02 %
181.mcf 41.14% 30.53% 10.61% 25.79 %
186.crafty 57.39% 52.85% 4.54% 7.91 %
197.parser 47.15% 41.15% 6.00% 12.73 %
253.perlbmk 61.41% 57.92% 3.49% 5.68 %
254.gap 47.83% 43.94% 3.89% 8.13 %
255.vortex 58.24% 56.14% 2.10% 3.61 %
256.bzip2 51.60% 47.54% 4.06% 7.87 %
300.twolf 55.55% 52.03% 3.52% 6.34 %

Table 4.5.: Comparison of code used in the existing instruction selector, without
the synthesised instruction selector, and with the synthesised instruction
selector. Numbers give the percentage of lines of code executed at
least once. “Delta” is the absolute amount of code that the synthesised
instruction selector could replace, “Delta / off” is the amount of code
the instruction selector could replace relative to the total amount of
code used without it.

part of the existing code will not be used anymore. This difference in code coverage
is a measure for the amount of work that the synthesised instruction selector can
take over.
The coverage results are shown in Table 4.5. Unfortunately, even though we can

synthesise a large portion of the benchmarks’ nodes (see Section 4.2), there are
still special cases for which we need to fall back to the existing instruction selector.
Therefore, the difference in coverage is quite small for all benchmarks.

In addition, the Firm code is of course well-engineered and avoids code duplication:
Code for integral and floating-point types is shared in the instruction selector wherever
possible. Therefore, if a benchmark contains e.g. a floating-point addition, the code
to transform an addition is still executed in the existing instruction selector, even
though we could transform all integral additions with the synthesised instruction
selector.

4.4. Specification and Synthesis
Many of the syntheses are straightforward. After all, there is no way to implement
an addition, but with another addition. This level of specifying rules for instruction
selection is also possible in existing specification languages such as TableGen.
However, our approach should be more flexible for complex instructions that
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4.4. SPECIFICATION AND SYNTHESIS

blsi x x ∧ −x

blsr x x ∧ (x+ (−1))
x+ (x ∨ −x)
x ∧ (x− 1)
x ∧ (x⊕−x)
x⊕ (x ∧ −x)
x ∧ ∼(−x)
x− (x ∧ −x)
−x⊕ (x ∨ −x)
(x ∨ −x)− (−x)

andn x, y y ⊕ (x ∧ y)
∼x ∧ y
y − (x ∧ y)
x⊕ (x ∨ y)

btc x, y x⊕ (1 << y)
bts x, y x ∨ (1 << y)
btr x, y x ∧ (−1 + (−1 << y))

x⊕ (x ∧ (1 << y))
x ∧ (x⊕ (1 << y))
x ∧ ∼(1 << y)
x− (x ∧ (1 << y))
(x ∨ (1 << y))⊕ (1 << y)
(x ∨ (1 << y))− (1 << y)

Table 4.6.: Implementations found for the BMI and BMI2 instructions. ∧ and ∨ are
bitwise operations [21], ∼ is bitwise negation, ⊕ is exclusive or.

do not have direct equivalents in the IR. We have chosen the Intel extension “Bit
Manipulation Instructions” (BMI and BMI2) as a benchmark.
We have specified each instruction naively in terms of what happens to the

individual bits. For example, the instruction “blsr” (reset lowest set bit) is specified
by a definition in 32 cases to search for the lowest set bit.

