
Resolution for Feature LogicBernd Fischer �AG SoftwaretechnologieTU Braunschweigfisch@ips.cs.tu-bs.deJune 15, 1993Abstract: A common approach to combine the object-oriented and logic programmingparadigms is to formulate a set of inference rules for an object logic. We show how resolutionis expressed using the full feature logic. In contrast to similar approaches we do not onlyexchange the underlying term universe but discard the predicate calculus completely. Wedemonstrate that an untyped resolution violates a closed world assumption and introducea type discipline to solve this problem. To integrate inheritance into this framework weintroduce polymorphic types and rules.1 IntroductionObject-oriented programming (OOP) and logic programming (LP) are two well-known pro-gramming paradigms. In the last few years, a number of approaches emerged which try tointegrate them (see [Alex93] or [McCa92] for a survey.) These approaches vary greatly inscope and strategy: implementing LP in OOP and vice versa, constraint LP, or modellingstate by modal logic for example.A couple of approaches|including our own|follows a very general, common integrationscheme. They formulate a set of inference rules for an object description language or objectlogic. Depending on the applied rules and logic this may result in a deductive object-orienteddatabase (e. g. [KLW90]) or in a LP language in the Prolog tradition (e. g. Login [AKN86],LIFE [AKP91].)This report shows how a resolution procedure for the full feature logic including disjunctionand negation ([Smol92]) works. We then show some preliminary concepts for a LP language�a la Prolog based on this resolution procedure.The di�erence to other approaches which follow the same integration scheme results fromthe applied object logic. The terms of the feature logic constitute a Boolean algebra, the�This work was supported by the DFG, grant Sn 11/1{2.1



feature term algebra. Since clauses may be represented as implications in feature logic theyare feature terms as well. Hence, object level (i. e. terms) and meta level (i. e. formulas)coincide. In contrast to other approaches which just exchange the underlying term universewe reformulate the resolution algorithm within the object logic and discard the predicatecalculus completely.A couple of advantages results from this method. First, an object logic as expressive asfeature logic eases the description of complex objects. Second, feature resolution answersnot only the questions explicitly posed by a query. It also yields information which is notdirectly related to the query but also relevant to the user. Third, the equivalence of objectand meta level results in a more natural formulation of meta-information. Consequently,such generic information may easily be used during deduction.In the sequel we introduce feature logic by means of examples and sketch its applicationto software engineering within the NORA project. For a formal treatment see [Fisc93].Section 4 deals with a modi�ed resolution algorithm. We then take care of the problemthat this \na��ve" modi�cation does not preserve the closed world assumption and show�nally how inheritance �ts into this framework.2 Feature Logic by ExamplesFeature logic is an extension of predicate calculus. Its roots lie in computational linguis-tics where it is applied in uni�cation-based grammar formalisms (see [Kay79]), knowledgerepresentation (frame-based languages), and logic programming.Features are (slot, value)-pairs which are considered to be partial object descriptions. Aterm [os:msdos]consisting of a single feature is thus interpreted as an object whose os-property has the valuemsdos. No other properties of this object are known. Using the operators of propositionalcalculus we can combine features and simple values to complex object descriptions. Aconjunction of feature terms yields a list of properties which hold simultaneously. Thus[os:msdos, arch:486]describes an object whose os- and arch-properties are known. Similarly, a disjunctiondescribes a list of alternative properties or values where at least one of the alternativesholds. So farch:386, arch:486gdescribes all 386-based and 486-based systems. Variables denote sets of ground instances.As usual, they are capitalized.There exist two special feature terms, top, represented as > or [], and bottom, representedas ? or fg. Top denotes no speci�c or void information. It may be interpreted as an emptyconjunction.The bottom element indicates inconsistent information. Inconsistency resultsfrom a property of features called functionality. It roughly says that each property of anobject can have just one, unique value. 2