Our synthesiser can still generate efficient IR implementations for these instructions,
which we show in Table 4.6 on Page 61. To keep the table shorter, we have omitted
variants in which only the arguments of a commutative operation are swapped. The
operators ∧ and ∨ represent the bitwise rather than logical operations; ∼ represents
bitwise negation, and ⊕ represents exclusive or.
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4.5. CODE QUALITY

Instruction count Execution time
Benchmark old new Increase old new Slowdown
164.gzip 11 959 14 956 1.25 0.484 s 0.515 s 1.07
175.vpr 41 834 51 565 1.23 0.009 s 0.009 s 1.00
176.gcc 569 632 71 2405 1.25 0.361 s 0.405 s 1.12
181.mcf 3 123 4 470 1.43 0.050 s 0.058 s 1.17
197.parser 53 889 66 664 1.24 0.766 s 0.875 s 1.14
253.perlbmk 241 041 294 117 1.22 0.239 s 0.248 s 1.04
254.gap 186 480 223 119 1.20 0.211 s 0.232 s 1.10
255.vortex 193 187 218 172 1.13 0.045 s 0.045 s 1.00
256.bzip2 12 741 15 531 1.22 0.663 s 0.663 s 1.10
300.twolf 55 689 72 133 1.30 0.060 s 0.064 s 1.07

Table 4.7.: Quality of code generated by the existing (“old”) and the synthesised
instruction selector (“new”). “Instruction count” is the number of ma-
chine language instructions in the compiled binary, “Execution time” is
the average runtime of 100 “isok” checks.

4.5. Code Quality
We now want to compare the machine code that our instruction selector generates
with what the existing instruction selector generates.

For this, build the SPEC CINT2000 benchmarks with and without the synthesised
instruction selector activated. Then, we compare the number of instructions in the
resulting binary, and the execution time of the binary. To measure execution time,
we average over 100 runs of the “isok” check.

We have to skip the benchmark “186.crafty”, because the compiler miscompiled it
into an infinite loop with or without the synthesised instruction selector. In addition,
we exclude the tests “sleep.t” and “time.t” from the benchmark “253.perlbmk”,
because they run idle for four seconds.
See Table 4.7 for the results. The execution time results for the benchmarks

“175.vpr” and “255.vortex” are unusable, because they ran for too short a time. We
can see that the code produced by the synthesised instruction selector is 24.7%
larger on average and takes 10.1% longer to execute. The coefficient of variation of
the execution times is at most 3.4%, except for “175.vpr” (9.2%) and “255.vortex”
(43.3%).

This degradation is due to the fact that the synthesised instruction selector cannot
match the IR patterns of x86 instructions that load one of their operands from
memory (e.g. add (%esp), %eax). We have no problems finding a pattern for this
type of instruction, but this pattern is not rooted (see Section 3.4.1). Therefore,
the code generator cannot create a matching function for this pattern. The existing
instruction selector contains a workaround for this special case, which we cannot
replicate in the synthesised instruction selector.
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Benchmark old new Slowdown
164.gzip 120ms 260ms 2.16
175.vpr 385ms 768ms 1.99
176.gcc 6 175ms 11 982ms 1.94
181.mcf 31ms 78ms 2.49
186.crafty 434ms 869ms 2.00
197.parser 560ms 1 200ms 2.14
253.perlbmk 2 640ms 5 537ms 2.10
254.gap 1 983ms 4 131ms 2.08
255.vortex 2 070ms 3 810ms 1.84
256.bzip2 127ms 256ms 2.02
300.twolf 577ms 1 211ms 2.10

Table 4.8.: Performance of the synthesised instruction selector (“new”) compared
to the existing one (“old”). Times have been reported by the Firm
timing utility for the “codegen” step.

4.6. Performance of the Instruction Selector
Finally, we evaluate the performance of the synthesised instruction selector itself.
Firm already has a timing ultility that can report the time taken for the differ-
ent compilation steps. The step called “codegen” measures the time spent in the
instruction selector.

Table 4.8 shows the results of our measurements. We can see that the synthesised
instruction selector takes about twice as long as the existing instruction selector.
However, we did not focus on building an efficient instruction selector in our work,
so these values are acceptable. In particular, the slowdown does not increase with
program size.
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5. Conclusion
In this work, we have constructed a synthesiser that produces an instruction selector
from specifications of a compiler’s intermediate representation and a machine language.
This instruction selector is able to transform a majority of the code of the SPEC
CINT2000 benchmarks.