Let us for example assume that msdos and bsd are di�erent atomic values. Then the term[os:msdos, os:bsd]is inconsistent. In other words, there exists no object which matches this partial description,no matter which other properties it might have.Exploiting a close resemblance to Boolean algebra we also use u for conjunction, t fordisjunction, and : for negation. We then inductively de�ne the set F�(X) of all featureterms over a �xed set F of feature symbols, a �xed set 
 of operator symbols, and a set Xof variables as follows:� T
(X) � F�(X), (ordinary terms)� p : t 2 F�(X) 8p 2 F; t 2 F�(X), (features)� t1 u t2; t1 t t2;:t 2 F�(X) 8t; t1; t2 2 F�(X) (logical connectives)� ?;> 2 F�(X) (bottom, top)The feature terms do not constitute a at universe but are ordered by subsumption. Sub-sumption (denoted by v) combines the notions of instantiation and extension and ordersterms by the amount of information they represent. A more general term subsumes a morespeci�c. That is, t1 subsumes t2 either if t2 is an instance of t1 or if t2 \has more" slots thant1. We have for example:[os:msdos, arch:486] v [os:msdos] v [os:X]Subsumption is de�ned by the following relation:� �(t) v t i� t 2 T
(X) �X� t v x i� t 2 F�(X); x 2 X� p : t1 v p : t2 i� t1 v t2� t1 u t2 v t1 v t1 t t2� :t2 v :t1 i� t1 v t2� ? v t v >Let v� be the transitive, reexive closure of v. We say that t1 subsumes t2 i� t2 v� t1. Forthe following, we will abbreviate v� by v.Subsumption may be used to explain the meaning of a feature term more formally. Let FC�denote the set of conjunctive ground terms, i. e. the set of all terms which contain neitherdisjunction nor negation nor variables. A feature term t then represents all terms in FC�which are subsumed by t, i. e. [[ t ]] = ft0 2 FC� j t0 v tgThis interpretation reects the idea that feature terms are partial object descriptions. Sincewe do not know anything about the aspects not mentioned explicitly we consider all possibleextensions via subsumption. Thus the interpretation of a term3



[os:msdos, arch:486]which may denote a compiler[os:msdos, arch:486, language:modula2]as well as an actual computer[os:msdos, arch:486, graphic:multicolor]contains both extensions, compiler and computer.The central operation on feature terms is the uni�cation of two terms. Its purpose is tocombine the partial descriptions given by the operands into a new, more speci�c description.E. g. the uni�cation of two component descriptions[arch:386, os:fbsd,sysv,aixg, lang:modula2]and [arch:X, os:fmsdos,mvs,aixg, target arch:X]yields a description of the resulting system architecture:[arch:386, os:aix, lang:modula2, target arch:386].Uni�cation may also be explained in terms of subsumption. A uni�er is a term which issubsumed by both operands. Since ? v t for all t the uni�er always exists but we will calltwo terms uni�able if their uni�er is not ?. A term t is called most general uni�er of t1 andt2 or mgu(t1; t2) if it subsumes any other uni�er of t1 and t2. Apart from variable renamingand simpli�cations, feature uni�cation is unitary. I. e. for each pair of feature terms justone mgu exists.We now have introduced all concepts which are necessary to formulate a resolution algorithmfor feature logic.3 An overview of NORAThe work described here originated in the context of software engineering and is part ofthe NORA1 project. Its goal is the development of inference-based tools for software-engineering. We thus try to apply techniques from automated deduction to \real world"problems.NORA consists2 of a network of independent agents which are placed around a library ofreusable components. Agents are specialists for tasks like� interface control and checking [GS93],� component retrieval, or� con�guration management.1NORA is NO Real Acronym.2See [SZ93] for a detailed description of NORA's architecture, [SGS91] for a discussion of the generalideas. 4



The current implementation focusses on Modula-2 but NORA is intended to be languageindependent. Language-speci�c information is just an additional parameter for agents.Throughout this project we apply feature logic as a means for knowledge representationand inter-agent communication as the following scenario illustrates.� The interface agent infers an interface description for component that is used but notdeclared, for example[push:proc(X,int),top :fproc(X,int), proc(Y,Z)g].� This description is extended by control information[search-for:[interface:[...]]]and|via a central dispatcher|sent to the component retrieval.� The retrieval agent checks the library against the interface description and �nds a listof matching components. This list is sent to an interactive variant editor.� Finally the user may select one implementation, based on the provided interface andadditional component properties.The coinciding representation of data and meta-data (i. e. control information) facilitatesmeta-reasoning. Thus, even control tasks like message dispatching can be done uni�cation-based, taking into account an arbitrary network of agents. This in turn allows a dynamicreorganization and extension of the agent network. Hence, NORA can easily be adopted tonew tasks.4 Feature ResolutionWe now show how resolution translates into feature logic. The algorithm may at �rst remainbasically unchanged. Only some minor changes are necessary to cope with the new termstructure. Of course, the uni�cation procedure is exchanged.As already mentioned, implications in feature logic, e. g.[mood:happy] :- [likes:X, got:X].serve as clauses. The meaning of such an implication is given by subsumption. Any termwhich is subsumed by the premise is also subsumed by the conclusion. We may thus inferfrom [name:"Peter", likes:ice, got:ice]that Peter is happy, i. e.:[name:"Peter", mood:happy, likes:ice, got:ice].A program PRG is considered to be the disjunction of all its clauses, i. e. PRG = tCi.Obviously, PRG is also a feature term. A goal may consist of several subgoals which are5



connected by conjunctions, i. e. G =uGi. As usual we then try to show that the programand the negated goal are inconsistent, PRG u:G := ?. That is, we try to derive the bottomelement which clearly is the equivalent of the empty clause.Each deduction step results in a state (:[G1; : : : ; Gn]; R), a feature term tuple. Its �rstcomponent is a conjunction of the remaining intermediate goals Gi. The second componentis the (intermediate) result R. Since feature uni�ers are terms and cannot be replacedby substitutions, we have to resort to terms to collect the result. The initial state of thealgorithm is (:G;>).A resolution step takes as input a state(:[G1; : : : ; Gn]; R)and an appropriate clauseP:- Q1 u : : :u Qm.We assume that P is uni�able with some subgoal, say P u G1 = T 6= ?. As usual, G1 isreplaced by the body of the clause. The result and each remaining goal are then uni�edwith T .3 Thus, the next state is given by(:[T u Q1; : : : ; T u Qm; T u G2; : : : ; T u Gn]; T uR).As usual, we have to backtrack if there is no appropriate clause. Additionally, a proofattempt fails prematurely if the state is of the form (:[G1; : : : ; Gk];?). That is, we stillhave goals to resolve but the intermediate result is already inconsistent. This situationarises when the program contains inconsistent information.The proof is completed if we succeed in deriving the bottom element, that is to reach a state(:?; R) where ? is the single remaining goal. Then R is a consequence of the program.Since uni�cation is monotone with respect to subsumption, R is also subsumed by the initialgoal, R v G.Figure 1 shows an example program in feature logic. The numbers in parentheses are onlyfor reference. It consists solely of facts,4 rules, and (type) declarations likegrade = fa,b,c,d,eg.We temporarily consider them as mere constant declarations. Thus, each occurrence ofthe identi�er grade will be replaced by the term fa,b,c,d,eg. Their real purpose will beshown in section 5. Any \real program" would of course contain some of the usual non-logical constructs as the cut or expression evaluation.5 We will however concentrate on thelogical constructs.We may now, for example, ask for the names of happy people and submit the query? [name:X, mood:happy].to an interpreter. Applying the above abbreviations we haveG1 = [name:X]3Of course, the uni�cations need not to take place immediately but may be deferred until we try to resolvethat goal or complete the deduction.4We adopt the usual convention that facts are considered to be implications with an empty premise.5Our experimental implementation FRoM supports cut and arithmetics.6



(1) grade = {a,b,c,d,e}.(2) goodgrade = {a,b}.(3) badgrade = {c,d,e}.(4) goodthing = goodgrade.(5) [name: "Peter", got: c, likes: [name: "Mary"]].(6) [name: "Paul", got: e].(7) [name: "Mary", got: a].(8) [mood: happy] :- [likes: X, got: X].(9) [mood: happy] :- [likes: [got: goodthing]].(10) [likes: goodthing].Figure 1: A simple programand G2 = [mood:happy].To prove G1, the interpreter scans the program top-down. Fact (5) is suitable and we getP = R = [name:"Peter", got:c, likes:[name:"Mary"]]and thus Peter's existence as �rst intermediate result. It remains to show that he is happy.Rule (8) is appropriate but fails in the next step since the interpreter cannot verify thatPeter got what he likes. Thus, we have to backtrack and check out rule (9). We replaceG1 u P by the term[name:"Peter", mood:happy, got:c,likes:[name:"Mary", got:goodthing]].The single subterm not yet veri�ed is[name:"Mary", got:goodthing]which yields our next subgoal. We have to demonstrate that Mary got a goodthing. Sincegoodthing via goodgrade is an abbreviation for fa, bg, fact (7) su�ces. Our �rst resultis thus [name:"Peter", mood:happy, got:c, likes:[name:"Mary", got:a]].The interpreter then backtracks and tries to prove G1 applying fact (6). But neither rule(8) nor rule (9) apply for Paul. So the interpreter backtracks again and uses the next fact(7) to show G1. By rules (8) and (10) it then infers that Mary is happy, too, because shegot a goodthing which everyone likes:[name:"Mary", mood:happy, got:a, likes:a].The query is then answered since the example program contains no other appropriate clause.7