Like the old instruction selector in Firm, our instruction selector is a greedy DAG
matcher. Still, it produces noticeably slower code. This is due to the fact that the old
instruction selector contains a workaround to overcome its architectural limitations in
an important special case, namely instructions which load one operand from memory.
Since we generate our instruction selector without global knowledge of all patterns
and their interactions, we cannot insert such a workaround.
The synthesis itself has good performance. This means that we can add more

instructions to be synthesised without performance problems. However, adding new
IR instructions means an exponentially larger search space, and we cannot be sure how
many more IR instructions the synthesis can support with acceptable performance.

Of course, our work is not definite. There are several areas where improvement is
still possible.

5.1. Limitations
First, in some cases we are restricted by the available technology in SMT solving or
by the interfaces we have to conform to.

5.1.1. Floating-Point Arithmetic
We did not cover floating-point arithmetic at all in our work, because there is no
efficient way to use it in an SMT query at present. The SMT-LIB project has
defined a theory [7, 25], and the SMT solver Z3 does already support floating-point
arithmetic [26], but uses a “bit-blaster” to implement it.
A bit-blaster takes an SMT query and, without further optimisation, translates

it to a SAT query, which it then solves. Because any knowledge of the underlying
arithmetic is lost in this process, the performance is not acceptable for our needs.

5.1.2. Non-Rooted Patterns
We have already seen in Section 4.5 that our inability to work with non-rooted
patterns is a problem for code generation. This is due to the need for compatibility
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with the pre-existing Firm instruction selector. If we were to design an instruction
selector from scratch, we could avoid this problem.

For example, we could separate the matching of patterns and the actual transfor-
mation into two phases. This way, the matcher can correct earlier “mistakes” that it
made when it encountered a pattern through a non-root node.

5.2. Further Work
There are also a number of items where our program could be extended without the
need for external advances.

5.2.1. Other Bit Widths
We only generate 32-bit-wide instructions, because we would have to specify many
more IR instructions otherwise and slow down synthesis performance. In any case,
there should be no need for most instructions to synthesise them for 32 bits and
smaller bit widths separately, because they have the same behaviour.

For example, a 32-bit-wide addition can also implement a 16- or 8-bit-wide addition.
Even if the higher bits of the input are unknown, the relevant bits of the output will
be correct. However, this is not true for all instructions. We may not transform a
16-bit-wide right shift to a 32-bit-wide right shift, because in this case the unknown
higher bits would be shifted into the result.
To conclude, we have not found a model that can both exploit the possibilities

for cases like addition, and still give correct results for cases like right-shifts. The
usual approach, for example used in Souper [13], is to provide all input data in
sign-extended or zero-extended form. We cannot do this, because in our case the
higher bits are arbitrary.

5.2.2. More Efficient Selection
The instruction selector as described in Section 3.4 is quite inefficient, because it
simply tries every known pattern in turn for every input IR node. We could speed
up this search in two ways:

Firstly, we could use a lookup table to quickly associate the type of the root node
with just a few possible patterns. This saves us the iteration over all the others.

Secondly, if patterns overlap, we can factor out their common part and only match
it once. If the common part does not match, we can rule out several patterns at once.
We did not implement these optimisations, because we concentrated on the syn-

thesis.

66



5.3. OUTLOOK

5.3. Outlook
In future, we expect machine languages to become more dynamic as instruction sets
are extended more frequently, and in application specific ways. In addition, research
is currently done on “reconfigurable computing”, which combines general-purpose
processors with components (e.g. FPGAs) that can be configured at runtime to
support the current application. [27]

We hope that our work may be of use in this area: By combining a hand-written
instruction selector for the general-purpose processor, and a synthesised instruction
selector for the new instruction set extension or the application-specific instructions,
compilers can rapidly adapt to new instruction sets, but not lose the possibility of
hand-optimising the instruction selector used for the majority of the program.
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A. Appendix
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Figure A.1.: Firm graph from Figure 2.1
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