5 On the closed world assumptionIn this section we are going to settle the question when a clause is suitable to resolve agoal. According to Prolog we might expect that uni�ability of the goal and the clause headsu�ces. However, due to the accumulating behavior of feature uni�cation, this yields someat least unexpected results.Suppose a program consisting of the single fact[name:"John", age:25].The query ? [name:X].then yields [name:"John", age:25]as expected whereas we might be astonished about the result of? [name:X, mood:happy].Instead of returning with no answer the interpreter readily infers that John is happy:[name:"John", age:25, mood:happy].This obviously violates a kind of closed world assumption. The program itself gives noparticular reason to assume that John is happy. In general, it gives no hint about John'smood at all. This behavior results from a property of feature uni�cation. The second queryintroduces a \prejudice" or assumption into the deduction process, namely the mood:happy-feature. It is no consequence6 of the program but neither it is a contradiction. Since featureuni�cation accumulates information until a contradiction appears, the resolution fails todetect that mood:happy is an assumption and just echoes it back.In a third query,? [name:"Joe", mood:happy].however, the contradiction occurs early enough and thus inhibits the assumption from prop-agating to the answer. We thus get the expected result.We inhibit the introduction of assumptions by imposing a type discipline on the applicablerules. Suppose a (negated) goal G and a clause head P . P is applicable if its type is asubtype of G's type. This is a suitable generalization of the usual claim that goal and clausehead are uni�able and complementary literals. In our setting, we demand that P and G arecomplementary terms, i. e. P u :G = ?) [[P ]] \ [[:G]] = ;) [[P ]] \ (FC� � [[G]]) = ;) [[P ]] � [[G]]) P v G6Consequence in an informal meaning. 8



and thus get the above type restriction.To incorporate such a type discipline into programs we need the type de�nitions. Typesare represented by type terms. They closely resemble feature terms but are built on top ofanother set of operator symbols called sorts or basic types . Replacing each sort by the setof its instances yields all instances of a type.Thus, the typed equivalent of the above example isperson = [name:string, age:int].person[name:"John", age:25].Since subtyping is subsumption of type terms we can easily see that[name:string, age:int] 6v [name:string, mood:moodtype]and thus both, the second and third query produce no result.6 InheritanceWe are now going to deal with inheritance which|besides objects|is usually consideredto be one of the key concepts of object-oriented programming. Despite its importance,inheritance has no de�nition generally agreed upon. In our opinion, inheritance resultsfrom two simpler concepts, classi�cation and delegation.Classi�cation orders objects into a usually hierarchical structure. All equivalent (w. r. t.classi�cation) objects form a class. It thus covers the taxonomic aspect of inheritance.Delegation denotes the mechanism to pass a method invocation to another object or class.It thus allows di�erent classes to share method implementations and facilitates reuse.The combination of both concepts into a new one, inheritance, ensures a consistent and cleansystem structure. Delegation may only take place along the lines given by classi�cation:only more speci�c objects may delegate method calls to objects of more general classes.Because classi�cation takes the implemented methods into account success of delegationmay be checked statically.In our setting a class comprises a type de�nition, all known facts of that type (instances)and all rules whose head is of that type (methods), e. g.class person = [name:string, age:int]instances [name:"John", age:25].Since feature logic originates in knowledge representation, the taxonomic aspect of inher-itance naturally translates into our framework. Single inheritance is just subtyping as forexample in class student = person u [subject:string].This de�nition extends person by a subject-feature and thus de�nes student as a subtypeof person. This mechanism naturally extends to multiple inheritance if applied to di�erentnamed types:class foreigner = person u [nation:string]class foreign student = foreigner u student9



The delegation behavior of inheritance is much harder to model. We have seen in the lastsection that a rule (i. e. method) is applicable only if it is subsumed by the goal to beresolved. Thus, delegation would proceed in the wrong direction, that is upwards. A morespecial method is inherited by a more general object.Consequently, we need another concept to model inheritance right. This concept mustrespect the closed world assumption and thus be compatible with our type discipline.Our solution is inspired by the polymorphic types and functions of functional languages.Similarly, we use type schemes . A type scheme is a type de�nition which contains a freevariable or type parameter . A scheme likeclass moody(X v person) = X u [mood:fhappy,angry,sadg]may be considered to be a polymorphic class de�nition. The type parameter is instantiatedalong the lines of the taxonomic hierarchy. This scheme is thus expanded to e. g.class moody student = [name:string, age:int, subject:string,mood:fhappy,angry,sadg]Since the instantiation of the type variables may be restricted to a part of the hierarchy (inthis example to person and its subtypes) we actually have some kind of bounded polymor-phism.A method scheme is a method for a type scheme. That is, its clause head has the schemetype as for example inmoody(X v person) u [mood:happy] :- X u [likes:[got:goodthing]].Method schemes are expanded in the same way as type schemes. Thus, after expansion thisrule reads asmoody student u [mood:happy] :- student u [likes:[got:goodthing]].This ensures that an appropriate rule exists for each type which specializes the type param-eter, i. e. person. Hence, the method is correctly inherited.7 ConclusionsWe have shown how resolution translates into feature logic, an expressive object logic.Since its terms constitute a Boolean algebra, predicate calculus becomes redundant and isdiscarded. Slots then take the role of the predicate symbols. We have demonstrated that astraightforward translation of the resolution algorithm violates a closed world assumptionand we have introduced a type discipline which solves this problem. Uni�ability and typeconstraints together guide the selection of applicable rules. Finally, we have integratedinheritance into that framework.Our e�orts yield a language which integrates logic programming and object-oriented pro-gramming. To summarize (and to contribute a new slogan), it can be characterized byinheritance = subtyping + bounded polymorphism.10



A prototypical implementation called FRoM is currently in progress [Brau93].Our �rst intended application of the feature resolution is an enhanced make facility formaintaining large software systems. It will be able to cope with incomplete and ambiguousinformation. This will ease the construction of multi-version systems.We currently investigate the relations between our type structure and that of Haskell[HJW92, NS91]. In Haskell, polymorphism may be combined with overloading. The func-tions introduce equivalences on types called type classes. Type classes and type templatesover disjunctive types seem to be closely related.Up to now, we have just transplanted the syntax-driven resolution algorithm into a newlogical structure. Another crucial point is thus an appropriate de�nition of entailment.This also includes further investigations about the relation between inheritance and theexistential queries. The work of Smolka and Treinen [ST92] seems to be a good startingpoint.AcknowledgementsM. Kievernagel served as guinea pig for most of the ideas and did a tough job in proof-reading. M. Brauer implemented a language prototype. F.-J. Grosch, C. Lindig, G. Snelting,H. Upho� and A. Zeller contributed additional valuable discussions.References[AKN86] H. A��t-Kaci and R. Nasr. Login: A Logic Programming Language with Built-inInheritance. Journal of Logic Programming, 1986(3):186{215, 1986.[AKP91] H. A��t-Kaci and A. Podelski. Towards a Meaning of LIFE. In Proc. 3rd. Inter-national Symposium on Programming Language Implementation and Logic Pro-gramming, pp. 255{274, 1991.[Alex93] V. Alexiev. A (Not Very Much) Annoted Bibliography on Integrating Object-Oriented and Logic Programming. Technical report, University of Alberta, 1993.Available per ftp from menaik.cs.ualberta.ca:pub/oolog.[Brau93] M. Brauer. Ein Interpreter f�ur Feature-Logik. Master's thesis, Technische Uni-versit�at Braunschweig, (in preparation) 1993.[Fisc93] B. Fischer. A New Feature-Uni�cation Algorithm. Technical Report 93-01, Inst.f. Programmiersprachen und Informationssyteme, Technische Universit�at Braun-schweig, to appear 1993.[GS93] F.-J. Grosch and G. Snelting. Polymorphic Components for Monomorphic Lan-guages. In Ruben Prieto-Diaz and William B. Frakes, (eds.), Advances in Soft-ware Reuse, pp. 56{65, Lucca, Italy, March 24{26 1993. IEEE Computer SocietyPress. 11
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